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We present Raman spectroscopic as well as first-principles theoretical studies of the temperature dependence
of phonon spectra in the pyrochlore Y2Ti2O7. Our experimental results show that the frequencies of several
phonons display anomalous softening upon cooling. Our theoretical calculations of the temperature dependence,
via phonon self-energy corrections arising from cubic anharmonic interactions, lead to such anomalies but only
for a couple of high-frequency phonon modes. Our work strongly supports the suggestion that anharmonic
phonon-phonon interactions are strong in the pyrochlore titanates and that they are responsible for the phonon
anomalies observed. The strong anharmonic effects are likely due to the presence of the vacant Wyckoff sites
and the shifts of the oxygen atoms from their actual positions in the pyrochlore lattice. However, the theoretical
calculations fail to explain the anomalous behavior of low and intermediate frequency modes observed in
our experiments. It seems likely that a much more sophisticated, perhaps nonperturbative, treatment of the
anharmonic interactions will be required for a full explanation of the anomalies.

DOI: 10.1103/PhysRevB.106.144303

I. INTRODUCTION

Pyrochlores with the general formula A2B2O7 accommo-
date a wide range of compositions due to their structural
flexibility, leading to materials with a fascinating variety of
properties [1–3]. For instance, their electronic transport can
vary from highly insulating through semiconducting to metal-
lic behavior depending on the chemical composition. Several
rare-earth-based titanate pyrochlores display fascinating mag-
netic properties such as spin-liquid behavior in Tb2Ti2O7 [4]
and spin-ice behavior in Dy2Ti2O7 [5] and Ho2Ti2O7 [6] com-
pounds. The properties of the magnetic pyrochlores, where
Ru, Mn, or Mo is present at the B sites, and Gd, Er, Tb, Dy,
or Sm is present at the A sites, vary from paramagnetic to
ferromagnetic or antiferromagnetic behavior.

Recently, authors of extensive Raman and infrared (IR)
spectroscopy studies of several pyrochlore compounds have
unravelled various important properties involving structural
changes as well as interactions between the lattice, crys-
talline electric field, and spin degrees of freedom [7–17].
For example, Sm2Ti2O7, Gd2Ti2O7, Tb2Ti2O7, and Yb2Ti2O7

undergo structural transitions under high pressure, as revealed
by Raman and x-ray experiments [12–14,16]. The spin-ice
compound Dy2Ti2O7 shows a structural transition <∼100 K
[7] which may have an important role in its low-temperature
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magnetic phase. Furthermore, phonon spectra in several ti-
tanate pyrochlores (A2Ti2O7, where A = Gd, Tb, Dy, Ho,
Er, Yb, and Lu) show anomalies in their temperature de-
pendence [7–11,16]. The anomalous temperature dependence
of the properties of a few IR active phonons in Dy2Ti2O7

was attributed to strong spin-phonon coupling by Bi et al.
[11]. However, since the exchange interaction is rather weak
for most pyrochlore titanates (ranging between ∼0.25 K in
Sm2Ti2O7 [15] to 19 K in Tb2Ti2O7 [18,19]), and no long-
range spin order has been seen in Dy2Ti2O7, Gd2Ti2O7, and
Er2Ti2O7 down to very low temperatures [20], this expla-
nation has been questioned [9]. Furthermore, the phonon
anomalies are unlikely to be due to the coupling between
phonons and crystal-field excitations because Gd2Ti2O7 ex-
hibits comparable phonon anomalies [9] even though its
crystal-field effects are rather weak, as the half-filled 4f-
shells in its Gd3+ ions have spherical symmetry. We note
that Y2Ti2O7 (YTO) is a wide-bandgap semiconductor (with
a bandgap of ∼3 eV). This rules out an electronic origin of
anharmonicity and the phonon anomalies expected in metals
[21].

In this paper, we present a temperature-dependent Raman
spectroscopic study together with a first-principles density
functional theory (DFT)-based study of the phonon spectra in
the nonmagnetic titanate pyrochlore YTO. The experiments
reveal an anomalous decrease or softening of the frequencies
of several phonons upon cooling from room temperature down
to 35 K. Our theoretical calculations of this temperature de-
pendence, in terms of the phonon self-energy effects arising
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from the (DFT calculated) phonon-phonon interactions aris-
ing from cubic anharmonicity, lead to such anomalies, though
only for a couple of high-frequency phonon modes. Our calcu-
lations include results for the Grüneisen parameters for several
phonon modes, a detailed study of the phonon linewidths,
and the contributions to the phonon frequency change due to
quasiharmonic as well as cubic-anharmonic effects.

II. EXPERIMENTAL TECHNIQUES

Y2O3 (99.99%) and TiO2 (99.99%) at the right stoi-
chiometry were mixed thoroughly and heated at 1200 ◦C for
∼15 h. The resulting mixture was well ground and isostati-
cally pressed into rods of ∼8 cm long and 5 mm diameter.
These rods were sintered at 1400 ◦C in air for ∼72 h. This
procedure was repeated until the compound YTO was formed,
as revealed by powder x-ray diffraction analysis, with no
traces of any secondary phase. These rods were then subjected
to single-crystal growth by the floating-zone method in an
IR image furnace under flowing oxygen. X-ray diffraction
carried out on the powder obtained by crushing part of a
single-crystalline sample and energy dispersive x-ray analysis
on a scanning electron microscope indicated a pure pyrochlore
YTO phase. The Läue back-reflection technique is used to
orient the crystal along with the principal crystallographic
directions.

Micro-Raman measurements on a (111)-oriented single
crystal of YTO were performed using a continuous flow he-
lium cryostat attached to a temperature controller (Oxford
Instruments), using the 514.5 nm line of an Ar+ ion laser
(Coherent Innova 300) with ∼15 mW of power falling on the
sample. The laser polarization was normal to the (111) crystal-
lographic axis. The scattered light was collected and analyzed
using a computer-controlled DILOR XY Raman spectrometer
having three holographic gratings (1800 groves/mm) cou-
pled to a liquid-nitrogen-cooled charged-coupled device CCD
3000 (Jobin Yvon-SPEX make) of pixel resolution 0.85 cm−1.
The instrument broadening is ∼5 cm−1.

III. COMPUTATIONAL TECHNIQUES

Our DFT calculations [22,23] were carried out using
the QUANTUM ESPRESSO code [24], with optimized norm-
conserving Vanderbilt (ONCV) pseudopotentials [25,26]. The
pseudopotentials were obtained from PSEUDODOJO. The local
density approximation (LDA) [27] was used for the exchange-
correlation energy functional. We used an energy cutoff of
80 Ry for the plane-wave basis sets. The k-points summation
over the Brillouin zone (BZ) for the electronic energy calcu-
lations was implemented using the Monkhorst-Pack method
with a 4 × 4 × 4 special k-points mesh [28]. Density func-
tional perturbation theory (DFPT) [29,30] calculations were
carried out to obtain the phonon dispersions within the BZ.
For this purpose, the dynamical matrices were evaluated for a
grid of 2 × 2 × 2 q-points. The Broyden-Fletcher-Goldfarb-
Shanno minimization scheme [31] was employed to optimize
the structure. The D3Q code [32] was used to calculate the
cubic anharmonic interatomic force constants or, equivalently,
the three-phonon coupling matrix elements [33–36].

IV. SYMMETRY CHARACTERISTICS OF PHONONS
IN TITANATE PYROCHLORES

Pyrochlores belong to the face-centered cubic family
(space group: Fd 3̄m) with 2 f.u. of (A2B2O7) per primitive
unit cell. A more precise specification of the formula unit
is A2B2O6O′, where the O corresponds to the oxygen atoms
situated at the 48 f Wyckoff sites, and O′ refers to the oxy-
gen atoms situated at the 8b Wyckoff sites. There have been
several theoretical and experimental studies of the vibrational
modes in these systems [37–41]. The 66 phonon modes at
the BZ center (� point) can be classified into 26 irreducible
representations as follows:

F = A1g + Eg + 2T1g + 4T2g + 3A2u + 3Eu

+8T1u + 4T2u. (1)

(Modes labeled A, E , and T are one-, two-, and threefold
degenerate, respectively.) Out of these, only the A1g, Eg, and
4T2g modes are Raman active, while the T1u modes are IR
active. The remaining modes (2T1g, 3A2u, 3Eu, and 4T2u) are
optically inactive. The above irreducible representations of
the normal modes imply that the IR active modes involve the
vibrations of all four nonequivalent sites (A, B, O, and O′) and
are due to either bond stretching or angular bending. However,
the Raman active modes involve the vibrations of the oxygen
atoms only; the A and B atoms remain stationary because they
occupy sites with inversion symmetry (site symmetry: D3d ).
The Raman modes A1g, Eg, and 3T2g involve the vibrations
of oxygen atoms located at 48f Wyckoff sites, whereas the
fourth T2g Raman mode arises from the vibrations of O′ atoms
situated at the 8b sites.

In the pyrochlores, while the 8b sites are occupied by O′
atoms, the 8a sites are vacant. The A3+ ions form a tetrahedral
network with an O′ atom at the center of each tetrahedron,
while the B4+ ions form another tetrahedral network having
the 8a vacant sites at the centers. Furthermore, in pyrochlores,
the 48 f site is occupied by O atoms whose position has an
adjustable parameter x. The various ions in pyrochlores form
a complex network of polyhedra whose shapes vary with the
value of x, which ranges between 0.3125 ( 5

16 ) and 0.375 ( 3
8 ).

When x = 0.3125, the B4+ ions form a perfect BO6 octahe-
dron, and the A3+ ions are coordinated by eight oxygen atoms
(6O + 2O′). However, at the other extreme, for x = 0.375,
the A3+ ions form a regular cube with eight oxygen atoms
(6O + 2O′), while the BO6 octahedron becomes distorted.
Experimentally, the value of x is usually found to be within
0.320–0.345 and, therefore, the polyhedra formed by the A3+
and B4+ cations are distorted from the above ideal polyhedra.
The value of x in the case of YTO is found to be 0.33. As
discussed later, it seems likely that the presence of the empty
8a sites leads to relatively larger anharmonic interactions in-
volving modes in which the ions at its neighboring sites, i.e.,
Ti4+ ions at the 16c site and O2− ions at 48 f site, vibrate.

V. PHONON SELF-ENERGY CALCULATIONS

Using standard quantum many-body perturbation theory
techniques and to the second order in the three-phonon inter-
actions arising from cubic anharmonicity, the imaginary part
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of the phonon self-energy is given by [42–44]

�
(3)
j (ω, T ) = 18π

h̄2

∑
q, j1,i2

|V (3)(0, j; q, j1; −q, j2)|2({n[ω j1 (q)] + n[ω j2 (−q)] + 1}{δ[ω − ω j1 (q) − ω j2 (−q)]

− δ[ω + ω j1 (q) + ω j2 (−q)]} + 2{n[ω j2 (−q)] − n[ω j1 (q)]}δ[ω − ω j1 (q) + ω j2 (−q)]). (2)

Here, ω j (q) is the DFPT calculated (zero temperature) fre-
quency of the jth phonon mode at wave vector q, and
n[ω j (q)], its thermal occupancy given by

n[ω j (q)] = 1

exp
[ h̄ω j (q)

kBT

] − 1
. (3)

The term V(3)(0, j; q, j1; −q, j2) in Eq. (2) represents the
three-phonon coupling matrix elements.

The corresponding real part of the self-energy is then ob-
tained by utilizing the Kramers-Kronig relation:

�
(3)
j (ω, T ) = − 1

π
P

∫ ∞

−∞
dω′ �

(3)(ω′, T )

ω′ − ω
, (4)

where P stands for the principal value of the integral.
We note that the term in Eq. (2) involving δ[ω + ω j1 (q) +

ω j2 (−q)] does not contribute to �
(3)
j (ω, T ) for positive ω.

However, this term does need to be and is kept in our cal-
culations of the real part of the phonon self-energy in Eq. (4).

Including the contributions from the cubic anharmonic
effects treated only to the second order, the temperature de-
pendence of the frequency of the jth mode at the center of the
BZ is given by

ω j (T ) = ω j (0) + �
0(qh)
j + �

(qh)
j (T ) + �

(3)
j (T ). (5)

The first term on the right-hand side of Eq. (5) is the DFPT
calculated zero-temperature frequency of the jth phonon
mode at the � point [obtained by evaluating ω j (q) at q = 0].
The second term is the quasiharmonic contribution to the fre-
quency shift at zero temperature due to the volume expansion
induced by zero-point quantum fluctuations, whereas the third
term is the quasiharmonic contribution due to the thermal ex-
pansion of the lattice. The fourth term corresponds to the cubic
anharmonic contribution, given by �

(3)
j (T ) = �

(3)
j [ω j (0), T ].

The quasiharmonic contribution comes from the tempera-
ture (or zero-point fluctuation) induced expansion/contraction
of the lattice leading to a change in the second-order force
constant matrix elements (or equivalently, the phonon fre-
quencies) without changing the phonon population. It is
straightforward to show that the T -dependent part can be
expressed as

�
(qh)
j (T ) = ω j (0)

{
exp

[
−3γ j

∫ T

0
α(T ′)dT ′

]
− 1

}
. (6)

Here, γ j ≡ −∂[ln ω j (0)]/∂ (ln V ) (assumed to be temperature
independent) is the Grüneisen parameter of a jth phonon
mode, which describes the variations of the vibrational prop-
erties of a crystal lattice with respect to its volume. Also, α(T )
is the linear thermal expansion coefficient [45] at temperature
T , calculable as (a complete derivation is given in Appendix A

of Ref. [46])

α(T ) = 1

3B

∑
q, j

([
−∂ω j (q)

∂V

]
h̄2ω j (q)

kBT 2

× exp [h̄ω j (q)/kBT ]

{exp [h̄ω j (q)kBT ] − 1}2

)
, (7)

where B is the bulk modulus of the system.
In our calculations, the (otherwise singular) Cauchy prin-

cipal value integrals and the sums involving Dirac-delta
functions above were numerically evaluated using Lorentzian
broadening, a widely used approximation [42,47,48], with a
broadening parameter of 3 cm−1.

VI. RESULTS AND DISCUSSION

A. Experimental results

The Raman spectra of YTO at 35 and 300 K are shown in
Fig. 1. The assignment of the modes of pyrochlore YTO is
done following Refs. [7,16]: P3 (308 cm−1) as T2g, P4 (324
cm−1) as Eg, P5 (521 cm−1) as A1g, P6 (530 cm−1) as T2g, and
P8 (709 cm−1) as T2g.

The additional low-frequency modes ∼100–200 cm−1 and
the high-frequency modes ∼600–800 cm−1 are also observed
in Refs. [7,9,16,37] and seen in pyrochlore YTO (see Fig. 1).

FIG. 1. Raman spectrum of Y2Ti2O7 at 35 and 300 K. Closed
circles represent the experimental data. The Raman intensity of the
low-temperature spectrum for wave numbers <275 cm−1 has been
rescaled for a better view. For the same reason, both the spectra are
rescaled for wave numbers >550 cm−1. The symmetry classifications
assigned to the different modes labeled as P1–P8 are discussed in the
text.
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FIG. 2. Experimental results for the temperature dependence of
the frequencies of modes P1, P3–P6, and P8 of nonmagnetic py-
rochlore Y2Ti2O7. Solid lines are guides to the eye.

The high-frequency modes can be assigned to second-order
Raman processes [9]. We assign the low-frequency modes to
IR active or silent modes rendered Raman active due to a
possible lowering of the local symmetry at some crystallo-
graphic sites, as suggested in Ref. [37]. The remaining three
modes are labeled as P1 (219 cm−1), P2 (266 cm−1), and P7
(583 cm−1).

Figure 2 shows the temperature dependence of the fre-
quencies of a few phonons of nonmagnetic pyrochlore YTO.
Modes P1, P5, P6, and P8 show an anomalous temperature
dependence, namely, their frequencies decrease on lowering
the temperature. However, the frequencies of modes P3 and
P4 have a normal temperature dependence. Data for P2 and
P7 are not shown, as they are very weak.

B. Theoretical results

1. Harmonic phonon properties

The calculated values of the frequencies of all optical
modes in YTO are shown in Table I. The results are compared
with the current experimental values as well as other available
data from the literature.

There have been earlier measurements and calculations
of Raman active modes in YTO [49,52], with the lowest-
frequency modes observed at ∼220 cm−1. All Raman active
modes in YTO involve vibrations of the oxygen atoms only,
and our DFT calculations do not show any Raman active mode
such as T2g ∼220 cm−1, in agreement with earlier results [49].

The modes closest in frequency in our calculations are two IR-
active modes (T1u), one ∼200 cm−1 and another ∼240 cm−1,
and one silent Eu mode at 181 cm−1. These are normally
Raman inactive but can appear in Raman spectra [7,10] due
to displacive disorder at the Y and O′ sites in these systems.
This displacive disorder leads to a relaxation of the selec-
tion rules [49], as a result of which IR modes can appear in
Raman spectra and vice versa, and silent modes may become
active and appear in Raman and IR spectra. Accordingly, for
further discussions about self-energy corrections, temperature
dependence, etc., we have included the above three (one silent
and two IR active) modes and labeled them as M1, M2, and
M3, as indicated in Table I, and assigned the M2 mode to
the experimental P1 Raman mode. In the frequency range
going up to 400 cm−1, our DFT calculations predict a T2g

mode at ∼320 cm−1, in reasonably good agreement with the
present experimental value of 308 cm−1 and with the values
available in the literature. The Eg mode is generally observed
∼330 cm−1 [8,9]. Our DFT value of 337 cm−1 for the Eg

mode is in good agreement with our experimental value of 324
cm−1 and with the literature values. One each of the T2g and
A1g modes of the pyrochlore titanates [52] is usually observed
∼450 and 510 cm−1, respectively. Again, our calculated val-
ues of 453 and 508 cm−1 for the respective modes are in
reasonably good agreement with the available literature val-
ues. However, in our Raman spectroscopic measurements, the
theoretically predicted T2g mode ∼450 cm−1 is not observed,
which could be because its intensity is below the threshold,
whereas the frequency for the A1g mode is found to be 521
cm−1, reasonably close to the theoretical value of 508 cm−1.
Among the two high-frequency Raman active modes with
T2g symmetry, one is calculated to be ∼581 cm−1, whereas
in the experiment, it is found to be ∼530 cm−1. Our LDA
value of the frequency of the highest-frequency Raman active
mode is found to be ∼796 cm−1, whereas it is observed to be
∼709 cm−1 in the present experiment. This observation is not
in agreement with the other experimental values reported in
Table I. It has been assigned as an overtone or combination of
vibrational modes in the experimental measurements of Saha
et al. [7] and in the lattice dynamical calculations by Gupta
et al. [41] in titanates. Our calculated values are consistent
with the calculations by Kumar et al. [49].

The calculated values of the frequencies of the IR active
and silent modes in YTO pyrochlore are also shown in Table I.
The results are again compared with the available literature
data and are in reasonably good agreement with the available
data for most of the modes. We label the calculated Raman
active modes as well as two silent modes <800 cm−1 as M4–
M10; the labels together with their correspondence with the
observed modes (P1–P8) where possible are given in Table I.
In the rest of this paper, we confine our discussions of the
theoretical calculations to modes M1–M10.

The eigenvector displacement patterns for three low-
frequency modes (M1–M3) and three high-frequency modes
(M7, M8, and M10) are shown in Fig. 3. The eigenmode M1
involves the vibrations of only the Ti4+, O2−

48 f , and O2−
8b ions

and not of Y3+, whereas vibrations of all the ions contribute to
the M2 and M3 modes. On the other hand, the high-frequency
modes M7, M8, and M10 involve the vibrations of oxygen
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TABLE I. Experimental and theoretical frequencies of optical phonon modes in pyrochlore Y2Ti2O7, along with the available literature
data. Modes with 
 indicate that they are experimentally observed but not found from the first-principles calculations. Frequencies with †
denote modes that have not been assigned experimentally to any Raman active mode.

Modes This paper (LDA) This paper (Expt.) Calc. [49] Experimental

Raman
T 


2g – – – 225 [37]
T2g 320 (M4) 308 (P3) 316 318 [37]
Eg 337 (M5) 324 (P4) 334 333 [37]
T2g 453 449 450† [37]
A1g 508 (M6) 521 (P5) 508 527 [37]
T2g 581 (M8) 530 (P6) 582 531 [37]
T2g 796 (M10) 709 (P8) 796 586 [37]
IR
T1u 79 74 105 [50]
T1u 151 142 182 [2], 176 [50], 177 [51]
T1u 197 (M2) 219 (P1) 189 248 [2], 248 [50], 245 [51]
T1u 241 (M3) 238 299 [2], 285 [50], 293 [51]
T1u 388 391 429 [2], 410 [50], 424 [51]
T1u 465 456 460 [2], 462 [50], 467 [51]
T1u 546 546 562 [2], 568 [50], 571 [51]
Silent
T2u 67 51
T2u 101 88
Eu 115 106
Eu 181 (M1) 171
T1g 260 270
A2u 303 300
T2u 313 301
A2u 393 393
A2u 409 408
Eu 492 492
T1g 564 (M7) 572
T2u 601 (M9) 607

atoms only, with the vibrations of O2−
8b contributing only to

the M8 mode and not at all to the M7 and M10 modes. In the
case of the M8 mode, the amplitudes of vibration of the O−2

8b

ions are much larger than those of the O−2
48 f ions. In contrast,

the M7 and M10 modes involve the vibrations only of O−2
48 f

ions.

2. Anharmonic contributions to phonon properties

The mode Grüneisen parameter for the jth phonon mode
at the center of BZ, defined by

γ j ≡ −∂ ln ω j (0)

∂ ln V
= − V

ω j (0)

∂ω j (0)

∂V
, (8)

where V is the cell volume and ω j (0) is the frequency of the
jth phonon mode, was calculated as follows. Phonon frequen-
cies were calculated at four different cell volumes (246.666,
244.399, 242.227, and 240.178 Å3) by applying hydrostatic
pressure to the system in the range of 0–6.0 GPa in steps of
2.0 GPa. Derivatives of the phonon frequencies with respect
to volume at V = 246.017 Å3 for the different phonon modes
were calculated from the smooth functions for the frequencies
as functions of volume obtained using cubic spline fittings.
The calculated values of the mode Grüneisen parameters for
the total of 10 vibrational modes M1–M10 between 180 and

800 cm−1 which are either IR or Raman active are given in
Table II. There are no available data from the literature for
the mode Grüneisen parameter for YTO to compare with our
theoretical results. However, our calculated values are reason-
ably close to the experimentally obtained ones for a different

TABLE II. Calculated values of the mode Grüneisen parameters
(γ ) and FWHM. Theoretical results of the FWHM are also compared
with the present experimental data. Here, 2�

(3)
j (35) implies the val-

ues of FWHM at T = 35 K.

ω (cm−1) 2�
(3)
j (35) (cm−1)

Mode Theory Expt. γ Theory Expt.

M1 (Eu) 181 1.82 5.4
M2 (P1) (T1u) 197 219 2.73 5.7 25.8
M3 (T1u) 241 0.89 5.5
M4 (P3) (T2g) 320 308 2.14 9.1 15.4
M5 (P4) (Eg) 337 324 1.89 9.3 13.7
M6 (P5) (A1g) 508 521 1.33 12.6 9.5
M7 (T1g) 564 1.73 31.2
M8 (P6) (T2g) 581 530 1.34 9.8 14.7
M9 (T2u) 601 1.79 9.7
M10 (P8) (T2g) 796 709 1.27 24.9 37.4
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FIG. 3. Phonon eigenvector displacement of modes (a)–(c) M1–
M3, (d) M7, (e) M8, and (f) M10. The large (gray), medium (pink),
and small (red) spheres represent the Y, Ti, and O ions.

pyrochlore in the titanate family, namely, Dy2Ti2O7 [53]. For
example, our calculated values of the mode Grüneisen param-
eter in YTO for modes M1, M4, M6, and M10 are obtained
as 1.8, 2.1, 1.3, and 1.3, respectively, whereas experimentally,
in Dy2Ti2O7 [53], they were obtained as 2.2, 1.7, 0.9, and 2.2,
respectively.

Next, we discuss our calculations of α(T ), the linear ther-
mal expansion coefficient. The expression for it, given in
Eq. (7), can be rewritten as

α = 1

3BV

∑
q j

(
γ j (q)

[h̄ω j (q)]2

kBT 2

exp [h̄ω j (q)/kBT ]

{exp [h̄ω j (q)/kBT ] − 1}2

)
,

(9)

where γ j (q) is the wave-vector-dependent mode Grüneisen
parameter for the jth mode.

0 5 10 15 20 25 30
P (GPa)

220

225

230

235

240

245

250

V
 (Å

3 )

Theoretical
BM3 Fitting

FIG. 4. Calculated values of the primitive unit-cell volume as
a function of pressure. The solid line represents the fitted values
using the third-order Birch-Murnaghan equation of state. The bulk
modulus and its pressure derivative are obtained as 214 GPa and 4.2,
respectively.

As can be seen from Eq. (9), the calculation of α(T )
requires as inputs the bulk modulus as well as the γ j (q).
These are respectively obtained using nonlinear fittings to the
volume vs pressure and the ω j (q) vs volume data. We have
obtained the bulk modulus of YTO by fitting the calculated
volume vs pressure data (see Fig. 4) to the third-order Birch-
Murnaghan equation of state [54]. Our calculated value of the
bulk modulus of 214 GPa is reasonably close to the exper-
imentally obtained value of 204 GPa [55] and in agreement
with earlier theoretical values of 229 GPa [56] and 205 GPa
[57].

Using Eq. (9), we have calculated the linear thermal expan-
sion coefficient α(T ). Here, we used a 30 × 30 × 30 q-grid to
evaluate the sum over the wave vectors in Eq. (9). The sym-
metry of the face-centered space group was used to generate
the different q-points in the BZ, which in our case numbered
751. The results are shown in Fig. 5. There is no data available
in the literature for the temperature dependence of α(T ) for
YTO for us to compare with. However, our calculated value of
11.2 × 10−6 K−1 for the linear thermal expansion coefficient
at 300 K is in reasonably good agreement with the experi-
mentally measured value of 10.6 × 10−6 K−1 at 293 K by
Farmet et al. [58] and of 8.36 × 10−6 K−1 by Gill et al. [59]
and in excellent agreement with the theoretically calculated
value of 11 × 10−6 K−1 by Matsumoto et al. [60] using a
first-principles molecular dynamics study.

The calculated values of the temperature-dependent quasi-
harmonic shifts in the frequencies of the optical modes of
YTO obtained using the above results and Eq. (6) are shown
in Fig. 6. We note that �

(qh)
j (T ) decrease with increasing tem-

perature for all M1–M10 modes, and the maximum change
is ∼6.5, 6.7, and 7.0 cm−1 for modes M7, M10, and M9,
respectively. Hence, at the level of including only the quasi-
harmonic contributions, all the phonon modes would show
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FIG. 5. Theoretical results of the temperature dependence of lin-
ear thermal expansion coefficient.

normal behavior, i.e., softening, or redshifting as the temper-
ature increases.

Next, within the approximations mentioned earlier for
the computation of the phonon self-energies, values of
the full width at half maximum (FWHM) or 2�

(3)
j (T ) =

2�
(3)
j [ω j (0), T ] evaluated at T = 35 K are provided in

Table II. Since the experimental results also include an in-
strumental broadening in the results, the calculated widths
were increased by 5 cm−1 to compare with the experimental
data. A comparison of our experimental and theoretical results
for the FWHM as a function of temperature for some of the
phonon modes is shown in Fig. 7. Linear-in-T fits to the
experimental data are also shown as guides to the eye. We note
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FIG. 6. Theoretical results for the temperature dependence of
quasiharmonic contributions for modes M1–M10 in Y2Ti2O7.
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FIG. 7. Comparison of the experimental and theoretical values

of the full width at half maximum (FWHM) as a function of
temperature.

that the experimental results are for the temperature range of
35–300 K, whereas the theoretical calculations are over the
range from 0–300 K. The experimental FWHM for mode P1
is ∼25.8 cm−1 at 35 K and changes to 32.7 cm−1 at 300 K,
an increase of 6.9 cm−1, whereas the theoretical values of the
FWHM for this mode (denoted as M2) changes from 5.7 cm−1

at 35 K to 14.6 cm−1 at 300 K, an increase of 8.7 cm−1.
While the theoretical value of the FWHM at 35 K is less
than the experimental value, the increase over the range of
35–300 K is comparable. We find roughly similar features in
the case of the theoretically computed modes M4, M5, and
M8, corresponding to the experimental modes P3, P4, and P6
respectively; the theoretical results for the FWHM are smaller
than the experimental ones, but the rates of increase with
temperature are comparable. On the other hand, the theoretical
FWHM for mode M6 is larger than the measured FWHM of
the corresponding mode P5 at 35 K and in addition shows a
much larger rate of increase with increasing temperature.

The theoretically calculated values of the FWHM as a
function of temperature for the two high-frequency modes,
namely, the M7 (optically silent) and M10 (Raman active)
modes, are also shown in Fig. 7 (top right panel). The zero-
temperature values of the FWHM for both these modes,
especially for mode M7, are larger than those for all the other
modes. Another noteworthy feature is that, compared with the
other modes, the FWHM for the M7 mode shows a much
larger increase of ∼60 cm−1 as the temperature increases
from 0 to 300 K. The large values of the FWHM for these
modes may be connected with the anomalous temperature
dependence of their frequencies discussed below.

The cubic anharmonic shifts �
(3)
j (T ) for modes M1–M10

are shown in Fig. 8. The shifts for M1–M6 and M9 show
negative contributions of increasing magnitude with increas-
ing temperature; this will cause these phonons to soften with
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FIG. 8. Theoretical results of the temperature dependence of cu-
bic anharmonic contributions to the frequencies of the phonon modes
in Y2Ti2O7.

increasing temperature, which is the normal behavior ex-
pected for phonons in any system. On the other hand, modes
M7, M8, and M10 behave differently: with increasing tem-
perature, the shifts for M8 are negative but of decreasing
magnitude, whereas M7 and M10 have positive shifts of in-
creasing magnitude (although M7 starts out being negative at
low T ). These changes correspond to hardening or blue shifts
with increasing temperature. This anomalous trend is like the
trends observed experimentally for the Raman modes P5, P6,
P8, and P1.

However, the overall temperature dependence of the fre-
quency of any phonon mode also has contributions from the
quasiharmonic shift, which we recall corresponds only to
softening with increasing temperature. When we add all the
contributions, i.e., the quasiharmonic as well as the cubic
anharmonic shifts to the zero-temperature frequencies (see
Fig. 9), we find that almost all the modes behave normally
(i.e., their frequencies decrease with increasing temperature),
except for the M7 and M10 modes, which show anomalous
behavior (i.e., their frequencies increase with increasing tem-
perature). Among the two anomalous modes, M7 shows a
much bigger anomaly [ω(300 K) − ω(0 K) = 12 cm−1] than
M10, but it is a silent mode. The M10 mode frequency has an
interesting nonmonotonicity with increasing temperature—its
frequency first increases up to ∼150 K, then it starts decreas-
ing, but the changes are much too small to be able to explain
the changes observed experimentally for the P8 mode with
which it is identified. We note that we have obtained theoreti-
cal results for the temperature dependence of the frequencies,
FWHM, etc., of all the other modes in YTO, but these are
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FIG. 9. Theoretical results of the temperature dependence of the
frequencies of several phonon modes in Y2Ti2O7.

not shown or discussed here. None of those modes show any
anomalies. For details, see Ref. [46].

While our theoretical calculations show that phonon self-
energy contributions arising from anharmonic interactions can
indeed lead to an anomalous temperature dependence of the
phonon frequencies, the details are not in agreement with
experiments. The theoretically calculated anomalies appear
only for the two high-frequency modes, namely, M7 and M10,
as seen in their relatively large FWHM and their anomalous
softening with decreasing temperature. The M7 mode does
not show up in the experiment, as it is optically silent, and
the observed changes for the P8 mode are much larger (10
cm−1 change from 35 to 300 K) than the calculated changes
for the M10 mode to which it corresponds (0.2 cm−1 increase
from 0 to 150 K, followed by 0.6 cm−1 decrease from 150 to
300 K). The theory fails to explain the anomalies observed in
the experiments (see Sec. VI A) for the low-frequency (P1) or
the intermediate-frequency (P5, P6) modes.

We note that, as discussed earlier (see Fig. 3 and the related
discussion), the two theoretically anomalous modes M7 and
M10 involve vibrations only of the O−2

48 f ions. This raises the
possibility that their anomalous nature may be connected with
the displacements of the O−2

48 f ions. The reason behind the
anomalous nature of the P1 mode ∼200 cm−1, observed in
experiments (see Fig. 2) but not in our theoretical calculations,
is not clear. In Refs. [7,16], it has been suggested that the vi-
brations of Ti4+ ions are responsible for the anomalous nature
of this mode. In our theoretical calculations, the eigenvec-
tor displacement patterns of the M1–M3 modes (see Fig. 3)
involve vibrations of Ti4+ ions but along with substantial
contributions from the vibrations of the oxygen atoms. How-
ever, all three modes behave normally (blueshift with cooling)
as functions of temperature. Clearly, cubic anharmonic
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TABLE III. Comparison of the theoretical values of the phonon
frequencies calculated at T = 0 K with and without the anhar-
monic corrections due to quantum fluctuations. We also compare
the calculated values at T = 35 K with the corresponding experi-
mental values. In the last column, we provide the frequency change
due to quantum fluctuations at T = 0 K within the quasiharmonic
approximation, denoted by �

0(qh)
j . ω j (0) corresponds to the LDA

value of the frequency of jth mode calculated at T = 0 K. All
of ω j (0),�(qh)

j (T ), �(3)
j (T ), and �

0(qh)
j are in units of cm−1. (For

notational simplicity, we do not include K in the temperature values
which are arguments of these functions.)

ω j (0) ω j (0) + �
(qh)
j (35)

Mode ω j (0) +�
(3)
j (0) +�

(3)
j (35) ωExpt(35) �

0(qh)
j

M1 181 178.4 178.3 −2.9
M2 (P1) 197 192.7 192.5 201 −4.8
M3 241 238.7 238.7 −1.9
M4 (P3) 320 316.4 316.3 309.9 −6.1
M5 (P4) 337 333.2 333.2 330.9 −5.6
M6 (P5) 508 504 503.9 516.4 −6.0
M7 564 557.4 558 −8.6
M8 (P6) 581 577.9 577.9 524 −6.9
M9 601 596.6 596.5 −9.5
M10 (P8) 796 795.9 795.9 703.5 −9.0

phonon-phonon interactions treated up to the second order
cannot explain the experimentally observed anomalous behav-
ior of the low- or intermediate-frequency phonons. We further
note that it is quite important to understand the frequency
dependence of phonon linewidths and line shifts, which we
present in Appendix A.

C. Additional comments on the comparison between
experimental and theoretical results for phonon frequencies

and linewidths

As briefly mentioned earlier, zero-point quantum fluctua-
tions can induce a change in the cell volume relative to its
value as calculated from DFT even at T = 0 K. We have
calculated this change in the cell volume of YTO (including
its temperature dependence) using the Debye model, as imple-
mented in the GIBBS2 code [61]. The resulting change at T =
0 K is �V = 2.184 Å3. This leads, via the Grüneisen constant,
to an additional temperature-independent component of the
quasiharmonic corrections to the phonon frequencies, which
we denoted as �

0(qh)
j in Eq. (5). These corrections are rela-

tively small (typically <1%) and are listed in Table III but
have not been included in any of the figures related to the
temperature-dependent phonon properties. The temperature-
dependent components of the quasiharmonic shifts, which
vanish at T = 0 K [see Eq. (9)], were already included in the
results presented and discussed earlier.

We note that quantum fluctuations are also responsible for
the fact that the third-order contributions to the linewidths and
line shifts are nonzero even at zero temperature (see Figs. 7
and 8). We have also shown in Table III the numerical values
of the phonon frequencies that include these corrections at
0 K as well as at 35 K, the lowest temperature reached in
our experiments, together with the corresponding experimen-

TABLE IV. A comparison of the experimental and theoretical
values of the frequencies calculated at T = 35 and 300 K. Here, we
also provide a difference in frequencies as �ω = ω(300) − ω(35).
The units of frequencies and their differences are in cm−1. (For
notational simplicity, we do not include K in the temperature values
which are arguments of these functions.)

Theoretical Experimental

Mode ω(35) ω(300) �ω ω(35) ω(300) �ω

M1 178.3 171 −7.3
M2 (P1) 192.5 181.2 −11.3 201 218.7 17.7
M3 238.7 233.5 −5.2
M4 (P3) 316.3 309.9 −6.4 309.9 308.2 −1.7
M5 (P4) 333.2 328 −5.2 330.9 324.5 −6.4
M6 (P5) 503.9 498.8 −5.1 516.4 521.3 4.9
M7 558 569.9 11.9
M8 (P6) 577.9 574.3 −3.6 524 530.5 6.5
M9 596.5 587.9 −8.6
M10 (P8) 795.9 795.5 −0.4 703.5 708.5 5

tal values at 35 K. From Table III, it is clear that with the
inclusion of �

0(qh)
j the agreement between theoretical and

experimental frequencies at 35 K improves for some of the
modes [especially M4 (P3) and M5 (P4)] but worsens for
others.

Furthermore, in Tables IV and V, we have provided a com-
parison of the experimental and theoretical frequencies and
the linewidths (FWHM) at T = 35 and 300 K as well as their
differences. As discussed earlier in the paper, theoretically, we
have been unable to capture the observed phonon anomalies.
As regards line shifts, the best qualitative agreement is with
the normal behavior observed for the P3 and P4 modes, with
the agreement being even quantitatively reasonable in the case
of the latter.

Next, the FWHM calculated at T = 35 and 300 K and their
differences {�[2�

(3)
j ] = 2�

(3)
j (300) − 2�

(3)
j (35)}are com-

pared with the respective observed values in Table V. As
regards the linewidths, except for mode M6 (P5), the theo-
retical values of �[2�

(3)
j ] are comparable with the observed

values for most of the modes. We also note that mode M7 has
an anomalously large value of �[2�

(3)
j ] = 60.7 cm−1. This

behavior of mode M7 is likely connected with the anomalous
behavior of its frequency as a function of temperature.

VII. CONCLUSIONS

In conclusion, in this paper, we have presented studies on
the temperature dependence of the properties of phonons in
the pyrochlore compound YTO using Raman spectroscopy
measurements as well as theoretical calculations based on
first-principles DFT. In the experiments, we observe an
anomalous softening of four of the phonon modes with de-
creasing temperature. The maximum anomaly is seen in a
mode ∼200 cm−1. Our first-principles calculations using
quasiharmonic and cubic-anharmonic effects treated to the
leading (second) order also find an anomalous temperature
dependence of the phonon frequencies in this system but only
for two high-frequency modes, namely, T1g (M7 mode, at
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TABLE V. A comparison of the experimental and theoretical values of the FWHM at T = 35 and 300 K. Here, we also provide the
temperature-induced difference in the FWHM. �(2�) = 2�(300) − 2�(35). The units of FWHM and their differences are in cm−1. (For
notational simplicity, we do not include K in the temperature values which are arguments of these functions.)

Theoretical Experimental

Mode 2�
(3)
j (35) 2�

(3)
j (300) �[2�

(3)
j ] 2�

(3)
j (35) 2�

(3)
j (300) �[2�

(3)
j ]

M1 5.4 10.5 5.1
M2 (P1) 5.7 14.6 8.9 25.8 32.7 6.9
M3 5.5 10.3 4.8
M4 (P3) 9.1 24.0 14.9 15.4 28.3 12.9
M5 (P4) 9.3 22.4 13.1 13.7 22.3 8.6
M6 (P5) 12.6 40.3 27.7 9.5 13 3.5
M7 31.2 91.9 60.7
M8 (P6) 9.8 16.3 6.5 14.7 18.8 4.1
M9 9.7 17.1 7.4
M10 (P8) 24.9 36.0 11.2 37.4 50.4 13

564 cm−1) and T2g (M10 mode, at 796 cm−1). The M7 mode
has the larger shifts but is optically silent. The M10 mode,
identifiable with the highest-frequency experimental mode
(P8), behaves interestingly in that its frequency first hardens
with increasing temperature up to 150 K and then softens
due to the competition between the hardening contribution
from cubic anharmonicity and the softening contribution from
quasiharmonic shifts, but the changes are small. In contrast,
as shown in Fig. 2, experimentally, the P8 mode shows a
clear anomalous hardening with increasing temperature, and
the changes are more than an order of magnitude larger.
Furthermore, the theoretical calculations fail to capture the
anomalous behavior of the low- or intermediate-frequency
modes.

Nonetheless, the work we have presented here suggests that
strong anharmonic phonon-phonon interactions are indeed the
likely cause of the observed phonon anomalies in the titanate
pyrochlores, as also of the observed and anticipated anomalies
in spin-ice Dy2Ti2O7 and nonmagnetic Lu2Ti2O7 [7]. It is
also plausible that the strong anharmonic interactions are con-
nected with the vacant 8a sites at the center of Ti4+ tetrahedra
and the large vibrations of the O48 f ions. However, in this
paper, we also make clear that a detailed explanation of the
anomalies, especially for the low- and intermediate-frequency
modes, poses an open, interesting, and challenging theoretical
problem, requiring the inclusion of effects due to anharmonic
interactions higher than cubic anharmonicity (see Appendix B
for some comments on the effects of quartic anharmonic in-
teractions) and perhaps a nonperturbative treatment of such
interactions.
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APPENDIX A: FREQUENCY DEPENDENCE OF LINE
SHIFTS AND LINEWIDTHS, TWO-PHONON DENSITY

OF STATES, AND KINEMATICAL FUNCTION

It would be interesting to know the frequency dependence
of the linewidth and line-shift functions defined in Eqs. (2) and
(4). Unfortunately, the D3Q code we use for computing �

(3)
j

and �
(3)
j gives out their values only at the jth unperturbed

phonon frequency and not at arbitrary values of ω. The best
one can do under the circumstances is to plot their values
for all the modes, which is equivalent to sampling each of
them at different single frequencies on a nonuniform grid of
ω. These are shown in Figs. 10 and 11 together with smooth
interpolations shown as dotted curves to serve as guides to
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FIG. 10. Frequency dependence of the collective phonon
linewidth function �(3)(ω, T ) defined in the text calculated at four
different temperatures. The positions of modes M1–M10 are marked
by arrows. Note that �(3)(ω, T ) for T = 0 and 35 K are almost the
same. The interpolated functions shown as dotted curves are meant
only to serve as guides to the eye; there are no actual data points at
frequencies other than the points marked by the symbols.
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FIG. 11. Frequency dependence of the collective phonon line-
shift function �(3)(ω, T ) defined in the text calculated at four
different temperatures. The positions of modes M1–M10 are marked
by arrows. Note that �(3)(ω, T ) for T = 0 and 35 K are almost the
same. The interpolated functions shown as dotted curves are meant
only to serve as guides to the eye; there are no actual data points at
frequencies other than the points marked by the symbols.

the eye. For convenience, we will refer to these collective
interpolated functions as �(3)(ω, T ) and �(3)(ω, T ).

We emphasize that these collective linewidth and line-
shift functions may not correspond to any of the j-dependent

linewidth and line-shift functions. Nevertheless, if we assume
that the many, rather sharp peaks and troughs seen in them are
also features shared by the j-dependent linewidth and line-
shift functions, it is clear that the phonon linewidths and the
line shifts will depend sensitively on the frequencies at which
the j-dependent linewidth and line-shift functions are evalu-
ated. One might wonder whether one can make clever, perhaps
self-consistent, choices for these frequencies that could lead
to better correspondence with experiments. Needless to say,
the only systematic prescription is for the evaluation to be
done at ω j (0), the unperturbed phonon frequencies evaluated
using DFT, as we have done. Any other prescription, such as
evaluating the functions at phonon frequencies that include the
quasiharmonic corrections (which in themselves arise from
anharmonic interactions relative to a reference unit-cell vol-
ume), for example, or self-consistently, will not be systematic
in the inclusion of the anharmonic effects.

Furthermore, Fig. 11 suggests that it is unlikely that even
such prescriptions can generate line shifts with anomalous
temperature dependence for any of the low-frequency phonon
modes, for the line-shift function in this figure has substantial
positive values that increase with increasing temperature and
are large enough to overcome the negative quasiharmonic
corrections only in the high-frequency range, essentially only
for mode M7 which lies near its peak, as we have shown.

One can gain some additional insights into the relative im-
portance of the contributions arising from the matrix elements
vs the rest of the terms in Eq. (2) by replacing the matrix
elements with a constant, which we will denote as V (3). This
causes the linewidth functions in Eq. (2) to become j indepen-
dent and proportional to what is called the two-phonon density
of states (TDOS) [62], which we denote as D(2)(ω, T ), given
by

D(2)(ω, T ) = 1

N

∑
q, j1, j2

({n[ω j1 (q)] + n[ω j2 (−q)] + 1}{δ[ω − ω j1 (q) − ω j2 (−q)] − δ[ω + ω j1 (q) + ω j2 (−q)]}

+ 2{n[ω j2 (−q)] − n[ω j1 (q)]}δ[ω − ω j1 (q) + ω j2 (−q)]). (A1)

The first and second set of terms in the curly brackets are commonly referred to as down- and up-conversion phonon processes,
respectively. As in the case of �

(3)
j (ω, T ), the δ[ω + ω j1 (q) + ω j2 (−q)] term contributes only when ω is negative.

Within the same approximation, the line-shift functions are also j independent and are proportional to what is called the
two-phonon kinematical function, which we denote as P(2)(ω, T ). This function is just the Hilbert transform of D(2)(ω, T ) and
is given by

P(2)(ω, T ) = 1

N

∑
q, j1, j2

P
{

n[ω j1 (q)] + n[ω j2 (−q)] + 1

ω − ω j1 (q) − ω j2 (−q)
− n[ω j1 (q)] + n[ω j2 (−q)] + 1

ω + ω j1 (q) + ω j2 (−q)
+ 2

n[ω j2 (−q)] − n[ω j1 (q)]

ω − ω j1 (q) + ω j2 (−q)

}
,

(A2)

where P denotes the Cauchy principal part. As earlier, the
temperature dependence of D(2)(ω, T ) and P(2)(ω, T ) arises
via the phonon occupancy factors n.

Figure 12 shows the TDOS calculated at T = 0, 35, 100,
and 300 K. The DFT-calculated frequencies of phonon modes
M1–M10 are also marked in the plot. To get additional
insights, we have plotted in Fig. 13 the separate contribu-
tions coming from the up- and down-conversion processes in

D(2)(ω, T ) for the same four temperatures. At any tempera-
ture, at high frequencies, the contributions from up-conversion
are significantly smaller than those from down-conversion, as
there are fewer channels available for the former. In contrast,
for the down-conversion process, there is a wide frequency
window with a significantly large TDOS. While there is a
rough correspondence between the relatively larger values of
TDOS of the higher-frequency modes with their relatively
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FIG. 12. Two-phonon density of states of Y2Ti2O7 calculated at
four different temperatures. Modes M1–M10 are also marked by
arrows. We note that the D(2)(ω, T ) values at T = 0 and 35 K are
almost the same.

larger linewidths, the correspondence is not one to one. In the
frequency region between modes M9 and M10, D(2)(ω, T )
decreases with increasing frequency, whereas �(3)(ω, T )
increases.

Next, the frequency dependence of the two-phonon kine-
matical function P(2)(ω, T ) calculated at four different
temperatures is shown in Fig. 14. It looks qualitatively like
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FIG. 13. The contribution of the up- and down-conversion decay
processes to the two-phonon density of states of Y2Ti2O7 calculated
at four different temperatures. Modes M1–M10 are also marked
by arrows. We, again, note that the up-conversion contribution to
D(2)(ω, T ) is almost negligible at T = 0 and 35 K, whereas the
down-conversion contributions are almost the same at these two
temperatures.
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FIG. 14. Frequency dependence of the two-phonon kinematical
function P(2)(ω, T ) of Y2Ti2O7 calculated at four different temper-
atures. For clarity, modes M1–M10 are also marked by arrows. We
note here that the values of P(2)(ω, T ) calculated at T = 0 and 35 K
are almost the same.

�(3)(ω, T ) in that it is negative in the low-frequency region
but positive at high frequencies. However, quantitatively, it
differs substantially from �(3)(ω, T ), with fewer less sharp
peaks.

The differences we have pointed out above between
D(2)(ω, T ) and �(3)(ω, T ), and even more so between
P(2)(ω, T ) and �(3)(ω, T ), suggest that matrix elements of the
anharmonic interactions play an important role in determining
the temperature dependence of the phonon linewidths and line
shifts.

We note that all the curves shown in Figs. 12–14 are based
on calculations done at very many more points than those
corresponding to the different symbols shown in these figures.
The latter have been shown merely to help readers to distin-
guish between the different curves in the print version of this
paper.

APPENDIX B: QUARTIC ANHARMONIC EFFECTS

In this paper, we have so far not included quartic anhar-
monic effects in our calculations. However, it is interesting
to ask whether line shifts including these effects could help
to explain the anomalous temperature dependence of the line
shifts seen experimentally. Below, we provide a brief discus-
sion of the expressions for the phonon linewidths and line
shifts arising from quartic anharmonic interactions treated up
to the second order as well as a discussion of their temperature
dependence within the framework of the simplifying assump-
tion that the four-phonon coupling constants are independent
of their arguments. A full calculation, which requires an ab
initio calculation of the four-phonon coupling matrix elements
using DFPT, is extremely challenging and beyond the scope of
this paper.

144303-12



EXPERIMENTAL AND THEORETICAL STUDY OF … PHYSICAL REVIEW B 106, 144303 (2022)

The quartic anharmonic contributions to the line-shift functions up to and including the four-phonon couplings V (4) treated to
the second order are given by [63,64]

�
(4a)
j (ω, T ) = 24

h̄

∑
q1, j1

V (0, j; 0, j; q1, j1; −q1, j1)

(
n1 + 1

2

)
, (B1)

�
(4b)
j (ω, T ) = −96

h̄2

∑
q1, j1

∑
q2, j2

∑
q3, j3

|V (0, j; q1, j1; q2, j2; q3, j3)|2

×P
{

[(n1 + 1)(n2 + 1)(n3 + 1) − n1n2n3]

(
1

ω + ω1 + ω2 + ω3
− 1

ω − ω1 − ω2 − ω3

)

+ 3[n1(n2 + 1)(n3 + 1) − (n1 + 2)n2n3]

(
1

ω − ω1 + ω2 + ω3
− 1

ω + ω1 − ω2 − ω3

)}
, (B2)

�
(4c)
j (ω, T ) = −576

h̄2

∑
q1, j1

∑
j2

∑
q3, j3

V (0, j; 0, j; −q1, j1; q1, j2)V (q1, j1; −q1, j2; q3, j3; −q3, j3)

×P
(

n1 + n2 + 1

ω1 + ω2
− n1 − n2

ω1 − ω2

)(
n3 + 1

2

)
. (B3)

where P denotes the principal value.
Of these, �

(4a)
j and �

(4c)
j correspond to first- and second-order Hartree contributions to the self-energy of the phonons, have

no frequency dependence, and hence only contribute to the line shifts. The linewidth function to the second order in the quartic
anharmonic interactions comes only from the processes contributing to �

(4b)
j and is given by

�
(4)
j (ω, T ) = 96

h̄2

∑
q1, j1

∑
q2, j2

∑
q3, j3

|V (0, j; q1, j1; q2, j2; q3, j3)|2

×{[(n1 + 1)(n2 + 1)(n3 + 1) − n1n2n3][δ(ω − ω1 − ω2 − ω3) − δ(ω + ω1 + ω2 + ω3)]

+ 3[n1(n2 + 1)(n3 + 1) − (n1 + 2)n2n3][δ(ω + ω1 − ω2 − ω3) − δ(ω − ω1 + ω2 + ω3)]}. (B4)

For brevity, we have used the following shorthand notations
for the frequencies and the occupation number in the above
equations:

ωi = ωqi, ji , i = 1, 2, 3, (B5)

ni ≡ nqi, ji = 1

exp(β h̄ωqi, ji − 1)
, i = 1, 2, 3, (B6)

with β = 1/kBT .
We note that the line shift due to �

(4a)
j (T ) can be

positive or negative depending on the sign of the coupling
constant V (4)(0, j; 0, j; q1, j1; −q1, j1). The shift due to
�

(4c)
j (T ) can also be positive or negative, depending on the

signs of the products of the four-phonon couplings cons-
tants V (4)(0, j; 0, j; −q1, j1; q1, j2)V (4)(q1, j1; −q1, j2; q3,

j3; −q3, j3) which make the dominant contributions to
the sums in Eq. (B3). As regards �

(4b)
j (ω, T ), although

|V (4)(0, j; q1, j1; q2, j2; q3, j3)|2 is always positive, as in
the case of the cubic anharmonic shifts, the sums over
the Cauchy principal parts corresponding to the different

decay processes can also lead to line-shift contributions with
anomalous temperature dependence for some of the modes.
Thus, on the whole, the leading order line shifts arising from
fourth-order anharmonic interactions have more possibilities
for having anomalous temperature dependence than those
from third-order anharmonic interactions. However, the
confirmation of this requires an accurate computation of all
the four-phonon coupling matrix elements.

Nevertheless, like the above discussion of the anhar-
monic effects arising from three-phonon coupling, it is
instructive to examine what happens within a constant
matrix element approximation when we replace the com-
binations of the four-phonon coupling constants that occur
in the linewidth and line-shift functions with numbers that
are independent of the phonon mode indices or the wave
vectors.

Within such an approximation, the linewidth functions
�

(4)
j (ω, T ) in Eq. (B4) become the same for all phonon modes

and are proportional to the three-phonon density of states
(DOS) D(3)(ω, T ) given by

D(3)(ω, T ) =
∑
q1, j1

∑
q2, j2

∑
q3, j3

{[(n1 + 1)(n2 + 1)(n3 + 1) − n1n2n3][δ(ω − ω1 − ω2 − ω3) − δ(ω + ω1 + ω2 + ω3)]

+3[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3][δ(ω + ω1 − ω2 − ω3) − δ(ω − ω1 + ω2 + ω3)]}. (B7)

Here again, the first term in Eq. (B7) is related to the down-conversion process where the high-energy phonon of interest
decays into three phonons of lower energy. The second term in Eq. (B7) describes the up-conversion processes where the
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phonon of interest absorbs a thermal phonon and emits two other phonons or absorbs two thermal phonons and emits a phonon
of higher frequency.

Similarly, within the same approximation, all the line-shift functions �
(4b)
j (ω, T ) arising from the quartic anharmonic

interactions become proportional to a single three-phonon kinematical function P(3)(ω, T ) given by

P(3)(ω, T ) =
∑
q1, j1

∑
q2, j2

∑
q3, j3

P
{

[(n1 + 1)(n2 + 1)(n3 + 1) − n1n2n3]

(
− 1

ω + ω1 + ω2 + ω3
+ 1

ω − ω1 − ω2 − ω3

)

+3[n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3]

(
− 1

ω − ω1 + ω2 + ω3
+ 1

ω + ω1 − ω2 − ω3

)}
, (B8)

where P denotes the Cauchy principal part. As earlier, the
temperature dependence of D(3)(ω, T ) and P(3)(ω, T ) arises
via the phonon occupancy factors n.

Figure 15 shows the three-phonon DOS D(3)(ω, T ) cal-
culated at T = 0, 35, 100, and 300 K. The DFT-calculated
frequencies of phonon modes M1–M10 are also marked
in the plot. To get additional insights, we have plotted
in Fig. 16 the separate contributions coming from the
up- and down-conversion processes in D(3)(ω, T ) for the
same four temperatures. We note that, unlike in the case
of TDOS D(2)(ω, T ), the contributions from the up- and
down-conversion channels in the case of three-phonon DOS
D(3)(ω, T ) are comparable at higher temperatures. Further-
more, the high-frequency modes M6–M10 lie close to the
peak of D(3)(ω, T ), as these modes have access to several
combinations of the lower-frequency modes to decay into.
On the other hand, the low-frequency modes M1–M3 have
significant contributions only from up-conversion processes
and only when the temperature is high enough.

Next, the frequency dependence of the three-phonon
kinematical function P(3)(ω, T ) calculated at four different
temperatures is shown in Fig. 17. Here again, phonon modes
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FIG. 15. Three-phonon density of states (DOS) of Y2Ti2O7 cal-
culated at four different temperatures. Modes M1–M10 are also
marked. We note that D(3)(ω, T ) is almost the same at T = 0 and
35 K.

M1–M10 are marked by the arrows. We note that P(3)(ω, T ) is
negative at all four temperatures for modes M1–M9, and even
for M10, it is positive only at 300 K.

Within the constant matrix approximation, the temperature
dependence of the quartic anharmonic line shifts for modes
M1–M10 are readily calculated (up to unknown multiplicative
constants arising from the matrix elements) and are shown
in Figs. 18–20. The line shifts corresponding to the Hartree
contributions, shown in Figs. 18 and 20, are the same for all
modes. We have shown them for positive as well as negative
values of the coupling matrix element combinations, as both
signs are in principle possible; accordingly, as we remarked
earlier, the temperature dependence of the Hartree line shifts
can be normal or anomalous. In contrast, the contributions
arising from �

(4b)
j (ω, T ) are proportional to P(3)[ω j (0), T ]

and hence still mode dependent. From Fig. 19, it is clear
that these contributions to the line shifts for modes M1–M9
are negative and show a downward trend, corresponding to
phonon softening with increasing temperature. On the other
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FIG. 16. The contribution of the up- and down-conversion de-
cay processes to the three-phonon density of states (DOS) of
Y2Ti2O7 calculated at four different temperatures. Modes M1–M10
are also marked. We again note that the up-conversion contribution
to D(3)(ω, T ) is almost negligible at T = 0 and 35 K, whereas
the down-conversion contributions are almost the same at these
temperatures.
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FIG. 17. Frequency dependence of the kinematical function
P(3)(ω, T ) of Y2Ti2O7 calculated at four different temperatures. For
clarity, modes M1–M10 are also marked. We note that P(3)(ω, T ) is
almost the same at T = 0 and 35 K.

hand, the high-frequency mode M10, even though it is neg-
ative to start with, shows an upward trend with increasing
temperature. This can further add to the anomalous behavior
of mode M10 found in the cubic-anharmonic contributions.
These features of Fig. 19 are, of course, fully consistent
with the properties of the three-phonon kinematical function
P(3)(ω, T ) shown in Fig. 17.
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FIG. 18. Temperature dependence of the first-order Hartree con-
tributions to the line shifts arising from the quartic anharmonic
interactions [see Eq. (B1)]. Results are shown for positive (red
dashed line) as well as the negative (black solid line) values of the
four-phonon coupling constants when they are approximated as a
single constant: [V (4)(0, j; 0, j; q1, j1; −q1, j1) = C (4a)]. Within this
assumption, the line shifts are the same for all modes M1–M10.
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FIG. 19. Temperature dependence of the second-order line shifts
arising from the quartic anharmonic interactions corresponding to
Eq. (B2). Here, |V (4)(0, j; q1, j1; q2, j2; q3, j3)|2 is taken as a fixed
number C (4b).

As in the previous Appendix, all the curves shown in
Figs. 15–17 and 19 are based on calculations done at very
many more points than those corresponding to the different
symbols shown in these figures. The latter have been shown
merely to help readers to distinguish between the different
curves in the print version of this paper, where the colors
would not be visible.
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FIG. 20. Temperature dependence of the Hartree line shifts
arising from the quartic anharmonic interactions treated to the second
order [see Eq. (B3)]. Here again, the product of the four-phonon cou-
pling constant is replaced by some effective average value C (4c), i.e.,
V (4)(0, j; 0, j; −q1, j1; q1, j2)V (4)(q1, j1; −q1, j2; q3, j3; −q3, j3) →
C (4c). The results are shown for positive (red dashed line) as well
as negative (black solid line) values of C (4c). Again, within this
approximation, the shift is the same for all modes M1–M10.
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