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Quantum many-body scars of spinless fermions with density-assisted hopping in higher dimensions
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We introduce a class of spinless fermion models that exhibit quantum many-body scars (QMBS) originating
from kinetic constraints in the form of density-assisted hopping. The models can be defined on any lattice in
any dimension and allow for spatially varying interactions. We construct a tower of exact eigenstates with finite
energy density, and we demonstrate that these QMBS are responsible for the nonthermal nature of the system
by studying the entanglement entropy and correlation functions. The quench dynamics from certain initial
states is also investigated, and it is confirmed that the QMBS induce nonthermalizing dynamics. As another
characterization of the QMBS, we give a parent Hamiltonian for which the QMBS are unique ground states. We
also prove the uniqueness rigorously.
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I. INTRODUCTION

The dynamics of isolated quantum systems has long been
of great interest from a fundamental point of view [1,2].
In recent years, it has gained further interest with the im-
provement of experimental techniques in ultracold atomic
systems. Generic isolated systems are expected to eventually
thermalize regardless of the initial state, meaning that macro-
scopic quantities relax to their equilibrium values described
by statistical mechanics. Theoretically, the thermalization
mechanism relies on the eigenstate thermalization hypothesis
(ETH) [3–5], a strong version of which asserts that all energy
eigenstates are thermal, i.e., they are locally indistinguishable
from the microcanonical ensemble with the corresponding en-
ergy. While the ETH has been confirmed for many interacting
quantum systems [5–7], there are exceptions. For example,
integrable and many-body localized systems fail to thermalize
due to exact or emergent conservation laws.

Recent experiments using Rydberg atoms [8] and quantum
simulations in tilted optical lattices [9] observed long-lived
coherent oscillations of local observables for particular initial
states. This is an unexpected behavior given the noninte-
grability of the system, and it offers another example of
a quantum many-body system that evades thermalization.
This nonthermalizing dynamics is attributed to the existence
of atypical eigenstates dubbed quantum many-body scars
(QMBS) [10–13], which have nonthermal properties, and
hence violate the ETH. These QMBS have a sub-volume-law
entanglement scaling even though they are in the middle of the
energy spectrum. The above experiment has led to a surge of
interest in understanding the nonthermal behavior of QMBS.
In addition to investigating effective models relevant to the

*tamura-kensuke265@g.ecc.u-tokyo.ac.jp

experiments [14–19], there have been a number of attempts to
construct nonintegrable models with exact QMBS.

To date, a plethora of methods to construct models with
exact QMBS have been developed [20–30]. However, the
overwhelming majority of previous studies have focused on
one-dimensional systems, although some examples in two or
more dimensions are known [31–38]. For a deeper under-
standing of the mechanism of QMBS, it is helpful to have
a variety of models with exact QMBS in higher dimensions;
therefore, new examples of such models are desired. Fur-
thermore, the majority of the studies deal with spin systems,
whereas there are fewer examples of QMBS in particle sys-
tems such as fermionic systems [39–46].

In this paper, we construct and study a class of spin-
less fermionic models with QMBS in higher dimensions
by exploiting a kinetic constraint known as density-assisted
hopping or density-induced tunneling [47–50]. This kind of
interaction appears in effective models of time-periodic sys-
tems [51] and systems with large tilted potential, and it can
be realized in ultracold atomic systems [52]. In addition, it
has been studied in the context of superconductivity as well
[53]. Previous studies have identified a class of kinetically
constrained models that exhibit QMBS and scarred dynamics
for bosons [54,55] and fermions [56] in one dimension. In
contrast, our method is capable of constructing models in
arbitrary higher dimensions. Further, the models obtained this
way are not necessarily translation invariant and thus can be
regarded as disordered models. A few examples of QMBS co-
existing with disorder are known [57,58], and our construction
provides examples of disordered quantum many-body scarred
models. As another characterization of QMBS, we also give
a parent Hamiltonian for which the QMBS constructed are
unique ground states.

The paper is organized as follows. In Sec. II, we define our
model in arbitrary dimensions. We verify the nonintegrability
of the model through the level spacing statistics. In Sec. III,
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FIG. 1. An example of a bipartite lattice. The black and white
sites belong to sublattices �(1) and �(2), respectively. Regions A and
B are defined for the calculation of the entanglement entropy. The
integers are labels for the lattice sites.

we first show how to construct the exact QMBS in the sys-
tem. We then demonstrate that the QMBS are nonthermal by
studying the entanglement entropy and correlation functions.
We also argue that the dynamics of entanglement entropy
and fidelity exhibit a nonthermal nature. In Sec. IV, we show
that it is possible to construct a parent Hamiltonian such that
the QMBS are its unique ground states. We conclude with
a summary in Sec. V. In Appendix A, we introduce another
form of the Hamiltonian with QMBS related to the original
one by a particle-hole transformation. A generalization of our
construction of the scarred model is shown in Appendix B. In
Appendix C, we see that the operator that generates the exact
QMBS can be regarded as a spinless analog of the η-pairing
operator. Finally, in Appendix D, we present a rigorous proof
that the QMBS are the unique ground states of the parent
Hamiltonian.

II. MODEL

A. Hamiltonian

We consider a system of spinless fermions on a lattice
(�,B), where � is the set of sites, and B is the set of bonds.
An element of B is a pair of different sites, 〈x, y〉, and we
identify 〈x, y〉 with 〈y, x〉. Here, we assume that the lattice is
bipartite, i.e., its sites can be partitioned into two disjoint sets
�(1) and �(2), and for any 〈x, y〉 ∈ B, one has either x ∈ �(1),
y ∈ �(2) or x ∈ �(2), y ∈ �(1) (see, e.g., Fig. 1 and ignore
the dashed line and symbols A and B for now). We denote
by c†

x and cx, respectively, the creation and the annihilation
operators at site x ∈ �. They satisfy

{cx, cy} = {c†
x , c†

y} = 0, (1)

{cx, c†
y} = δx,y (2)

for x, y ∈ �. In the following, V denotes the whole Fock space
spanned by states of the form

∏
x∈�(c†

x )nx |vac〉(nx = 0, 1),
where |vac〉 is the vacuum state annihilated by all cx. The
Hamiltonian is given by

H = Hhop + Hcor, (3)

Hhop =
∑

x,y∈�

tx,yc†
xcy, (4)

Hcor =
∑
x∈�

Ax

(∑
y∈�

qx,yc†
y

)
cxc†

x

(∑
y′∈�

qx,y′cy′

)
. (5)

We assume that the hopping matrix T = (tx,y)x,y∈� is real
symmetric and that tx,y can be nonzero only when 〈x, y〉 ∈ B.
We also assume that Q = (qx,y)x,y∈� is a real skew-symmetric
matrix of the form

qx,y =
⎧⎨
⎩

tx,y for x ∈ �(1) and y ∈ �(2),

−tx,y for x ∈ �(2) and y ∈ �(1),

0 otherwise.
(6)

The coefficients Ax are arbitrary real numbers. We note in
passing that another form of the Hamiltonian (3) is obtained
by a particle-hole transformation. See Appendix A for details.

Let us make some comments on the model. First, the model
has the density-assisted hopping term described by Eq. (5).
To illustrate the term, let us consider a periodic chain with
L sites, where L is even so that the lattice is bipartite. For
simplicity, here we consider the case in which the hopping
matrix is translation invariant, i.e., the matrix elements of T
is t j, j+1 = t j+1, j = t for all j = 1, . . . , L, although the coef-
ficients Aj may be site-dependent. Then, the density-assisted
hopping term takes the following form:

Hcor = t2
L∑

j=1

Aj (n j−1 + n j+1 − n j−1n j − n jn j+1

+ c†
j−1c j+1 + c†

j+1c j−1 − c†
j−1n jc j+1 − c†

j+1n jc j−1),

(7)

where n j = c†
j c j . The model without the terms in the first row

of Eq. (7) has been discussed in the literature [59,60].
Second, our model can be defined on an arbitrary bipartite

lattice in any dimension. Examples include two-dimensional
square and three-dimensional cubic lattices with open bound-
ary conditions. In addition, our construction can be extended
to more general lattices that are not necessarily bipartite. See
Appendix B for the general construction.

Finally, we mention that our model in one dimension is
related to the spin model discussed in [57]. In fact, we can
map the one-dimensional model (7) to a spin model using the
Jordan-Wigner transformation defined by

c j =
(

j−1∏
k=1

( − σ z
k

))
σ+

j , (8)

where (σ x
j , σ

y
j , σ

z
j ) are the Pauli matrices at site j and σ+

j =
(σ x

j + iσ y
j )/2. With this transformation, the Hamiltonian (7)

is mapped to the following one for a spin-chain:

Hcor =
L−1∑
j=2

{2t2Aj |010〉〈010|

+ t2Aj (|011〉+ |110〉)(〈011|+ 〈110|)} j−1, j, j+1+ Hbdy,

(9)

where the states |0〉 and |1〉 are eigenstates of σ z
j with eigen-

values +1 and −1, respectively. The last term denoted by Hbdy

in Eq. (9) is a nonlocal operator arising from the periodic
boundary conditions. Ignoring this term, Eq. (9) coincides
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FIG. 2. The level statistics in the middle half of the spectrum
of H on a 6 × 3 lattice (N = 8) with open boundary conditions
as shown in Fig. 1. The matrix elements of T and Ax are chosen
uniformly at random from [0.5, 1.5] and [−0.5, 0.5], respectively.
The Wigner-Dyson (blue) and the Poisson (orange) distributions are
shown for comparison.

with the perturbation term Hpert,n discussed in [57] with n = 2,
c(1)

j = c(2)
j = 2t2Aj , and c(3)

j = 0 [61]. Since in one dimension
the hopping Hamiltonian Hhop is equivalent to the S = 1/2 XX
chain, the entire Hamiltonian H = Hhop + Hcor maps to the
scarred model discussed in [57]. In this sense, our construction
can be regarded as an extension of the particular case of the
one-dimensional model to a wider class of lattice fermion
systems.

B. Nonintegrability of the model

For the model to be a nontrivial example of a scarred
model, it must be nonintegrable. To verify this, we study
the level statistics of the model. It is performed in a
sector with a fixed number of particles since the Hamiltonian
(3) conserves the total number of particles N = ∑

x∈� nx,
where nx = c†

xcx. Let {Ei}i=1,2,... be a set of energy eigen-
values in ascending order, and let si = (Ei+1 − Ei )/� be
the level spacing normalized by the mean level spacing �.
For nonintegrable systems with time-reversal symmetry, the
level-spacing distribution is given by the Wigner-Dyson distri-
bution P(s) = (π/2)se−πs2/4, whereas for integrable systems
it is given by the Poisson distribution P(s) = e−s [62,63].
We show the distribution of the level spacings of our model
in Fig. 2. The histogram confirms that the distribution is
well described by the Wigner-Dyson distribution. We also
compute the level-spacing ratio ri [64] defined by ri =
min(si, si+1)/ max(si, si+1), which characterizes the distribu-
tion quantitatively. It is known that the average value of ri is
〈r〉 � 0.535 90 for the Wigner-Dyson distribution and 〈r〉 �
0.386 29 for the Poisson distribution [65]. The average value
of ri calculated from the histogram in Fig. 2 is 0.529 27 . . . ,
which is close to that of the Wigner-Dyson distribution. There-
fore, we can conclude that our model is nonintegrable.

III. QUANTUM MANY-BODY SCARRED STATES

In this section, we construct a series of exact eigenstates of
the Hamiltonian H in Eq. (3). We provide evidence that these
eigenstates are QMBS of the system.

A. Definition of exact QMBS

Here, we show how to construct a series of exact
eigenstates of H algebraically. To this end, we define an
operator Q by

Q =
∑

x,y∈�

qx,ycxcy, (10)

and we consider the following states:

|�k〉 = Qk|vac〉, k = 0, 1, . . . . ,

⌊ |�|
2

⌋
, (11)

where |vac〉 = ∏
x∈� c†

x |vac〉, and �x� denotes the floor func-
tion [66]. Since Q is a sum of operators each of which
annihilates two fermions, |�k〉 is a state with (|�| − 2k) par-
ticles, where the integer k is at most �|�|/2�. We now show
that the states |�k〉 are zero-energy eigenstates of Hhop and
Hcor, and hence H |�k〉 = 0.

First, one finds

[Hhop, Q] = −2
∑

x,x′∈�

(QT)x,x′cxcx′ = 0. (12)

This is because the matrix QT is real symmetric and cxcx′

is antisymmetric under the exchange of x and x′. Hence, the
operator Q commutes with Hhop. Noting that Hhop|vac〉 = 0,
we have

Hhop|�k〉 = 0. (13)

The commutation relation (12) also follows from the fact that
the operator Q is a sum of pair operators, each of which
commutes with Hhop. This can be seen by noting that each pair
consists of two eigenmodes of Hhop with opposite energies.
(See Appendix C for a detailed discussion.) In this sense, the
operator Q can be thought of as a spinless analog of Yang’s
η-pairing operator [67], as discussed recently for a class of
one-dimensional models in Ref. [68].

Next, we see that Hcor also annihilates the state |�k〉. Here,
we note that the operator Q does not commute with Hcor,
hence Q is not a conserved quantity of the Hamiltonian H .
Instead of Hcor itself, we compute the commutation relation
between c†

x (
∑

y∈� qx,ycy) and Q, and we find[
c†

x

(∑
y∈�

qx,ycy

)
, Q

]
= 2

(∑
y∈�

qx,ycy

)2

= 0 (14)

for all x ∈ �. Since the diagonal elements of Q are
zero, we see that c†

x (
∑

y∈� qx,ycy)|vac〉 = 0 and that
c†

x (
∑

y∈� qx,ycy)|�k〉 = 0. Thus we have

Hcor|�k〉 = 0. (15)

This result, together with (13), yields

H |�k〉 = 0, (16)

which is the desired result.
We remark that the Hamiltonian H and the operator Q

satisfy a restricted spectrum generating algebra [41,69]. Here
we use the notation of Ref. [41]. A Hamiltonian H is said
to exhibit a restricted spectrum generating algebra of order 1
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(RSGA-1) if there exist a state |ψ0〉 and an operator η† such
that η†|ψ0〉 	= 0, and they satisfy

(i) H |ψ0〉 = E0|ψ0〉, (17)

(ii) [ H, η† ]|ψ0〉 = Eη†|ψ0〉, (18)

(iii) [ [ H, η† ], η† ] = 0. (19)

In our case, we have H |vac〉 = 0 and can prove
[ H, Q ]|vac〉 = 0 by a similar calculation as above. We
can also see that [ [ H, Q ], Q ] = 0 by repeating the same
calculations. Therefore, the Hamiltonian (3) exhibits
RSGA-1 with |ψ0〉 = |vac〉, η† = Q, E0 = 0, and E = 0.
The zero-energy states generated by repeated applications
of Q on |vac〉, i.e., Eq. (11), can be thought of as QMBS
associated with this algebra.

B. Violation of the ETH

Here we demonstrate that the states (11) are nonthermal by
examining the entanglement entropy and expectation values
of a physical quantity.

A violation of the ETH can be observed in the scaling of
the entanglement entropy. For a partition of the lattice into two
subsystems A and B, the entanglement entropy of a state |ψ〉
is defined as S = −TrA(ρA ln ρA), where ρA = TrB(|ψ〉〈ψ |) is
the reduced density matrix of A. The symbols TrA and TrB

denote traces over the subsystems A and B, respectively. It is
known that the entanglement entropy of a thermal eigenstate
obeys a volume law [70]. In contrast, if an eigenstate has a
lower entanglement entropy than other eigenstates obeying a
volume law even if its energy is far from the spectral edges,
it signals that the state is a nonthermal QMBS. Figure 3(a)
shows the numerical result obtained by exact diagonalization
with the same setup as in Fig. 2. Here, the subsystems A
and B are the left and right halves of the system, as shown
in Fig. 1. Clearly, there is a low-entanglement state isolated
from the other, indicating the existence of a QMBS. The state
has zero energy and is identified as |�5〉. Similar results are
obtained for different particle-number sectors in which |�k〉
(k = 1, 2, . . . ) appear as QMBS.

One can also detect a violation of the ETH by observ-
ing expectation values of physical quantities. We show the
numerical result for the average value of the density-density
correlation functions in Fig. 3(b). The density-density corre-
lation function is defined as

Ox,y = 〈ψ |nxny|ψ〉 (20)

for a normalized state |ψ〉, and its average over all the bonds
is given by

O = 1

|B|
∑

〈x,y〉∈B
Ox,y. (21)

The ETH states that, in an energy shell, the expectation value
of any local observable in an energy eigenstate coincides with
that obtained by the corresponding microcanonical ensem-
ble. However, in Fig. 3(b), we see that there is an outlier at
zero energy, which implies a violation of the ETH caused by
QMBS.

(a)

(b)

FIG. 3. (a) Entanglement entropies in all eigenstates. The setup
is the same as in Fig. 2. (b) The average of the correlation functions
over all the bonds defined by Eq. (21) for each eigenstate. In each
panel, the point enclosed by a red circle indicates the position of a
QMBS.

C. Dynamics

To investigate further the nonthermal features of QMBS,
we study the quench dynamics of the system. The state of the
system at time t is given by

|�(t )〉 = exp(−iHt )|�(0)〉, (22)

where |�(0)〉 is the initial state and H is the Hamiltonian
defined by Eq. (3) with nonuniform matrix elements of T and
Ax. We discuss the dynamics of the fidelity and entanglement
entropy starting from two kinds of initial states. The fidelity
between the initial state |�(0)〉 and the evolved state |�(t )〉 is
defined by

F (t ) = |〈�(t )|�(0)〉|. (23)

The dynamics of the entanglement entropy is as follows: we
divide the lattice system into A and B, and we define the
reduced density matrix of A at time t as

ρA(t ) = TrB[|�(t )〉〈�(t )|]. (24)

The entanglement entropy between A and B at time t is then
defined as

S(t ) = −TrA[ρA(t ) ln ρA(t )]. (25)

In our numerical simulation, we consider the two-dimensional
lattice shown in Fig. 1. We let the system evolve from two
kinds of initial states for different particle numbers, and we
calculate the dynamics for each initial state using exact di-
agonalization. The first type of initial state is a product state
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(a) (b)

(c) (d)

FIG. 4. Upper panel: Dynamics for N = 8 with the same setup
as in Fig. 2. The time dependence of (a) fidelity and (b) the entangle-
ment entropy between the left and right halves. The orange (blue) line
represents the dynamics starting from the state defined in Eq. (26)
[(27)]. The green dashed line indicates the average entanglement
entropy of random states given by Eq. (28). Lower panel: Same as
the upper panel for N = 14. The time dependence of (c) fidelity
and (d) the entanglement entropy. The slight differences between the
green dashed line and the orange lines at late times in (b) and (d) can
be attributed to finite-size corrections to Eq. (28).

defined by

∣∣� (prod)
N

〉 = c†
N c†

N−1 · · · c†
1|vac〉, (26)

where N is the number of particles, and the lattice sites are
labeled as shown in Fig. 1. The second type takes the form

∣∣� (uni)
k

〉 = 1

N

⎛
⎝ ∑

〈x,y〉∈B
cxcy

⎞
⎠

k

|vac〉, (27)

where N is the normalization constant and k is an integer.
Note that the state (27) is the QMBS when the matrix elements
of Q are constant. Therefore, although this state is not an
eigenstate of H with nonuniform Q, we expect that it is close
to the zero-energy eigenstate.

Figures 4(a) and 4(c) show the dynamics of fidelity for the
same two-dimensional model as in Fig. 2 for N = 8 (k = 5)
and N = 14 (k = 2). For the product state, we can see that
it decays rapidly to zero. On the other hand, for |� (uni)

k 〉, it
remains nonzero at late times, suggesting that the state |� (uni)

k 〉
does not immediately thermalize due to significant overlap
with the QMBS given in Eq. (11).

Figures 4(b) and 4(d) show the time dependence of the
bipartite entanglement (25) for N = 8 (k = 5) and N = 14
(k = 2). Here, A and B are again the left and right halves of the
lattice, respectively. For the product state, the entanglement
entropy grows rapidly and saturates near the average entan-
glement entropy of random states with fixed particle number

N [71–73],

SN = 1

2
[(n − 1) ln(1 − n) − n ln n]|�|

−
√

n(1 − n)

2π

∣∣∣∣ln
(

1 − n

n

)∣∣∣∣√|�| + 1 − 2 ln 2

4
, (28)

where n = N/|�|. However, for the state |� (uni)
k 〉, the growth

of the entanglement entropy is suppressed, indicating nonther-
malizing dynamics. The results for both the fidelity and the
entanglement entropy provide strong evidence that the system
exhibits nonergodic properties due to the QMBS.

IV. PARENT HAMILTONIAN OF THE QMBS

So far, we have constructed the exact QMBS and looked at
the nonthermal properties. In this section, we give a parent
Hamiltonian whose ground states are the QMBS, and we
prove that there are no other ground states.

The parent Hamiltonian we consider is given by

Hpar =
∑
x∈�

Bxhx, (29)

hx =
(∑

y∈�

qx,yc†
y

)
cxc†

x

(∑
y′∈�

qx,y′cy′

)
, (30)

where all the Bx are positive. Since each hx is
positive-semidefinite, the Hamiltonian Hpar is also
positive-semidefinite. As in the scarred model, we assume
that the lattice (�,B) is bipartite, � = �(1) ∪ �(2). We also
assume that the matrix Q = (qx,y)x,y∈� is real skew-symmetric
and that qx,y can be nonzero only when 〈x, y〉 ∈ B. The
parent Hamiltonian Hpar is identical to Eq. (5) except that
the coefficients Bx are all positive. Therefore, we can see that
the states (11) are zero-energy eigenstates of Hpar in the same
way as in Sec. III. Since Hpar is positive-semidefinite, they are
the ground states of Hpar. Under certain conditions, one can
show that there are no other ground states. More precisely, we
can prove the following theorem:

Theorem. Assume that �(1) and �(2) have the same number
of sites and Q is regular and connected, i.e., all x 	= y ∈ � are
connected via nonvanishing matrix elements of Q. Then the
zero-energy ground states of Hpar in the whole Fock space V
are (|�|/2 + 1)-fold degenerate and written as |�k〉 defined
in Eq. (11) (k = 0, 1, . . . , |�|/2).

The lattice system in Fig. 1 is an example that satisfies the
assumption of the above theorem since the sublattices �(1)

and �(2) have the same size. The theorem establishes that
the QMBS can be prepared as the unique ground states of
the parent Hamiltonian. We note that our model has much in
common with the model studied in [74], and the proof goes
along the same lines as the proof of Proposition 2.1 in that
paper. The proof of the above theorem is given in Appendix D.

V. SUMMARY

We have constructed and studied a class of spinless
fermionic models with QMBS on a wide class of lattice
systems, including higher-dimensional ones. We have also
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investigated the nonthermal properties of the QMBS through
entanglement entropy and correlation functions. By exam-
ining the dynamics starting from different initial states, we
confirmed that simple direct product states immediately ther-
malize, whereas the states with significant overlap with the
QMBS exhibit a nonthermal behavior. Furthermore, we have
identified a parent Hamiltonian for which the QMBS we con-
structed are the unique ground states.
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APPENDIX A: PARTICLE-HOLE TRANSFORMATION

We define the particle-hole transformation and derive an-
other form of the Hamiltonian (3). For each x ∈ �, let

Ux = cx − c†
x , (A1)

and we then define the unitary operator for the particle-hole
transformation by

U =
∏
x∈�

Ux. (A2)

The annihilation and creation operators transform as

U †cxU = (−1)|�|c†
x , (A3)

U †c†
xU = (−1)|�|cx. (A4)

We see that the Hamiltonian (3) is transformed into another
Hamiltonian as

H̃ = U †HU = H̃hop + H̃cor, (A5)

H̃hop = U †HhopU = −
∑

x,y∈�

tx,yc†
xcy, (A6)

H̃cor = U †HcorU

= −
∑
x∈�

Ax

(∑
y∈�

qx,yc†
y

)
c†

xcx

(∑
y′∈�

qx,y′cy′

)

−
∑
x∈�

Ax(Q2)x,xc†
xcx. (A7)

The QMBS for the transformed Hamiltonian (A5) are ob-
tained as

|�̃k〉 = U †|�k〉. (A8)

FIG. 5. An example of a nonbipartite lattice (triangular lattice).
Regions A and B are defined for the calculation of the entanglement
entropy. The integers are labels for the lattice sites.

Clearly, they are zero-energy eigenstates of H̃ . With the
particle-hole transformation, the operator Q changes to

Q̃ = U †QU =
∑

x,y∈�

qx,yc†
xc†

y . (A9)

Thus we find that

|�̃k〉 = (−1)|�|Q̃k|vac〉, (A10)

where we have used

U †

(∏
x∈�

c†
x

)
|vac〉 = (−1)|�||vac〉. (A11)

APPENDIX B: GENERALIZATION OF OUR
CONSTRUCTION TO GENERAL LATTICES

We generalize our construction of models with QMBS to
general lattices that are not necessarily bipartite (see, e.g.,
Fig. 5). Let (�,B) be an arbitrary lattice. The Hamiltonian
H is given by

H = Hhop + Hcor, (B1)

Hhop =
∑

x,y∈�

tx,yc†
xcy, (B2)

Hcor =
∑
x∈�

Ax

(∑
y∈�

qx,yc†
y

)
cxc†

x

(∑
y′∈�

qx,y′cy′

)
. (B3)

Here, the hopping matrix T is assumed to be of the form

T = iK, (B4)

where K is a real skew-symmetric matrix, and the matrix
element (K)x,y can be nonzero only when 〈x, y〉 ∈ B. The
matrix Q = (qx,y)x,y∈� is defined as

Q = Kn, (B5)

where n is a positive odd integer.
In a similar way as in Sec. III A, the QMBS states are

constructed as

|�k〉 = Qk|vac〉, (B6)

where

Q =
∑

x,y∈�

qx,ycxcy. (B7)
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FIG. 6. The level statistics in the middle half of the spectrum
of the Hamiltonian in Eq. (B1) on the triangular lattice shown in
Fig. 5. The number of lattice sites is 18, and the particle number
N is fixed to 8. The matrix Q is given by Q = K, and the matrix
elements of K and Ax are chosen uniformly at random from [0.5, 1.5]
and [−0.5, 0.5], respectively. The blue (orange) line is the GUE
Wigner-Dyson distribution (the Poisson distribution).

Repeating calculations similar to those in Sec. III, we obtain
the following commutation relations:

[Hhop, Q] = 0, (B8)[
c†

x

(∑
y∈�

qx,ycy

)
, Q

]
= 0 for all x ∈ �, (B9)

and Hhop|vac〉 = Hcor|vac〉 = 0. Thus we see that the states of
the form Eq. (B6) are eigenstates of the Hamiltonian (B1) with
zero energy.

To check the nonintegrability, we perform the energy level
statistics. For nonintegrable systems without time-reversal
symmetry, the level-spacing distribution is given by the GUE
Wigner-Dyson distribution P(s) = (32/π2)s2e4s2/π , whereas
for integrable systems it is given by the Poisson distribution
P(s) = e−s. We show the distribution of the level spacings
of the model on a triangular lattice in Fig. 6. The his-
togram confirms that the distribution is well described by
the GUE Wigner-Dyson distribution. We also compute the
level-spacing ration ri, and it is known that the average value
of ri is 〈r〉 � 0.602 66 for GUE and 〈r〉 � 0.386 29 for the
Poisson distribution [65]. The average value of ri calculated
from the histogram in Fig, 6 is 0.599 98 . . . , which is close
to that of the GUE Wigner-Dyson distribution. Therefore, we
can conclude that our model is nonintegrable.

We also study the entanglement entropy and the average of
the density-density correlation functions to see if the QMBS
violate the ETH. Figure 7 shows the numerical results for the
same setting as in Fig. 6. Figure 7(a) shows the entanglement
entropies of the eigenstates. To calculate the entanglement
entropy, we divide the lattice system into two systems A and
B, as shown in Fig. 5. We can see that there is an eigenstate
having a lower entanglement entropy than the others in the
middle of the spectrum. This state coincides with |�k〉 with
k = 5. Figure 7(b) shows the average values of the correlation
functions defined in Eq. (21) for each eigenstate, where there

(a)

(b)

FIG. 7. (a) Entanglement entropies in all eigenstates. The setup
is the same as in Fig. 6. (b) The average of the correlation functions
over all the bonds defined by Eq. (21) for each eigenstate. In each
panel, the point enclosed by a red circle indicates the position of a
QMBS.

(a) (b)

(c) (d)

FIG. 8. Upper panel: Dynamics for N = 8 with the same setup
as in Fig. 6. The time dependence of (a) fidelity and (b) the entangle-
ment entropy between the left and right halves. The orange (blue) line
represents the dynamics starting from the state defined in Eq. (26)
[(27)]. The green dashed line indicates the average entanglement
entropy of random states given by Eq. (28). Lower panel: Same as
the upper panel for N = 14. The time dependence of (c) fidelity
and (d) the entanglement entropy. The slight differences between the
green dashed line and the orange lines at late times in (b) and (d) can
be attributed to finite-size corrections to Eq. (28).
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is an isolated point at zero energy. These results suggest that
the zero-energy eigenstates (B6) are nonthermal.

Finally, we examine the dynamics of the fidelity and the
entanglement entropy, which are defined as in the previous
case by Eqs. (23) and (25). We compare two kinds of initial
states defined in the same form as Eqs. (26) and (27). The
product state |� (prod)

N 〉 is defined according to the order of the
labels in Fig. 5. Figure 8 shows the dynamics of the fidelity
and the entanglement entropy when N = 8 and 14 in the same
setup as in Fig. 6. The fidelity dynamics is shown in Figs. 8(a)
and 8(c), where we can see that it rapidly relaxes to zero when
starting from the product state, while it remains nonzero at
late times when starting from the state Eq. (27). Figures 4(b)
and 4(d) show the dynamics of the entanglement entropy. It
rapidly grows and saturates near the value of Eq. (28) when
starting from the product state, while it grows very slowly
when starting from the state |� (uni)

k 〉. As in the previous case,
these behaviors imply nonthermalizing dynamics of |� (uni)

k 〉.

APPENDIX C: PAIRING OPERATOR WITH ZERO
ENERGY

We show that the operator Q defined in Eq. (10) is a sum of
pair operators, each of which commutes with Hhop in Eq. (4).
Since the matrix element tx,y is zero when x and y are in the
same sublattice �(1) or �(2), the matrix T can be written in the
form

T =
(

0 M1,2

MT
1,2 0

)
, (C1)

where M1,2 is a |�(1)| × |�(2)| matrix, and MT
1,2 denotes the

transpose of M1,2. Now let M1,2 = USVT be the singular value
decomposition of T, where U and V are |�(1)| × |�(1)| and
|�(2)| × |�(2)| orthogonal matrices, respectively. The matrix
S is a |�(1)| × |�(2)| rectangular diagonal matrix with non-
negative diagonal elements. In the following, we denote the
number of nonzero diagonal elements of S by r, and let
them be εk > 0 (k = 1, 2, . . . , r). With the decomposition,
we have

T =
(

U 0
0 V

)(
0 S

ST 0

)(
UT 0
0 VT

)
. (C2)

We note that there exists an orthogonal matrix P such that

(
0 S

ST 0

)
= P

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ε1

ε1 0
. . .

0 εr

εr 0
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

PT,

(C3)

where matrix elements which are zero are left empty. Letting

R =
(

U 0
0 V

)
P (C4)

and ai = ∑
x∈� cx(R)x,i, we find that Hhop can be expressed as

Hhop =
r∑

k=1

εk (a†
2k−1a2k + a†

2ka2k−1). (C5)

In the same way, the matrix Q can be represented as

Q = R

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ε1

−ε1 0
. . .

0 εr

−εr 0
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

RT.

(C6)

Thus we see that the operator Q can be rewritten as

Q = 2
r∑

k=1

a2k−1a2k . (C7)

To diagonalize Hhop, we introduce

b2k−1 = a2k−1 + a2k√
2

, (C8)

b2k = a2k−1 − a2k√
2

(C9)

for k = 1, 2, . . . , r. They satisfy

{bi, b j} = {b†
i , b†

j} = 0, (C10)

{bi, b†
j} = δi, j (C11)

for i, j = 1, 2, . . . . , 2r. In terms of the new fermionic opera-
tors, Hhop takes the form

Hhop =
r∑

k=1

εk (b†
2k−1b2k−1 − b†

2kb2k ), (C12)

which shows that nonzero eigenvalues of T come in pairs,
±εk . In a similar manner, we see that

Q = 2
r∑

k=1

εkb2kb2k−1. (C13)

Because [Hhop, b2k−1] = −εkb2k−1 and [Hhop, b2k] = εkb2k ,
the pair operator b2kb2k−1 satisfies [Hhop, b2kb2k−1] = 0. This
means that b2kb2k−1 is an operator that annihilates a pair of
eigenmodes of Hhop whose energies add up to zero.

APPENDIX D: PROOF OF THE UNIQUENESS
OF THE GROUND STATES

We give a complete proof of the theorem in Sec. IV.
Proof. We define a set of operators

qx =
∑
y∈�

qx,ycy for all x ∈ �. (D1)
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Since the matrix Q is assumed to be regular, we can define its
dual operators as

q̃†
x =

∑
y∈�

c†
y (Q−1)y,x, (D2)

which satisfy the following anticommutation relations:

{qx, q̃†
y} = δx,y. (D3)

Note that the matrix element qx,y is zero if both x and y are in
�(1) or �(2), and in this case, (Q−1)x,y is also zero if both x
and y are in �(1) or �(2).

Let |�GS〉 be a zero-energy ground state of Hpar and assume
that it is an N-particle state. For arbitrary pairs of subsets
X, X ′ ⊂ �(1) such that |X | + |X ′| = N , the states of the form(∏

x∈X

q̃†
x

)( ∏
x′∈X ′

c†
x′

)
|vac〉 (D4)

are linearly independent. This can be seen as follows. Let us
assume that∑

X⊂�(1)

∑
X ′⊂�(1)

f (X, X ′)

(∏
x∈X

q̃†
x

)( ∏
x′∈X ′

c†
x′

)
|vac〉 = 0, (D5)

where f (X, X ′) is a coefficient. Since qx,y = 0 when x, y ∈
�(1), we see that {qx, c†

x′ } = 0 for x, x′ ∈ �(1). Keeping this
fact, the anticommutation relations (2), and (D3) in mind, we
see that operating with(∏

x∈X

qx

)( ∏
x′∈X ′

cx′

)
(D6)

on Eq. (D5) gives f (X, X ′) = 0. Thus the states of the form
(D4) are linearly independent. The number of states of the
form (D4) is counted as follows. Given that |X | + |X ′| = N ,
when N � |�(1)|, the number of states is given by

N∑
m=0

(|�(1)|
m

)( |�(1)|
N − m

)
=

(|�|
N

)
. (D7)

When N > |�(1)|, the number of states is also

|�|−N∑
m=0

( |�(1)|
N − |�(1)| + m

)( |�(1)|
|�(1)| − m

)
=

(|�|
N

)
. (D8)

Since these numbers coincide with the dimension of the
N-particle Hilbert space, we conclude that the states of the
form Eq. (D4) span this Hilbert space. This immediately im-
plies that |�GS〉, a zero-energy ground state of Hpar, can be
expressed as

|�GS〉 =
∑

X⊂�(1)

∑
X ′⊂�(1)

f1(X, X ′)

(∏
x∈X

q̃†
x

)( ∏
x′∈X ′

c†
x′

)
|vac〉,

(D9)

where X and X ′ are subsets of �(1) such that |X | + |X ′| = N ,
and f1(X, X ′) is a certain coefficient. Similarly, for subsets
Y,Y ′ ⊂ �(2), the states of the form(∏

y∈Y

c†
y

)(∏
y′∈Y ′

q̃†
y′

)
|vac〉 (D10)

are linearly independent, and the number of states of the form
(D10) is

(|�|
N

)
. Therefore, |�GS〉 can also be written as

|�GS〉 =
∑

Y ⊂�(2)

∑
Y ′⊂�(2)

f2(Y,Y ′)

(∏
y∈Y

c†
y

)(∏
y′∈Y ′

q̃†
y′

)
|vac〉,

(D11)

where Y and Y ′ are subsets of �(2) such that |Y | + |Y ′| = N .
The coefficients f1(X, X ′) and f2(Y,Y ′) are related as follows:

f1(X, X ′) =
∑

Y ⊂�(2)

|Y |=|X |

∑
Y ′⊂�(2)

|Y ′|=|X ′|

det QX,Y det Q−1
X ′,Y ′ f2(Y,Y ′),

(D12)

where the matrices QX,Y and Q−1
X,Y are |X | by |Y | matri-

ces whose elements are given as (QX,Y )i, j = (Q)xi,y j and
(Q−1

X,Y )i, j = (Q−1)xi,y j , respectively. Here xi (y j) denotes the
ith ( jth) element of the subset X (Y ).

Since Hpar is positive-semidefinite, the ground state |�GS〉
satisfies Hpar|�GS〉 = 0, which leads to

c†
z qz|�GS〉 = 0 for all z ∈ �. (D13)

First, we consider the case of z ∈ �(1). Using the anticommu-
tation relations {qz, c†

x} = 0 for all x, z ∈ �(1), we find∑
X,X ′⊂�(1)

f1(X, X ′) χ [z ∈ X ] χ [z /∈ X ′]

× (−1)|X |sgn(X ; z) sgn(X ′ ∪ {z}; z)

×
( ∏

x∈X\{z}
q̃†

x

)( ∏
x′∈X ′∪{z}

c†
x′

)
|vac〉 = 0, (D14)

where χ [. . .] takes the value 1 if the statement in the brackets
is true and 0 otherwise. The function sgn(X ; z), which is a
sign factor arising from exchanges of fermion operators, takes
±1 depending on the position of z in X . Because the states
(
∏

x∈X\{z} q̃†
x )(

∏
x′∈X ′∪{z} c†

x′ )|vac〉 are linearly independent for
all X , X ′, and z ∈ �(1), we have

f1(X, X ′) χ [z ∈ X ] χ [z /∈ X ′] = 0 (D15)

for all z ∈ �(1) and X, X ′ ⊂ �(1) such that |X | + |X ′| = N ,
and this implies that

f1(X, X ′) = 0 if X 	⊂ X ′. (D16)

For z ∈ �(2), we repeat the same discussion using the ex-
pression (D11), and then, for subsets Y,Y ′ ⊂ �(2) such that
|Y | + |Y ′| = N , we see that

f2(Y,Y ′) = 0 if Y ′ 	⊂ Y. (D17)

It is clear from Eq. (D12) that f1(X, X ′) with X � X ′ can be
represented as a sum of f2(Y,Y ′) with |Y | < |Y ′|. This implies
that Y ′ ⊂ Y cannot be satisfied, and hence f2(Y,Y ′) = 0 from
Eq. (D17). Therefore, f1(X, X ′) = 0 when X � X ′. In other
words, f1(X, X ′) can be nonzero only when X = X ′. There-
fore, the state |�GS〉 can be expressed in the form

|�GS〉 =
∑

X⊂�(1)

f (X )

(∏
x∈X

q̃†
x

)(∏
x′∈X

c†
x′

)
|vac〉, (D18)
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where the sum is over all X such that 2|X | = N , and we
have denoted f1(X, X ) simply as f (X ). We also find that the
number of particles in the zero-energy ground states must be
an even number. Hereafter, we assume that N is of the form
N = |�| − 2k, where k = 0, 1, . . . , |�|/2.

In the following, we show that the coefficients satisfy
f (X ) = f (X ′); that is, f (X ) is independent of X when the
number of elements is fixed, which means that the ground
state is unique in the (|�| − 2k)-particle Hilbert space. With
Eq. (D18), we examine Eq. (D13) with z replaced by y ∈ �(2),
and then Eq. (D13) is rewritten as

∑
z,z′∈�(1)

∑
X⊂�(1)

qz,yqy,z′ f (X )(−1)|X |

× χ [z′ ∈ X ] χ [z 	∈ X ] sgn(X ; z′) sgn(X ∪ {z}; z)

×
( ∏

x∈X∪{z}
q̃†

x

)( ∏
x′∈X\{z′}

c†
x′

)
|vac〉 = 0. (D19)

Due to the factor of χ [z′ ∈ X ] χ [z 	∈ X ], the range of the sum
for X is restricted to sets satisfying z′ ∈ X and z 	∈ X for a
fixed pair (z, z′), and such a set X can be written as X = D ∪
{z′} using a set D ⊂ �(1) that does not contain either z or z′.
Therefore, we can rewrite Eq. (D19) as

∑
z<z′

∑
D⊂�(1)

(−1)|D|sgn(D ∪ {z}; z) sgn(D ∪ {z′, z}; z′)

× [qz,yqy,z′ f (D ∪ {z′}) − qz′,yqy,z f (D ∪ {z})]

×
( ∏

x∈D∪{z,z′}
q̃†

x

)(∏
x′∈D

c†
x′

)
|vac〉 = 0, (D20)

which reduces to

qz,yqy,z′ [ f (D ∪ {z′}) − f (D ∪ {z})] = 0, (D21)

where (z, z′) is an arbitrary pair of different sites in �(1), and D
is a subset of �(1) such that z, z′ 	∈ D and |D| = |�|/2 − k −
1. If qz,yqy,z′ 	= 0, i.e., z and z′ are connected via nonvanishing
matrix elements of Q, then f (D ∪ {z}) = f (D ∪ {z′}). Since
we have assumed that Q is connected, for an arbitrary D ⊂
�(1) such that |D| = |�|/2 − k − 1, we find

f (D ∪ {z}) = f (D ∪ {z′}) (D22)

for all z, z′ ∈ �(1) that are not contained in D. Therefore, let-
ting X be a subset and Xz→z′ be a subset obtained by removing
z and adding z′ to X , we see that

f (X ) = f (Xz→z′ ). (D23)

For arbitrary subsets X and X ′ such that |X | = |X ′|, we can
find pairs {zl , z′

l}n
l=1 such that X 1 = Xz1→z′

1
, X 2 = X 1

z2→z′
2
, ...,

X ′ = X n−1
zn→z′

n
. Thus we obtain f (X ) = f (X ′), which is the de-

sired result.
Finally, we see that the state with f (X ) independent of X

is indeed the QMBS in Eq. (11). Now, the ground state is
written as

|�GS〉 =
∑

X⊂�(1)

|X |=|�|/2−k

(∏
x∈X

q̃†
xc†

x

)
|vac〉. (D24)

Because the state |vac〉 is proportional to (
∏

x∈�(1) cxqx )|vac〉,
the ground state Eq. (D24) can be rewritten as

|�GS〉 ∝
∑

X⊂�(1)

|X |=|�|/2−k

(∏
x∈X

q̃†
xc†

x

)( ∏
x′∈�(1)

cx′qx′

)
|vac〉. (D25)

Using the relations (D3), we obtain

|�GS〉 ∝
( ∑

x,y∈�

qx,ycxcy

)k

|vac〉, (D26)

which is the QMBS of Eq. (11). Thus, the unique ground
states of the parent Hamiltonian Hpar are the QMBS.

[1] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[2] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter
Phys. 6, 15 (2015).

[3] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[4] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[5] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
[6] H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105

(2014).
[7] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv.

Phys. 65, 239 (2016).
[8] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H.

Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner et al.,
Nature (London) 551, 579 (2017).

[9] G.-X. Su, H. Sun, A. Hudomal, J.-Y. Desaules, Z.-Y. Zhou,
B. Yang, J. C. Halimeh, Z.-S. Yuan, Z. Papić, and J.-W. Pan,
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