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Anharmonic lattice dynamics from vibrational dynamical mean-field theory
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We present a vibrational dynamical mean-field theory (VDMFT) of the dynamics of atoms in solids with an-
harmonic interactions. Like other flavors of DMFT, VDMFT maps the dynamics of a periodic anharmonic lattice
of atoms onto those of a self-consistently defined impurity problem with local anharmonicity and coupling to a
bath of harmonic oscillators. VDMFT is exact in the harmonic and molecular limits, nonperturbative systemati-
cally improvable through its cluster extensions, usable with classical or quantum impurity solvers (depending on
the importance of nuclear quantum effects) and can be combined with existing low-level diagrammatic theories
of anharmonicity. When tested on models of anharmonic optical and acoustic phonons; we find that classical
VDMFT gives good agreement with classical molecular dynamics, including the temperature dependence of
phonon frequencies and lifetimes. Using a quantum impurity solver, signatures of nuclear quantum effects are
observed at low temperatures. We test the description of nonlocal anharmonicity via cellular VDMFT and the
combination with self-consistent phonon (SCPH) theory, yielding the powerful SCPH + VDMFT approach.
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I. INTRODUCTION

Since the seminal work of the early twentieth century,
phonons have been foundational for the description of solids.
However, early on it was recognized that anharmonic ef-
fects, corresponding to interactions between phonons, were
non-negligible and responsible for a variety of phenomena
including thermal expansion, the stability of certain phases,
the temperature dependence of phonon frequencies, phonon
lifetimes, and thermal conductivity [1–5]. For example, many
of the structural and dynamical properties of halide and ox-
ide perovskites have been linked to their soft phonon modes
and associated strong anharmonicity [6–11]. Moreover, recent
work has observed strongly correlated phonon behavior, such
as Kondo-like phonon scattering in thermoelectric clathrates
[12] and the saturation or violation of Planckian bounds on
thermal transport [13,14].

Following the self-consistent phonon (SCPH) theory
[2,15,16], a number of computational approaches have been
developed to simulate the properties of anharmonic solids
[17–22], most of which are static mean-field theories that seek
an optimized harmonic description of anharmonic systems.
Therefore, they yield improved thermodynamic properties
and shifts in phonon frequencies but cannot predict phonon
lifetimes or nonquasiparticle effects. Such effects can be par-
tially described using perturbation theory [23–28], which fails
for strong anharmonicity, or by molecular dynamics (MD)
[27–31], which is computationally expensive when accurate
forces are used and requires approximate techniques to in-
clude nuclear quantum effects [32–35].
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Here, we present a vibrational dynamical mean-field
theory (VDMFT) without the above limitations—it is non-
perturbative, exact in the harmonic and molecular limits,
systematically improvable through cluster extensions, appli-
cable to problems with or without nuclear quantum effects,
and describes phonon spectra. Our VDMFT is completely
analogous to conventional DMFT [36–38]: it is a many-body
theory of the phonon Green’s function (GF) [39,40] that maps
the dynamics of an anharmonic lattice onto those of a self-
consistently defined impurity problem. In this way, VDMFT
treats local anharmonicity nonperturbatively. Nonlocal anhar-
monicity can be included at lower levels of theory and through
cluster extensions of DMFT [41,42]—here we focus on cellu-
lar VDMFT.

The layout of this article is as follows. In Sec. II, we
present the general theory of (cellular) VDMFT. In Sec. III,
we present results for two problems. First, we study a model
of optical phonons with local quartic anharmonicity, and
we apply single-site VDMFT with both classical and quan-
tum impurity solvers. Second, we study a model of acoustic
phonons arising from pairwise Lennard-Jones interactions,
and we demonstrate the convergence behavior of cellular
VDMFT and the treatment of nonlocal anharmonicity at the
mean-field level with SCPH theory. In Sec. IV, we conclude
by identifying future directions.

II. THEORY

Within the Born-Oppenheimer approximation, the vibra-
tional lattice Hamiltonian is

H =
∑
nα

p2
nα

2mα

+V({xnα}), (1)
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where n are lattice translation vectors and α indexes atoms
in the unit cell. We denote the thermal average with respect
to this Hamiltonian as 〈· · · 〉 = Tr[· · · e−H/kBT ]/Z where Z =
Tr e−H/kBT is the canonical partition function. Expanding the
anharmonic potential-energy surface in terms of displace-
ments away from the equilibrium lattice positions unα =
xnα − 〈xnα〉 naturally leads to the dynamical matrix,

Dαi,β j (k) = 1√
mαmβ

∑
(m−n)

eik·(m−n)�mαi,nβ j, (2)

where �mαi,nβ j = ∂2V/∂umαi∂unβ j is the force constant ma-
trix evaluated at the equilibrium lattice positions and i, j are
Cartesian coordinates. In this noninteracting limit or in static
mean-field theories of anharmonicity, an eigenvalue problem,

[D(k) +W(k)]cλ(k) = �2
λ(k)cλ(k) (3)

defines a set of phonon frequencies �λ(k) and collective co-
ordinates,

uλ(k) = N−1/2
∑
nαi

√
mαcαi,λ(k)e−ik·nunαi (4)

for phonon branch λ, whereW(k) is the optional mean-field
contribution (see Sec. III B for an example use of SCPH
mean-field theory). For notational convenience, we define
an effective harmonic matrix in the Cartesian basis �2(k) ≡
D(k) +W(k).

Our object of interest in VDMFT is the finite-temperature
phonon GF,

ih̄Dλλ′ (k, ω + iη) =
∫ ∞

0
dt ei(ω+iη)t 〈[uλ(k, t ), uλ′ (−k, 0)]〉,

(5)
henceforth, we drop iη for notational simplicity and warn
that the GF D(k, ω) should not be confused with the dynam-
ical matrix D(k). Defining the corresponding harmonic GF
via D−1

0 (k, ω) = ω21 − �2(k), the interacting phonon GF is
given by

D−1(k, ω) = D−1
0 (k, ω) − 2�(k)π(k, ω), (6)

where π(k, ω) is the phonon self-energy.
Standard perturbative approaches evaluate the self-energy

π(k, ω) up to second order in the anharmonicity using cubic
and/or quartic anharmonic force constants of the potential
V [21,22]. Instead, in VMDFT we neglect the momentum
dependence of the self-energy term �(k)π(k, ω) ≈ �π(ω),
which is obtained nonperturbatively from a self-consistently
defined impurity problem (the impurity frequency matrix �

will be defined below). The Hamiltonian of the impurity prob-
lem is of the Caldeira-Leggett form [43], Himp = Hs + Hb +
Hsb with

Hs =
∑

α

p2
α

2mα

+ Vloc({uα}), (7a)

Hb = 1

2

∑
m

(
p2

m + ω2
mx2

m

)
, (7b)

Hsb =
∑
αim

cαi,muαixm, (7c)

where (pm, xm) are degrees of freedom of a bath of harmonic
oscillators and the local potential Vloc includes bare harmonic
and anharmonic interactions within the cell and the local,
harmonic parts of the nonlocal interactions across the cell
boundary (possibly at the mean-field level). The harmonic
bath is completely specified by the hybridization function
�(ω), which captures the influence of the lattice on the dy-
namics of the cluster and is defined by

2��(ω) = ω21 − �2 − 2�π(ω) − D−1
C (ω), (8)

where DC(ω) = N−1 ∑
k D(k, ω) is the cellular GF and N is

the number of cells in the Born–von Karman supercell. The
effective dynamical matrix of the impurity �2 is determined
by the harmonic part of Vloc. The impurity Hamiltonian (7)
is related to the hybridization by the spectral density J(ω) =
−2 Im ��(ω) or

Jαi,β j (ω) = π

2

∑
m

cαi,mcβ j,m

ωm
[δ(ω − ωm) − δ(ω + ωm)].

(9)
By construction, the hybridization is exact when the lattice
and impurity problems are treated at the same level of theory
(for example, in the harmonic limit, the bath construction is
a simple normal mode transformation of the lattice degrees of
freedom). The power of DMFT lies in the fact that an accurate
treatment of the dynamics of the impurity problem (7) is far
more tractable than that of the anharmonic lattice problem. In
this case, where the lattice and impurity problems are treated
at different levels of theory, a self-consistent solution must be
obtained.

Various impurity solvers, discussed more below, can be
used to calculate the anharmonic impurity GF and phonon
self-energy,

ih̄[Dimp(t )]αi,β j = θ (t )〈[uαi(t ), uβ j (0)]〉, (10)

2�π(ω) = d−1
imp(ω) − D−1

imp(ω), (11)

where d−1
imp(ω) = ω21 − �2 − 2��(ω) is the harmonic im-

purity GF. Within the DMFT approximation, this phonon
self-energy defines the lattice GF D(k, ω) and, thus, the cellu-
lar GF, the hybridization via Eq. (8), and the impurity problem
itself. This establishes the VDMFT self-consistency condition
DC(ω) = Dimp(ω). In practice, we make an initial guess of the
self-energy and iterate the VDMFT loop until convergence.

With a straightforward redefinition of the size of a unit
cell, the above equations also describe the cellular VDMFT
approach for including short-range nonlocal anharmonicity
exactly. The computational cost of increasing the cluster size
Nc is essentially that of the desired high level of theory;
for classical anharmonic dynamics with pairwise forces, the
cost increases as N2

c , and for exact quantum dynamics, the
cost increases exponentially with Nc. Because cellular DMFT
breaks translational symmetry (beyond a single-cell cluster),
we periodize the converged self-energy to study lattice quan-
tities [42,44,45] as discussed below.

Because phonons formally obey Bose-Einstein statistics,
our VDMFT has many similarities to bosonic DMFT [46,47].
However, the number of phonons in solids is not con-
served, unlike interacting lattice bosons, such as cold atoms.
Thus, equilibrium condensation is not a primary concern,
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unlike in most applications of bosonic DMFT. Note that if
the equilibrium atomic positions are approximated by their
zero-temperature values that minimize the potential-energy
〈xnα〉 ≈ x(0)

nα , then a structural phase transition occurring at
elevated temperature is consistent with 〈unα〉 	= 0, which is
sometimes described as condensation. In such cases, an ex-
plicit treatment of condensation within VDMFT might be
worthwhile. However, this concern is removed as long as the
equilibrium positions are properly redefined [48]. We note
that the equilibrium atomic positions are a static property,
which is far easier to calculate than a dynamical one, such
as the Green’s function. In principle, the equilibrium atomic
positions can be self-consistently defined as those that mini-
mize the VDMFT vibrational free energy or that of simpler
theories, such as SCPH. Moreover, most vibrational problems
in solids can be treated without regard for particle statistics
(classically or quantum mechanically), and these are the target
problems for VDMFT.

III. RESULTS

A. Optical phonons: Single-site VDMFT

To illustrate VDMFT, we first consider a one-dimensional
chain of oscillators with mass m = 1, periodic boundary con-
ditions, and purely local anharmonicity,

H =
N∑

n=1

[
p2

n

2
+ 1

2
�2

0u2
n + gu4

n

]
+ 1

2
ω2

0

N∑
n=1

(un − un+1)2.

(12)

For the quartic anharmonicity considered here, all frequency
shifts and lifetimes are due to four-phonon processes or
higher. Physically, this Hamiltonian could model a molec-
ular crystal with anharmonic intramolecular vibrations and
harmonic intermolecular vibrations. Here and throughout we
assume a fixed volume such that there is no thermal expansion.
We emphasize that, given the mean-field nature of VDMFT,
the one-dimensional models studied here provide a challeng-
ing test. The optical phonons of the Hamiltonian (12) are
u(k) = N−1/2 ∑

n e−iknun with the noninteracting harmonic
dispersion �2(k) = �2

0 + 4ω2
0 sin2(k/2). Within single-site

VDMFT, the impurity Hamiltonian has components,

Hs = p2

2
+ 1

2
�2

0u2 + gu4 + ω2
0u2 ≡ p2

2
+ Vloc(u), (13a)

Hb = 1
2

∑
m

(
p2

m + ω2
mx2

m

)
, (13b)

Hsb = u
∑

m

cmxm, (13c)

where J (ω > 0) = (π/2)
∑

m c2
m/ωmδ(ω − ωm). Note that

the local potential includes a harmonic term ω2
0u2 arising from

the nonlocal interaction across the cell boundary such that
� = [�2

0 + 2ω2
0]1/2 is the harmonic impurity frequency.

We first assess the performance of VDMFT with a classical
impurity solver. In this classical limit, the dynamics of the
harmonic bath can be integrated out such that the impurity

FIG. 1. Single-site VDMFT results for the Hamiltonian (12) with
a classical impurity solver. (a) and (b) Spectral functions from
VDMFT and MD, respectively, at T/ω0 = 1.3, compared to the
harmonic dispersion (dashed gray line). (c) Temperature-dependent
density of states (DOS) obtained from harmonic theory (dashed
gray), VDMFT (yellow to red), and exact MD ( thin solid black).
In all results, η/ω0 = 0.02.

position satisfies the generalized Langevin equation (GLE),

ü(t ) = −dVeff

du
−

∫ t

0
ds γ (t − s)u̇(s) + ξ (t ), (14)

where γ (t ) = (2/π )
∫ ∞

0 dω cos(ωt )J (ω)/ω is a memory ker-
nel, Veff (u) = Vloc(u) − γ (t = 0)u2/2 is the local potential
with a bath-induced renormalization [49], and ξ (t ) is a ran-
dom force satisfying detailed balance 〈ξ (t )ξ (s)〉 = kBT γ (t −
s). In this formulation, the lattice hybridization can be seen to
manifest as a very specific colored noise [32,50]. As described
in Appendix A, we solve the GLE numerically [50,51] to
yield an ensemble of trajectories from which we calculate the
classical one-sided impurity autocorrelation function Ccl(t ) =
〈u(t )u(0)〉. The impurity GF is then calculated as

Dimp(t ) = − 1

h̄π
θ (t )

∫ ∞

−∞
dω sin(ωt )Ccl(ω)Q(ω, T ), (15)

where Q(ω, T ) = (h̄ω/kBT )(1 − e−h̄ω/kBT )−1 is a
temperature-dependent quantum correction factor that makes
Dimp(t ) exact in the harmonic limit [52].

For the Hamiltonian (12), we take the harmonic frequency
of the intercellular potential ω0 as the unit of energy and set
h̄ = kB = 1. We use a local harmonic frequency �0/ω0 = 1.3
and anharmonicity g/ω3

0 = 4.3. We generate “exact” results
using MD simulations of the full lattice problem, which were
performed with periodic lattices of 100–200 sites and time-
correlation functions were calculated by averaging over an
ensemble of up to 600 000 trajectories with initial conditions
generated by Metropolis Monte Carlo. At low temperatures,
nuclear quantum effects are significant—see below—but we
can still assess the accuracy of VDMFT within the consistent
approximation of classical dynamics.

In Figs. 1(a) and 1(b), we show the converged momentum-
resolved spectral function A(k, ω) = −π−1Im D(k, ω) at
T/ω0 = 1.3 obtained from VDMFT (a) and from exact MD
simulations (b); the agreement is excellent. For these parame-
ters, the VDMFT loop converged in about four iterations when
initialized by neglecting the self-energy. As expected, the
peaks of the spectral functions are significantly shifted from
the harmonic dispersion and are broadened due to phonon
lifetime effects. In Fig. 1(c), we show the total vibrational

144307-3



PETRA SHIH AND TIMOTHY C. BERKELBACH PHYSICAL REVIEW B 106, 144307 (2022)

FIG. 2. Single-site VDMFT results for the Hamiltonian (12) with
a quantum impurity solver. (a) Quantum spectral function for the
same temperature as in Figs. 1(a) and 1(b). (b) At the same temper-
ature, the DOS from harmonic theory (dashed gray), the molecular
limit of a single anharmonic oscillator (blue), and quantum VDMFT
(yellow). (c) DOS at increasing temperature (yellow to red) obtained
by VDMFT with a quantum (solid) and classical (dashed) impurity
solver. In all results, η/ω0 = 0.02.

DOS, N−1 ∑
k A(k, ω), at increasing temperatures ranging

from T/ω0 = 1.3 to T/ω0 = 15.5. As is well known, the
harmonic DOS is independent of temperature. The agree-
ment between VDMFT and MD is seen to be excellent at
all temperatures, and the DOS shows decreasing lifetimes and
phonon hardening with increasing temperature as expected for
a potential with quartic anharmonicity. The remarkable accu-
racy of single-site VDMFT for this problem can be largely
attributed to the purely local form of the anharmonicity. Im-
portantly, the computational cost of solving the GLE (14) for
a single anharmonic oscillator is significantly less than that of
MD for the system sizes needed to obtain converged results
(hundreds of coupled anharmonic oscillators).

Next, we consider the possible importance of nuclear
quantum effects, which can be straightforwardly included in
VDMFT with a quantum impurity solver. Here, we use the hi-
erarchical equations of motion [53,54], which is a numerically
exact technique for simulating the dynamics of systems cou-
pled to harmonic baths; more details are given in Appendix B.
In Fig. 2(a), we show the spectral function for the same pa-
rameters as in Figs. 1(a) and 1(b); unlike in the classical case,
the quantum case is a large many-body problem without a
numerically tractable exact solution. We see that the quantum
spectral function is narrower and more structured than the
classical one, indicating that nuclear quantum effects are in-
deed important at this relatively low temperature T/ω0 = 1.3.
Accurate quantum vibrational spectra of a condensed-phase
system are extremely hard to obtain by other means.

To understand the origin of the structured spectral features,
in Fig. 2(b), we compare the lattice DOS to the analogous

quantum spectrum for a single anharmonic site (the so-called
atomic or molecular limit) with potential V (u) = 1

2�2
0u2 +

gu4,

−π−1Im d (ω) =
∑

ab

(Pa − Pb)|〈ψa|u|ψb〉|2δ[ω − (Eb − Ea)],

(16)

where |ψa〉, Ea are eigenstates and eigenvalues of the anhar-
monic oscillator and Pa = e−Ea/T /

∑
b e−Eb/T . The peaks in

the molecular spectrum are, thus, due to transitions between
eigenstates of the anharmonic oscillator with intensities de-
pending on their Boltzmann weights and transition matrix
elements. These discrete quantum transitions are responsible
for the structure seen in the lattice DOS when a quantum
impurity solver is used. In Fig. 2(c), we compare the quantum
and classical DOS at three temperatures spanning the same
range as in Fig. 1(c). At low temperatures, we see the dis-
crepancy due to the importance of nuclear quantum effects.
However, at high temperatures, we see that the quantum and
classical spectral functions agree due to the diminishing im-
portance of nuclear quantum effects.

B. Acoustic phonons: Cellular VDMFT

Consider now the vibrational Hamiltonian with nonlocal
anharmonicity due to a pair potential,

H =
N∑

n=1

[
p2

n

2
+ V (un − un+1)

]
. (17)

Due to its invariance to infinitesimal translations, the above
Hamiltonian will exhibit a single acoustic phonon branch; the
noninteracting harmonic dispersion is �(k) = 2ω0| sin(k/2)|
where ω0 is the harmonic frequency of the pair potential V .

Treating the nonlocal interactions encoded in a pair poten-
tial requires a cluster VDMFT, such as the cellular extension
described above. In the impurity Hamiltonian of cellular
VDMFT, we keep only the local harmonic parts of the non-
local interactions that cross the boundary of the cluster. In
principle, we could also keep local anharmonic parts of these
interactions. However, doing so breaks the symmetry asso-
ciated with infinitesimal translations and incorrectly opens a
gap at the � point (note that periodization only restores lattice
translational symmetry). Here, we study the convergence of
cellular VDMFT with cluster size Nc, using classical impurity
solvers, ranging from Nc = 2–4. After convergence of the
DMFT cycle, we calculate the momentum-resolved spectral
function using a periodized self-energy term [42,44,45],

�(k)π (k, ω) = N−1
c

∑
αβ

[�π(ω)]αβeik(α−β ), (18)

although other choices are possible [55,56].
Results of cellular VDMFT are shown in Fig. 3 using a

Lennard-Jones pair potential with its minimum at the lattice
spacing and its harmonic frequency ω0 taken as the unit of
energy. For simplicity, the potential is truncated to include
only cubic and quartic anharmonicity. Results are shown at
temperature T/ω0 = 2.7, where we do not expect significant
nuclear quantum effects. In Fig. 3(a), we show the spectral
function at the zone boundary k = π . We see that as the
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FIG. 3. Cellular VDMFT results for the Hamiltonian (17) with
a Lennard-Jones potential truncated at fourth order at T/ω0 = 2.7.
(a) Spectral function at k = π obtained from the bare harmonic
theory (dashed light blue), SCPH theory (dotted light green), and
their combinations with cellular VDMFT as a function of cluster size
(Nc = 2–4, light to dark), compared to the exact MD result (solid
black). (b) Spectral function from SCPH + VDMFT with Nc = 4
and (c) from MD. In all results, η/ω0 = 0.01.

cluster size increases, cellular VDMFT yields a spectral func-
tion that approaches the exact one from MD. However, the
convergence is slow because of the poor accuracy of the bare
harmonic GF D0(k, ω), which completely neglects nonlocal
anharmonicity.

For better performance, we can treat nonlocal anharmonic-
ity with an improved low-level GF, such as the one from
SCPH theory (i.e., mean-field theory in the anharmonicity).
For this simple model, the SCPH self-energy is diagonal. Con-
sidering only cubic and quartic anharmonicity, only the latter
contributes to first order in a loop diagram, and the SCPH
phonon frequencies �(k) are determined self-consistently ac-
cording to

�2(k) = ω2(k) +W(k) ≡ ω2(k) + 2�(k)π (0)(k), (19a)

π (0)(k) = kBT
∑

k′

�(k,−k, k′,−k′)
4�(k)�2(k′)

, (19b)

where W(k) is the static mean-field contribution introduced
in Eq. (3) and

�(k,−k, k′,−k′)

= N−1
∑

n2,n3,n4

∂4V
∂u0∂un2∂un3∂un4

e−ikn2+ik′(n3−n4 ) (20)

is the quartic force constant. In the above, we have taken
the high-temperature limit of classical statistics and relabeled
the noninteracting phonon frequencies as ω(k) to distinguish
them from the SCPH frequencies �(k). Using the SCPH
GF in place of the noninteracting GF in the VDMFT equa-

FIG. 4. (a) Temperature-dependent phonon frequency �k and
(b) phonon lifetime τk at the Brillouin zone boundary k = π for the
same Lennard-Jones system as in Fig. 3. Colors and line types are
the same as in Fig. 3.

tions defines the SCPH + VDMFT method. In this way, the
SCPH + VDMFT method treats local anharmonicity exactly
and nonlocal quartic anharmonicity at the mean-field level,
analogous to the use of Hartree-Fock + DMFT for fermionic
problems. Note that the diagrammatic formulation of SCPH
theory ensures a rigorous combination with VDMFT without
the need for double-counting corrections [57,58].

The SCPH + VDMFT spectral function at the zone bound-
ary is shown in Fig. 3(a) with increasing cluster size. Because
of the improved performance of SCPH theory, the conver-
gence with cluster size is significantly improved. In Fig. 4, we
study this performance as a function of temperature, plotting
the phonon frequency (a) and lifetime (b) obtained by the
harmonic theory (with no temperature dependence), SCPH
theory (with infinite lifetime, characteristic of static mean-
field theories), and the two flavors of VDMFT, compared to
exact results from MD; all lifetimes were determined by a
fit to a Lorentzian line-shape function. The exact MD life-
times τk=πω0 ≈ 1 are indicative of nearly incoherent phonon
dynamics that are beyond the limits of perturbation theory.
Clearly, SCPH + VDMFT is a significant improvement for the
phonon frequency, and the cellular results converge quickly
to the exact MD result. The SCPH + VDMFT lifetime is
qualitatively accurate but not yet converged, and the value for
our largest cluster size exhibits an error of about 50%. The
SCPH + VDMFT lifetime is slightly too large throughout the
Brillouin zone as can be seen in Fig. 3(b). We do not consider
the harmonic + VDMFT lifetime because the line shape is
significantly asymmetric as can be seen in Fig. 3(a).

IV. CONCLUSIONS AND FUTURE WORK

We have introduced vibrational DMFT, including a cellular
extension and the combination with approximate low-level
theories, which demonstrates that VDMFT is not a replace-
ment for existing theories of anharmonicity but rather a
formalism that enables their systematic and nonperturba-
tive improvement. Future work will test alternative impurity
solvers and cluster methods [41] as well as the performance
in higher dimensions and for other observables, such as the
free energy [59,60] and thermal conductivities [8,9,61,62].
Moreover, VDMFT could be adapted for use in problems with
coupling between electronic and bosonic degrees of freedom,
such as those with physical electron-phonon coupling [31] or
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those arising in extended DMFT to treat nonlocal interactions
[63,64].

VDMFT can be extended to atomistic materials, either with
model Hamiltonians [65,66] or in a fully ab initio framework.
In the latter case, force fields or electronic structure theory can
be used to determine the anharmonic potential-energy surface;
in particular, the small size of a unit cell will enable the use
of highly accurate electronic structure methods that would
otherwise be too costly for explicit MD of large supercells.
The anharmonic impurity problem can then be solved using
thermostatted MD [32,50] or efficient quantum configuration
interaction approaches [67,68]. Work along all of these lines
is currently in progress.
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APPENDIX A: CLASSICAL VIBRATIONAL
IMPURITY SOLVER

For the nearest-neighbor interactions considered in the pa-
per, only the boundary atoms of cellular VDMFT are coupled
to the bath. Therefore, the interior atoms α and boundary
atoms β obey the coupled equations of motion,

üα (t ) = −dVeff

duα

, (A1a)

üβ (t ) = −dVeff

duβ

−
∫ t

0
ds γβ (t − s)u̇β (s) + ξβ (t ), (A1b)

where the random force satisfies detailed balance
〈ξβ (t )ξβ (s)〉 = kBT γβ (t − s). As described, e.g., in Ref. [51],
ξβ (t ) can be expressed by a Fourier decomposition,
the components of which are sampled from a Gaussian
distribution with a variance equal to the Fourier transform of
the memory kernel. For each random sampling, a trajectory of
length T time steps can be calculated via explicit integration
of the coupled integrodifferential equations (A1). However,
this introduces an O(T ) storage cost and O(T 2) computational
cost. To eliminate these costs, we simulate the non-Markovian
dynamics via Markovian dynamics in an extended phase space
[50,69,70].

For each physical boundary coordinate uβ , we add a set of
n auxiliary momenta sβ

i , which have bilinear coupling to the
physical momentum and among themselves. Decomposing

the memory kernel in the form

γβ (t ) =
n∑

i=1

n∑
j=1

aβ
i [e−Aβ t ]i ja

β
j = [aβ]Te−Aβ t aβ, (A2)

where Aβ is a real antisymmetric matrix whose complex
eigenvalues have a positive real part, the equations of motion
for the (1 + n) momenta are

üβ (t ) = −dVeff

duβ

−
n∑

j=1

aβ
j sβ

j (t ), (A3a)

ṡβ
i (t ) = aβ

i u̇β (t ) −
n∑

j=1

Aβ
i j s

β
j (t ) +

√
2kBTAβ

iiζ
β
i (t ),

(A3b)

where 〈ζ β
i (t )ζ β

j (s)〉 = δi jδ(t − s).
A numerically convenient decomposition of the Fourier

transform of the memory kernel,

γ (ω) = 2

π

m∑
i=1

ηiγi
(
ω2 + ω2

i + γ 2
i

)
[
(ω + ωi )2 + γ 2

i

][
(ω − ωi )2 + γ 2

i

] (A4)

can be achieved with a simple structure of aβ and Aβ in terms
of pairs of modes,

aβ

2i−1 = aβ

2i =
√

ηi/2π, (A5a)

Aβ

2i−1,2i−1 = Aβ

2i,2i = γi, (A5b)

Aβ

2i−1,2i = −Aβ

2i,2i−1 = ωi, (A5c)

such that there are n = 2m auxiliary momenta. In the results
presented in the paper, we use the above form to numerically
fit the memory kernel with up to m = 14 modes (i.e., n = 28
auxiliary momenta).

APPENDIX B: QUANTUM VIBRATIONAL
IMPURITY SOLVER

First, we use grid techniques to numerically solve the
Schrödinger equation for the anharmonic subsystem Hamilto-
nian Hs and keep the lowest Ns eigenstates ψa(u) = 〈u|ψa〉,
depending on temperature. For the results presented in the
paper, we kept up to Ns = 18 eigenstates. The eigenstates are
then transformed to a discrete variable representation [71],
|d〉 = ∑

a Uad |ψa〉 that diagonalizes the position operator and,
thus, makes the system-bath Hamiltonian diagonal,

Hs =
∑
dd ′

|d〉Hdd ′ 〈d ′|, (B1a)

Hsb =
∑

d

|d〉ud〈d|
∑

m

cmxm, (B1b)

where ud = ∫
du u|φd (u)|2. The quantum correlation function

is then calculated as 〈U (t )U (0)〉 where U = ∑
d |d〉ud〈d|.

To simulate the quantum dynamics of a Ns-level system
linearly coupled to a bath of harmonic oscillators, we use
the hierarchical equations of motion method [53,54] as im-
plemented in the PYRHO package developed in our group
[72]. Similar to the classical impurity solver, the spectral
density of the bath is numerically fit to a sum of underdamped
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Lorentzian modes [73],

J (ω) =
m∑

i=1

ηiω[
(ω + ωi )2 + γ 2

i

][
(ω − ωi )2 + γ 2

i

] ; (B2)

for the results in the paper, we used up to m = 8 modes. To
simulate the thermal correlation function, we first propagated

the system and auxiliary density matrices starting from a fac-
torized initial condition, until reaching equilibrium; this set of
density matrices was then used as the initial condition for the
dynamics of the correlation function. All results were found to
be converged with the hierarchy truncated at level L = 4 and
K = 0 Matsubara frequencies.
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