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Effective magnetic fields induced by chiral phonons
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In a semiclassical model, magnetic fields can originate from the orbital magnetic moments of electrons. Here,
using the Biot-Savart law, we theoretically predict the effective magnetic fields induced by chiral phonons in
the point-charge model. Taking tellurium as an example, it is found that by applying a temperature gradient,
the average effective magnetic field per mode for a specific location within a unit cell can reach the order of
0.01 T at room temperature. We prove that the effective magnetic field induced by chiral phonons has the ability
to manipulate the Curie temperature and spontaneous magnetization in a ferromagnetic material or even in a
general material.
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I. INTRODUCTION

A magnetic field, a vector field in which magnetic forces
are observable, can interact with moving electric charges, cur-
rent, and magnetic materials [1,2]. Nowadays, technologies
utilizing magnetic field, such as electric generators [3], power
transformers [4], magnetic recordings [5], and magnetic con-
finement fusion [6], have become essential for electrical,
information, and energy industries. In a semiclassical model,
the magnetic field can be generated by the electron orbiting
around a nucleus, which originates from the orbital magnetic
moment of the electron [1]. This point has been thoroughly
discussed during the past century [7]. As another energy car-
rier, can it be used to generate magnetic fields?

Phonons, quanta of lattice vibrations, have been proved
to possess various properties similar to electrons [8–11]. At
present, it has been confirmed that phonons are able to do
circular or elliptical rotation, which is known as chirality
[12,13]. Chiral phonons widely exist in systems with threefold
rotational symmetry and spatial inversion symmetry breaking
[10,14–18]. Similar to the chirality of electrons, the chiral
phonons can be endowed with pseudoangular momentum due
to the threefold rotational symmetry at the high-symmetry
points [13,19,20]. Thus, phonons have the ability to switch
the electronic valley and can be involved in optical processes
[15,21–30].

Although phonons are neutral particles, they can be indi-
rectly connected with magnetic phenomena, such as phonon
Hall effect [31–33]. By applying a temperature gradient to
deviate the distribution function of phonons from equilibrium,
a net phonon angular momentum can be generated [34], and
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even the phonon angular momentum Hall effect [35] can
appear. Linked to the phonon angular momentum, for a sub-
lattice with nonzero Born effective charge tensor, the circular
motion of each site can induce magnetic moment [36]. Thus,
in one unit cell, the magnetic moment is given by the sum of
the moments caused by each site. At present, phonon magnetic
moment has also been reported to be obtained by laser excita-
tions [37–42], external magnetic fields [43,44], electric fields
[45], circular fluctuation of ferroelectric phonons at a quantum
critical point [46], and topological magnetization [47]. In this
scenario, magnetic fields are expected to be generated by
phonon chiralities in many ways.

However, recent experiments [39,43] reported that the
phonon magnetic moment is 3 to 4 orders of magnitude
smaller than previous theoretical calculation [36]. This may
be because the g factor used in previous calculation needs to
be corrected [43,47,48]. Therefore, more theoretical research
on this physical phenomenon is still needed. For example, how
much role can the circular current caused by the phonon chiral
motion play in the effective magnetic moment? Does the inter-
action between the chiral phonons magnetic moments affect
the measurement? In other words, what order of magnitude
can the effective magnetic field induced by the phonon chiral
motion reach? What is the spatial distribution of the effective
magnetic field? What is the strength of the superposition effect
of the effective magnetic field? All these are worthy of further
study.

In this paper, under the Born-Oppenheimer approximation,
we theoretically predict the effective magnetic fields induced
by chiral phonons using the Biot-Savart law. We adopt Te
(tellurium) as an example. A temperature gradient is applied
to generate an effective magnetic field. The effective phonon
magnetic field in a ferromagnetic material and a general
material may have the potential to manipulate spontaneous
magnetization.
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II. METHOD

Assuming an elliptical vibration induced by sublattice j,
the chiral phonon can be characterized by circular polarization
along α direction as [13]

sα
j = ε†Ŝα

j ε h̄. (1)

Here, ε is the phonon eigenvector. Ŝα
j is the operator of

phonon circular polarization along α direction for sub-
lattice j, and it has elements of (Ŝα

j )α1α2 = (−i)εαα1α2 ⊗
(Aj )N×N (α, α1, α2 = x, y, z) for a unit cell with N atoms. ε

is the Levi-Civita symbol. (Aj )N×N is a diagonal matrix with
elements (Aj ) j′ j′ = δ j, j′ for the jth atom. For a positive circu-
lar polarization, the phonon mode is right-handed circularly
or elliptically polarized; for a negative circular polarization,
the phonon mode is left-handed circularly or elliptically
polarized; otherwise, it is static or linearly polarized. For
simplicity, the plane perpendicular to α direction is set as α⊥
plane.

Phonon polarization sα
j has the same form as the corre-

sponding phonon angular momentum lα
j . In equilibrium, the

average phonon angular momentum per mode can be repre-
sented as [44]

Lα
eq = 1

Nmode

∑
k

∑
j

lα
j (k)

[
f0(ωk ) + 1

2

]
, lα

j = sα
j (2)

where Nmode is the total phonon mode number in the first

Brillouin zone, f0(ωk ) = 1/(e
h̄ω

kBT − 1) is the Bose-Einstein
distribution, and k = (k, σ ) specifies a wave vector k and
a band σ . The summation here only covers all the positive
phonon branches.

In the case of the point-charge model, similar to the
electronic circular current, for the sublattice with nonzero
effective charge,

Z∗
j,α⊥ (σ ) =

∑
α′ �=α Z∗

j,αα′ε j,α′ (k = 0, σ ){∑
j,α′ [ε j,α′ (k = 0, σ )]∗ε j,α′ (k = 0, σ )

}1/2 ,

(3)
where Z∗

j,αα′ is the Born effective charge [49] in direction α

caused by an atomic displacement in direction α′. A steady
current Iα⊥

j (k) in α⊥ plane induced by the rotation of phonon
can be described as

Iα⊥
j (k) = Z∗

j,α⊥ (σ )ωk

lα
j (k)∣∣lα
j (k)

∣∣ . (4)

The group velocity of phonon is much smaller than that of
photon. For a phonon mode with a wave vector k and the σ th
band, assuming an elliptical trajectory with a major semiaxis
rα⊥

ma, j (k) and a minor semiaxis rα⊥
mi, j (k), we can mathemati-

cally treat it as a circle with an effective radius r̃α⊥
j (k, σ ) =√

rα⊥
ma, j (k, σ )rα⊥

mi, j (k, σ ), which is independent of the system

temperature T but only depends on εk,σ

√
h̄/ωk,σ [50]. As

shown in Fig. 1, a place i is a distance dα
i j above α⊥ plane

and a distance dα⊥
i j away from the center axis of the elliptical

loop produced by atom j. Adopting the Biot-Savart law [1],
the magnetic field along α direction at a place i, can be

FIG. 1. Schematic of chiral phonon effective magnetic field βα
i j .

If rα⊥
ma, j (k) and rα⊥

mi, j (k) are the major and minor semiaxes of an
elliptical trajectory, respectively, we can mathematically treat the
elliptical trajectory as a circle with an effective radius r̃α⊥

j (k, σ ) =√
rα⊥

ma, j (k, σ )rα⊥
mi, j (k, σ ) to calculate a magnetic field along α direction

at a place i, i.e., βα
i j . The place i is a distance dα

i j above α⊥ plane and a

distance dα⊥
i j away from the center axis of the elliptical loop produced

by atom j.

obtained as

βα
i j (k) = μ0

2π
Iα⊥

j (k)r̃α⊥
j (k)
α

i j, (5)

where μ0 is the vacuum permeability:


α
i j (k) =

∫ π

0

[
r̃α⊥

j (k) + dα⊥
i j cos θ

]
dθ/

{[
r̃α⊥

j (k)
]2

+ (
dα⊥

i j

)2 + (
dα

i j

)2 + 2r̃α⊥
i (k)dα⊥

i j cos θ
} 3

2 . (6)

Then, the phonon magnetic field along the α direction at place
i, induced by a phonon mode with a wave vector k and the σ th
band, can be given by summing the phonon magnetic fields
generated by all sublattices around the place i. That is,

βα
i =

∑
j

βα
i j . (7)

Since the distribution of lα
j (k) equals to [ f0(k) + 1

2 ], in
equilibrium, the average effective phonon magnetic field per
mode at place i is equal to

Bα
i,eq = 1

Nmode

∑
k

βα
i (k)

[
f0(ωk ) + 1

2

]
. (8)

With time-reversal symmetry, one can obtain [44] ω−k,σ =
ωk,σ and ε−k,σ = ε∗

k,σ . Then, we have lα
j (−k, σ ) = −lα

j (k, σ )

and r̃α⊥
j (−k, σ ) = r̃α⊥

j (k, σ ). Thus, for a system with time-
reversal symmetry, the average effective magnetic field
induced by chiral phonons is zero.

In nonequilibrium, we focus on a linear response regime
with infinitely small heat current, and assume a constant re-
laxation time τ . On the base of Boltzmann transport theory,
the distribution function deviating from Bose-Einstein distri-
bution is given as [34,51]

f (ωk ) = f0(ωk ) − τvα
k

∂ f0

∂T

∂T

∂Lα

, (9)

where vα
k is the group velocity of each phonon mode and

equals to ∂ωk/∂kα . ∂T
∂Lα

is the temperature gradient along the
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FIG. 2. (a) Crystal structure, (b) the first Brillouin zone, and
(c) Born effective charges of Te. The green plane and dots indicate
kza/2π = − 1

5 and (ka/2π ) = [ 1
3 , 1

3 , − 1
5 ], respectively. The unit of

Z∗
j,αα′ is e.

α direction. Finally, the average magnetic field per mode at
place i induced by temperature gradient is

Bαα′
i,neq = − τ

Nmode

∑
σ>0,k

βα
i (k, σ )vα′

k

∂ f0(ωk,σ )

∂T

∂T

∂Lα′

≡ γ αα′
i

∂T

∂Lα′
, (10)

where γ αα′
i is a linear response coefficient. Therefore, the

generated phonon magnetic field is proportional to the tem-
perature gradient.

III. STRUCTURE

As an example, we consider Te (tellurium), a chiral semi-
conductor at ambient pressure with a helical crystal structure.
As depicted in Fig. 2, a trigonal crystal structure is formed
by the helical chains, which have three atoms per unit cell.
The screw symmetry considered in this paper is right handed,
corresponding to the space group of P3121 (D4

3). The phonon
frequencies and eigenvectors are calculated by the density
functional perturbation theory using the Vienna ab initio sim-
ulation package (VASP) [52] with projector augmented-wave
(PAW) pseudopotential [53]. The generalized gradient ap-
proximation [54] is used for the exchange-correlation function
and a plane-wave energy cutoff of 60 Ry is employed. The
optimized unit-cell parameters are a = 4.51 Å and c = 5.96
Å. The internal atomic position parameter is u = 0.268 Å. A
9 × 9 × 16 k-point mesh is applied. The Born effective charge
tensor of each atom is shown in Fig. 2(c), which obeys the
acoustic sum rule [55].

IV. RESULTS

A. Chiral phonon effective magnetic field

Figure 3 presents the trajectories of three atoms in one unit
cell for the highest band at (ka/2π ) = [ 1

3 , 1
3 ,− 1

5 ], which is
the point shown in Fig. 2(b). The chiral phonons in Te usually
do elliptical rotation. The plane kza/2π = − 1

5 and the point
(ka/2π ) = [ 1

3 , 1
3 ,− 1

5 ] marked in Fig. 2(b) are chosen because

FIG. 3. Trajectories of the three atoms in the unit cell of Te for
the phonon of the highest band at (ka/2π ) = [ 1

3 , 1
3 ,− 1

5 ]. The units
of the axes are Å.

the normalized trajectory at (ka/2π ) = [ 1
3 , 1

3 ,− 1
5 ] point has

a triple rotational symmetry along the z direction. Here, as
shown in Fig. 4, the phonon circular polarization is an odd
function in k space. Figure 4(a) shows that owing to the three-
fold screw symmetry of space, one can get Fig. 4(a) or 4(c) by
rotating Fig. 4(b) counterclockwise or clockwise along the z
axis. The phonon circular polarizations for the three atoms per

FIG. 4. Chiral phonons in Te. (a) Distributions of the phonon
polarizations of the highest band on the plane kza/2π = − 1

5 for
sublattice Te1 sz

1 (a1), sublattice Te2 sz
2 (a2), and sublattice Te3 sz

3

(a3), respectively. (b) Distributions of the phonon polarizations of the
highest band on the plane ky =

√
3

3 kx for sublattice Te1 sz
1 (b1), on the

plane kx = 0 for sublattice Te2 sz
2 (b2), and on the plane ky = −

√
3

3 kx

for sublattice Te3 sz
3 (b3), respectively.

144302-3



XIONG, CHEN, MA, AND ZHANG PHYSICAL REVIEW B 106, 144302 (2022)

unit cell are threefold rotationally symmetrical along the z axis
with one another. This implies a similar relationship among
vibration modes in the z⊥ plane for the three atoms per unit
cell. Therefore, in the following discussion, we mainly focus
on the phonon effective magnetic field along the z direction.
However, due to the difference in Born effective charge tensor
of each sublattice, the phonon effective magnetic fields at a
certain place i induced by each sublattice, i.e., βz

i j , are also
different. Here, we label sublattices Te1, Te2, and Te3 as
j = 1, 2, 3. For the average phonon effective magnetic field
at each sublattice per mode, that is dα

i j = 0 and dα⊥
i j = 0, we

use i = 1, 2, 3 to represent the field at sublattice Te1, Te2, and
Te3, respectively.

We then study the spatial distribution of the effective mag-
netic field βz

i j . Taking the chiral motion of sublattice Te1
as an example, we focus on a phonon mode at (ka/2π ) =
[ 1

3 , 1
3 ,− 1

5 ] of the highest frequency band and plot the spatial
distribution of the phonon effective magnetic field βz

i1, as
shown in Fig. 5(a). Because the effective charge Z∗

1,z⊥ (σ =
9) = −0.44e is negative, the direction of a steady current is
opposite to that of the phonon rotation motion. As can be seen
in the inset, it shows that the direction of effective magnetic
field can be determined by the right-hand grip rule. That is,
curl your fingers along the direction of phonon current, then
your thumb will point the direction of magnetic field inside
the current trajectory. Outside the trajectory, the magnetic
field has the opposite direction. For the specific phonon mode
shown in Fig. 3(a), sublattice Te1 does right-handed polar-
ized rotation in z⊥ plane with rz⊥

mi,1 = 0.040 Å and rz⊥
ma,1 =

0.133 Å. As shown in Fig. 5(a), for planes with different
heights dz

i1 > 0 from the z⊥ plane, the effective magnetic field
increases and then decreases at two sides when the difference
between r̃z⊥

1 ≈ 0.073 Å and dz⊥
i1 is much larger, and continu-

ously changes in the whole range. However, for the plane with
dz

i1 = 0, as indicated by the bold line, the effective magnetic
field monotonically decreases at two sides when dz⊥ < r̃z⊥

1 or
dz⊥ > r̃z⊥

1 , which results in the appearance of a singularity at
dz⊥ = r̃z⊥

1 .

What is more, as can be seen along the arrow direction
in Fig. 5(a), the effective magnetic field gradually weakens
when dz

i1 increases. If dz
i1 � 2.0r̃z⊥

j ≈ 0.146 Å, βz
i1 will trend

to zero. Moreover, along the dz⊥
i1 direction, βz

i1 is nearly
zero when dz⊥

i1 � 2.0r̃z⊥
1 . From our calculations, as shown

in Fig. 3, the maximum vibration amplitude of phonon in
each band is usually on the order of 0.1 Å for Te, twice
of which is much smaller than the actual distance between
different atoms which is on the order of 1 Å. The vibration
amplitude estimated here is consistent with previous calcu-
lations [50,56]. The temperature gradient here only causes
an offset term in the Bose-Einstein distribution, and the
small heat current does not change the amplitude (or ra-
dius) of each mode. This means that if we calculate the
effective magnetic field at sublattice j, the effective mag-
netic field generated by the chiral motion of other Te atoms
has almost no contribution at sublattice j. Therefore, we
can assume that the magnetic field strength at each sub-
lattice Te is only contributed by the field source at that
sublattice.

FIG. 5. Chiral phonon effective magnetic field of Te at k point.
(a) Phonon effective magnetic field βz

i1 induced by Te1 as a function

of the distance dz⊥
i1 for different dz

i1 at (ka/2π ) = [ 1
3 , 1

3 , − 1
5 ] of the

highest band. Here, r̃z⊥
1 = 0.073 Å. The arrow indicates the increase

of dz
i1. Insets: schematic of the effective magnetic field produced by

a left-handed (left panel) and a right-handed (right panel) phonon
circular motions for a site with negative effective charge, respec-
tively. Here, the effective magnetic field is perpendicular to the paper;
the symbols used for the field pointing inward (like the tail of an
arrow) and the field pointing outward (like the tip of an arrow).
(b) Distributions of the chiral phonon effective magnetic field βz

i of
the highest band on the plane kza/2π = − 1

5 at sublattice Te1 (b1),
sublattice Te2 (b2), and sublattice Te3 (b3), respectively. The unit
of bar is in tesla. (c) Distributions of the chiral phonon effective
magnetic field βz

i of the highest band on the plane ky =
√

3
3 kx for

sublattice Te1 (c1), on the plane kx = 0 at sublattice Te2 (c2), and on
the plane ky = −

√
3

3 kx at sublattice Te3 (c3), respectively. The unit of
bar is tesla. Here, Z∗

1,z⊥ (σ = 9) = −0.44e, Z∗
2,z⊥ (σ = 9) = −0.09e,

and Z∗
3,z⊥ (σ = 9) = 0.53e.

Then, the distributions of chiral phonon-induced effective
magnetic fields βz

i at each sublattice in the Brillouin zone
are calculated. Here, we take the plane kza/2π = − 1

5 for the
highest band as an example. As depicted in Figs. 5(b) and 5(c),
the distribution of βz

i shares the same symmetry with that of
phonon polarizations shown in Fig. 4. If the phonon circular
polarization is zero, the phonon mode will do linear vibration
or remain still; otherwise, they do circular or elliptical rota-
tion, and nonzero effective magnetic field βz

i will be induced.
Because the sublattice Te3 has an effective charge Z∗

3,z⊥ (σ =
9) with the opposite sign of that of the other two sublattices,
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FIG. 6. Average chiral phonon effective magnetic field per mode
of Te induced by a temperature gradient. (a) Response coefficient γ zz

i

of average chiral phonon effective magnetic field at each sublattice
per mode induced by a temperature gradient as a function of tem-
perature T . (b) Response coefficient γ αα′

i of average chiral phonon
effective magnetic field at each sublattice per mode induced by a
temperature gradient at room temperature. The unit of γ αα′

i is (τ/1 s)
T m K−1. (c) Response coefficient γ zz

i of average chiral phonon
effective magnetic field at a place i near sublattice Te1 per mode
induced by a temperature gradient as a function of the distance dz⊥

i1

for different dz
i1.

in addition to the rotational symmetry, the distribution of the
effective magnetic field βz

3 also has an opposite sign. For a
given chiral phonon trajectory, the effective magnetic field
strength at each k point induced by sublattice j is propor-
tional to the corresponding effective charge Z∗

j,z⊥ (σ ). Thus,
the maximum βz

3 at sublattice Te3 shown in Figs. 5(b) and
5(c) is the largest among the three sublattices. Furthermore,
because of the time-reversal symmetry, the chiral phonon-
induced effective magnetic field βz

i is an odd function in k
space, which is in accordance to the discussion in Sec. II.
Therefore, in equilibrium, the average magnetic field induced
by chiral phonon, i.e., Bα

i= j,eq, is zero.
As indicated by Eq. (10), an average magnetic field of

chiral phonon can be induced by a temperature gradient. Fig-
ure 6(a) shows the response coefficient γ zz

i for the effective
magnetic field at each sublattice j as a function of temperature
T . At low temperature, γ zz

i is almost 0. As the temperature
increases, γ zz

i will increase to a maximum value and even-
tually tends to a constant. The linear response coefficient
is related to not only the offset term of the Bose-Einstein
distribution shown in Eq. (9), but also the effective charge of
the sublattice in each band. Therefore, there may be fluctua-
tions with temperature before the response coefficient grows
rapidly. Figure 6(b) lists the response coefficient at room

temperature. In the component of zz, γ zz
i has the maximum

value of γ zz
1 = −107.51 (τ||/1 s) T m K−1. For sublattice

Te2, due to the zero Z∗
2,xy and Z∗

2,xz [as listed in Fig. 2(c)],
βx

2 is zero, thus giving rise to the zero γ xα
2 , α = x, y, z. The

maximum linear response coefficient of average chiral phonon
effective magnetic field at each sublattice at room temperature
is γ xz

1 = 123.28 (τ⊥/1 s) T m K−1.
When the place i deviates from the sublattice, as shown

in Fig. 6(c), for small dz
i1, the linear response coefficient first

increases, then decreases to zero. For relatively larger dz
i1 on

the order of 0.01 Å, the linear response coefficient directly
decreases to the first zero point. After then, the coefficient
increases again and then decreases; it finally tends to zero.
It is worth noting that because βz

i1 is an odd function in k
space, under the condition of dz

i1 = 0, the divergence shown
in Fig. 5(a) disappears in Fig. 6(c). If dz

i1 is on the order of
0.1 Å, the effective magnetic field attenuates to zero. Since
the distance between atoms is on the order of 1 Å, the super-
position of magnetic fields originated from other points will
hardly enhance the effective magnetic field strength. From
Refs. [34,57], the phonon relaxation time along and perpen-
dicular to the c axis of Te can be set as τ|| ∼ 10 ps and τ⊥ ∼ 1
ps, respectively. We then set the temperature difference over
the sample size D to be denoted by

�
T . Thus, the maximum

average effective magnetic field of chiral phonons at a place i
induced by temperature gradient can be estimated by

Bαα′
i,neq ∼ −�T/(1 K)

D/(1 m)
× 10−9 T (11)

at room temperature. Finally, Bαα′
i,neq is estimated on the order

of 10−2 T when
�

T = 10 K and D = 1 μm at room tem-
perature. In a real material, without external magnetic field,
the effective magnetic field B is related to the magnetization
density by the vacuum permeability μ0, i.e., B = μ0M [1].
Thus, at room temperature, the maximum phonon magnetiza-
tion density can be estimated by

Mαα′
neq ∼ −�T/(1 K)

D/(1 m)
× 10−3 A m−1. (12)

Therefore, at room temperature, if �T = 10 K and D =
1 μm, the maximum phonon magnetization density is esti-
mated on the order of 104 A m−1 . This is much larger than
previous calculations on the average phonon magnetization
density per unit cell [34] because the phonon magnetic mo-
ment or the phonon magnetic field is greatly affected by the
spatial distribution.

B. Spontaneous magnetization manipulated by chiral phonons

The chiral phonon-induced effective magnetic field we dis-
covered may have potential in manipulation of spontaneous
magnetization.

1. Spontaneous magnetization in a ferromagnetic material

In the Heisenberg model, for a ferromagnetic material
[58], the coupling constant satisfies J > 0. We assume that
the magnetic ions with Nsp spins Ssp are arranged in the
lattice. According to the mean-field theory, the Heisenberg
exchange interaction between one site and the other can be
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approximately written as

H sp = −2ZJŜsp · 〈Ŝsp〉, (13)

where Ŝsp = (Ŝx
sp, Ŝy

sp, Ŝz
sp) is the spin operator, and Z is the

coordination number. In the absence of an external magnetic
field, an ordered spin state appears below the Curie tempera-
ture TC = 2ZJ

3kB
Ssp(Ssp + 1). This is what we call spontaneous

magnetization [51].
When an effective magnetic field Bneq induced by chiral

phonons is considered in the system, ferromagnets have a
Zeeman energy of

H ph = −gμBBneq · Ŝsp, (14)

where g is the Landé factor and μB denotes the Bohr magne-
ton. Assuming that the effective magnetic field is along the z
direction, the Hamiltonian of each site can be given by

H z = −2ZJŜz
sp

〈
Ŝz

sp

〉 − gμBBz
neqŜz

sp, (15)

and the corresponding eigenvalue is

Eh = −h
(
2ZJ

〈
Ŝz

sp

〉 + gμBBz
neq

)
, h = 0,±1, . . . ,±Ssp.

(16)

Thus, the spontaneous magnetization can be obtained by

M(T ) = NspgμB
〈
Ŝz

sp

〉 = M(0)BS (x), (17)

where 〈 ˆSsp
z〉 =

∑Ssp
h=−Ssp

he−Eh/(kBT )

∑Ssp
h=−Ssp

e−Eh/(kBT )
, M(0) = NspgμBSsp is

the saturation magnetization at zero temperature, and
BS (x) = 2Ssp+1

2Ssp
coth( 2Ssp+1

2Ssp
x) − 1

2Ssp
coth( 1

2Ssp
x), x = −EhSsp

hkBT

is the Brillouin function. Thus, the critical temperature
becomes

T ′
C = TC − gμBSsp

kBx
Bz

neq. (18)

Therefore, the effective magnetic fields generated by circular
rotations of chiral phonons have the ability to tune the Curie
temperature, leading to the manipulation of spontaneous mag-
netization in ferromagnetic materials.

2. Phonon torque and spontaneous magnetization
in a general material

In a general material, even if it is not a magnetic material,
the phonon effective magnetic field is also expected to be
applied, but further research is still needed. Here, we just
propose an assumption.

In classical mechanics, the net torque on a rigid-body de-
termines the derivative of corresponding angular momentum
with respect to time [59]. In a microscopic picture, because
the angular momentum of phonons has been reported [44],
the phonon torque between sublattice j and sublattice j′ in
unit cell n can be defined as

Q j, j′ =
∑

n

un j × Fn j,n j′ , (19)

where un j is the displacement and Fn j,n j′ is the force from
sublattice j′ acting on the other sublattice j. Thus, along
the z direction, the magnitude of phonon torque is Qz

j, j′ =∑
n(ux

n jF
y

n j,n j′ − uy
n jF

x
n j,n j′ ). Here, Fα

n j,n j′ = −∑
β Kαβ

n j,n j′u
β

n j′ ,

which is the αth component of Fn j,n j′ . If we set un j =
(ux

n j, uy
n j )

T , then

Qz
j, j′ =

∑
n

uT
n jκn jn j′un j′ , (20)

where κn jn j′ = [
−Kyx

n j,n j′ −Kyy
n j,n j′

Kxx
n j,n j′ Kxy

n j,n j′
]. To obtain the torque of

chiral phonon, we can set ε j (k) = (Ax
j cos θ x

j , Ay
j cos θ

y
j )T .

By using the second quantization for un j as un j =∑
k ε j (k)ei(Rn·k−ωkt )

√
h̄

2ωkNcellmj
ak + H.c. with k = (k, σ ) de-

noting a wave vector k and a branch σ , Rn representing
the center equilibrium position of the nth unit cell, and Ncell

is the number of the unit cells, the phonon torque can be
written as

Qz
j, j′ = h̄

2
√

mjmj′

∑
k,k′

1√
ωkωk′

[ε†
j (k)κn jn j′ε j′ (k

′)

+ ε j (k
′)T κn jn j′ε

∗
j′ (k)]δk′,ka†

kak′ei(ωk−ωk′ )t

+ h̄

2
√

mjmj′

∑
k

ε j (k)T κn jn j′ε
∗
j′ (k)

ωk
. (21)

In equilibrium, the torque of chiral phonon can be simplified
as

Qz
j, j′ =

∑
k

μz
j, j′ (k)

[
f (ωk ) + 1

2

]
,

μz
j, j′ (k) = h̄ε

†
j (k)κn jn j′ε j′ (k)

ωk
√

mjmj′
. (22)

Here, μz
j, j′ (k) is the phonon torque of branch σ at wave

vector k.
Assuming that both sublattices do circularly polarized mo-

tion, a nonzero μz
j, j′ (k) occurs. This means that there may be

certain interactions between chiral phonons. We assume that
the interaction is similar to Eq. (13), that is,

H ch ∼ P ˆSph · 〈Ŝph〉, (23)

where P is the coupling constant between chiral phonons and
ˆSph is the chiral phonon operator. When an effective magnetic

field of chiral phonon is taken into consideration, an additional
energy takes place. Finally, in analogy to Sec. IV B 1, the
effective magnetic fields induced by chiral phonon may also
have the ability to induce the spontaneous magnetization in a
general material.

V. CONCLUSION

In summary, under the Born-Oppenheimer approximation,
we have theoretically predicted and estimated the effective
magnetic fields induced by chiral phonons in the point-charge
model using the Biot-Savart law. For tellurium, when applying
a temperature gradient, an average effective magnetic field
per mode for a specific location within a unit cell can ap-
pear on the order of 0.01 T at room temperature. Since the
effective magnetic field disappears at a distance on the order
of 0.1 Å from the field source, it is impossible to increase
its strength by stacking atomic layers. The chiral phonon
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effective magnetic fields found in this work have the capacity
of manipulating the Curie temperature in a ferromagnetic
material, and thus have great importance in the spontaneous
magnetization manipulation. If there is certain interaction be-
tween chiral phonons, the effective magnetic field may also
induce the spontaneous magnetization in a general material.

As a final remark, it is needed to be noticed that, here,
we only consider a preliminary point-charge model. The in-
fluence of charge distribution on the effective magnetic field
by considering the mode-dependent relaxation time and the
accurate calculation of the magnetic field still needs to be
further studied.

Note added. Recently, we noticed that a similar phe-
nomenon on effective phonon magnetic fields induced mag-
netization has been reported in cerium trichloride via a laser
pulse [60].
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