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Two-dimensional Thouless pumping in time-space crystalline structures
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Dynamics of a particle in a resonantly driven quantum well can be interpreted as that of a particle in a crystal-
like structure, with the time playing the role of the coordinate. By introducing an adiabatically varied phase in
the driving protocol, we demonstrate a realization of the Thouless pumping in such a time crystalline structure.
Next, we extend the analysis beyond a single quantum well by considering a driven one-dimensional optical
lattice, thereby engineering a 2D time-space crystalline structure. Such a setup allows us to explore adiabatic
pumping in the spatial and the temporal dimensions separately, as well as to simulate simultaneous time-space
pumping.
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I. INTRODUCTION

Recent developments in time-crystal research [1–5] in-
clude the study of time crystalline structures—closed quan-
tum systems that are driven by time-periodic external
signals—with the aim to take advantage of thereby induced
regular periodic repetition observed in the time domain. In this
way, time is endowed with properties of an extra coordinate
axis. We stress that in such scenarios [6,7], the time-periodic
structure is indeed imposed externally; here one does not need
to rely on the favorable role of particle interactions for its
spontaneous formation. Nevertheless, the manifestation of the
periodic regularity in the time domain is no less intriguing
due to its ability to simulate the familiar spatially periodic
solid-state systems and phenomena of the condensed-matter
realm. Recent systematic studies resulted in a growing list
of condensed-matter phases reproduced or generalized in the
time domain: Anderson and many-body localization, Mott
insulator, topological and other phases have been reported
[6–16]. Another extension was provided by the fresh proposal
of time-space crystalline structures [17], see also [18–25],
that combine periodicity in time and in space. Viewed as
an introduction of synthetic dimensions, such time-space lat-
tices pave the way to potential doubling of the number of
dimensions.

In this paper, we explore a phenomenon that can be carried
over from conventional space crystals to the time or time-
space crystalline structures—the Thouless pumping [26–30].
As shown by Thouless, a suitably performed adiabatic vari-
ation of the lattice parameters can lead to quantized particle
transport along the lattice. We demonstrate that an adiabatic
variation of the external driving can analogously lead to
quantized particle motion in the temporal dimension. To this
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end, we consider adiabatic pumping in a two-dimensional
(2D) time-space crystal realized by a resonantly driven op-
tical lattice. We study three possible processes: pumping in
the temporal dimension, spatial pumping, and simultaneous
pumping in both dimensions. Remarkably, a 2D Thouless
pump may be used to study 4D quantum Hall effect [29–31],
and hence the setup proposed here enables one to probe
4D physics with just a driven system of a single spatial
dimension.

II. MODEL

We base our demonstration of the time-space Thou-
less pumping on the one-dimensional scaled Hamiltonian of
the form

Ĥ = ĥ( p̂x, x) + ξS(x, t ) + ξL(x, t |ϕt ). (1)

The first term is the unperturbed spatial Hamiltonian

ĥ( p̂x, x) = p̂2
x − VS cos2(2x) − VL cos2(x + ϕx ), (2)

which is typical for setups demonstrating the topological
Thouless pumping in the real space [27,28]. Here, p̂2

x is the
momentum operator, VS and VL control, respectively, the depth
of the “short” and the “long” optical lattices, while the relative
phase ϕx has to slowly scan over a period of length π to realize
a pumping cycle. Throughout this paper, we use the recoil
units for the energy h̄2k2

L/2m and length 1/kL, with kL being
the wave number of laser beams that create the optical lattice
and m the particle mass.

To be able to engineer the topological Thouless pumping
in time, we introduce the time-dependent perturbations

ξS(x, t ) = λS sin2(2x) cos(2ωt ), (3a)

ξL(x, t |ϕt ) = λL cos2(2x) cos(ωt + ϕt ). (3b)
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The factors λS and λL denote the overall strength of these per-
turbations. As we will demonstrate shortly, the time-periodic
dependencies cos(2ωt ) and cos(ωt + ϕt ) enable us to intro-
duce a pumping setup based on a periodic structure in the time
domain. The role of the phase shift ϕt is to allow for slowly
changing the relative displacement between the two emerging
time lattices. In this paper we choose the driving frequency
ω = s�, where the resonance number s = 2, while � is the
gap between neighboring energy bands of ĥ, which we wish to
couple by the external perturbation. The combination of per-
turbations oscillating as 2� and 4� allows us to create a ring
of four sites (two cells with two sites per cell) in the temporal
direction. To ensure sufficient hopping strength between the
sites of the spatial lattice, we study highly excited states of ĥ
that occupy bands near the top of the spatial potential wells.
The corresponding value of � is easily determined by diago-
nalizing ĥ. Since the phase ϕx changes the spatial potential
and thus the unperturbed energy spectrum, we additionally
fine tune the value of � (or ω directly) to keep the spatial
hopping adequate for all ϕx.

We note that the temporal phase ϕt is not a parameter of
the unperturbed system, but rather a parameter of the pertur-
bation. Moreover, ϕx and ϕt change in time in the Thouless
pumping protocol. In order not to destroy the time crystalline
structure, which is created by resonant time-periodic driving
of the system, ϕx and ϕt may not change appreciably during a
single period T of the driving, i.e., T (dϕx,t/dt ) � 2π . Ac-
tually, when considering the Thouless pumping, a stronger
condition is assumed because not only the time crystal struc-
ture may not be destroyed by the changes of ϕx and ϕt , but
also the evolution of the system that forms this time crystalline
structure has to be adiabatic.

Since the perturbation ξS + ξL is time-periodic, with the
period T = 2π/ω [see Eqs. (3)], we approach the problem by
introducing the Floquet Hamiltonian Ĥ = Ĥ − i∂t and solv-
ing the eigenvalue problem Ĥun(x, t ) = εnun(x, t ) [32,33].
Here, εn is the quasienergy of the nth eigenstate, while un(x, t )
is the corresponding Floquet mode that respects temporal pe-
riodicity of the perturbation, i.e., un(x, t ) = un(x, t + 2π/ω).
A general solution of the Schrödinger equation can be repre-
sented as a superposition of states 
n(x, t ) = e−iεnt un(x, t ).
In our simulations we consider a finite number of spatial
cells (N = 1 or N = 2), which leads to the Hamiltonian be-
ing defined on x ∈ [0, Nπ ), and we always assume periodic
boundary conditions. All the details of the diagonalization
procedure are covered in Appendix A.

III. SIMULATIONS

In the following sections, we present the results of the sim-
ulations, starting with the Thouless pumping in time. Next, we
consider pumping in space, which, however, is performed in
a time-space crystal rather than a conventional space crystal.
Finally, we study simultaneous pumping in both the temporal
and the spatial dimensions.

A very helpful way to illustrate Thouless pumping is to
show how Wannier states are transported with a change of an
adiabatic parameter [34]. In our case we can observe pumping
along temporal or spatial directions depending if we change ϕt

or ϕx. For pumping in time (space), we obtain a clear illustra-

tion when we analyze transport of Wannier states, which are
localized in a single site of temporal (spatial) lattice and are
not necessarily localized along spatial (temporal) direction.
To construct such Wannier states, we will choose Floquet
states, which correspond to quasienergy levels with different
temporal (spatial) index. Note that choosing Floquet states
from a given band, one obtains Wannier states, which live in
the corresponding Hilbert subspace and which are uncoupled
from states belonging to any other bands.

A. Thouless pumping in time

We begin the analysis by considering time-pumping in a
system of a single spatial cell (N = 1), which contains two
sites originating from the double-well structure of the spatial
potential. The relevant part of the quasienergy spectrum of
Ĥ is shown in Fig. 1(a). The figure displays the changes of
the quasienergy levels in the course of the adiabatic pumping
in the temporal dimension—the temporal phase ϕt is varied
while keeping ϕx = 0. We interpret the obtained quasienergy
spectrum as follows. In the limit of an infinite spatial crystal,
the energy spectrum of ĥ features series of bands separated by
large gaps. Because of the double-well structure of each cell
of the potential, each band consists of two subbands (a higher
and a lower one), separated by a small gap, of order VL at ϕx =
0. Thus, each two consecutive levels in Fig. 1(a) correspond,
respectively, to the higher and the lower subbands of a certain
spatial band. For example, the two topmost levels in Fig. 1(a)
correspond to the subbands of the spatial band number 25
(counting from the lowest); the spatial potential supports
28 clearly formed bands in total with the chosen parameter
values. From the time-crystalline structure perspective, we
associate the four topmost levels in Fig. 1(a) with the first
temporal band, and the lower four levels with the second. Note
that it is natural to assign the lowest band number to the tem-
poral band whose quasienergy is largest: a particle confined
in the temporal lattice is parameterized by the effective mass,
which is negative (see Appendix B) and its energy spectrum is
thus bounded from above. To distinguish the quasienergy lev-
els constituting the first temporal band, we introduce an index
β. We assign the same index β to all the levels corresponding
to the same spatial band: we assign β = 1 to the two topmost
levels in Fig. 1(a) and β = 2 to the next two.

Analysis of the pumping process may be conveniently
approached by constructing the Wannier functions [34–37],
which are spatially localized superpositions of the rele-
vant Floquet modes: wα (x, t ) = ∑2

β=1 d (α)
β uβ (x, t ), where the

coefficients d (α)
β are found by diagonalizing the position op-

erator e2ix/N (see Appendix A). We will only consider the
quasienergy levels of the first temporal band. This is justified
by assuming that the gap between the first and the second
bands is large enough so that particles loaded into the first
band stay there throughout the pumping cycle. Furthermore,
since we are now considering pumping in the temporal direc-
tion only, we can restrict our attention to a single site (out of
two) of the spatial lattice. To obtain Wannier functions that
are localized in the same spatial site, we have to mix the
spatial energy levels corresponding either to the higher spatial
subbands or to the lower ones. We choose to mix the levels of
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FIG. 1. Temporal adiabatic pumping in a 2D time-space crystal with s = 2 temporal cells and only one (N = 1) spatial cell that consists
of two spatial sites. The following values of parameters were used: VS = 7640, VL = 2, ω = 410, s = 2, λS = 100, λL = 40, and ϕx = 0.
(a) Quasienergy levels εβ (see text for level numbering convention) of the Floquet Hamiltonian Ĥ vs the adiabatic phase ϕt . (b) The Wannier
functions |wα (x, t )|2 at ϕt = 0, represented by black regions. The shaded areas (green and pink) indicate the extent of the temporal cells
(γ = 1, 2). (c) Wannier functions |wα (x0, t )|2 (where x0 = 0.3π ) at ϕt = 0 and ϕt = π/2. (d) Change of the Wannier functions |wα (x0, t )|2 as
ϕt scans across a complete cycle of length 2π . The green- and pink-shaded areas indicate the extent of the two temporal lattice cells (γ = 1, 2).

the higher spatial subbands by mixing the two modes β = 1, 2
whose quasienergy levels are highlighted in Fig. 1(a). Mixing
the other pair of levels (from the first temporal band) leads to
analogous results and corresponds to a particle occupying the
other site of the spatial lattice.

The obtained Wannier functions w1(x, t ) and w2(x, t ) are
shown in Fig. 1(b) at ϕt = 0 where they are represented
by black regions. In the present case we consider only one
spatial cell; the two sites of this cell span the regions x ∈
[0, π/4) ∪ [3π/4, π ) and x ∈ [π/4, 3π/4) — note that we
assume periodic boundary conditions in space. The sites are
separated by white gaps in Fig. 1(b). Each of the spatial sites
contains s = 2 temporal cells, which we will number with the
index γ = 1, 2 and which are indicated by shaded green and
pink areas [38]. We adopt the convention that the region of
time-space, which is occupied by w1 at ϕt = 0 belongs to the
first temporal cell [γ = 1, green shading in Fig. 1(b)], while
the region occupied by w2 belongs to the second temporal cell
[γ = 2, pink shading in Fig. 1(b)]. Note that at a different
value of ϕt , the state w1 may spread over both temporal cells
or even transition to cell γ = 2, and similarly for w2. As
illustrated in Fig. 1(b), the Wannier functions cycle in time
between the two turning points of the spatial site they are
confined to, akin to classical pendula.

In space crystals we are interested in periodic distribution
of particles in space at a fixed moment of time (i.e., the mo-
ment of the detection). Switching from space to time crystals,
the roles of space and time are exchanged. That is, we fix
position in space and ask if the probability for the detection
of particles at this fixed space-point changes periodically in
time [3]. To understand the emergence of a time-crystalline
structure in the system analyzed here, let us consider placing

a detector close to the left (say) classical turning point x0 of
the spatial lattice site under consideration. We take x0 = 0.3π

for the chosen energy regime, as indicated in Fig. 1(b). As
shown in Fig. 1(c) depicting the time-periodic Wannier func-
tions wα (x0, t ) at ϕt = 0, in the time intervals (�t mod 2π ) ∈
[0, π ) the detector will most likely be registering the particle
whose wave function is w1(x0, t ). Meanwhile, in the intervals
(�t mod 2π ) ∈ [π, 2π ) the detector will most likely be regis-
tering the particle whose wave function is w2(x0, t ). The two
time intervals can be considered to divide the time axis into
cells, allowing one to introduce the notion of a time-crystalline
structure. In the present case, the temporal dimension of the
crystalline structure is 2π/�, and the crystal is periodic in this
dimension, i.e. periodic boundary conditions in time are im-
posed. The lower panel of Fig. 1(c) demonstrates additionally
that at a different value of the phase, ϕt = π/2, the Wannier
functions are shifted and they are delocalized over both cells
of the temporal lattice.

Having introduced the concept of a crystalline structure in
time, we now turn to the Thouless pumping in the temporal
dimension. To this end, we calculate the Wannier functions
repeatedly as the phase ϕt is varied and produce the plots
of w1(x0, t ) and w2(x0, t ) for each value of ϕt , as shown
in Fig. 1(d). We can clearly see that w1 is being pumped
from cell γ = 1 to cell γ = 2 as the temporal phase ϕt is
varied from 0 to 2π . At the same time, state w2 adiabatically
transitions from cell 2 to cell 1. To observe the pumping
experimentally, one has to prepare a particle in, e.g., the state
w1(x, t ) and place a detector at x0. Initially, the detector will
most probably be detecting the particle in the time inter-
vals (�t mod 2π ) ∈ [0, π ), whereas after a pumping cycle is
complete the detector will be clicking in the time intervals
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(a) (b) (c)

FIG. 2. Spatial adiabatic pumping in a 2D time-space crystal with s = 2 temporal cells and N = 2 spatial cells.. The same values of
parameters were used as in Fig. 1 except that ϕt = 0, while ϕx is varied. (a) Quasienergy levels ε j,β of the Floquet Hamiltonian Ĥ vs the
adiabatic phase ϕx . (b) Wannier functions |wi,1(x, t0 )|2 (where t0 = π/2�) at ϕx = 0 and ϕx = π/4. (c) Changes of the Wannier functions
|wi,1(x, t0)|2 as ϕx scans across a complete cycle of length π . The cyan- and green-shaded areas indicate the extent of the two spatial lattice
cells (k = 1, 2), each consisting of two sites separated by unshaded regions.

(�t mod 2π ) ∈ [π, 2π ). We note in passing that one can “in-
vert” the pumping direction by letting ϕt vary from 0 to −2π ,
just as is possible in the case of the adiabatic pumping in real
space.

B. Thouless pumping in space

Now let us analyze spatial-only pumping in a 2D time-
space crystalline structure consisting of N = 2 spatial cells
(and s = 2 temporal cells) with periodic boundary conditions.
Doubling the number of spatial cells leads to a twice greater
number of Floquet quasienergy levels compared to the case
of N = 1, as shown in Fig. 2(a). The physical origin of the
levels is the same as in the preceding discussion, and it is now
immediately apparent which levels arise from the higher and
the lower spatial subbands. The gap between the subbands is
the smallest (but nonvanishing) at ϕx = π/4 and ϕx = 3π/4
since all wells of the spatial potential are of equal depth at
these phases. Once the quasienergy spectrum is obtained, we
again switch to the Wannier representation, this time intro-
ducing an additional spatial index j to number the Floquet
modes and i to number the Wannier functions: wi,α=1(x, t ) =∑2

j=1 d (i)
j u j,β=1(x, t ). Since we are interested in the spatial

pumping, we mix the Floquet modes bearing the same tem-
poral index β = 1 so that the obtained Wannier functions
come out delocalized over the entire temporal lattice structure,
simplifying the analysis. The delocalization in the temporal
dimension and localization in spatial dimension means phys-
ically that the particle, being confined to a single spatial site,
can be detected with equal probabilities at both turning points,
this being true at all times. This contrasts the situation in
Sec. III A, where, at any given time, a particle could be de-
tected at one turning point with a higher probability than at the
other, and based on this probability we could speak of the par-

ticle occupying a specific temporal cell. Note that the eigen-
states of e2ix/N are always strongly localized in certain sites of
the spatial lattice, and so are the Wannier functions wi,α (x, t ),
at all t . The latter is only violated at values of ϕx close
to (2n + 1)π/4, n ∈ Z, when the depths of all the wells of
the potential become equal, leading to the Wannier functions
spreading over two adjacent sites. The temporal dependence
of wi,α (x, t ), on the other hand, is dictated by the temporal
dependencies of the modes u j,β (x, t ) that are being mixed.

The relevant quasienergy levels are highlighted in Fig. 2(a).
Their indices are ( j = 1, β = 1) and ( j = 2, β = 1) cor-
responding to them occupying two different spatial cells.
To analyze the pumping, we study the states w1,1(x, t0)
and w2,1(x, t0) at a fixed detection moment t0 = π/2�.
Figure 2(b) illustrates that, at ϕx = 0, each of these states
is localized in a single site of the spatial lattice, while at
ϕx = π/4 they occupy two sites in the process. We number the
states and the cells of the spatial lattice such that w1,1 occupies
spatial cell k = 1, while w2,1 occupies spatial cell k = 2 at
the beginning of the pumping cycle (at ϕx = 0), as shown
in Fig. 2(c). In the figure, the cyan- and green-shaded areas
indicate the spatial extent of the spatial lattice cells, with the
sites of the cells separated by unshaded gaps corresponding to
the positions of the barriers of the spatial potential. In the end
of the cycle, the Wannier states end up in a cell different from
the starting one, confirming that pumping does take place.
It is apparent that the states remain almost insensitive to the
change of the potential and are transported to a neighboring
site abruptly. However, the lower panel of Fig. 2(b) demon-
strates that the transfer does not happen instantaneously, but
rather proceeds via a stage when the Wannier states occupy
both sites.

We remark that constructing the Wannier functions using
the Floquet modes corresponding to the top third and fourth
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FIG. 3. Simultaneous temporal and spatial adiabatic pumping in a 2D time-space crystal. The same values of parameters were used as in
Fig. 1 except that both ϕt and ϕx are varied. (a) Quasienergy levels ε j,β of the Floquet Hamiltonian Ĥ vs the adiabatic phase ϕt = 2ϕx . [(b)–(f)]
The Wannier functions at ϕt = 2ϕx = 0, π/2, π, 3π/2, 2π . The probability densities |wi,α (x, t )|2 are represented by black regions, while the
shaded areas indicate the extent of the spatial (k = 1, 2) and temporal (γ = 1, 2) cells. In top-left panels in [(b)–(f)], x(1)

0 and x(2)
0 indicate the

locations of two detectors, see text.

levels in Fig. 2(a) leads to pumping in the opposite direction
around the circular x axis (not shown). This is to be expected
since those energy levels correspond to the lower spatial sub-
bands, while the above results concern pumping in the higher
subbands [34].

C. 2D Thouless pumping

We are now ready to discuss the simultaneous temporal
and spatial adiabatic pumping, demonstrated in Fig. 3 for the
case N = s = 2. The adiabatic phases are varied along the
trajectory ϕt = 2ϕx from ϕt = 0 to ϕt = 2π so that a com-

plete pumping cycle is performed both in the temporal and
in the spatial dimensions. The obtained Floquet quasienergy
spectrum is shown in Fig. 3(a), where the legend indicates the
quasienergy levels corresponding to the modes that we mix
when constructing the Wannier states. The relevant modes
are those of the first temporal band, among which we se-
lect those corresponding to the higher spatial subbands. As
discussed in Sec. III B, this selection allows us to focus on
the Wannier states that are transported in space to the right
during the pumping process. The remaining four levels of
the first temporal band constitute the Wannier functions that
are being pumped to the left in space. The constructed states
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are expressed as wi,α (x, t ) = ∑
j,β d (i,α)

j,β u j,β (x, t ) and are ob-
tained as above, by diagonalizing the position operator e2ix/N .
Contrary to the preceding analysis, we no longer restrict our
attention to a certain position x0 or a certain detection time
t0, but rather study the two-dimensional maps of the Wannier
functions wi,α (x, t ). The four Wannier states are shown in
Figs. 3(b)–3(f) at various values of the adiabatic phases, with
the shaded areas dividing the whole time-space into temporal
and spatial cells. The states and the cells are numbered so
that initially (at ϕt = 2ϕx = 0) the Wannier state indices (i, α)
coincide with the spatial and temporal cell numbers (k, γ ).
In each of the panels (b)–(f), four sites are left unoccupied
by any Wannier functions—these would be occupied by the
Wannier functions constructed using the states of the lower
spatial subbands, i.e., the Floquet modes corresponding to the
top four unhighlighted quasienergy levels in Fig. 3(a). We
note in passing that the two Wannier functions constructed in
Sec. III B using the states corresponding to only the two upper
quasienergy levels appear as the sums w1,1 + w1,2 and w2,1 +
w2,2, where wi,α are the functions displayed in Figs. 3(b)–3(f).
Such sums exhibit spatial, but not temporal localization.

Turning to the pumping process, in Fig. 3(c) we see the
Wannier states are transported to the neighboring spatial site
(to the right) as a result of the spatial pumping, while the
temporal pumping causes the states to slide down the temporal
axis. At ϕt = 2ϕx = π [see Fig. 3(d)], the spatial transition
is complete, whereas the time dependence of the functions is
such that the functions occupy both temporal cells. Next, at
ϕt = 2ϕx = 3π/2 [see Fig. 3(e)], the states are shown in the
middle of the second spatial transition, which is completed
at ϕt = 2ϕx = 2π [see Fig. 3(f)]. Comparing Figs. 3(b) and
3(f), it is apparent that as a result of the pumping each state
wi,α has transitioned from cell (i, α) to cell (i + 1 mod N,

α + 1 mod s).
Let us now give an interpretation of these results. Consider

two detectors, one placed at x(1)
0 = 0.3π and the other one

at x(2)
0 = 1.3π , and a particle loaded initially into the system

in the state w1,1. At ϕt = 2ϕx = 0, most probably a detector
placed at x(2)

0 will be detecting the particle in the time in-
tervals (�t mod 2π ) ∈ [0, π ), corresponding to the particle
occupying the first spatial and the first temporal cells [see
Fig. 3(b)]. In the end of the pumping cycle (ϕt = 2ϕx = 2π ),
the particle will most probably appear in the time intervals
(�t mod 2π ) ∈ [π, 2π ) on a detector placed at x(1)

0 , corre-
sponding to the particle occupying the second spatial and the
second temporal cells.

IV. CONCLUSIONS

Summarizing our paper, we have shown that the
quasienergy spectrum of a resonantly driven optical lattice
may be interpreted as that of a crystal-like structure with the
time playing the role of an additional coordinate. Using this
analogy, we studied adiabatic variation of the driving protocol
and demonstrated that it leads to a change of system dynam-
ics that is a manifestation of the Thouless pumping in the
temporal dimension. Finally, we have illustrated simultaneous
adiabatic pumping in both spatial and temporal directions.
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APPENDIX A: DIAGONALIZATION OF
FLOQUET HAMILTONIAN

In this section, we discuss the diagonalization of the
Floquet Hamiltonian

Ĥ = ĥ − i
∂

∂t
+ ξS + ξL, (A1)

where ĥ is defined in Eq. (2), while ξS and ξL are given in
Eq. (3).

In order to solve the eigenvalue problem

Ĥun(x, t ) = εnun(x, t ), (A2)

we first numerically obtain the eigenstates of ĥ in the ba-
sis of plane waves 〈x| j〉 = ei 2 j

N x/
√

Nπ orthonoromal on x ∈
[0, Nπ ), where N is the number of spatial cells. The sought
eigenstates fulfill

ĥψm(x) = εmψm(x) (A3)

are written as

ψm(x) = 1√
Nπ

∞∑
j=−∞

c(m)
j ei 2 j

N x, (A4)

and the coefficients c(m)
j that express the solution in the mth

energy band are obtained by diagonalizing the matrix

〈 j′|h| j〉 =
[(

2 j

N

)2

+ VS + VL

2

]
δ j′, j

+ VS

4
(δ j′, j+2N + δ j′, j−2N )

+ VL

4
(e2iϕx δ j′, j+N + e−2iϕx δ j′, j−N ). (A5)

Once we have the eigenstates of the unperturbed Hamiltonian,
an additional transformation to the rotating frame provides a
suitable basis consisting of functions

ψ ′
m(x, t ) = e−iν(m)ωt/sψm(x). (A6)

Here, the function ν(m) = 
m/2N� (where 
· · · � is the
ceiling operation) transforms the level numbers m =
1, 2, 3, 4, 5, 6, . . . into band indices

ν = 1, . . . , 1︸ ︷︷ ︸
2N times

, 2, . . . , 2︸ ︷︷ ︸
2N times

, 3, . . . , 3︸ ︷︷ ︸
2N times

, 4, . . . , 4︸ ︷︷ ︸
2N times

, . . . (A7)

Note that this labeling is correct when the sites of a potential
cell are not too asymmetric for all ϕx—otherwise one has to
examine how to properly label the unperturbed eigenstates so
that the unitary transformation (A6) corresponds to the canon-
ical transformation to the moving frame (see Appendix B).
In practice, we have to keep VL small enough so that the
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difference of depths of the potential wells in each cell is
always smaller than the gaps between the energy bands.

We now calculate the matrix elements of Ĥ. For the diago-
nal part, we have

〈ψ ′
m′ |

(
ĥ − i

∂

∂t

)
|ψ ′

m〉 =
[
εm − ν(m)ω

s

]
δm′,m. (A8)

For the long perturbation, we obtain

〈ψ ′
m′ |ξL|ψ ′

m〉 =λL cos(ωt + ϕt ) e−i(ω/s)[ν(m)−ν(m′ )]t

×
∑
j, j′

c(m′ )∗
j′ c(m)

j

∫ π

0

dx

π
QL(x) ei(2 j−2 j′ )x,

(A9)

where QL is the spatial part of ξL, see Eq. (3). Applying the
secular approximation, we replace

cos(ωt + ϕt ) e−i(ω/s)[ν(m)−ν(m′ )]t (A10)

with its time-independent contribution

1
2 (eiϕt δν ′+s,ν + e−iϕt δν ′−s,ν ), (A11)

where ν ′ ≡ ν(m′). With our choice QL(x) = cos2(2x), we
finally obtain

〈ψ ′
m′ |ξL|ψ ′

m〉 =λL

2
(eiϕt δν ′+s,ν + e−iϕt δν ′−s,ν )

× 1

4

∞∑
j=−∞

c(m)
j

(
2c(m′ )∗

j + c(m′ )∗
j+2 + c(m′ )∗

j−2

)
.

(A12)

Similarly, using QS(x) = sin2(2x), the matrix elements of
the short perturbation follow as

〈ψ ′
m′ |ξS|ψ ′

m〉 =λS

2
(eiϕt δν ′+2s,ν + e−iϕt δν ′−2s,ν )

× 1

4

∞∑
j=−∞

c(m)
j

(
2c(m′ )∗

j − c(m′ )∗
j+2 − c(m′ )∗

j−2

)
.

(A13)

Once the eigenfunctions un(x, t ) = ∑
m b(n)

m ψ ′
m(x, t ) are

found, the Wannier functions are constructed by diagonaliz-
ing the periodic position operator ei 2

N x [34,39], whose matrix
elements result as

〈un′ |ei 2
N x|un〉 =

∞∑
j=−∞

∑
m,m′

b(n′ )∗
m′ b(n)

m c(m′ )∗
j+1 c(m)

j

× ei[ν(m′ )−ν(m)]ωt/s. (A14)

The diagonalization is performed at a chosen time moment t .
The obtained coefficients d (k)

n are used to express the Wannier
states as

wk (x, t ) =
∑

n

d (k)
n un(x, t ). (A15)

Note that the position operator is constructed using only the
relevant subspace of eigenvectors |un〉 that we select based on
our interpretation of the quasienergy spectrum, as discussed in
the main text. Subsequent renumbering of these eigenvectors

and the Wannier states using a pair of indices (i, α) is likewise
conventional.

All calculations have been performed using a number of
software packages [40–44] written in the Julia programming
language [45].

APPENDIX B: QUASICLASSICAL ANALYSIS OF THE
TEMPORAL THOULESS PUMPING

It is instructive to perform an analysis of a one-dimensional
time crystal, whereby a particle is confined to a single po-
tential well and the spatial periodicity plays no role. Rather
than using the Floquet theory, we can consider our model
Hamiltonian

H (px, x, t ) = h(px, x|ϕx ) + ξS(x, t ) + ξL(x, t |ϕt ) (B1)

as a classical entity and use the action–angle representa-
tion of the unperturbed Hamiltonian h(I ), with the action I
and angle θ ∈ [0, 2π ) constituting a pair of canonical vari-
ables [46]. Specifically, the action variable is defined for a
one-dimensional time-independent Hamiltonian [h(px, x|ϕx )
in our case] as the integral of momentum along a periodic orbit

I = 1

2π

∮
px dx. (B2)

The angle θ is the position variable of a particle on a periodic
trajectory that changes uniformly in time, θ (t ) = �t + θ (0),
where the frequency of the periodic motion � = ∂h(I )/∂I .
The periodic motion of a classical particle confined to a
single lattice site of the potential in h is represented in
the (I, θ ) phase space by straight lines I (θ ) = const when
no time-dependent perturbation is present. The perturbation
causes formation of resonant islands that contain closed orbits
in the vicinity of the resonant value of action Is such that
� = [∂h(I )/∂I]|Is

= ω/s where s in an integer [33]. Anal-
ysis of the motion may be simplified by transitioning to
the frame moving along the resonant orbit and applying the
secular approximation, whereby the oscillatory terms of the
Hamiltonian are dropped. We give all the details of this calcu-
lation below.

Setting ϕx = 0 and performing a transformation to the
action–angle variables, we obtain

H (I, θ, t ) = h(I ) + λS cos(2ωt )QS(I, θ )

+ λL cos(ωt + ϕt )QL(I, θ ), (B3)

where QS(x) = sin2(2x) and QL(x) = cos2(2x)—we have
chosen different functions for QS(x) and QL(x) but one can
also choose sin(2x) [or cos(2x)] for both of them. The spatial
Hamiltonian h(I ) does not depend on θ , and the θ dependen-
cies of the perturbations can be represented as Fourier series

QS/L(I, θ ) =
∞∑

m=−∞
Q(m)

S/L(I ) eimθ . (B4)

We choose our working point in the vicinity of a certain
resonant trajectory corresponding to a given value of the ac-
tion Is and the corresponding intrinsic frequency �. Switching
to the rotating frame according to � = θ − �t and averaging
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FIG. 4. Phase-space maps of the particle motion governed by
the secular effective Hamiltonian (B10) (left panel) and the exact
Hamiltonian (B3) (right panel). The yellow line in the left panel
indicates the working point Is = 24.3. The map in the right panel
was generated by numerically integrating the classical equations of
motion resulting from the exact Hamiltonian (B3) and registering
particle’s position (θ, I ) stroboscopically at the intervals of the lattice
driving period. The same values of parameters were used as in Fig. 1.

out the rapidly oscillating terms, we express the long pertur-
bation as

ξL = 1
2λL

[
Q(s)

L (Is) ei(ϕt −s�) + c.c.
]
. (B5)

Writing the complex number Q(s)
L (Is) in the polar form

Q(s)
L (Is) ≡ AL eiχL , (B6)

we cast this result into

ξL = λLAL cos(s� − χL − ϕt ). (B7)

In complete analogy, the short perturbation is written as

ξS = λSAS cos(2s� − χS), (B8)

where AS eiχS is the polar form of Q(2s)
S (Is).

We also expand h(I ) around Is to the second order in I ,

h(I ) = h(Is) + (I − Is)� + 1
2 h′′(Is)(I − Is)2. (B9)

Noting also that the time-dependent canonical transformation
introduces an additional term −I�, we finally derive the ef-
fective Hamiltonian

Heff = [h(Is) − �Is] + P2

2M
+ λSAS cos(2s� − χS)

+ λLAL cos(s� − χL − ϕt ), (B10)

with P ≡ I − Is. Here we have also defined the “effective
mass” M = 1/h′′(Is), which is negative. The last two lines of
Eq. (B10) represent a periodic potential in the moving frame.
For s = 2, we obtain a lattice of two elementary cells, each
consisting of two sites arising from the double-well structure.

In order to verify the validity of the secular approximation,
we produce a map of the motion of a particle in the (I, θ )
phase-space governed by the secular effective Hamiltonian
(B10), as shown in Fig. 4, left panel. The right panel displays
the map obtained by integrating the exact equations of motion
resulting from the Hamiltonian (B3) and by registering parti-
cle’s coordinates stroboscopically at the intervals of the lattice
driving period. Such a stroboscopic, rather than continuous,
picture precisely corresponds to the secular approximation,

which only provides the information on the dynamics av-
eraged over the driving period. Comparing the two plots
in Fig. 4, we conclude that the resonant islands where the
quantum states we are interested in will be located (in
the semiclassical sense) are well reproduced in the exact pic-
ture, and hence that the secular approximation is valid for
the considered strength of the perturbation (i.e., values of
λS and λL).

We are now in position to quantize the classical effective
Hamiltonian (B10) by changing � → �̂ = � and P → P̂ =
−i∂/∂�,

Ĥeff = [h(Is) − �Is] − 1

2M

∂2

∂�2
+ λSAS cos(2s� − χS)

+ λLAL cos(s� − χL − ϕt ). (B11)

This form of the Hamiltonian is particularly convenient since
it features an explicit expression for the temporal poten-
tial, which is not the case for Eq. (1). In complete analogy
with conventional space crystals, we may consider the limit
of a large number of cells, s � 1 [while � ∈ [0, 2π )]. In
that case, the eigenstates of Hamiltonian (B11) are Bloch
waves given by ψn,K(�) = eiK�un,K(�), where K is the
time-quasimomentum and un,K(�) = un,K(� + 2π/s) are
cell-periodic functions [17]. Relevant for the Thouless pump-
ing, one may introduce the Berry curvature related to the nth
energy band as �n(ϕt ,K) = i(〈∂ϕt un|∂Kun〉 − 〈∂Kun|∂ϕt un〉)
and the corresponding first Chern number [27,28,47]

νn = 1

2π

∫
BZ

dK
∫ 2π

0
dϕt �n(ϕt ,K), (B12)

where we integrate over a Brillouin zone in K space as the
phase ϕt completes a pumping cycle.

Numerical diagonalization of (B11) is straightforward: in
order to solve the eigenvalue problem

Ĥeffψβ (�) = Eβψβ (�) (B13)

under periodic boundary conditions, ψβ (�) = ψβ (� + 2π ),
we expand the eigenfunctions in the basis of plane
waves 〈�| j〉 = ei j�/

√
2π, j ∈ Z, which are orthonoromal on

� ∈ [0, 2π ),

ψβ (�) = 1√
2π

∞∑
j=−∞

c(β )
j ei j�. (B14)

This leads to the following matrix elements:

〈 j′|Ĥeff | j〉 =
[

h(Is) − �Is + j2

2M

]
δ j′, j

+ λSAS

2
(δ j′, j+2s e−iχS + δ j′, j−2s eiχS )

+ λLAL

2
(δ j′, j+s e−i(χL+ϕt ) + δ j′, j−s ei(χL+ϕt ) ).

(B15)

The final ingredient needed for the analysis is the Wannier
functions, which are localized superpositions of the stationary
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FIG. 5. Adiabatic pumping in a two-cell time crystal simulated based on the quasiclassical approach. The same values of parameters were
used as in Fig. 1. (a) Energy levels Eβ of quantized effective Hamiltonian (B11) vs the adiabatic phase ϕt . (b) Wannier functions |wα (�)|2
superimposed on the effective potential (blue curves) Ueff = Heff − P2/2M at ϕt = 0 and ϕt = π/2. The scale of the y axis relates to the
potential. The Wannier functions are depicted in arbitrary units; they are positioned such that the flat tails mark the corresponding mean
energies 〈wα|Ĥeff |wα〉. (c) Changes of the Wannier functions |wα (�)|2 as ϕt scans across a complete cycle of length 2π . The shaded areas
indicate the extent of the two temporal lattice cells (γ = 1, 2).

states of Ĥeff . They may be found by diagonalizing the posi-
tion operator. In the case of a periodic system, we take this
operator in the form ei� [34,39]. Its matrix elements follow as

〈ψβ ′ |ei�|ψβ〉 =
∞∑

j=−∞
c(β ′ )∗

j+1 c(β )
j . (B16)

Numerical diagonalization of this operator yields the coeffi-
cients d (α)

β that allow us to express the Wannier states as

wα (�) =
∑

β

d (α)
β ψβ (�). (B17)

Starting with the calculation of the eigenvalues of Ĥeff , we
look for the highest ones since in the case of negative mass
the energy spectrum is bounded from above. Four highest
energy levels calculated repeatedly as the adiabatic phase ϕt

is varied are shown in Fig. 5(a). We interpret the two highest
levels (β = 1, 2) as belonging to the first energy band and
the next two as constituting the second band, with the bands
being separated by a gap. We note that the spectrum is similar
to the one in Fig. 1(a) in the main text, except that there
we consider two spatial sites instead of only one, leading
to twice greater number of (quasi)energy levels. This simi-
larity supports the validity of the quasiclassical analysis and
quantization of the effective classical Hamiltonian (B10) in
particular.

We use the eigenstates ψ1 and ψ2 corresponding to
the energy levels highlighted in Fig. 5(a) to construct the
Wannier functions w1 and w2, shown at ϕt = 0 and ϕt =

π/2 in Fig. 5(b). These functions are vertically positioned
such that the flat tails mark the corresponding mean energies
〈wα|Ĥeff |wα〉. As we can see, the Wannier states are localized
in the sites of the effective potential Ueff (�) = Heff − P2/2M
[blue curves in Fig. 5(b)], which may be regarded as a crys-
talline structure for s � 1. Switching back to the laboratory
frame and considering placing a detector at a fixed posi-
tion θ = θ0, we recover the time periodicity of the potential
Ueff (θ0 + �t ). Crucially, we can now interpret the dynamics
of the system in terms of the time-periodic Wannier states
wα (θ0 + �t ): their localization in � space in the moving
frame translates into localization in time in the laboratory
frame. Therefore, these states can be understood as being
localized in the cells of a time crystal. A stationary detector
placed at θ0 in the laboratory frame will register periodic
arrival of the two (for s = 2) Wannier states separated by the
interval of π/�, corresponding to a detector scanning across
� in the moving frame [cf. Fig. 5(b)].

Now let us study the changes of the Wannier functions as
ϕt is varied adiabatically from 0 to 2π . Figure 5(b) shows that
at the beginning of the cycle (ϕt = 0), state w1 occupies the
region � ∈ [−π/2, π/2), which, by convention, we will refer
to as the first cell (γ = 1) of the temporal lattice. Similarly, w2

occupies the region � ∈ [π/2, 3π/2), which we will call the
second temporal cell (γ = 2). Further change of the two states
is presented in Fig. 5(c). It is apparent that the probability
densities |wα|2 shift as the phase is increased. By the end of
the cycle, the Wannier functions are seen to have shifted by
π , with the state w1 now occupying the second temporal cell,
and w2 occupying the first. Note that the pumping direction
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appears to be reversed in Fig. 5(c) compared to Fig. 1(d) in
the main text because of the minus sign in the transformation
� = θ − ωt/s. Since the number of particles pumped through

a cross section of the lattice is given by the first Chern number
[27,28,34], the above results show that |ν1| = 1 for the studied
first band of the temporal lattice.
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