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Prethermal nematic order and staircase heating in a driven frustrated Ising
magnet with dipolar interactions
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Many-body systems subject to a high-frequency drive can show intriguing thermalization behavior. Prior
to heating to a featureless infinite-temperature state, these systems can spend an exponentially long time in
prethermal phases characterized by various kinds of order. Here, we uncover the rich nonequilibrium phase
diagram of a driven frustrated two-dimensional Ising magnet with competing short-range ferromagnetic and
long-range dipolar interactions. We show that the ordered stripe and nematic phases, which appear in equilibrium
as a function of temperature, underpin subsequent prethermal phases in a new multistep heating process en route
towards the ultimate heat death. We discuss implications for experiments on ferromagnetic thin films and other
driving induced phenomena in frustrated magnets.
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I. INTRODUCTION

Frustrated magnetism has been a central research area
in condensed matter physics for many decades [1–4]. Its
defining feature is the presence of competing interactions
leading to a (near) degeneracy of an extensive number of
states. As a result, frustrated quantum models may host elu-
sive quantum spin liquid ground states states with topological
order [5–10]. Their equilibrium finite-temperature behavior
may also display remarkably rich physics stemming from
the competition between small energy scales and entropy,
for example, crossovers into classical spin liquids [11,12],
liquid-gas-like thermal phase transitions in spin ices [13,14],
the entropic selection of order via the order-by-disorder mech-
anism [15,16], and different forms of nematic order [17–22].

More recently, nonequilibrium many-body physics has
been a research area of immense interest partly because of the
possibility to realize novel phases of matter beyond thermal
equilibrium. As a prominent example, prethermal discrete
time crystals (DTCs) have been recently predicted [23–25]
and observed [26] to break the time translational symmetry of
a periodic Floquet drive over very long transient times. At the
core of prethermal DTCs is the phenomenon of prethermal-
ization [27–36], whereby energy absorption from a periodic
drive is suppressed for large enough drive frequencies ω.
These systems equilibrate to an effective thermal state with
respect to an effective Hamiltonian and an effective temper-
ature set by the initial states. From the viewpoint of driven
magnetism, a prethermal DTC can be understood as a sim-
ple ordered ferromagnetic phase (of an unfrustrated effective
Hamiltonian) at stroboscopic times. After an exponentially
long time ∼ecω with c a constant, these systems melt into a

featureless state akin to infinite temperature. Requiring only a
high frequency drive, prethermalization is ideal for the inves-
tigation of nonequilibrium many-body physics in experiments
[37–39].

Initially studied within a quantum formalism, prethermal-
ization and prethermal DTCs have recently been established
to also emerge classically [40–46], which greatly simplifies
the investigation of these phenomena both beyond one-
dimensional examples as well as in the presence of long-range
interactions. With the possibility to explore the interplay of
interaction range and dimensionality at hand, a natural ques-
tion is whether novel prethermal phases as well as nontrivial
heating dynamics may exist in many-body systems with com-
peting interactions.

Here, we investigate prethermalization in a driven frus-
trated magnet. Concretely, we study a two-dimensional Ising
model with competing ferromagnetic short-range and dipolar-
like long-range interactions; see Fig. 1(a). The static model
was first put forward as a minimal description of ultrathin
magnetic films [47–54], in which the interplay of frustration
and thermal fluctuations gives rise to a rich phase diagram
hosting various kinds of magnetic orders [55–63]. As shown
in Fig. 1(b), it includes (in order of increasing temperature)
a magnetic stripe phase with long-ranged orientational and
magnetic order, a nematic phase that only breaks the lat-
tice rotational symmetry, and a correlated paramagnetic (CP)
regime preserving all of the allowed symmetries while dis-
playing characteristic short-range correlations. More recently,
magnetic thin films have also emerged as ideal experimental
platforms for investigating nonequilibrium magnetic phe-
nomena [64–70], for example, realizing transient topological
defects after ultrafast laser excitation [71].
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FIG. 1. Two-dimensional, driven, frustrated magnet. (a) Spins on a two-dimensional lattice interact via ferromagnetic nearest-neighbor
(red) and long-range antiferromagnetic (blue) Ising couplings. (b) As a function of temperature T , the model has several equilibrium phases
shown with representative spin configurations both in real (top) and momentum (bottom) space. In order of increasing T , we show the stripe,
nematic, and correlated paramagnetic (CP) phases. Eventually, in the infinite temperature state the spins orientate randomly and become
completely uncorrelated. (c) The system is periodically driven by alternating the interactions in Hs and a transverse field pulse in Hp; see
Eq. (2). (d) Schematic dynamics of the orientational and stripe order parameters O and mz

s , respectively, and energy ET . At high drive frequency
ω, the system can exhibit staircase heating: after an initial quick relaxation, the system first remains in a prethermal stripe regime (mz

s > 0), then
in a prethermal nematic one (mz

s = 0, O > 0), and eventually in a CP (mz
s = O = 0, ET > 0) that adiabatically heats up to infinite temperature

(ET = 0). The energy difference between stripe and nematic phases have been schematically amplified to stress this transition. (e) Nonequilib-
rium phase diagram in the plane of initial noise strength σ and time t . The effective temperature of the system increases in the direction of both
increasing σ , corresponding to higher initial effective temperatures, and t , corresponding to the dynamical heat up of the system through energy
absorption. The dot, square, and triangle markers correspond to the configurations in (b). Here we used L = 72 [L = 160 in (b)], J1 = 1.55
and J2 = 1 (W = 4), g = 0.46, and ω = 1.1.

Turning to the driven setting for such a frustrated magnet,
we uncover a rich nonequilibrium phase diagram. For initial
states corresponding to low effective temperatures, we find
a remarkable staircase heating process induced by the com-
petition between subsequent prethermal stripe and nematic
phases. In the regime of high initial effective temperature,
this multistep heating reduces to a one-step process and
the prethermal nematic phase transforms to a symmetric CP
phase. Finally, we discuss how these phenomena could be
experimentally observed in magnetic thin films and speculate
about other nonequilibrium phenomena in driven frustrated
magnets.

The rest of this paper is organized as follows. In Sec. II,
we present the dynamical Hamiltonian, formulate the equa-
tions of motion, and introduce observables and initial states.
We discuss our main results in Sec. III. Finally, Sec. IV is
devoted to a brief summary and discussion.

II. MODEL

We consider a system of L2 classical spins Si =
(Sx

i , Sy
i , Sz

i ), arranged on a square lattice of linear size L and
described by the following static Hamiltonian:

Hs = −J1

4

∑
〈i j〉

Sz
i Sz

j + J2

N
∑
i �= j

1

r3
i, j

Sz
i Sz

j, (1)

where J1 and J2 are the nearest-neighbor ferromagnetic and
dipolar couplings, respectively, and N = ∑N

i=1(r1,i )−3 is a
Kac-like normalization factor. The O(3) spins Si with unitary
modulus can be parametrized by a pair of polar and azimuthal
angles (θi, φi ) as Si = (sin θi cos φi, sin θi sin φi, cos θi ). The
distance ri, j between sites i and j is taken to be ri j =∑

a=x,y
La
π

| tan( π (ia− ja )
La

)|, which implicitly implements pe-
riodic boundary conditions and reduces finite-size effect.
Equation (1) has two symmetries: the Z2 symmetry associated
to spin flips Sz

j → −Sz
j , and the C4 symmetry associated to

lattice rotations by 90◦.
The presence of these symmetries gives rise to a rich equi-

librium phase diagram. At temperatures much larger than the
bare exchange constants, the system develops characteristic
short-range correlations while preserving all symmetries in
the CP crossover regime. At zero temperature, the energy in
Eq. (1) is minimized for spins aligned along the z axis, which
connects our model to the known results for Ising variables
[55–57,60–62]. In the absence of the short-range interaction,
J1 = 0, the system is in an antiferromagnetic phase that breaks
the Z2 symmetry while fulfilling the C4 one. When J1 and J2

are comparable, the spins arrange in stripes that, on top of the
Z2 symmetry, also break the C4 lattice rotational symmetry
down to a C2 one [57]. The width W of the stripes scales as
eJ1/J2 and the transition between the stripe and antiferromag-
netic phases is found, for T → 0, at J1/J2 ≈ 0.2. Remarkably,
at a moderately large temperature a third phase emerges, the
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nematic one, where the stripe magnetization is lost but ne-
matic (meaning orientational) order persists [60,62].

We are interested in the study of the interplay between
competing short- and long-range interactions in the nonequi-
librium realm. To this end, we consider a periodically driven
version of the model in Eq. (1), where the Hamiltonian Hs is
alternated with transverse field pulses according to the follow-
ing quaternary Floquet Hamiltonian, at frequency ω = 2π/τ

[see Fig. 1(c)]:

H (t ) =

⎧⎪⎨
⎪⎩

Hs for t ∈ [0, τ/4),
Hp = +2ωg

∑
i Sx

i for t ∈ [τ/4, τ/2),
Hs for t ∈ [τ/2, 3τ/4),
−Hp for t ∈ [3τ/4, τ ).

(2)

The effect of the transverse field is to rotate the spins around
x axis by an angle πg (twice in each period, in opposite
directions) which, given the parametrization ωg of the field
strength, is irrespective of the frequency ω. The spin dynamics
is described by standard Hamilton equations ∂t Si = {S, H (t )}
and can be analytically integrated as [43,44]

Si(nτ + τ ) =
⎛
⎝ c1 −s1 0

s1c2 c1c2 s2

−s1s2 −c1s2 c2

⎞
⎠

×
⎛
⎝ c1 −s1 0

s1c2 c1c2 −s2

s1s2 c1s2 c2

⎞
⎠Si(nτ ),

where c1 = cos(κiτ/4), s1 = sin(kiτ/4), c2 = cos(πg), and
s2 = sin(πg). The effective field κi reads κi = − J1

4

∑
j∈∂i

Sz
j +

J2
N

∑
j �=i

1
r3

i j
Sz

j, where
∑

j∈∂i
denotes summation over the near-

est neighbors of site i. We note that our choice of a stepwise
driving protocol is motivated by computational convenience
for probing long times but the following results are ex-
pected to be similar for more general choices of continuous
drives [25].

We initialize the system in a stripe state with Y orien-
tation. For concreteness, we henceforth set J1 = 1.55 and
J2 = 1, where the ground state is indeed a stripe state with
width W = 4 (see Appendix A). The spins are initialized in
such a ground state. On top of this, we add a perturbation
that brings the many-body character of the system into play.
Specifically, θi’s are perturbed using a Gaussian noise, p(θ ) =

1√
2πσ̃

e−θ2/2σ̃ 2
with σ̃ ≡ 2πσ the standard deviation, whereas

φi’s are randomly drawn in [0, 2π ]. The parameter σ thus acts
as a sort of initial temperature, injecting excitations on top
of the ground state. Note that this choice of initial states is
convenient for simulations but in an experimental realization
a low temperature stripe state would be sufficient.

The different possible dynamical regimes can be diagnosed
with suitable observables. Generalizing the idea proposed for
Ising variables in Ref. [55], we consider the following orien-
tational order for O(3) spins:

O(t ) =
∑

i Si(t ) · Si+ŷ(t ) − Si(t ) · Si+x̂(t )

2N − ∑
i Si(t ) · Si+x̂(t ) − Si(t ) · Si+ŷ(t )

. (3)

The parameter O is equal to +1 (−1) in a perfect stripe state
with Y (X ) orientation and vanishes if the C4 symmetry is
preserved. Note that O(t ) results rather sensitive to perturba-

tions when the alignment of Si and S j is slightly spoiled. For
σ = 0.06, the initial condition gives O(0) ≈ 0.5, while still
exhibiting a clear stripe structure. Therefore, we find O(t )
to be more informative when normalized as O(t )/O(0). To
further characterize the magnetic order, we then consider
the stripe magnetization ms(t ) = 1

N

∑
i(−1)(ix/W mod 2)Si(t ),

which detects stripe spin configurations with width W . Fi-
nally, to keep track of energy absorption in the system, we
look at the normalized average energy per period, ET (t ) =
Hs(t )/Hs(t = 0) [with Hs(t = 0) ≈ −0.61L2 for σ = 0.06
and L � 72]. All these observables are computed at stro-
boscopic times t = τ, 2τ, 3τ, . . . . Note, we also consider
higher-order expansions for the prethermal effective Hamil-
tonian in Appendix B.

III. RESULTS

According to the prethermalization paradigm, at large drive
frequency ω the system can remain stuck in a prethermal
regime for an exponentially long time ∼ecω. The dynamical
response of the system crucially depends on the amount of
excitations injected in the initial condition, that is, on the sys-
tem’s initial effective temperature. Specifically, we distinguish
the regimes of low and high initial effective temperatures, that
is, small and large σ , analyzed in the top and bottom panels of
Fig. 2, respectively.

For a high initial effective temperature (e.g., σ = 0.1), the
initial stripe configuration is unstable, and quickly melts into
a CP phase: both the orientational and stripe order parameters
quickly decay to 0; see Figs. 2(a1) and 2(b1). Such a transition
occurs over a timescale ∼1/λ, with λ the Lyapunov exponent
associated to the effective Hamiltonian Hs, which becomes
independent of ω in the high frequency limit [44]. On the other
hand, the high drive frequency hinders energy absorption; see
Fig. 2(c1). Indeed, even in the absence of symmetry breaking
in the prethermal regime, the infinite-temperature state with
ET = 0 is only reached after an exponentially long time ∼ecω.

The situation changes substantially for an initial condition
with low effective temperature (e.g., σ = 0.06). The system
not only breaks a symmetry in the prethermal regime, but it
does so twice: first the system prethermalizes to a stripe state
for a time ∼ec1ω, and then to a nematic phase for a time ∼ec2ω,
before reaching the infinite-temperature state; see Figs. 2(a2)–
2(c2). (i) A first prethermal stripe phase, extending over a
timescale ∼ec1ω, is signaled by the equilibration of my

s , mz
s ,

ET , and O to a finite prethermal value that does not depend on
the drive frequency ω (note, mx

s ≈ 0). (ii) At later times, and
provided the frequency is large enough (ω � 0.9), the stripe
order parameters my

s and mz
s decay to 0, while the energy

ET and the nematic order parameter O drop slightly while
remaining finite. This signals the second prethermal phase, the
nematic one, extending for a time ∼ec2ω, with c2 > c1. From
our data, we estimate the prethermal energy plateau for the
stripe and nematic phases at ET /ET (0) = 0.4894 ± 0.0082
and 0.4672 ± 0.0106, respectively. The small extent of this
drop, which we try to highlight with a circle in the inset of
Fig. 2(c2), is related to the narrow temperature window of the
nematic phase in the equilibrium phase diagram of the static
Hamiltonian in Eq. (1). Indeed, this nonequilibrium evolution
can be understood from the equilibrium phase diagram of
Hs by doing the association “time” ↔ “temperature” (see
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FIG. 2. Diagnosing prethermal order. From the temporal profiles of the order parameters at various drive frequencies ω (left) we map out
the system’s nonequilibrium phase diagrams (right). For a high-temperature initial condition (top, σ = 0.1) the orientational order parameter O
(a1) and stripe magnetization mz

s (b1) quickly and simultaneously decay to zero, while prethermalization is still imprinted on the relative energy
ET (c1), reaching its infinite-temperature value only after an exponentially long time ∼ecω. The phase diagram (d1) shows an initial transient
stripe regime followed by a prethermal CP regime, beyond which the infinite-temperature regime is reached. In contrast, for low-temperature
initial states (bottom, σ = 0.06), the system exhibits two prethermal plateaus: at large enough drive frequency ω, O (a2) and mz

s (b2) remain
finite over two timescales ∼ec2ω and ∼ec1ω, respectively, and with c2 > c1, indicating subsequent stripe and nematic prethermal phases. The
energy (c2) also decays to 0 after an exponentially large time and features two-plateau structure corresponding to the stripe to nematic transition
emerging at large ω, as highlighted by the circle in the inset. The stripe and nematic prethermal phases characterize the dynamical phase
diagram (d2). Note that the blue regime in (d1) and green regime in (d2) persist in a transient rather than prethermal manner. In (d1),(d2), the
markers correspond to the parameters used in plotting the spin configurations in Fig. 1(b). Here, L = 72, J1 = 1.55 and J2 = 1 (W = 4), and
g = 0.46.

the equilibrium phase diagram in Appendix A). (iii) After
undergoing a CP crossover, the system eventually reaches
the infinite-temperature state, signaled by the observables of
interest reaching their infinite-temperature value 0.

From the time traces of the observables described above,
we map out the dynamical phase diagrams of the system in
Figs. 2(d1) and 2(d2), drawn in the plane of drive frequency ω

and time t . Specifically, we consider that the system leaves the
stripe phase when mz

s crosses the value 10−2 (blue circles) and
the nematic phase whenO/O(0) crosses 10−2 (yellow circles).
Furthermore, for the CP phase, we use green and red circles
to indicate when ET crosses the thresholds 0.45 and 0.005,
respectively.

A further quantity convenient for diagnosing the various
phases is the structure factor Sa

q = | 1
N

∑
j Sa

i eiq· j | (a = x, y, z).
Figure 1(d) illustrates several typical spin configurations in
z axis and corresponding Sz

q for different phases. Note that
the spin configurations in x axis are always disordered during
the drive process, whereas those in y axis are very similar
to the one in z axis. In the Y -oriented stripe phase with
W = 4, Sz

q exhibits four sharp peaks at q = ( 2w+1
4 , 0)π with

w = 0, 1, 2, 3. In the nematic phase, only two broader peaks
remain, signaling breaking of the C4 symmetry, while a light
ring-shaped feature around the origin emerges. For a typical

CP state preserving the lattice rotational symmetry, all of the
sharp peaks disappear and only the ring-shaped feature is left.

In Fig. 1(e), we show the nonequilibrium phase diagram as
a function of initial noise strength σ , at a fixed drive frequency
ω = 1.1. When σ is very small, the stripe phase is essentially
the only prethermal phase. For moderate σ (e.g., σ ≈ 0.06),
a long-lived prethermal nematic phase emerges and gives rise
to clear staircase heating with timescales ∼ec1ω and ∼ec2ω. At
even larger σ � 0.08, stripe order persists just in a transient
(rather than prethermal) fashion, whereas nematic order is
not observed. Instead, a prethermal CP phase emerges. The
nonequilibrium phase diagram can be understood in analogy
with the equilibrium one by noting that the effective tem-
perature of the system can be increased either in the form
of larger initial noise σ or by just waiting longer through
energy absorption. Note, we have also verified the stability
of the prethermal phases to generic small perturbations of the
driving protocol, e.g., to the addition of random Z fields to Hs

in Eq. (1).

IV. DISCUSSION AND CONCLUSION

Efficiently integrated over long timescales and for large
system sizes, the microscopic equations of motion for
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classical systems are a new tool to study prethermaliza-
tion in higher dimension. For instance, focusing on a
two-dimensional Ising magnet with competing short- and
long-range interactions, we find an unprecedented two-step
prethermalization process, consisting of subsequent prether-
mal stripe and nematic phases for times ∼ec1ω and ∼ec2ω,
respectively, before the ultimate heath death. A difference in
the two scaling coefficients, c1 �= c2, should be attributed to
the fact that the respective phase transitions are driven by the
proliferation of different kinds of defects, i.e., the dislocations
of stripes melt mz

s and the proliferations of domain walls
between different stripe orientations eventually disorder the
nematic state.

We note that the physical picture that we outlined is ex-
pected to persist in the presence of small symmetry-breaking
terms added to Hs and taken with different signs in the first
and third quarters of the driving protocol in Eq. (2). In this
case, the stripe and nematic prethermal phases would break a
symmetry not of Hs, which in fact would have none, but of an
effective prethermal Hamiltonian instead, thus signaling the
genuine nonequilibrium nature of these phenomena similar to
the case of prethermal DTCs [26,44,46].

An intriguing prospect from our proposal is the experi-
mental realization in magnetic thin film materials. Our model
Hamiltonian is an effective description of a whole class of
perpendicular magnetic anisotropy (PMA) materials [72]. In
particular, to avoid rapid heating via coupling to charge ex-
citations, the recently discovered insulating PMA materials
appear to be the most promising [73–76]. These can de-
velop stripe domains from the interplay between a relatively
large easy-axis anisotropy and dipole-dipole interactions. The
relevant excitation energy scale is that associated to the
anisotropy, EA ∼ 1 meV [77], which compares favorably with
the available sub-Thz drives meeting the condition ω > EA

necessary for prethermalization. Moreover, discerning the var-
ious prethermal phases should be facilitated by the recent
advances in the real-time imaging of magnetic domains in
PMA systems [78–80].

In the future, it would be interesting to investigate how the
prethermal phase diagram outlined here changes for different
initial conditions beyond the considered noisy stripe states.
More broadly, a worthwhile direction for future research
is the study of prethermal order-by-disorder mechanisms in
frustrated magnets, with the possibility to stabilize selected
magnetic phases by different choices of the drive. Another
natural open question is whether driven frustrated magnets
of the kind studied here could lead to new forms of time
crystalline order. In general, we expect driven frustrated mag-
nets to be a versatile playground for novel nonequilibrium
phenomena.
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APPENDIX A: EQUILIBRIUM PHASE DIAGRAM

We implement classical Monte Carlo simulations to obtain
the equilibrium phase diagram for the static Hamiltonian Hs

at the point of interest J1 = 1.55 and J2 = 1. Specifically,
we investigate the free energy E = 〈Hs〉, heat capacity CV =
〈H2

s 〉 − 〈Hs〉2, stripe order parameter mz
s , and nematic order

parameter O as a function of the temperature T ′, in Fig. 3.
(i) At low temperature T ′ � 0.33, we observe a stripe phase
(mz

s ≈ 1 and O ≈ 1). (ii) When 0.33 � T ′ � 0.36, the system
enters a nematic phase (mz

s ≈ 0 and O > 0). (iii) When T ′ �
0.36, we find a correlated paramagnetic (CP) phase (mz

s =
O = 0), which adiabatically connects to infinite temperature
T ′ → ∞. The peaks of the specific heat CV signal two second
order phase transitions. A few observations are in order. (i)
The stripe-nematic transition is less evident than the nematic-
paramagnetic one. (ii) The temperature range corresponding
to the nematic phase is very narrow, its free energy varying
only from 0.66 to 0.64, which is consistent with the small en-
ergy difference between stripe and nematic phases in Fig. 2 in
the main text. (iii) The CP phase does not break any symmetry,
it is just a disordered phase that retains a finite free energy
E and, correspondingly, short range correlations—this moti-
vates the nomenclature “CP phase,” consistent with previous
literature.

FIG. 3. Equilibrium phase diagram of Hs. We plot the free energy
density (a), specific heat (b), and stripe as well as nematic orders
(c) at equilibrium and versus the temperature T ′, as obtained by
Monte Carlo simulations. Here, we consider L = 72 and 2 × 107

Monte Carlo steps to measure the observables. To reduce the au-
tocorrelation of the samples, we have used only one sample for
measurements every 722 Monte Carlo steps.
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FIG. 4. (a) Energy of the initial stripe state as a function of Gaussian noise strength σ for prethermal Hamiltonians 1
2 Hs (blue) and 1

2 Hs −
1
2 Hps (orange). Here, the lattice size is L = 72 and the results are ensemble averaged over 100 different realizations. (b) Dynamics of the stripe
order mz

s and nematic order O. (c) Dynamics of the zeroth prethermal Hamiltonian Hs and higher-order prethermal Hamiltonian Hs − Hps.
The mean value of each energy plateau is obtained as an average over the time window indicated by black dashed lines. To better emphasize
the energy difference between stripe and nematic phases, we plot in (d) and (e) their zoomed version. Here, L = 72, J1 = 1.55 and J2 = 1
(W = 4), ω = 1.1, and g = 0.46.

APPENDIX B: HIGH FREQUENCY EXPANSION

Below we consider a higher order expansion of prether-
mal Hamiltonian in the high-frequency limit. The equation of
motion, d �Si/dt = {H (t ), �Si}, leads to a stroboscopic evolution
function,

�Si(Nτ ) = e
τ
4 {−Hp,·}e

τ
4 {Hs,·}e

τ
4 {Hp,·}e

τ
4 {Hs,·} �Si(Nτ − τ ).

We can define the effective prethermal Hamiltonian Heff as

e
τ
4 {−Hp,·}e

τ
4 {Hs,·}e

τ
4 {Hp,·}e

τ
4 {Hs,·} = eτ {Heff ,·}.

In the high frequency limit, we can expand the above equa-
tion by using the Baker-Campbell-Hausdorff (BCH) formula,
e.g.,

e
τ
4 {Hp, ·}e

τ
4 {Hs, ·} ≈ e

τ
4 {Hp+Hs+Hps, ·}, (B1)

where the explicit form of Hps ≡ τ
8 {Hp, Hs} reads

Hps = τωg

4

[
J1

4

∑
〈i j〉

(
Sz

i Sy
j + Sy

i Sz
j

)

− J2

N
∑
i �= j

(
1(
r3

i j

)(
Sz

i Sy
j + Sy

i Sz
j

))]
.

We then obtain that

eτ {Heff , ·} ≈ e
τ
4 {−Hp+Hs−Hps, ·}e

τ
4 {Hp+Hs+Hps, ·}, (B2)

which leads to

Heff ≈ 1

2
Hs − 1

2
Hps + τ

16
{Hs, Hps} + O(τ 2). (B3)

By noting that τω = 2π , Hps does not depend on drive
frequency ω and τ {Hs, Hps} indeed is linear in 1/ω. The emer-
gence of Hps is consistent with the results we have observed
in the prethermal phases, i.e., both the y and z components of
spin exhibit ordered (striped and nematic) configurations, but
the x component is disordered.

In Fig. 4(a), we evaluate the energy of our initial stripe state
with the prethermal Hamiltonian Heff = 1

2 Hs − 1
2 Hps and find

the contribution from the latter term, 1
2 Hps, is negligible. We

also study the evolutions of energy evaluated with Hamilto-
nians Hs and Hs − Hps, respectively, as shown in Fig. 4(c).
We find that, after entering the prethermal stripe and nematic
phases, the higher-order corrections to the energy become
more significant. Nonetheless, the relative energy difference
for the higher-order prethermal Hamiltonian Hs − Hps, ≈
3.6%, is still very small, and comparable with that for the
zeroth-order prethermal Hamiltonian Hs, ≈ 4.6%. We there-
fore argue that the energy difference being small is ultimately
due to the narrowness of the temperature range of the nematic
phase in the equilibrium phase diagram, irrespective of the
order of the expansion of the prethermal Hamiltonian Hs.
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