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Breakdown of the correspondence between the real-complex and delocalization-localization
transitions in non-Hermitian quasicrystals
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The correspondence between the real-complex transition in energy and delocalization-localization transition is
well established in a class of Aubry-André-Harper model with exponential non-Hermitian on-site potentials. In
this paper, we study a generalized Aubry-André model with off-diagonal modulation and non-Hermitian on-site
potential. We find that, when there exists an incommensurate off-diagonal modulation, the correspondence breaks
down, although the extended phase is maintained in a wide parameter range of the strengths of the on-site
potential and the off-diagonal hoppings. An additional intermediate phase with a non-Hermitian mobility edge
emerges when the off-diagonal hoppings become commensurate. This phase is characterized by the real and
complex sections of the energy spectrum corresponding to the extended and localized states. In this case, the
aforementioned correspondence reappears due to the recovery of the PT symmetry.
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I. INTRODUCTION

Anderson localization, an active topic in the condensed
matter field, tells us that the random disorder fails the dif-
fusion of the wave packets, and leads to the localization of
the particle [1–4]. In addition, the quasidisorder systems, ex-
emplified by the Aubry-André-Harper (AAH) model [5,6],
are of a similar localized phenomenon but with a transition
between extended and localized states with the increase of
the disordered external potential in a one-dimensional system,
which appears only in a three-dimensional system of random
disorder [2]. Owing to the rich phase transitions in the qua-
sidisordered systems, there is growing interest both in the
theoretical study of the AAH system and its extensions [7–13]
as well as their experimental realizations in the photonic crys-
tals [14–17] and in the ultracold atomic systems [18–20].

The AAH model has been extended in numerous ways,
such as by including long-range hopping, p-wave pairs, and
off-diagonal modulations, which result in a variety of ex-
otic phenomena. The long-range hopping term [21] or some
specific form of the on-site potentials [22] results in the
single-particle mobility edges. The off-diagonal terms lead
to the presence of critical states in a large parameter space,
and brings up the phase-transition structure of the extended-
localized-extended states [23,24]. Additionally, the phase
diagram of the system will change depending on whether
the nondiagonal modulation is commensurate or incommen-
surate.

Further extensions to the AAH model apply to the non-
Hermitian systems [22,25–40], where the corresponding
localization, mobility edge, and topological properties usually
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discussed in the Hermitian system are given new proper-
ties. The inclusion of nonreciprocal hoppings or complex
on-site potentials are theoretically the two ways to incorpo-
rate non-Hermiticity into disordered systems [41]. Theoretical
investigation shows that there are synchronous real-complex
transition and delocalization-localization transitions in the
presence of the on-site complex potential [29,42], long-range
hoppings [21,22,43], and the antisymmetric hops [35–38].
The combination of p-wave pairings and non-Hermitian qua-
sidisorder is another important paradigm to understand the
topological properties of quasiperiodic systems [44], and an
unconventional real-complex transition is found in the non-
Hermitian quasiperiodic lattice.

We should point out that Longhi [29] systematically exam-
ined the relationship between the real-complex transition in
energy and the delocalization-localization transition in a class
of AAH models with non-Hermitian exponential potentials
and discovered that the extended states correspond to the
real energies and the localized ones to the complex energies.
A key question is whether such a correspondence is robust
against the off-diagonal incommensurate and commensurate
hoppings. In this paper, we study a generalized AAH model
with off-diagonal modulation and non-Hermitian on-site po-
tential and find that, for the AAH model with exponential
non-Hermitian potential, such a well-established correspon-
dence depends on the commensurate off-diagonal hoppings
and breaks down when there exists an incommensurate off-
diagonal modulation.

The rest of this paper is organized as follows. In Sec. II,
we propose the generalized non-Hermitian AA model with
two different types of off-diagonal hoppings. In Sec. III, we
are devoted to investigating the localization transition and
the properties of the energy spectra under the interplay of
the incommensurate modulation and non-Hermitian on-site
potential. In Sec. IV, we study the delocalization-localization
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transition and analyze the properties of the energy spectra
under commensurate off-diagonal hoppings. We make a sum-
mary in Sec. V.

II. MODEL AND HAMILTONIAN

The interplay of non-Hermiticity and quasidisorder gives
rise to new perspectives for the Anderson localization tran-
sitions. In this paper, we consider a generalized AAH model
with off-diagonal modulation and non-Hermitian on-site po-
tential. The Hamiltonian is described as

Ĥ =
L−1∑

n

[tn(ĉ†
n+1ĉn + H.c.)] +

∑
n

Vnĉ†
nĉn, (1)

where L is the length of the lattice, and cn(c†
n ) denotes the

fermion annihilation (creation) operator at site n. The nearest-
neighbor hopping amplitude tn and on-site potential Vn are
given by

tn = t + λ cos(2πb1n + φ1),

Vn = V exp [i(2πb2n + φ2)], (2)

where λ and V denote the modulation amplitudes in the
hopping term and on-site complex potential, respectively. An
irrational or rational number, b1, is selected, to represent the
incommensurate or commensurate potential, respectively. For
the on-site complex incommensurate modulation b2, we dis-
cuss in this paper the irrational number b2 = (

√
5 − 1)/2. φ1

and φ2 are the extra phases varying from 0 to 2π . In this work,
we set t as the energy unit, and choose φ1 = φ2 ≡ 0 without
loss of generality. (Although the phase boundary changes
for different values of phases, the main physics remains the
same).

In the limit of λ = 0, our model reduces to a non-Hermitian
AAH model [29], in which exists a well-defined correspon-
dence between the real-complex transition in energy and the
delocalization-localization transition, supported by both an
analytical and a numerical study. Namely, the real energies
correspond to the extended states and the complex ones cor-
respond to the localized states. In the limit of V = 0, our
model is the one of the limits of the off-diagonal AAH model
including both incommensurate and commensurate modula-
tions [24], which displays an extended-critical transition for
b1 = (

√
5 − 1)/2; and regardless of the strength of the modu-

lation, it maintains the extended phases for b1 = 1/2. For the
system of the non-Hermitian on-site potential, we are inter-
ested in determining whether the delocalization-localization
transition still exists and whether the aforementioned con-
nection is resistant to off-diagonal modulations (see the
Appendix for the systems’ symmetries).

III. INCOMMENSURATE MODULATION CASE

First, we study the phase properties of the model with
incommensurate modulation b1 = (

√
5 − 1)/2. The extended,

localized, or critical feature of a specific wave function can be
characterized by the inverse participation ratio (IPR) [45,46]
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FIG. 1. Phase diagram for the incommensurate modulation case
presents the log10(MIPR) as functions of V/t and λ/t with the system
size L = 1597. The red dashed line is the phase boundary based on
Eq. (1), separating the extended phase from the localized one. The
color bar is for the value of log10(MIPR).

with

IPR j =
∑L

n=1 |ψ ( j)(n)|4∑L
n=1 |ψ ( j)(n)|2 , (3)

corresponding to IPR → 1, IPR → 0, and 0 < IPR < 1, in
the thermodynamic limit, respectively, where ψ ( j) means the
wave function of the jth eigenstate. Averaging the IPR over all
the wave functions, that is, the mean inverse participation ratio
(MIPR) with MIPR = ∑L

j=1 IPR( j)/L will be used to analyze
the global characteristics of the system.

Having calculated the logarithm of the MIPR for a large
system size (L = 1597), we obtain the phase diagram in the
λ-V parameter space (see Fig. 1). Intuitively, the phase dia-
gram consists of two different phases separated by the quarter
circle (shown with a red dashed line and will be discussed
later). In the parameter region surrounded by the inner quarter
circle, the log10(MIPR) is visibly less than −1, meaning that
the MIPR is approaching 0 in the large system size, indicating
a delocalized phase. On the contrary, outside the quarter cir-
cle, the log10(MIPR) tends to 0, with the MIPR approaching 1,
implying a localized phase. In particular, the log10(MIPR) is
nearly equal to −1 on the phase boundary. This means that it is
possible the wave functions will be critical at these parameter
points. The difference between the phases can be reflected by
the spatial distributions of wave functions as well.

In Figs. 2(a), 2(b), and 2(c), we display the spatial distri-
butions of the three representative eigenstates ψ (1000) chosen
from the above three phase areas with (λ,V ) = (1.5t, 1.5t ),
(1.5t, 0t ), and (0.5t, 0.5t ), respectively. We see that the wave
function is localized for (λ,V ) = (1.5t, 1.5t ), whereas it is
extended for (λ,V ) = (0.5t, 0.5t ). The wave function is nei-
ther extended nor localized for (λ,V ) = (1.5t, 0t ), showing
the multifractal structure with critical characteristics.
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FIG. 2. The representative wave functions ψ1000. (a) (λ,V ) =
(0.5t, 0.5t ) in the extended phase. (b) (λ,V ) = (1.5t, 0t ) in the
critical phase. (c) (λ,V ) = (1.5t, 1.5t ) in the localized phase. The
system size is L = 1597.

Furthermore, we locate the phase boundary when λ <

1 employing the log10(MIPR). In Fig. 3(a), we present
log10(MIPR) as a function of r = √

V 2 + λ2 for various θ =
atan(V/λ) ∈ [0, π/2] with the system size L = 1597. The
log10(MIPR) at various θ keeps zero in the region r/t < 1 and
are finite numbers when r/t > 1, showing a phase transition
at r/t = 1, namely,

√
V 2 + λ2 = t . Particularly, we note that

the value of log10(MIPR) at θ = 0 for r/t > 1 (corresponding
to V = 0 and λ > 1) is significantly different from those for
other θ ’s. The slightly smaller finite value of log10(MIPR)
shows the critical characteristic of the system at these param-
eter points. The results are self-consistent with the fractional
dimension discussed below. From the above analysis, the
complete phase boundary is described by

V 2 + λ2 = t2, V �= 0,

λ > t, V = 0.
(4)

However, in the axis of ordinates, for λ = 0t and V > t , the
system is in the localized phase. As a result, the phase bound-
ary V 2 + λ2 = t2 in Fig. 1 by the red dashed line is due to
the numerical simulations. The exact phase boundary in the
present Hamiltonian system is still elusive, while it can be
analytically determined in some systems of quasidisorder, for
example, for the system of mobility edges by the self-duality
condition [21] and for the system of the topological phase
transitions by the open and close of the energy gap [12].

We then use the fractional dimension β to validate the
arguments made previously regarding the various phases. For
a system with L = Fm (Fm is the mth Fibonacci number), the
fractional dimension at lattice site n, i.e., βn can be extracted
from

pn = F−βn
m , (5)

FIG. 3. (a) log10(MIPR) as a function of r with θ =
0, π/6, π/3, π/2. (b) βmin as a function of the inverse Fibonacci
index 1/m at different (λ,V ). Parameter points (λ,V ) = (0.3t, 0.3t )
and (0.5t, 0.5t ) are chosen from the extended phase, (λ,V ) =
(0.5t,

√
3/2t ) and (1.5t, 0t ) are chosen from the critical phase, and

(λ,V ) = (1.5t, 1.5t ), (3t, 3t ) are located in the localized phase.

where pn is the probability density. From the above equation,
we know that this quantity βn plays the role of a scaling index.
βn ∼ 1 for an extended state since pn ∼ 1/Fm. For a localized
state, βn ∼ 1 on those localized sites and βn → ∞ on the
other unoccupied sites. For a critical state, the index βn is
within a finite interval [βn

min, β
n
max]. As a result, the minimal

βn, i.e., βn
min, is a direct feedback of the characteristic of a des-

ignated wave function [47]. Specifically, βn
min → 0 signals a

localized state, 0 < βn
min < 1 a critical state, and βn

min → 1 an
extended state. Without loss of generality, we employ the av-
erage of βn

min over all states, i.e., βmin = ∑
i β

i
min/L under the

extrapolation limit 1/m → 0 to distinguish different phases.
We choose some typical parameter points in various phases
to calculate the βmin. As shown in Fig. 3(b), we find that the
corresponding βmin tends to 1 at both (λ,V ) = (0.3t, 0.3t )
and (0.5t, 0.5t ), verifying that the system is in the extended
phase. As predicted, the corresponding βmin approaches the
value within (0,1) in the thermodynamic limit at both (λ,V ) =
(0.5t,

√
3/2t ) and (1.5t, 0t ), showing the distinctly criti-

cal characteristics. At (λ,V ) = (1.5t, 1.5t ) and (3t, 3t ), the

144208-3



CHEN, CHENG, LIN, ASGARI, AND XIANLONG PHYSICAL REVIEW B 106, 144208 (2022)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

Im
(E

)

-3

-2

-1

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

Im
(E

)

-3

-2

-1

0

-5 -4 -3 -2 -1 0 1 2 3 4 5
Re(E)

-2

0

2

Im
(E

)

-3

-2

-1

0

(a)

(b)

(c)

FIG. 4. Real energy spectrum of the incommensurate modulation
case shown in the complex plane with (a) (λ,V ) = (0.5t, 0.5t );
(b) (λ,V ) = (

√
2/2t,

√
2/2t ); and (c) (λ,V ) = (1.5t, 1.5t ). The

color bar is for the value of log10(MIPR). The system size is L =
1597.

corresponding βmin extrapolates to 0, identifying that the sys-
tem is in the localized phase.

In Ref. [29], there is a strict correspondence between
the delocalization-localization transition and the real-complex
transition, and the energy spectra in the complex plane is
an ellipse symmetric about Im(E ) = 0, which means that
the complex energies come in the form of conjugate pairs.
The reason for this phenomenon is that the Hamiltonian is
PT symmetric and as the strength of the non-Hermitian
term changes, it undergoes a transition from a PT -symmetric
phase to a PT -broken one. The off-diagonal incommensu-
rate hopping modulation studied in this paper, breaks the
PT symmetry. Hence, such a correspondence may not exist.
Take parameter points (λ,V ) = (0.5t, 0.5t ), (

√
2/2t,

√
2/2t ),

and (1.5t, 1.5t ) corresponding to the extended phase, the
critical phase at the boundary, and the localized phase. The
corresponding energy spectra are plotted in Figs. 4(a), 4(b),
and 4(c), respectively. Intuitively, all energy spectra are
complex. Thus, there is no real-complex transition of the
energy spectra accompanying the delocalization-localization
phase transition. Moreover, the energy spectrum on the com-
plex plane is not symmetric about Im(E ) = 0, due to the
destruction of the PT symmetry. As a result, the strict corre-
spondence between the delocalization-localization transition
and the real-complex transition is not robust and broken by
the off-diagonal incommensurate hopping modulation.

Besides the broken correspondence between the
delocalization-localization transition and the real-complex
transition, we notice that the energy spectra form open arms
both in the extended and the critical phases, whereas in
the localized phases, the energy spectra remain the closed
loops. This situation is quite different from the present results
in Refs. [29,30]. In these papers, there is a conventional
correspondence among arc-loop shape, real-complex
spectra, and delocalized-localized transitions. Although the
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FIG. 5. Phase diagram of the commensurate modulation case
presents η as a function of the parameters λ and V with the system
size L = 1597. There are three different phases. Region B is the in-
termediate phase with −2 � η � −1, where both MIPR and MNPR
are finite, and Im(E ) �= 0. Region A is surrounded by region B and
the X axis and indicates an extended phase and a pure real energy
spectrum with η < −3, where MIPR is finite and MNPR ∼ 0, and
Im(E ) �= 0. The rest of the phase diagram is reigion C, where the
energy spectrum is complex and the wave function is localized with
η < −3. MIPR ∼ 0 and MNPR is finite, and Im(E ) = 0. The color
bar is for the value of η.

real-complex transition is broken down, the correspondence
between arc-loop shape and real-complex spectra is still
preserved.

IV. COMMENSURATE MODULATION CASE

Now we focus on the commensurate modulation case.
Without loss of generality, we choose b1 = 1/2. The novel
effective quantity η, suggested by Li and Das Sarma [48], is
used in the numerical analyses and given by

η = log10[MIPR × MNPR], (6)

where MNPR is the abbreviation for the mean of the
normalized participation ratio, which is the normalized par-
ticipation ratio (NPR) averaged over all eigenstates MNPR =∑L

j=1 NPR( j)/L with NPR( j) defined as

NPR j =
[

L

∑L
n=1 |ψ ( j)(n)|4∑L
n=1 |ψ ( j)(n)|2

]−1

, (7)

used for separating the intermediate phase from the extended
and localized ones. In the intermediate phase, both quantities
of MIPR and MNPR are finite [∼O(1)], leading to −2 �
η � −1. In the extended or localized phase, one of the two
quantities scales as ∼L−1, leading to η < − log10 L ∼ −3. By
calculating η, the full phase diagram of the commensurate
modulation case with L = 1597 (∼103) is depicted in Fig. 5.
Intuitively, the phase diagram consists of two main regions.
The region highlighted in blue, is marked by A or C, with η
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FIG. 6. log10(MNPR) and log10(MIPR) versus V/t in the case of
the commensurate modulation b1 = 1/2 for (a) λ = 0.5t and (b) 2t .
The shaded area shows the intermediate phases. The system size is
L = 1597.

less than −3, which is further distinguished by MNPR and
MIPR. The other region has the value of η slightly larger:
−2 � η � −1, marked by B, corresponding to the interme-
diate phase.

Now we further distinguish the regions A and C. Taking
λ = 0.5 as an example, log10(MNPR) and log10(MNPR) as
a function of the potential strength V are plotted in Fig. 6.
Clearly, as V increases, the system undergoes the extended
[MNPR ∼ O(1) and NIPR ∼ L−1], intermediate [MNPR ∼
O(1) and MIPR ∼ O(1)], and localized [MNPR ∼ L−1 and
MIPR ∼ O(1)] phases. With this distinct definition, we make
it clear that the blue region in Fig. 5 consists of the extended
phase (marked by A) and the localized phase (marked by C).

In the case of the commensurate modulation, with the re-
covery of the PT symmetry, we find that the correspondence
between the delocalization-localization phase transition and
the real-complex transition in energy reappears. Taking the
parameter point (λ,V ) = (0.5t, 0.1t ) in the extended phase as
an example, the energy spectrum is plotted in Fig. 7(a), from
which we see that the energies are all real with log10(IPR) ∼
−3. Figure 7(b) is the density distribution of the extended
wave function ψ (100). On the contrary, at the parameter point
(λ,V ) = (1t, 0.5t ) taken from the localized phase, the corre-
sponding energies are complex with log10(IPR) ∼ 0, shown

in Fig. 7(c). Figure 7(d) presents the localized density distri-
bution of the wave function ψ (100).

Meanwhile, in the intermediate phase, the aforementioned
correspondence still exists. Figure 8 presents the energy spec-
trum under (λ,V ) = (0.5t, 0.7t ) (taken from the intermediate
phase) with L = 1597. Intuitively, the energies of the extended
states with log10(IPR) ∼ −3 are all real and those of the local-
ized states with log10(IPR) larger than −3 are fully complex.
Thus, in this situation, we obtain the non-Hermitian mobility
edges, characterized by the real and complex parts of the
energy spectrum corresponding to the extended and localized
states, respectively. And because of the PT symmetry (see
the Appendix), complex energies always appear in the form
of conjugate pairs [also as in Fig. 7(c)] and the appearance of
the real energy is associated with the mobility edge.

To further explore the details of the mobility edge, we
present the distributions of IPRs for the systems with (λ,V ) =
(0.5t, 0.7t ) and (λ,V ) = (2t, 1.5t ) in Fig. 9. The states are
arranged in ascending order of the real parts of the energies.
In the mixed phase, the IPR varies from a finite value to
1/L, and the sudden changes in the distributions of the IPRs
indicate the presence of a mobility edge. In Fig. 10, we show
the representative spatial density distributions for the systems
with (λ,V ) = (0.5t, 0.7t ) and L = 1597, and the correspond-
ing energy spectra are plotted in Fig. 8. Figure 10(a) shows
the localized states with complex energy and its real part
Re(E ) ∼ 0.94t (taken from the bigger energy loop in Fig. 8)
and 10(b) the localized states with Re(E ) ∼ 1.51t (the smaller
energy loop in Fig. 8). Figure 10(c) shows one of the extended
states with real energy E ∼ 1.62t (corresponding to the real
energy spectra in Fig. 8).

V. SUMMARY

In this work, we have numerically studied a generalized
Aubry-André-Harper model with off-diagonal incommensu-
rate or commensurate hoppings and non-Hermitian exponen-
tial potential. The correspondence between the real-complex
transition and the delocalization-localization transition is
missing due to the incommensurate off-diagonal modulations,
which breaks the PT symmetry. In addition, we find that
for the incommensurate hopping, the phase diagram shows
that the extended phase and the localized one are separated
by the phase boundary V 2 + λ2 = t2. The extended phase
forms a quarter-circle area in the positive-definite parameter
region. The extended-localized transition is self-consistently
analyzed by the MIPR and fractal dimension. For the com-
mensurate hopping case, there appears an extra intermediate
phase, which has the non-Hermitian mobility edge, which
splits the real and complex parts of the energy spectrum and
simultaneously the extended and localized states. Due to the
recovery of the PT symmetry, separated by the mobility edge,
we find that the correspondence between the real-complex
transition in energy and the delocalization-localization phase
transition reappears.

We notice that a generalized AAH model with both di-
agonal and off-diagonal quasiperiodic disorders is recently
realized by the technique of momentum-lattice engineering
in the ultracold atomic system [18,24], where the topolog-
ical phase with the critical localization in a quasiperiodic
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FIG. 7. (a) Real energy spectrum of the commensurate modulation case shown in the complex plane with (λ,V ) = (0.5t, 0.1t ). The color
bar is log10(IPR). (b) Spatial distribution of the wave function ψ (100) at (λ,V ) = (0.5t, 0.1t ). (c) Complex energy spectrum shown in the
complex plane at (λ,V ) = (0.5t, 1t ). The color bar is log10(IPR). (d) Spatial distribution of the wave function ψ (100) at (λ,V ) = (0.5t, 1t ).
The color bar is for the value of log10(IPR). Another involved parameter is L = 1597.

lattice is observed. In the experimental implementation of
Ref. [18], 87Rb atoms are confined in a one-dimensional
momentum lattice. Due to a series of frequency-modulated
Bragg-laser pairs, the discrete momentum states of the atoms

FIG. 8. Energy spectrum of the commensurate modulation case
plotted in the complex plane with (λ,V ) = (0.5t, 0.7t ) and L =
1597. The black dashed lines are mobility edges. The color bar shows
the value of log10(IPR).

are coupled together. Once the Bragg-coupling parameters
between nearest-neighbor sites are adjusted, both the diago-
nal and off-diagonal disorders are imposed. In addition, the
complex quasiperiodic on-site potential can be realized by a

FIG. 9. Distributions of the IPRs for the systems with
(a) (λ,V ) = (0.5t, 0.7t ) and (b) (λ,V ) = (2t, 1.5t ). Red points and
blue triangles correspond to the results under different system size,
L = 1597 and L = 4181.
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FIG. 10. The representative wave functions for the systems with
(λ,V ) = (0.5t, 0.7t ) and L = 1597. (a) Re(E ) ≈ 0.94; (b) Re(E ) ≈
1.51; (c) Re(E ) ≈ 1.62, corresponding to the eigenstates in the com-
plex plane in Fig. 8.

low-finesse intracavity etalon, with free spectral range incom-
mensurate with respect to the modulation frequency and much
smaller than the gain bandwidth [30]. In addition, excellent
experimental progress has been made in the observation of the
topological triple phase transition in non-Hermitian Floquet
quasicrystals via photonic quantum walks [49]. As a result,
we believe that the breakdown of the correspondence between
the real-complex and delocalization-localization transitions
for the model we studied here has the potential to be realized
in cold atomic experiments or in photonic quantum walks.
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APPENDIX: SYMMETRIES OF THE SYSTEM

The effects of parity operator P̂ and time-reversal operator
T̂ on discrete systems are as follows:

P̂ ĉ†
nP̂ = ĉ†

L+1−n, T̂ iT̂ = −i. (A1)

And the Hamiltonian [see Eq. (4)] can be expressed as

Ĥ = Ĥhopping + Ĥpotential. (A2)

First, we consider the non-Hermitian quasiperiodic potential,

Ĥpotential =
L∑
n

exp [i(2πb2n + φ2)]ĉ†
nĉn. (A3)

Under the P̂T̂ operator,

P̂T̂ ĤpotentialT̂ P̂

= P̂T̂
L∑
n

exp [i(2πb2n + φ2)]ĉ†
nĉnT̂ P̂

=
L∑
n

{cos [2πb2(L − n + 1) − 2πb2(L + 1) − φ2]

+ i sin [2πb2(L − n + 1) − 2πb2(L + 1) − φ2]}
× ĉ†

L−n+1ĉL−n+1. (A4)

And then we deal with the hopping terms

Ĥhopping =
L−1∑

n

[t + λ cos(2πb1n + φ1)](ĉ†
n+1ĉn + H.c.).

(A5)

Applying the P̂T̂ operator on hopping terms,

P̂T̂ ĤhoppingT̂ P̂

= P̂T̂
L−1∑

n

[t + λ cos(2πb1n + φ1)](ĉ†
n+1ĉn + H.c.)T̂ P̂

=
L−1∑

n

[t +λ cos(2πb1n + φ1)](ĉ†
L−nĉL−n+1 + ĉ†

L−n+1ĉL−n)

=
L−1∑

n

{t + λ cos [2πb1(L − n) − 2πb1L − φ1]}

× (ĉ†
L−nĉL−n+1 + ĉ†

L−n+1ĉL−n). (A6)

The P̂T̂ symmetry is observed,

P̂T̂ Ĥ (φ1, φ2)T̂ P̂ = Ĥ (φ1, φ2), (A7)

when φ̃1 ≡ −2πb1L − φ1 and φ̃2 ≡ −2πb2(L + 1) − φ2 sat-
isfy

φ̃1 = −2πb1L − φ1 = φ1 + 2k1π, (A8)

φ̃2 = −2πb2(L + 1) − φ2 = φ2 + 2k2π, (A9)

namely,

φ1 = −πb1L − k1π, k1 ∈ Z, (A10)

φ2 = −πb2(L + 1) − k2π, k2 ∈ Z. (A11)

In this case, the system is invariant under the P̂T̂ operator.
In order to ensure that the systems satisfy PT symmetry

at any phase factor, we need to construct a new antiunitary
operator R̂P̂T̂ , and the eigenenergy spectrum of the system
is invariant under the R̂ transformations [50,51]. If b1 is
rational, and the strength of the hopping terms between sites
are periodic, we can construct a unitary operator rotating the
system by Mk′ sites in the counterclockwise direction,

R̂†
k′ ĉ†

nR̂k′ = ĉ†
n+Mk′ , (A12)

where M is the periodic of the hopping term. It gives

φ̃′
1 = φ̃1 − 2πMk′

L
, (A13)

φ̃′
2 = φ̃2 − 2πMk′

L
, (A14)
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and Hamiltonian under the rotation operators Rk ,

R̂†
k′Ĥ (φ̃1, φ̃2)R̂k′ = Ĥ (φ̃′

1, φ̃
′
2), (A15)

have the same eigenenergy spectra because R̂k is unitary. So
if systems have P̂T̂ symmetry, phase factors φ1 and φ2 satisfy

φ̃′
1 = φ̃1 − 2πMk′

L
= φ1 + 2k1π, (A16)

φ̃′
2 = φ̃2 − 2πMk′

L
= φ2 + 2k2π, (A17)

namely,

φ1 = −πb1L − k1π + k′πM

L
, k1, k′ ∈ Z, (A18)

φ2 = −πb2(L + 1) − k2π + k′πM

L
, k2, k′ ∈ Z, (A19)

and the number of points satisfying the condition above be-
comes infinite for L → ∞. So in the thermodynamic limit, if
b1 is rational, systems have P̂T̂ symmetry. On the other hand,
if b1 is irrational, the systems do not have rotation symmetry
so the P̂T̂ symmetry is broken.
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