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Continuous matrix-product states in inhomogeneous systems with long-range interactions
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We develop the continuous matrix-product states approach for description of inhomogeneous one-dimensional
quantum systems with long-range interactions. The method is applied to the exactly solvable Calogero-Moser
model. We show the high accuracy of reproducing the ground-state properties of the many-body system and
discuss potential errors that can originate from the approximation of the nonlocal interaction potentials with
singularities.
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I. INTRODUCTION

Over the last decades, the density-matrix renormalization
group (DMRG) approach has become the method of choice
in studies of gapped local one-dimensional systems on the
lattice [1]. DMRG is a variational method which represents
the ground-state wave function on the one-dimensional lattice
as a peculiar tensor-network structure—a matrix-product state
(MPS). The success of this variational ansatz is based on the
effective encoding of the entanglement structure of the ground
state [2].

In the following years, the MPS approach was generalized,
in particular, to critical systems with the multiscale entangle-
ment renormalization ansatz (MERA) [3], two-dimensional
systems with the projected entangled pair-state approaches
[4], and to description of the real-time dynamics. Another
direction of the MPS development were continuous systems.
There, one can either study a continuous system on the lattice
and extract results in the continuous limit via a certain form
of scaling analysis [5–8] or employ the continuous general-
ization of the matrix-product states approach (cMPS) [9,10].
Note that one can also apply the hybrid methods [11] which
rely on both the lattice fine graining and cMPS. Until recently,
most of the cMPS studies were focused on various aspects
of translationally invariant systems both with short-range
[7,12–14] and long-range interactions [15] (including periodic
boundary conditions) or on generalizations to relativistic sys-
tems [16]. Continuous tensor networks were also generalized
for the studies of time dynamics [17], high-dimensional sys-
tems [18–20], and continuous MERA [21]; these were also
successfully applied to the finite-temperature simulation of
lattice systems [22], the relation to continuous measurements
[18,23], as well as to open quantum systems [24,25].

Recently, several cMPS-related methods were also sug-
gested to describe quantum many-body systems with no
translational invariance. They rely on different approxima-
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tions for the matrices that parametrize cMPS by using splines
[26] or finite elements [27] with the succeeding employment
of the steepest gradient descent methods for the parametrized
wave functions. In this paper we generalize the method
[27] to inhomogeneous systems with long-range interactions
(including singular potentials) and benchmark it on the corre-
sponding exactly solvable model.

II. METHOD

For definiteness and simplicity, let us focus on sys-
tems consisting of interacting bosons (the generalization to
fermions and multicomponent gases can be performed along
the lines of Refs. [28–32]) on a finite space interval x ∈ [0, L].
Bosonic particles are characterized by the creation and annihi-
lation operators with the conventional commutation relations
and related to the field operators ψ†(x) and ψ (x), respectively.
The cMPS variational ansatz can be expressed as follows:

|Q, R〉 = 〈νL|P exp
∫ L

0
dx[Q(x) + R(x)ψ†(x)]|νR〉 |0〉 , (1)

where R(x) and Q(x) are the coordinate-dependent matrices
of dimension D, νL and νR are the D-dimensional vectors,
P exp(· · · ) is the path-ordered exponent, and |0〉 is the vacuum
state. Q, R, νL, and νR are the variational parameters we aim
to optimize. To this end, we employ the parametrization of
general matrices Q(x) and R(x) from Ref. [27]. We intro-
duce a mesh grid [0, x1, . . . , xi, . . . , L] on the interval [0, L]
and define values of R and Q on the nodes of the grid as
R(xi ) = Ri and Q(xi ) = Qi. In the spatial interval between the
two nearest-neighbor nodes x j and x j+1, we use the linear
interpolation

R(x) = Ri + (Ri+1 − Ri )

(
x − xi

xi+1 − xi

)
. (2)

In this sense, νL, νR, Qi, and Ri constitute now a finite set of
variational parameters.

Next, let us turn to one-dimensional quantum many-
body systems with long-range two-body interactions. The
corresponding Hamiltonian can be written in the following
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form:

H =
∫ L

0

{
1

2

dψ†(x)

dx

dψ (x)

dx
+ [V (x) − μ]ψ†(x)ψ (x)

+ gψ†(x)ψ†(x)ψ (x)ψ (x)

}
dx

+
∫ L

0
dx

∫ L

x
dyU (y, x)ψ†(x)ψ†(y)ψ (x)ψ (y), (3)

where V (x) is the external potential, U (y, x) is the two-body
interaction potential, g is the coupling constant of the local
two-body interaction, and μ is the chemical potential, which
controls the number of particles in the system under study.
At the moment we do not specify the form of the nonlocal
two-body interaction potential U (x, y).

To obtain the variational cMPS wave function for the
Hamiltonian (3), it is necessary to compute the expectation
value of the energy operator and the corresponding gradients.
Following Ref. [27], we introduce the matrices σL(x) and
σR(x) of the size D × D, which describe the wave-function
density matrices to the left and to the right sides from the point
x, respectively. In terms of the wave functions corresponding
to these density matrices, the expectation values of operators
can be computed as

〈O〉(x) = 〈σL(x)|O(R, Q)|σR(x)〉
〈σL(x)|σR(x)〉 , (4)

where O(R, Q) is a matrix of the size D2 × D2 constructed
in terms of the matrices R(x) and Q(x). For the physical
operators such as the kinetic energy or particle density, we
have the following mapping rules for the matrices O(R, Q)
(for derivation, see, e.g., Ref. [10]):

ψ†(x)ψ (x) → R(x) ⊗ R(x), (5)

ψ†(x)ψ†(x)ψ (x)ψ (x) → R(x)2 ⊗ R(x)
2
, (6)

dψ†(x)

dx

dψ (x)

dx
→ DR(x) ⊗ DR(x), (7)

where A ⊗ A means the Kronecker product of the matrix A by
its complex conjugate and

DR(x) = dR(x)

dx
+ [Q(x), R(x)].

Let us now describe how the matrices σL(x) and σR(x)
can be obtained in the first place. They are solutions of the
differential equations

dσL(x)

dx
= Q†(x)σL(x) + H.c. + R†(x)σL(x)R(x), (8)

dσR(x)

dx
= −Q(x)σR(x) − H.c. − R(x)σR(x)R†(x), (9)

with the boundary conditions σL(0) = |νL〉〈νL| and σR(L) =
|νR〉〈νR|. In the following we call these equations (and their
analogs for other density matrices) as the Lindblad equations,

since under certain gauges they reduce to the Lindblad master
equation. In the numerical optimization we integrate these
equations approximately using the scheme from Ref. [27], but
we can also obtain the exact solution, which we employ below
in the derivation of the energy expectation value.

By introducing the matrix

T (u) = Q(u) ⊗ 1 + 1 ⊗ Q(u) + R(u) ⊗ R(u), (10)

we can write the density matrices in a compact form:

σL(x) = σL(0)P exp
∫ x

0
T (u)du, (11)

σR(x) = P exp

[∫ L

x
T (u)du

]
σR(L). (12)

For the computation purpose we can now express the energy
expectation value as

〈E〉 = w

∫ L

0
dx〈σL(x)|H (x)|σR(x)〉

+ w

∫ L

0
dx

∫ L

x
dyU (y, x)〈σL (x)|R(x) ⊗ R(x)

× P exp

[∫ y

x
duT (u)

]
R(y) ⊗ R(y)|σR(y)〉, (13)

where w ≡ 1/〈σL(x)|σR(x)〉 = 1/〈Q, R|Q, R〉 is the wave-
function normalization factor. Its independence on the coor-
dinate x can be verified directly from the inner product of
the wave functions expressed by Eqs. (11) and (12). The first
integral in Eq. (13) corresponds to the expectation value of the
local part of the Hamiltonian operator, where H (x) is defined
from the local part of Eq. (3) according to the rules (5) as
follows:

H (x) = 1
2 DR(x) ⊗ DR(x)

+ [V (x) − μ]R(x) ⊗ R(x) + gR(x)2 ⊗ R(x)
2
. (14)

The second integral in Eq. (13) corresponds to the nonlocal
long-range interaction.

The next step is to represent the energy as a sum of scalar
products of local quantities (which are described by some kind
of differential equations). To this end we choose a certain
point z and divide the energy into three parts: (i) expectation
values of the operators determined solely to the left from the
point z, (ii) expectation values of operators determined solely
to the right from the point z, and (iii) operators acting on both
sides from the point z (the last part naturally appears in the
computation of the expectation value of nonlocal long-range
interactions). The first part can be written as

w

∫ z

0
〈σL(x)|H (x)|σR(x)〉dx

+ w

∫ z

0
dy

∫ y

0
dxU (y, x)〈σL (x)|R(x) ⊗ R(x)

× P exp

[∫ y

x
T (u)du

]
R(y) ⊗ R(y)|σR(y)〉. (15)
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The second part has a similar form,

w

∫ L

z
〈σL(x)|H (x)|σR(x)〉dx

+ w

∫ L

z
dx

∫ L

x
dyU (y, x)〈σL (x)|R(x) ⊗ R(x)

× P exp

[∫ y

x
T (u)du

]
R(y) ⊗ R(y)|σR(y)〉. (16)

And the third part reads as

w

∫ z

0
dx

∫ L

z
dyU (y, x)〈σL (x)|R(x) ⊗ R(x)

× P exp

[∫ z

x
T (u)du

]
P exp

[∫ y

z
T (v)dv

]

× R(y) ⊗ R(y)|σR(y)〉. (17)

The first part of Eq. (15) can be represented as
w〈HL(z)|σR(z)〉, where the matrix HL(z) is defined according
the following expression:

〈HL(z)| =
∫ z

0
〈σL(x)|H (x)P exp

[∫ z

x
T (u)du

]
dx

+
∫ z

0
dy

∫ y

0
dxU (y, x)〈σL (x)|R(x) ⊗ R(x)

× P exp

[∫ y

x
T (u)du

]
R(y) ⊗ R(y)

× P exp

[∫ z

y
T (u)du

]
. (18)

The second part of Eq. (16) can be written similarly as
w〈σL(z)|HR(z)〉. The third part (17), in general, cannot be
cast in the form

∑
i〈UL,i(z)|UR,i(z)〉, since the interaction

potential U (x, y) connects the left and right parts together.
But in the case of the factorizable potential U (x, y) =∑

i fi(x)gi(y), the third part (17) can be represented in the
form

∑
i〈UL,i(z)|UR,i(z)〉 with 〈UL,i(x)| and |UR,i(x)〉 defined

as follows:

〈UL,i(z)| =
∫ z

0
fi(x)〈σL(x)|R(x) ⊗ R(x)

× P exp

[∫ z

x
T (u)du

]
dx, (19)

|UR,i(z)〉 =
∫ L

z
gi(y)P exp

[∫ y

z
T (v)dv

]

× R(y) ⊗ R(y)|σR(y)〉dy. (20)

Let us now show that HL(x), UL,i(x), and σL(x) form to-
gether a system of linear differential equations, which can
be used to compute these in the same way, as σL(x) was
computed by using Eq. (8). For the derivation of equations,
we can simply differentiate Eqs. (18) and (19). This yields

dUL,i(z)

dz
= Q†(z)UL,i(z) + UL,i(z)Q(z)

+ R†(z)UL,i(z)R(z) + fi(z)R†(z)σL(z)R(z). (21)

And for the energy HL(z) we obtain the equation

dHL(z)

dz
= Q†(z)HL(z) + HL(z)Q(z) + R†(z)HL(z)R(z)

+ σL(z)H (z) +
∑

i

gi(z)R†(z)UL,i(z)R(z). (22)

These equations must be supplemented with the boundary
conditions UL,i(0) = 0 and HL(0) = 0. As for UR,i(z) and
HR(z), we obtain completely analogous equations with oppo-
site signs and with the interchanged role of fi(z) and gi(z).
Using these equations and discretization scheme proposed in
Ref. [27], we then compute the energy expectation value.

Interaction potentials of the form U (x, y) = ∑
i fi(x)gi(y)

can appear in certain many-mode cavity systems [33,34].
Still, according to most of the physical applications, we are
interested in the class of potentials which depend only on
the relative position of two particles, U (x, y) = U (y − x). To
represent this potential in the factorized form, we can approx-
imate U (y − x) by the sum of exponents (see also Ref. [35] in
the lattice context),

U (y − x) ≈
n∑

i=1

Ai exp [−ai(y − x)]. (23)

This approximation is explicitly factorizable, but the func-
tions fi(x) = exp(aix) and gi(y) = exp(−aiy) are problem-
atic, since one of them can quickly become exponentially
small, while another one becomes exponentially large. We
can solve this problem by expressing exp [−ai(y − x)] =
exp [−ai(y − z)] exp [−ai(z − x)]. Relying on this decompo-
sition, we redefine the matrices UL,i(z) and UR,i(z),

〈UL,i(z)| =
∫ z

0
〈σL(x)|R(x) ⊗ R(x) exp [−ai(z − x)]

× P exp

[∫ z

x
T (u)du

]
dx, (24)

|UR,i(z)〉 =
∫ L

z
exp [−ai(y − z)]P exp

[∫ y

z
T (v)dv

]

× R(y) ⊗ R(y)|σR(y)〉dy. (25)

The new matrices UL,i(z) obey the linear differential equations

dUL,i(z)

dz
= Q†(z)UL,i(z) + UL,i(z)Q(z)

+ R†(z)UL,i(z)R(z) + R†(z)σL(z)R(z) − aiUL,i(z).
(26)

Note that equations for different i are completely independent,
thus can be solved in parallel.

With the new UL,i(z), Eq. (22) changes to the following
form:

dHL(z)

dz
= Q†(z)HL(z) + HL(z)Q(z) + R†(z)HL(z)R(z)

+ σL(z)H (z) +
∑

i

AiR
†(z)UL,i(z)R(z). (27)
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Using the introduced notations, we can express the energy
determined by Eq. (13) as follows:

〈E〉 = w[〈HL(z)|σR(z)〉 + 〈σL(z)|HR(z)〉]

+ w

n∑
i=1

Ai〈UL,i(z)|UR,i(z)〉. (28)

Note that Eq. (28) is independent of z due to the Lindblad
equations for all matrices involved in the expression.

The next goal is to compute energy gradients. We dele-
gate the explicit derivation of gradients to Appendix A due
to the complexity of the corresponding expressions. At the
same time we note here that these gradients can be expressed
in terms of certain integrals of the matrices HL(x), HR(x),
UL,i(x), UR,i(x), σL(x), and σR(x). Let us also note that in
contrast to the available possibilities to employ the numerical
automatic differentiation packages, the explicit expressions
in Appendix A enable more efficient parallelization and in-
dependent control of the accuracy of gradients and energy
calculations.

Hence, the obtained equations allow us to compute the
energy expectation value for both the translationally invariant
interaction potentials and the cavitylike interactions. It is clear
now that one can perform calculations with the same interac-
tions, which are tractable with the matrix-product operators
(MPO) in the lattice context. We discuss this analogy in more
detail in Appendix B.

III. MODEL

To benchmark the developed approach, we choose the
Calogero-Moser rational model [36–41] (see also the review
[42]). The corresponding Hamiltonian for the system of N
interacting particles reads as

HCM = −1

2

N∑
i=1

∂2

∂x2
i

+
N∑

i=1

ω2x2
i

2
+

∑
1�i< j�N

l (l − 1)

(xi − x j )2
.

(29)
This model includes the external harmonic confinement and
the two-body long-range interactions with the singular po-
tential U (x, y) = l (l−1)

(y−x)2 . We restrict ourselves to the repulsive
case with l > 1. This model is exactly solvable and its ground-
state energy EN is given by

EN = ω

[
N

2
+ l

N (N − 1)

2

]
. (30)

The bosonic ground-state wave function ψ0 can be expressed
in the Jastrow form:

ψ0 =
∏

1�i< j�N

|xi − x j |l
N∏

i=1

exp (−ωx2
i /2). (31)

This wave function vanishes exponentially in the limit of
large xi due to the external trapping potential and decreases
polynomially for two particles approaching each other. Note
that in the limit l → 1, the wave function turns into the wave

function of free fermions, since strong repulsive interactions
enforce vanishing of the wave function for two coinciding
particles.

Due to the exponential decrease of the wave function at
large xi, we can restrict the system to the finite interval [0, L]
with a corresponding shift of the minimum of harmonic po-
tential to its center, V (x) = ω2(x − L/2)2/2. If L and ω are
sufficiently large at the boundaries xi = {0, L}, we can enforce
the vanishing wave-function boundary conditions, which do
not change the energy and wave-function behavior.

The main difficulty with the application of the cMPS ansatz
to the Calogero-Moser model is the singularity 1/x2 of the
interaction potential at small x. Following the discussed proce-
dure [see Eq. (23)], we need to approximate this potential by a
sum of exponents 1/x2 ≈ ∑n

i Ai exp [−aix]. This approxima-
tion cannot hold in the vicinity of x = 0, thus one can reliably
approximate the potential only at x > ε with a certain small
ε. Therefore, in our analysis we approximate the potential on
the interval [ε, L]. This approximation fixes the parameters ai

and Ai. After that, in all calculations we use the approximate
potential defined as a sum of exponents on the whole interval
[0, L].

We can use the finite sum of exponents as a definition of
the approximate interaction potential for all x. However, in the
vicinity of x = 0 the approximation results in a large but finite
value of the potential, in contrast to the singular behavior of
the real interaction potential. Still, we can argue that the error
in the given approximation at small x insignificantly impacts
on the variational energy and wave function. We can expect
deviations between the exact wave function and the variational
cMPS only at |xi − x j | � ε. In this regime, the exact wave
function vanishes polynomially as ψ0 ∝ |xi − x j |l . We also
established numerically that the cMPS wave function vanishes
to high accuracy in the presence of a large but finite potential
core of the radius ε. From this we can argue that the exact
and variational wave functions deviate from each other in
the region of very small densities leading to negligibly small
absolute errors.

In the next section we investigate convergence of the en-
ergy with respect to ε and the cut-off number n of exponents
in the approximation in more detail.

IV. RESULTS AND BENCHMARKS

Our approach to long-range interacting systems is not
exactly variational, since it depends crucially on the approx-
imation of the interaction potential with a sum of exponents.
This approximation can underestimate the exact interaction
(e.g., near the core of the singular potential), thus the energy
obtained within the numerical procedure can be smaller than
the true ground-state energy. Certainly, the energy of the varia-
tionally obtained cMPS computed with the exact Hamiltonian
is always larger than the energy of the exact ground state, but
the energy of cMPS computed with the approximate Hamilto-
nian can be smaller. Here we discuss the energy Enum, which is
computed with the cMPS and approximate Hamiltonian (since
the computation with the cMPS and exact Hamiltonian is
difficult due to the singular potential). This numerical energy
Enum is then compared to the exact analytical results given by
Eq. (30).
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Interaction strength l

FIG. 1. Relative difference �Ẽ = (Enum − EN )/EN between the
computed cMPS energy Enum and the analytical prediction (30) as a
function of the interaction strength l . Other parameters are ω = 80,
N = 3, L = 1, D = 12, Nmesh = 170, n = 8, and ε = 0.025.

There are several sources of errors we would like to point
out. The first one originates from a finite number of variational
parameters, which can be too small to represent all pecu-
liarities of the exact ground state. The number of variational
parameters is controlled by the bond dimension D and by
the grid size. The second source of errors is the restriction
of the system to the finite spatial interval (while exact solu-
tions correspond to the infinite system in a certain trapping
potential). This truncation can be justified a posteriori, if the
particle density obtained from the optimized cMPS vanishes
exponentially at the boundary. The third source of errors is
the approximation of the interaction potential. In the case of
a singular potential, this approximation depends both on the
core size ε and on the number n of exponents in Eq. (23). Note
that the dependence on these parameters highly varies for dif-
ferent potentials and depends on the approximation method or
on the metrics to estimate the reliability of the approximation.
In particular, one cannot rely solely on the maximal deviation
between the exact and approximate potentials. On the one
hand, in the vicinity of a singular core, these deviations are
always extremely large, but probabilities of finding particles
on these interparticle distances are very small. On the other
hand, even small deviations of potentials on moderate inter-
particle distances can lead to noticeable errors. Since average
interparticle distances depend on the trapping potential and in-
teraction strength, an accurate approximation of the potential
for a particular set of parameters may become not optimal for
another one.

First, let us determine whether the developed approach to
describe long-range interacting systems works in principle,
investigate the sources of errors, and analyze which of them
are the most influential for different values of the model pa-
rameters. We start with a small number of particles, N = 3 for
ω = 80 and L = 1. We also fix D = 12, Nmesh = 170, n = 8,
and ε = 0.025. For these parameters the relative difference
�Ẽ = (Enum − EN )/EN between the computed cMPS energy
Enum and the exact result (30) is shown in Fig. 1. Note that
there is an additional possible source of error due to the not
exactly integer number of particles in the cMPS wave func-
tion. The particle number is regulated by an adjustment of the

cMPS
exact

FIG. 2. Particle density distributions obtained by the cMPS nu-
merical approach and analytic form of the wave function (31) at
l = 1.5 (a) and l = 3.25 (b). Other parameters are the same as in
Fig. 1.

chemical potential μ in the auxiliary term μN added to the
Hamiltonian (29). In the performed calculations with N = 3,
the absolute error in the number of particles is typically about
10−6. This deviation in the number of particles introduces a
relative error in the energy, which is one order of magnitude
smaller than errors from other sources. We observe that the
relative energy difference is generally rather small confirming
that the developed approach is sufficiently accurate.

At small interaction strengths l , the relative error is nega-
tive and grows rapidly. This is a sign of underestimation of the
repulsive interaction potential. At small interaction strength,
two interacting particles are able to reach relative distances
smaller than ε, thus the numerical difference between the
exact and approximate potentials in this region causes errors
in energies and wave functions. This error can be mitigated by
decreasing ε. At large l , the relative error is positive and grows
slowly. The main reason for this growth is the truncation
of the wave function at the boundaries. In particular, in the
region l � 3.5 particles experience a strong repulsion, which
becomes insufficiently compensated by the trapping potential
(with the given amplitude ω = 80) in order to completely
suppress the wave function at the boundaries.

In Fig. 2 we show the density distributions at small and
large interactions. For comparison, we also plot the den-
sity distributions obtained from the numerical integration of
the exact wave function (31), which visually coincide with
the ones from the cMPS approach. At small interaction [see
Fig. 2(a)], the wave functions are exponentially suppressed
at the boundaries, while at large interaction [see Fig. 2(b)],
the density vanishes significantly slower at the edges. This
is the reason for the deviations in the ground-state energy at
large l (see Fig. 1). At the same time, the density distribution
in Fig. 2(b) demonstrates more pronounced minima than in
Fig. 2(a). It means that the average interparticle distances are
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Core radius 

FIG. 3. Relative difference �Ẽ = (Enum − EN )/EN between the
computed cMPS energy Enum and the analytical prediction (30) as a
function of the potential core radius ε at three different interaction
strengths l . Other parameters are the same as in Fig. 1.

rather large, thus specific details of the parametrization of the
core of the singular potential become less important.

To analyze the dependence of the variational energy on the
radius ε, we fix l = 1.5, since at low l the influence of the
core is larger, and optimize the wave function for different
ε. We show the corresponding dependence of the relative
energy difference �Ẽ in Fig. 3. From it we can conclude
that the dependence on ε is approximately linear. In particular,
at small ε the error becomes positive, as it should be in the
variational approaches. At large l , the influence of ε is less
pronounced (see also Fig. 3 for l = 2.0 and l = 2.5). In this
regime we can also test the dependence of the relative error
�Ẽ on the number of exponents n in the approximation of the
potential with the fixed ε, which is given in Fig. 4. It shows the
dependence of the relative error on the number of exponents at
l = 3.25 and ε = 0.015 (other parameters are the same as in
the preceding analysis). We also verified that the energy does

Number of exponents n 

FIG. 4. Relative difference between numerically computed en-
ergy of optimized cMPS Enum and analytical prediction for different
numbers of exponents n in the approximation of the potential at
l = 3.25 and ε = 0.015. Other parameters are the same as in Fig. 1.

Density Kinetic energy

Entanglement entropy Entanglement spectra

FIG. 5. Spatial distributions of physical characteristics of the
system at N = 7, l = 2.7, ω = 185, n = 9, ε = 0.01, D = 30,
Nmesh = 250, and L = 1. In the entanglement spectra, only the four
largest eigenvalues are shown.

not vary strongly with the change of ε. The energy difference
decreases with n till it reaches approximately a constant value
(which can further increase due to possible underestimation
of the interaction strength at certain x). At a smaller number
of terms in the approximation (n � 5), one must change ε

to larger values to obtain more accurate energies, since the
approximation method involves all the variational freedom
to approximate the potential core and contains large errors
in the tail of the interaction potential. Note that the results
in Fig. 4 should only be viewed as qualitative, since the
numerical accuracy significantly depends on specific values
of parameters ε, N , l , and ω, as well as on the methodology of
approximation.

After we analyzed the accuracy of the developed approach
in a relatively dilute regime (N = 3), we can test it on sys-
tems with a larger number of particles. To this end we take
N = 7, ω = 185, l = 2.7 and determine the wave function
variationally. With the increased bond dimension D = 30 we
obtain the relative energy error �Ẽ = 7 × 10−5. In Fig. 5
we show several relevant physical characteristics of the sys-
tem determined by this wave function: the particle density,
the kinetic energy, and the entanglement. We compute the
entanglement spectra 	i(x) using diagonalization of the ma-
trix σL(x)σR(x) [43]. The entanglement entropy determined
as S(x) = −∑

i 	i(x) log 	i(x) generally mimics the density
distribution, while the two largest eigenvalues 	1,2 cross at the
density maxima. This is a general observation holding also for
other model parameters of the system under study.

V. CONCLUSIONS AND OUTLOOK

In this study we developed the methodology to ap-
ply the cMPS computational approach to inhomogeneous
one-dimensional systems with long-range interactions. We
established that the long-range interactions with a potential
expressed in the form of a sum of exponents (or cavitylike in-
teractions) can be efficiently simulated in the exact variational
manner. From this fact we proposed an approximate general
scheme for the many-body systems with the interaction po-
tentials of an arbitrary form. The proposed methodology is
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also compared to the lattice DMRG studies of long-range
interacting systems.

We benchmarked the numerical approach on the exactly
solvable Calogero-Moser model in the external harmonic po-
tential. This model contains a singular interaction potential
between particles. We outlined how the cMPS methodology
can be applied to systems with similar singular interaction
potentials and confirmed the validity and accuracy of the
method on both the variational energy and the ground-state
local observables such as the particle density.

There are several potential research directions we would
like to pursue. The first one concerns an application of the
method to studies of phase transitions or dualities in the sys-
tems of bosons in the cavity [44,45]. One can also apply the
methodology to ultracold dipolar [46] and Rydberg [47] gases
in one-dimensional traps.

Within this study we employed the global gradient opti-
mization of the wave function. However, the similarity to the
DMRG allows us to at least partially generalize the local op-
timization with sweeps to the continuous case. This is another
interesting direction for a thorough and separate analysis.
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APPENDIX A: DERIVATION OF GRADIENTS

Let us discuss in more detail the procedure of calculating
the energy gradients in terms of the variational parameters Rk

and Qk of the cMPS wave function. These parameters describe
the wave function only on a small spatial interval [xk−1, xk+1].
The matrices σL(x), HL(x), and UL(x) are described by the
Lindblad equations in a conventional form. It means that these
matrices are independent of Rk and Qk for x ∈ [0, xk−1]. The
same is valid for the matrices σR(x), HR(x), and UR(x), since
they are independent of Rk and Qk for x ∈ [xk+1, L].

To obtain the gradients we express the energy E [see
Eq. (28)] using only the matrices defined at x = xk:

E = w

[
〈HL(xk )|σR(xk )〉 + 〈σL(xk )|HR(xk )〉 +

∑
i

Ai〈UL,i(xk )|UR,i(xk )〉
]
. (A1)

The next step is to calculate the derivatives of the type 〈∇Rk σL(xk )|HR(xk )〉. To this end we express the Lindblad equation (8) for
the density matrix σL(x) in the finite difference form with the step �x,

σL(xk ) = σL(xk − �x) + Q(xk − �x)†σL(xk − �x) + σL(xk − �x)Q(xk − �x)

+ R(xk − �x)†σL(xk − �x)R(xk − �x). (A2)

We can now take the derivative of Eq. (A2) by Rk and use the compact notation (10),

∇Rk σL(xk ) = ∇Rk σL(xk − �x) + Q(xk − �x)†∇Rk σL(xk − �x) + ∇Rk σL(xk − �x)Q(xk − �x)

+ R(xk − �x)†∇Rk σL(xk − �x)R(xk − �x) + R(xk − �x)†σL(xk − �x)∇Rk R(xk − �x)

= ∇Rk σL(xk − �x) exp [T (xk )�x] + R(xk − �x)†σL(xk − �x)∇Rk R(xk − �x). (A3)

Next, it is necessary to calculate ∇Rk σL(xk − �x), but this can be performed by using the same finite difference formula (A2).
By repeating the procedure n times, we obtain the following equation:

∇Rk σL(xk ) = ∇Rk σL(xk − n�x)
1∏

i=n

exp [T (xk − i�x)�x]

+
n∑

i=1

R(xk − i�x)†σL(xk − i�x)∇Rk R(xk − i�x)
1∏

j=i

exp [T (xk − j�x)�x]. (A4)

If n�x > |xk − xk−1|, then ∇Rk σL(xk − n�x) = 0 due the conventional structure of the Lindblad equation and only the second
term remains in Eq. (A4). In the continuous limit �x → 0, n�x = |xk − xk−1| the sum in Eq. (A4) transforms into the integral.
Therefore, we finally obtain the closed expression for ∇Rk σL(xk ),

∇Rk σL(xk ) =
∫ xk

xk−1

dxR(x)†σL(x)∇Rk R(x)P exp

(∫ xk

x
T (u)du

)
. (A5)
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The same procedure leads us to the simple expression for ∇Qk σL(xk ),

∇Qk σL(xk ) =
∫ xk

xk−1

dxσL(x)∇Qk Q(x)P exp

(∫ xk

x
T (u)du

)
. (A6)

The next step is to compute the derivatives of the type 〈∇RkUL(xk )|UR(xk )〉. Using the finite difference approximation to
Eq. (26) and the derivatives of σL(x) obtained above, we arrive at

∇RkUL,i(xk ) =
∫ xk

xk−1

dxR(x)†UL,i(x)∇Rk R(x)P exp

[∫ xk

x
[T (z) − ai]dz

]

+
∫ xk

xk−1

dxR(x)†σL(x)∇Rk R(x)P exp

[∫ xk

x
[T (z) − ai]dz

]

+
∫ xk

xk−1

dx
∫ x

xk−1

dyR(y)†σL(y)∇Rk R(y)P exp

[∫ x

y
T (u)du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
[T (z) − ai]dz

]
, (A7)

∇QkUL,i(xk ) =
∫ xk

xk−1

dxUL,i(x)∇Qk Q(x)P exp

[∫ xk

x
[T (z) − ai]dz

]

+
∫ xk

xk−1

dx
∫ x

xk−1

dyσL(y)∇Qk Q(y)P exp

[∫ x

y
T (u)du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
[T (z) − ai]dz

]
. (A8)

Let us express the derivatives of HL(xk ),

∇Rk HL(xk ) =
∫ xk

xk−1

dxR(x)†HL(x)∇Rk R(x)P exp

[∫ xk

x
T (z)dz

]

+
n∑

i=1

Ai

∫ xk

xk−1

dxR(x)†UL,i(x)∇Rk R(x)P exp

[∫ xk

x
T (z)dz

]
+

∫ xk

xk−1

dxσL(x)∇Rk H (x)P exp

[∫ xk

x
T (z)dz

]

+
∫ xk

xk−1

dx
∫ x

xk−1

dyR(y)†σL(y)∇Rk R(y)P exp

[∫ x

y
T (u)du

]
H (x)P exp

[∫ xk

x
T (z)dz

]

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ x

xk−1

dyR(y)†UL,i(y)∇Rk R(y)P exp

[∫ x

y
[T (u) − ai]du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
T (z)dz

]

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ x

xk−1

dyR(y)†σL(y)∇Rk R(y)P exp

[∫ x

y
[T (u) − ai]du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
T (z)dz

]

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ x

xk−1

dy
∫ y

xk−1

dtR(t )†σL(t )∇Rk R(t )

× P exp

[∫ y

t
T (v)dv

]
R(y) ⊗ R(y)P exp

[∫ x

y
[T (u) − ai]du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
T (z)dz

]
, (A9)

∇Qk HL(xk ) =
∫ xk

xk−1

dxHL(x)∇Qk Q(x)P exp

[∫ xk

x
T (z)dz

]
+

∫ xk

xk−1

dxσL(x)∇Qk H (x)P exp

[∫ xk

x
T (z)dz

]

+
∫ xk

xk−1

dx
∫ x

xk−1

dyσL(y)∇Qk Q(y)P exp

[∫ x

y
T (u)du

]
H (x)P exp

[∫ xk

x
T (z)dz

]

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ x

xk−1

dyUL,i(y)∇Qk Q(y)P exp

[∫ x

y
[T (u) − ai]du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
T (z)dz

]

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ x

xk−1

dy
∫ y

xk−1

dtσL(t )∇Qk Q(t )

× P exp

[∫ y

t
T (v)dv

]
R(y) ⊗ R(y)P exp

[∫ x

y
[T (u) − ai]du

]
R(x) ⊗ R(x)P exp

[∫ xk

x
T (z)dz

]
. (A10)
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Now, we can determine the sum

〈∇Qk HL(xk )|σR(xk )〉 + 〈∇Qk σL(xk )|HR(xk )〉 +
∑

i

Ai〈∇QkUL,i(xk )|UR,i(xk )〉

=
∫ xk

xk−1

dx〈HL(x)|∇Qk Q(x)P exp

[∫ xk

x
T (z)dz

]
|σR(xk )〉

+
n∑

i=1

Ai

∫ xk

xk−1

dx〈UL,i(x)|∇Qk Q(x)P exp

[∫ xk

x
[T (z) − ai]dz

]
|UR,i(xk )〉

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ xk

x
dy〈UL,i(x)|∇Qk Q(x)P exp

[∫ y

x
[T (u) − ai]du

]
R(y) ⊗ R(y)P exp

[∫ xk

y
T (z)dz

]
|σR(xk )〉

+
∫ xk

xk−1

dx〈σL(x)|∇Qk H (x)P exp

[∫ xk

x
T (z)dz

]
|σR(xk )〉 +

∫ xk

xk−1

dx〈σL(x)|∇Qk Q(x)P exp

(∫ xk

x
T (u)du

)
|HR(xk )〉

+
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ xk

x
dy〈σL (x)|∇Qk Q(x)P exp

[∫ y

x
T (u)du

]
R(y) ⊗ R(y)P exp

[∫ xk

y
[T (z) − ai]dz

]
|UR,i(xk )〉

+
∫ xk

xk−1

dx
∫ xk

x
dy〈σL(x)|∇Qk Q(x)P exp

[∫ y

x
T (u)du

]
H (y)P exp

[∫ xk

y
T (z)dz

]
|σR(xk )〉 + K, (A11)

where

K =
n∑

i=1

Ai

∫ xk

xk−1

dx
∫ xk

x
dy

∫ xk

y
dt〈σL(x)|∇Qk Q(x)

× P exp

[∫ y

x
T (v)dv

]
R(y) ⊗ R(y)P exp

[∫ t

y
[T (u) − ai]du

]
R(t ) ⊗ R(t )P exp

[∫ xk

t
T (z)dz

]
|σR(xk )〉.

The obtained expression can be further simplified. For example, the term∫ xk

xk−1

dx〈HL(x)|∇Qk Q(x)P exp

[∫ xk

x
T (z)dz

]
|σR(xk )〉 =

∫ xk

xk−1

dx〈HL(x)|∇Qk Q(x)|σR(x)〉.

The second and third terms in Eq. (A11) can be expressed together as
∑n

i=1 Ai
∫ xk

xk−1
dx〈UL,i(x)|∇Qk Q(x)|UR,i(x)〉, while the fourth

term can be cast into the form
∫ xk

xk−1
dx〈σL(x)|∇Qk H (x)|σR(x)〉. The last terms can be summed together into the integral of the

form
∫ xk

xk−1
dx〈σL(x)|∇Qk Q(x)|HR(x)〉. This can be explicitly verified by using the definitions of HR and UR.

By adding analogous terms with the derivatives of σR(xk ), UR(xk ), and HR(xk ), we obtain the following expression for the full
derivative of the energy:

∇Qk E/w =
∫ xk+1

xk−1

dx〈HL(x)|∇Qk Q(x)|σR(x)〉 +
∫ xk+1

xk−1

dx〈σL(x)|∇Qk Q(x)|HR(x)〉

+
n∑

i=1

Ai

∫ xk+1

xk−1

dx〈UL,i(x)|∇Qk Q(x)|UR,i(x)〉 +
∫ xk+1

xk−1

dx〈σL(x)|[∇Qk H (x) − E∇Qk Q(x)]|σR(x)〉. (A12)

The last term with the energy E in Eq. (A12) originates from the differentiation of the denominator in Eq. (A1).
The full derivative of the energy by Rk can be deduced in the same way, thus

∇Rk E/w =
∫ xk+1

xk−1

dx〈HL(x)|∇Rk R(x) ⊗ R(x)|σR(x)〉 +
∫ xk+1

xk−1

dx〈σL(x)|∇Rk R(x) ⊗ R(x)|HR(x)〉

+
n∑

i=1

Ai

∫ xk+1

xk−1

dx{〈UL,i(x)|∇Rk R(x) ⊗ R(x)[|UR,i(x)〉 + |σR(xk )〉] + 〈σL(x)|∇Rk R(x) ⊗ R(x)|UR,i(x)〉}

+
∫ xk+1

xk−1

dx〈σL(x)|[∇Rk H (x) − E∇Rk R(x) ⊗ R(x)]|σR(x)〉. (A13)

To evaluate the energy gradients with Eqs. (A12) and
(A13), one needs to precompute the matrices σ , H , U and

then to calculate integrals explicitly with the help of the beta
functions, as described in Ref. [27].
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The computational complexity of the energy and gradients
calculation was partially discussed in Ref. [27]. It scales as
D3Nmesh, similar to the DMRG case. The D3 scaling originates
from the matrix-matrix multiplications, while Nmesh results
from the number of coordinate intervals. The introduction of
additional n exponents in the long-range potential leads to the
linear enhancement of the computational cost to D3Nmesh(2 +
n), which is also the same as in the usual DMRG computations
with MPO of the bond dimension (2 + n). This increase can
be partially reduced by parallelization of the calculations with
different exponents, since these calculations are independent.

In conclusion, we can add several comments on the calcu-
lation of gradients. First, if matrices H , U , and σ are provided,
the gradients of the energy for different k can be computed
simultaneously in parallel. Second, for a given k, the gradients
depend only on the functional values determined in a small
spatial range near xk . If one updates Rk , then the matrices H
and σ will not change outside of this range (the same holds
for the DMRG algorithm). In principle, one can use this fact
to optimize the cMPS algorithm not globally, but locally in
sweeps, as in the usual lattice DMRG (though here the local
problem remains very challenging). This analogy with DMRG
method is discussed in Appendix B in more detail. We leave
the investigation of the cMPS optimization with local sweeps
for a future research.

APPENDIX B: COMPARISON WITH MPO METHODS
ON THE LATTICE

Long-range interacting systems on the lattice can be sim-
ulated with DMRG using MPO, which efficiently encodes
these interactions. We should note that if MPO has a small
bond dimension χ , then only two types of interactions can be
efficiently encoded into MPO: (i) interactions which exponen-
tially decrease with distance [35], and (ii) interactions in the
cavity [48,49]. In Ref. [35] it was proposed to approximate
general interactions with a sum of exponents to encode them
into MPO of a small bond dimension. This encoding was later
implemented in various methods and applications.

For a detailed comparison with the cMPS algorithm, let us
illustrate the lattice MPO construction for the transverse Ising
model with the exponentially decaying interaction amplitude.
The model Hamiltonian is defined as follows:

HIsing =
L∑

1�i< j

exp [−a( j − i − 1)]Sz
i Sz

j + g
L∑

i=1

Sx
i . (B1)

The general MPO construction scheme is based on the
decomposition of the Hamiltonian into three parts with the
fixed bond (k, k + 1) between the lattice sites k and k + 1,

H = HL,k ⊗ 1R + 1L ⊗ HR,k +
N∑

m=1

um,L,k ⊗ um,R,k . (B2)

In this decomposition HL,k contains all operators acting on the
sites to the left from the bond (k, k + 1). For the Ising model

(B1), it is expressed as

HL,k = g
k∑

i=1

Sx
i +

k∑
1�i< j

exp [−a( j − i − 1)]Sz
i Sz

j . (B3)

Analogously, HR,k is acting on the sites to the right from the
bond (k, k + 1),

HR,k = g
L∑

i=k+1

Sx
i +

L∑
k+1�i< j

exp [−a( j − i − 1)]Sz
i Sz

j . (B4)

These two operators have a similar role in DMRG to the
density matrices HL(x) and HR(x) from Sec. II. uL,m,k and
uR,m,k are the operators acting separately to the left and to the
right sides from the fixed bond, respectively, but their product
is acting on both sides from the bond (k, k + 1).

For the transverse Ising model (B1), the parameter N ,
which controls the bond dimension of the MPO in the sum
(B2), is equal to one, therefore,

uL,k =
k∑

i=1

exp [−a(k − i)]Sz
i ,

uR,k =
L∑

j=k+1

exp [−a( j − k − 1)]Sz
j . (B5)

These operators are the lattice analogs of the matrices UL(x)
and UR(x), see Eqs. (19) and (20), respectively.

The next step in the construction of MPO for the lattice
Hamiltonian are the recursion relations, which allow us to
express HL,k and uL,k on the bond (k, k + 1) in terms of
analogous operators on the bond (k − 1, k). Let us start with
derivation of the recursion relation for uL,k . Obviously, ac-
cording to Eq. (B5) we can express

uL,k = exp [−a]uL,k−1 + Sz
k . (B6)

This recursion relation can be viewed as the lattice version
of Eq. (26), where the multiplication by exp [−μ] is a lat-
tice version of the term −aUL,z on the right-hand side of
the differential equation for UL(z), while Sz

k is analogous to
R†(z)σL(z)R(z). If we additionally introduce the identity oper-
ator 1L,k acting on the first k sites, we can rewrite the recursion
relation (B6) in the matrix-product form,

(1L,k, uL,k ) = (1L,k−1, uL,k−1)

(
1k Sz

k
0k exp [−a]1k

)
. (B7)

As a result of the repeatable application of this matrix-
product recursion, we can rewrite the operators 1L,k and uL,k

in the form of MPO, as shown in Figs. 6 ac. Regarding the
part HL,k , which is given by Eq. (B3), we can similarly derive
that

HL,k = HL,k−1 + uL,k−1Sz
k + gSx

k . (B8)
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(а)

(b)

(d)

(e)

(c)

FIG. 6. Illustration of different stages of correspondence between the lattice MPO and the developed cMPS approach: (a) Definition of the
MPO matrix, which encodes the recursion relation (B7) for 1L,k and uL,k . (b) MPO with the last index 1 results in the identity operator 1L,k [this
operator can be sandwiched with the MPS wave function, which results in left density matrix σL (k)]. (c) MPO with the last index 2 produces
the operator uL,k [after sandwiching with the MPS wave function one obtains the matrix UL (k)]. (d) Recursion relation between uL,k , uL,k−1,
and 1L,k−1 transforms into the recursion relation between the matrices UL (k + 1), UL (k), and σL (k); after the continuous limit specified in (e),
the recursion relation (d) becomes the Lindblad equation (26).

This recursion relation is a discrete analog of the Lindblad
equation (27). Here gSx

k is a discrete version of the local opera-
tor H (x), while uL,k−1Sz

k is similar to the term R†(z)UL(z)R(z).
The recursion for HL,k can be also rewritten in the matrix-
product form.

Note that certain discrepancies between the continuous
and discrete systems still remain. First, the obtained equa-
tions in discrete systems are the recursion relations between
operators, while the obtained Lindblad equations describe the
density matrices. Second, the equations for discrete systems
do not have any correspondence for the terms of the type
Q†(z)HL(z) + HL(z)Q(z) + R†(z)HL(z)R(z) on the right-hand
side of Eq. (27). The latter discrepancies can be lifted by
sandwiching the MPO operator between the MPS wave func-
tions, as it is shown in Figs. 6(b) and 6(c). As a result of this
procedure, we obtain the matrices σL(k) and UL(k), as well as
HL(k) (not shown in Fig. 6). The recursion relation between
uL,k and 1L,k translates into the recursion between the matrices

UL,k and σL(k), which is shown in Fig. 6(d). In the last step,
one can take the continuous limit of the MPS wave function
[shown in Fig. 6(e)] to obtain the inhomogeneous Lindblad
equation for UL(x), which is a continuous limit of UL(k). The
terms in the Lindblad equation of the form Q†(x)UL(x) are
obtained from the continuous limit of the MPS wave function.

In the numerical procedure, the matrices of the form σL(k),
UL(k), and HL(k) are calculated and kept in the computer
memory (with updates during the sweep) in the course of the
DMRG algorithm. In the continuous case, we can also propa-
gate these matrices with the Lindblad equation back and forth
during the sweep through the coordinate interval, with the
sequential update of Rk and Qk , using only the local gradients
[which can be computed using only σL(x), UL(x), and HL(x) in
the proximity of x = xk , as it is shown in Appendix A]. We do
not perform this sequential update within this study, but this
is an interesting possibility, since the DMRG optimization by
sweeps is very effective in the lattice case.
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