
PHYSICAL REVIEW B 106, 144205 (2022)

Exploring unconventional quantum criticality in the p-wave-paired Aubry-André-Harper model
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We have investigated scaling properties near the quantum critical point between the extended phase and the
critical phase in the Aubry-André-Harper model with p-wave pairing, which have rarely been exploited as most
investigations focus on the localization transition from the critical phase to the localized phase. We find that
the spectrum-averaged entanglement entropy and the generalized fidelity susceptibility act as eminent universal
order parameters of the corresponding critical point without gap closing. We introduce a Widom scaling Ansatz
for these criticality probes to develop a unified theory of critical exponents and scaling functions. We thus extract
the correlation-length critical exponent ν and the dynamical exponent z through the finite-size scaling given the
system size increase in the Fibonacci sequence. The retrieved values of ν � 1.000 and z � 3.610 indicate that
the transition from the extended phase to the critical phase belongs to a different universality class from the
localization transition. Our approach sets the stage for exploring the unconventional quantum criticality and the
associated universal information of quasiperiodic systems in state-of-the-art quantum simulation experiments.
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I. INTRODUCTION

The concept of disorder-induced localizations was orig-
inally addressed in the seminal work of Anderson [1] and
still fuels a variety of new ideas and research directions. No-
tably, engineering random disorder remains an experimental
challenge, and the theoretical study of randomly disordered
system suffers from the necessity of disorder averaging.
It is largely recognized that there is another class of sys-
tems in which the distribution of the disordered potential
is not random, but showcases some quasiperiodic structures.
Quasiperiodic disorder provides a midway between randomly
disordered and clean systems for exploring novel phases of
matter. The physics of quasiperiodic systems is known to
show unconventional phenomena including mobility edges
[2–5], fractal bands [6,7], many-body localization [8–11],
topological features [12–14], and exotic forms of phases
[15,16], as well as currently intensively investigated non-
Hermiticities [17]. Remarkably, quasiperiodic systems have
been observed in a number of systems, such as photonic
crystals [18,19], cavity polaritons [20], cold atoms in bichro-
matic laser potentials [21–24], twisted bilayer graphene [25],
and optical waveguides [26]. The continuing development of
experimental techniques has led to a deeper understanding
of quasiperiodic criticality [27–30] and associated universal
information [31–34].

Among a diversity of quasiperiodic models, the Aubry-
André-Harper (AAH) model [35–37] and its generalizations
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are nowadays drawing increasing attention. The standard
AAH model can be formally derived from a tight-binding
square-lattice Hamiltonian in the presence of a magnetic field
yielding the famous Hofstadter butterfly to a one-dimensional
(1D) chain when the hopping amplitudes are the same [38].
A dual transformation between the coordinate and momen-
tum spaces will yield the same Hamiltonian with hopping
and potential amplitudes interchanged. As a consequence of
the inherent self-duality, all the eigenstates of the system
undergo Anderson localization transition from an extended
phase (EP) to a localized phase (LP) at a critical value of
the incommensurate potential strength [39,40], as was first
shown by Aubry and André [41]. By contrast, all single-
particle states localize for arbitrarily weak disorder in 1D
systems with uncorrelated disorder [1]. During the past few
years, a growing effort has been made to explore the ef-
fect of the self-duality breaking interactions to the AAH
Hamiltonian. A peculiar direction is the inclusion of the
p-wave superconducting pairing [42–44]. The reentrant lo-
calization transition can be established by analyzing inverse
participation ratios (IPRs) of eigenspectra, the bandwidth
distribution, and the level spacing distribution. The p-wave
pairing term breaks the self-dual symmetry and splits the
single transition into a three-phase spectral diagram. A crit-
ical phase (CP) crops up between the extended and localized
phases [45–47]. The emerging CP exhibits various interesting
features, such as power-law localization [48], critical spectral
statistics [49–51], and multifractal behavior of wave functions
[52,53]. In particular, the intermediate CP proliferates in the
quantum magnetism described by the anisotropic XY chain
under an irrationally modulated transverse field, which is
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equivalent to the AAH model with p-wave pairing through
the celebrated Jordan-Wigner transformation [54–57]. The CP
can be possibly detected by measuring the mean square dis-
placement of the wave packet after a fixed time of expansion
in the real space or the momentum distributions [58].

While most investigations focus on the phase transition
between the CP and the LP, little is known about critical
properties of the transition from the EP to the CP. The critical-
localized phase transition is deemed as the reminiscence of
Anderson localization transition in the absence of p-wave
pairing, which coincides with a second-order transition from
a topological superconducting phase to a topologically trivial
localized phase [43]. The quench dynamics from the LP to the
CP through the Kibble-Zurek mechanism and the gap scaling
unveil the correlation-length exponent ν � 1.000 and the dy-
namical critical exponent z � 1.373 [47], which are consistent
with numerical results of the generalized fidelity susceptibility
(GFS) ν � 1.000, z � 1.388 [59]. However, the gap scaling
fails owing to the apparent nonclosure of the spectral gap
across the extended-critical transition with periodic boundary
conditions, which is beyond the regime of thermodynamic
phase transition. Therefore, there is a clear need to identify
observables for the characterization of the EP-CP transition
that can be measured in state-of-the-art quantum simulators
and are easy to compute numerically as well.

Motivated by these open questions, in this work, we bring
in new tools to understand the nature of extended-critical
transitions. The rest of the paper is organized as follows. We
briefly introduce the AAH Hamiltonian with p-wave pairing
in Sec. II. Section III introduces the spectrum-averaged von
Neumann entropy. We then provide evidence that such multi-
partite entanglement measure is well suited for characterizing
the extended-critical transition and the fractal dimension of
the critical phase. Section IV is devoted to the finite-size
scaling (FSS) of GFSs, and extracting the critical exponents
that cannot be obtained from conventional scaling analysis. In
Sec. V, we give a brief summary.

II. MODEL HAMILTONIAN

We consider the Hamiltonian for the AAH model with
p-wave pairing in a quasiperiodically modulated potential,

H =
N∑

j=1

(−Jc†
j c j+1 + �c jc j+1 + H.c.)+

N∑
j=1

Vj

(
c†

j c j − 1

2

)
,

(1)

where c†
j (c j ) is the fermionic creation (annihilation) operator

at site j among total N lattice sites, J denotes the nearest-
neighbor hopping amplitude, � characterizes the strength
of p-wave superconducting pairing, and H.c. stands for the
Hermitian conjugate. In certain contexts, the superconducting
order parameter may appear in the mean-field approximation
of the interacting AAH model [60]. Without losing gener-
ality, we assume J = 1 as an energy unit throughout the
paper. The external potential in Eq. (1) is quasiperiodic, i.e.,
Vj = V cos(2πα j + φ), where φ ∈ [0, 2π ) is a random phase
and V is the amplitude of the potential with an irrational
wave number α. A commonplace choice for α is the inverse

golden ratio α = (
√

5 − 1)/2. The boundary condition is
imposed as cN+1 = σc1, where σ= 1, −1, and 0 correspond-
ing to periodic, antiperiodic, and open boundary conditions,
respectively. The Hamiltonian describes the Kitaev p-wave
superconducting model for α = 0, while the model reduces
to the celebrated Aubry-André model when � = 0, which
undergoes a localization-delocalization transition at V = 2J
[35–37]. Once the p-wave pairing is turned on, the symmetry
breaking from U(1) down to Z2 leads to the emergence of the
CP sandwiched between these two phases [46,47,61]. Upon
increasing the Aubry-André potential strength V , the system
undergoes continuous transitions from the CP to the EP for
Vc1 = 2|� − J| and from the CP to the LP for Vc2 = 2|� + J|
[44,46]. Analogously to the case of � = 0, all the eigenstates
of the Hamiltonian in Eq. (1) with a generic � undergo
two transitions simultaneously. For � = ±1, the model will
be equivalent to the quasiperiodic Ising model [29,62], in
which the phase transition occurs only between critical and
localized phases [48,57]. The FSS of generalized participation
indicates that the correlation-length exponent ν = 1 across
both transitions for all irrational α [44], consistent with the
Harris criterion [63], which imposes that ν < 2 for phase
transitions in the presence of incommensurate modulation. In
the numerical treatment on finite lattices, it is convenient to
replace the inverse golden ratio with a rational approximant
being a ratio of two Fibonacci numbers, α = F�−1/F�, and
thus the diagonal Aubry-André potential has periodicity of F�

sites in order to allow for the use of periodic boundary condi-
tions, where F� is the �th Fibonacci number. As noted before
[64–66], the sequence of denominators F� breaks into three
subsequences. As we will show, each subsequence is charac-
terized with a separate scaling function. The lattice system
N can be chosen as ζ supercells, where N = ζF�. For sim-
plicity, we consider ζ = 1 and two-subsequence odd sizes in
the following, i.e., F3�+1 = 21, 55, 233, 987, . . ., and F3�+2 =
89, 377, 1597, 6765, . . .. In this respect, the Hamiltonian (1)
can be diagonalized through a canonical Bogoliubov–de
Gennes (BdG) transformation by introducing quasiparticle
operators ηk and η

†
k , which is a linear combination of an

electron and hole:

ηk =
N∑

j=1

(uk, jc j + vk, jc
†
j ), η

†
k =

N∑
j=1

(u∗
k, jc

†
j + v∗

k, jc j ), (2)

where uk, j and vk, j denote electron and hole amplitudes of
Bogoliubov quasiparticle at site j for the kth eigenstate. For
a given normalized wave (

∑
j |uk, j |2 + |vk, j |2 = 1), ηk and η

†
k

satisfy the anticommutation relation:

{ηk, η
†
k′ } = δkk′ , {ηk, ηk} = {η†

k , η
†
k′ } = 0. (3)

In the Nambu representation, the Schrödinger equation
H |ψk〉 = εk|ψk〉 can be recast into a 2N×2N matrix form
as [46] (

A B
−B∗ −AT

)(
uk

vk

)
= εk

(
uk

vk

)
, (4)

where A = −J (δi+1, j+δi−1, j )+Viδi, j , B = −�(δi+1, j − δi−1, j ),
uT

k = (uk,1, . . . , uk,N ), and vT
k = (vk,1, . . . , vk,N ). The matrix

elements for the boundary terms AN,1 = A1,N = −σJ , BN,1 =
−B1,N = −σ�.
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The BdG Hamiltonian in Eq. (4) obeys an imposed
particle-hole symmetry, implying ηk (εk ) = η

†
k (−εk ). The

excitation spectrum εk is a solution of the secular equa-
tion det[(A + B)(A − B) − ε2

k ] = 0. The energy levels appear
in ±εk conjugate pairs, with εk � 0, except the zero-energy
mode, which is self-conjugate. In terms of the operators ηk

and η
†
k , the Hamiltonian in Eq. (1) can be diagonalized as

H =
N∑

k=1

2εk

(
η

†
kηk − 1

2

)
, (5)

where εk are single-particle energies in ascending order, i.e.,
ε1 � ε2 � · · · � εN . The ground state of H is the Bogoliubov
vacuum state |ψg〉 annihilated by all ηk (k = 1, . . . , N), i.e.,
ηk|ψg〉 = 0, with an energy Eg= −∑N

k=1 εk . In the spirit of
the Ginzburg-Landau scenario of continuous phase transi-
tions, the characterization of quantum phase transitions in
many-body systems has been traditionally based on a suitable
order parameter Q, whose expectation value in the ordered
phase is finite while it becomes exactly zero at criticality:
Q ∼ |V − Vc|βQ , where the exponent βQ of this power law is
dubbed as the order parameter critical exponent. The scaling
exponents reflect the universality class of the theory, which
is independent of the microscopic details of the model but
depends only on global properties such as the symmetries and
dimensionality of the Hamiltonian. The asymptotic behavior
of critical phenomena corresponding to the thermodynamic
limit can be retrieved using FSS [67]:

Q(N,V ) = N−βQ/νQ̃(|V − Vc|N1/ν ), (6)

where ν characterizes the divergence of the correlation length
and Q̃ is a universal scaling function [68]. However, it remains
a systematic challenge to identify an explicit local order pa-
rameter in random models and analog quasiperiodic systems.
There is no explicit symmetry breaking associated with a
local order parameter, and therefore it has no experimental
signature in the ground-state energy or its derivatives. Over
recent years, an alternative approach to understand quantum
criticalities and the associated universality exploits the infor-
mation content stored in the many-body degrees of freedom
of a quantum system. In the following, we investigate the
quantum criticality of the AAH model from the quantum
information perspective. Quantum entanglement and fidelity
susceptibility have been widely exploited in the research
of various phase transitions without any prior knowledge
of order parameters. Specifically, these information mea-
sures can reconcile seemingly unrelated behaviors in different
branches of physics ranging from condensed matter physics
to gravitational physics. It is interesting to note that quantum
entanglement may be used to shed light on the black-hole
information paradox regarding the anti–de Sitter/conformal
field theory (AdS/CFT) correspondence, which was initially
proposed due to the scaling behavior of entropy in black holes
[69], while the fidelity susceptibility is dual to the volume of
codimension one time slice in AdS spacetime [70]. Therefore,
it is quite intriguing to check whether the FSS of the universal
order parameters applies also in the quasiperiodic models.

III. VON NEUMANN ENTROPY

The first attempt along this vein focuses on the study of
quantum entanglement. As a pure quantum concept with no
classical counterpart, entanglement describes nonlocal corre-
lations between the constituents of quantum systems. During
the last decade, there has been an increasing interest in the
entanglement properties of quantum systems, in particular
in specifying quantum criticalities [71–73]. Quantum entan-
glement is especially suitable for characterizing phases that
lack explicit local order parameters, such as topological states
[74,75], spin liquids [76], and topological order [77]. It is
noted that the outcomes of entanglement witness rely heavily
on the possible partition of the Hilbert space, the so-called
entanglement cuts, which can be performed on real space,
momentum space, or internal degrees of freedom of fermions
[78]. The many-body entanglement entropy can be formulated
in terms of the covariance matrix restricted to the subsystem,
which is the manifestation of the large gaps in the single-
particle energy spectrum and very sensitive to the subband
structure of the spectrum [79]. Despite the extensive literature
on the criticality measures related to wave function, there
have been only very few works exploring the entanglement
entropy in the AAH model near criticality [80–83]. The spatial
entanglement entropy of a quantum state is a common thread
for analyzing the delocalized-localized transitions. In the de-
localized phase, where the wave function is extended over
many sites, one may expect considerable correlation spreads
in the system and thus the entanglement entropy therein is
larger than that in the localized phase. The single-particle
states show an interesting multifractal behavior extending to
all length scales, which is reflected by the nonlinear depen-
dence of the fractal dimensions Dq on q, q � 0, defined via
the scaling of the q-order IPR:

Dq =
〈

ln
∑

j |ψk, j |2q

(1 − q) ln N

〉
, (7)

where 〈·〉 denotes the average over all kth eigenstates. By
performing the FSS of the mean IPR, the fractal dimensions
D2 = 1 and 0 characterize the self-similar behavior for the
EP and the LP, respectively, whereas 0 < D2 < 1 implies
multifractality in critical states. We are aware of the fact
that the entanglement entropy has not yet been employed to
analyze the multifractal structure in the AAH model with
p-wave pairing, although an upper bound for the entanglement
entropy for any eigenstate with a given fractal dimension was
established [84].

To this end, we here conduct the analysis of the single-site
entanglement entropy. For spinless noninteracting fermions in
the AAH model, there are two local states at the jth site, i.e.,
|1〉 j , |0〉 j , corresponding to states with one and zero particles,
respectively. Considering a generic eigenstate for Hamiltonian
(1) that can be obtained by diagonalizing Eq. (4), the single-
site reduced density matrix ρk, j for the kth eigenstate at the
jth site can be written as

ρk, j = |uk, j |2|1〉 j〈1| j + (1 − |uk, j |2)|0〉 j〈0| j . (8)
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FIG. 1. (a) The SAEE 〈S〉 versus the incommensurate poten-
tial strength V for various system sizes N . (b) The scaling of 〈S〉
for different V . Here periodic boundary conditions are used with
� = 0.5, φ = 0.

Consequently, the single-site von Neumann entropy associ-
ated with site j can be expressed as

Sk, j = −|uk, j |2 ln |uk, j |2 − (1 − |uk, j |2) ln(1 − |uk, j |2). (9)

For quasiperiodic systems, the spatial von Neumann entropy
for the kth eigenstate over different sites is given by

Sk =
N∑

j=1

Sk, j, (10)

and the spectrum-averaged entanglement entropy (SAEE)

〈S〉 = 1

2N

2N∑
k=1

Sk . (11)

Figure 1(a) shows the SAEE as a function of the incom-
mensurate potential V for various system sizes N with � =
0.5 and φ = 0. One can observe that 〈S〉 displays sudden falls
at Vc1 = 2|J − �| and Vc2 = 2|� + J|. It is clear that 〈S〉 has
a lower value in the LP than that in the delocalized phases.

FIG. 2. The fitted values of (a) κ and (b) S0 in Eq. (13) for
N = F3�+1 and F3�+2. Here periodic boundary conditions are used
with � = 0.5, φ = 0.

In the EP and the CP, 〈S〉 shows a monotonic increase as the
system sizes N increase, in stark contrast to the decreasing
tendency in the LP. We then assume an Ansatz of the FSS for
〈S〉 in the vicinity of Vc1 under investigation [67]:

〈S〉 = NβS/ν S̃(|V − Vc1|N1/ν ), (12)

where βS is the corresponding critical exponent, and S̃ is a
universal scaling function [68].

Figure 1(b) reveals that the SAEE in the delocalized phases
follows the law

〈S〉 = κ ln N + S0, (13)

with the asymptotic prefactor κ and the nonuniversal residual
entropy S0. The fitted values κ and S0 are displayed in Fig. 2
for different quasiperiodic potential strengths. For V < Vc1,
〈S〉 has a negligible dependence on V . A close inspection for
N up to 6765 finds κEP ≈ 0.500, which is almost identical
with the mean spectral exponent α0 = 0.5 [85]. Especially for
the homogeneous case V = 0, the system is simply a single-
band Kitaev Hamiltonian. The spatial entanglement entropy
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becomes equivalent to the Meyer-Wallach measure of multi-
partite global entanglement [86,87], while for Vc1 < V < Vc2,
the overall logarithmic scaling of 〈S〉 is decorated with an
oscillation of a two-subsequence period. One has to fit the data
for N = F3�+1 and N = F3�+2 separately. Despite wide fluctu-
ations, the fitted slope is nearly a constant as κCP ≈ 0.414. In
fact, in the limit q → 1, Eq. (7) provides important informa-
tion on the effective dimension of the support set for the mean
entanglement entropy in Eq. (11), which scales as 〈S〉 ∼ ND1

given by D1 = κCP/κEP in the Nambu space [88]. We note that
the value is close to the maximal fractal dimension D2 ≈ 0.82
in the ground state of the Harper model [85]. The fluctuations
are reflected in the fitted values of S0, which varies with V .
One observes 〈S〉 first grows and then declines until saturating
to finite values in the limit N → ∞, thus yielding κLP → 0
in Eq. (13) for localized wave functions. We can anticipate
〈S〉 ≈ 0 in the extremely localized phase for V → ∞. In the
localized phase, all one-particle eigenstates are localized on a
length Nloc. For lengths larger than the localization length Nloc,
the wave function consists of a single isolated structure and its
correlation dimension D2 is zero. One may expect that in large
systems N  Nloc the length scale is set by the localization
length Nloc rather than the system size N ; the entanglement
entropy in Eq. (13) may be rewritten as 〈S〉 = κloc ln Nloc + S0

[89]. The Ansatz is expected to deteriorate when the diverging
localization length becomes comparable with the system size.
It is evident that Eq. (13) implies that βS = 0 in the vicinity
of the EP-CP transition. To refine more critical exponents, we
have to resort to the first derivative of the SAEE as

d〈S〉/dV = N (1+βS )/ν S̃′(|V − Vc1|N1/ν ), (14)

where S̃′(·) is the first derivative with respect to the argument.
Using the Ansatz in Eq. (14), we perform the FSS for an odd
number of system sizes around the critical point Vc1. As shown
in Fig. 3(a), the minima of d〈S〉/dV become deeper and the
corresponding positions of the valleys Vm converge toward
the critical points with increasing the system sizes. A careful
analysis easily identifies that Vm are above Vc1 for N = F3�+1,
while they are below Vc1 for N = F3�+2. The two-subsequence
behavior of d〈S〉/dV can be manifested by taking the
logarithm on both sides of the Ansatz (14),

ln d〈S〉/dV = [(1 + βS )/ν] ln N + ln S̃′(|V − Vc1|N1/ν ). (15)

To be concrete, the power-law relations can be further identi-
fied as ∣∣∣∣

(
d〈S〉
dV

)
min

∣∣∣∣ = S̃′(0)N (1+βS )/ν, (16)

|Vm − Vc1| ∝ N−1/ν . (17)

The linear scaling relations are confirmed by the numerical fit-
tings in the insets of Fig. 3(a). The extrema of d〈S〉/dV satisfy
ln |(d〈S〉/dV )min| = (0.953 ± 0.095) ln N − (4.552 ± 0.608)
and ln |(Vc1 − Vm)| = (−0.962 ± 0.117) ln N + (0.458 ±
0.169) for N = F3�+1, suggesting βS = 0, ν = 1.000.
Similarly, for N = F3�+2 the linear fit to the log-log plot
yields ln |(d〈S〉/dV )min| = (0.980 ± 0.027) ln N − (4.147 ±
0.183) and ln |(Vc1 − Vm)| = (−0.998 ± 0.010) ln N +
(1.378 ± 0.071). Apparently the estimated values of critical
exponents agree well with each other, which are independent

FIG. 3. (a) d〈S〉/dV with respect to V with the system sizes N =
89, 377, 1597. The left and right insets show the scaling behavior
of ln |(d〈S〉/dV )min| and ln(|Vm − Vc|) for N . (b) [(d〈S〉/dV )min −
(d〈S〉/dV )]/(d〈S〉/dV ) as a function of the scaled variable N1/ν (V −
Vm ). All curves for odd number of lattice sizes collapse into two sep-
arate curves when we choose the correlation-length critical exponent
ν = 1.000. Here � = 0.5 and φ = 0.

of the Fibonacci subsequence. Figure 3(b) shows that the
scaled d〈S〉/dV near criticality for different values of N
superposes onto two separate scaling functions when the
correlation-length critical exponent ν = 1.000 is chosen. The
perfect data collapse validates the scaling relation in Eq. (14).

IV. GENERALIZED FIDELITY SUSCEPTIBILITY

It has been shown that the multipartite entanglement dic-
tates not only the position of critical points but also the
correlation-length critical exponent ν. However, according to
the Widom scaling hypothesis [90], there are generally two
independent critical exponents and thus a second indepen-
dent critical exponent plays a decisive role in determining
the universality class. We then endeavor to apply GFS to
obtain the dynamical exponent z, which has been successfully
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developed in the CP-LP transition of the p-wave-paired AAH
model [59]. The fidelity susceptibility has been regarded as a
vital tool to identify critical points by measuring the rate of
change for a given state after a sudden infinitesimal quench
of the tuning parameter [91]. It should be emphasized that
the ground-state fidelity susceptibility is unable to witness the
EP-CP transition, as is shown in Appendix A. As a result,
the GFS associated with an eigenstate |ψk〉 has a visible im-
plication on the response of the system, which is given by a
summation form [92,93]

χ
(k)
2r+2 =

∑
k′ �=k

|〈ψk′ |∂V Ĥ |ψk〉|2
(εk′ − εk )2r+2

, (18)

where |ψk′ 〉 and εk′ correspond to the k′th eigenstate and
eigenvalue of Hamiltonian (1), respectively. In parallel with
Eq. (11), it is tempting to speculate that the spectrum-averaged
fidelity susceptibility serves as an effective tool for char-
acterizing the quantum criticality in the AAH model. In
Appendix B, we unveil that there is no qualitative difference
between the average fidelity susceptibility and the typical
fidelity susceptibility.

In this following, we focus on the GFS of the lowest
eigenstate |ψ1〉. In this case, Eq. (18) reduces respectively
to the second derivative of χ1 ≡ ∂2ε1/∂V 2 for r = −1/2
and the standard fidelity susceptibility χ2 ≡ 〈∂V ψ1|∂V ψ1〉 −
〈∂V ψ1|ψ1〉〈ψ1|∂V ψ1〉 for r = 0 [91]. Accordingly, the GFS of
a finite system with size N in the neighborhood of Vc1 shall
obey the universal scaling form [94]:

χ2r+2 = Nβr χ̃r (|V − Vc1|N1/ν ), (19)

where βr ≡ 2/ν + 2zr is the critical adiabatic dimension, and
χ̃r is a regular universal scaling function of the GFS of order
2r + 2. With increasing the system sizes N , the peaks of
GFS become sharper and the peak position Vm approaches
the critical point. However, in the actual calculation, Vm is
quite close to Vc1 for a moderate N owing the accelerated
convergence of the fidelity susceptibility and thus Eq. (17)
is beyond the current numerical accuracy. The determination
of critical exponents can be only recapitulated through the
following relation:

χ2r+2(Vm) = χ̃r (0)Nβr . (20)

Considering the fidelity susceptibility is proportional to
the system size far away from the critical point, we show
the fidelity susceptibility per site χ2/N as a function of the
incommensurate potential V for � = 0.5 in Fig. 4(a). The
peaks of the fidelity susceptibility around the critical point
Vc1 = 1.0 become more pronounced for increasing the system
sizes N . The maxima of χ2 show a power-law divergence,
manifested by a linear fit between the maximum of ln χ2 and
ln N . We can also observe a two-subsequence behavior and the
fitted slopes give rise to β0 ≡ 2/ν = 1.991 ± 0.007 (1.972 ±
0.035) for N = F3�+1 (F3�+2) according to Eq. (20). There-
fore, the retrieved correlation-length exponent corresponds
to ν = 1.005 ± 0.018 (1.014 ± 0.018) for N = F3�+1 (F3�+2).
To coin the single-parameter scaling hypothesis in Eq. (19),
we also plot the rescaled fidelity susceptibility [χ2(Vm) −
χ2(V )]/χ2(V ) as a function scaled variable N1/ν (V − Vm).
When ν = 1.000 is chosen, the curves with distinct system

FIG. 4. (a) The fidelity susceptibility per site χ2/N as a function
of the incommensurate potential strength V around Vc1 = 1.0. The
inset shows the scaling behavior of the maxima versus the system
sizes for N = F3�+1: 13, 55, 233, 987, 4181 and N = F3�+2: 21,
89, 377, 1597, 6765. (b) Scaled fidelity susceptibility [χ2(Vm ) −
χ2(V )]/χ2(V ) as a function of the scaled variable N1/ν (V − Vm ).
All curves collapse into two separate curves when we choose the
correlation-length critical exponent ν = 1.000. Here periodic bound-
ary conditions are used with � = 0.5, φ = 0.

sizes in the vicinity of Vc1 collapse onto two scaling func-
tions, as are evinced in Fig. 4(b). In order to extract the
dynamical exponent z of the transition between the EP and
the CP, we further study higher-order GFSs. One can easily
notice that χ3 and χ4 display much more divergent peaks
than χ2 in the vicinity of the critical point, showing that
the higher-order GFSs are more efficient in spotlighting the
pseudocritical points. The scaling behaviors between ln χ3,max

and ln N are displayed in Fig. 5(a). According to Eq. (20), the
linear fittings of the log-log plot give rise to β1/2 ≡ 2/ν +
z = 5.607 ± 0.009 (5.607 ± 0.009) for N = F3�+1 (F3�+2),
corresponding to the dynamical exponent z ≡ β1/2 − β0 =
3.616 ± 0.002 (3.615 ± 0.018). Subsequently, the fitting
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FIG. 5. Scalings of (a) χ3,max and (b) χ4,max with respect to sys-
tem sizes N . Scaled fidelity susceptibilities (c) [χ3(Vm ) − χ3(V )]/
χ3(V ) and (d) [χ4(Vm ) − χ4(V )]/χ4(V ) as a function of the scaled
variable N1/ν (V − Vm ) for odd number of lattice sizes. All curves are
collapsed into two separate scaling functions: one for N = F3�+1 and
the other for N = F3�+2 when we choose the correlation-length criti-
cal exponent ν = 1.000. Here we take periodic boundary conditions
with � = 0.5 and φ = 0.

lines of ln χ4,max with respect to ln N are exhibited in
Fig. 5(b), whose slopes yield β1 ≡ 2/ν + 2z = 9.220 ± 0.007
(9.201 ± 0.023) for N = F3�+1 (F3�+2), corresponding to z ≡
(β1 − β0)/2 = 3.615 ± 0.001 (3.615 ± 0.006). The curves
for χ3 and χ4 near the EP-CP transition can be separately
rescaled onto two different universal curves for odd numbers
of lattice sites with the same exponent ν = 1.000, as seen
in Figs. 5(c) and 5(d). Since there is no gap scaling of ε1

around Vc1, a relevant spectral gap can be defined as εr ≡
ε3 − ε2. Fitting εr with respect to the system size N yields
z = 3.610 ± 0.017 (3.617 ± 0.022) for N = F3�+1 (F3�+2), as
is revealed in Fig. 6(a). As such, the extracted value of the
dynamical exponent z is in perfect agreement with the GFS
scaling.

Subsequently, we proceeded to extract ν and z for different
� utilizing the same strategy in Fig. 6(b). It is found that
the critical-length exponent ν ≈ 1.000 and the dynamical ex-
ponent z ≈ 3.610 are almost unchanged for varying �. We
note that the difference of estimated values of both critical
exponents between two Fibonacci subsequences of system
sizes is negligible. Numerical analysis shows that the phase
transition at Vc1 = 2|� − J| belongs to a different universality
class from the quasiperiodic Ising universality at Vc2 with
ν � 1.000, z � 1.388 [59].

V. DISCUSSION AND SUMMARY

In this paper, we pose an important and less understood
question relating to the universality class of the transition from
the extended phase to the critical phase in the Aubry-André-
Harper (AAH) model with p-wave pairing, which are both
gapped under periodic boundary conditions. Traditionally, for
a conventional quantum many-body system described by a
local Hamiltonian, it is accepted that two gapped ground states

FIG. 6. (a) The scaling behavior of the minima of εr ≡ ε3 − ε2

versus N around the critical point Vc1 = 1.0 for � = 0.5. (b) The
fitted values of critical exponents ν and z as � varies for N = F3�+1

(solid symbols) and F3�+2 (open symbols). Here we take periodic
boundary conditions with φ = 0.

that are connected without gap closing are generally consid-
ered to belong to the same quantum phase. The undecidability
of local order parameters exerts an obstacle of comprehend-
ing the nature of the transition between the extended phase
and the critical phase. Nevertheless, this phase transition is
reflected in the spatial variation of the wave function and
can only be captured by quantities that probe its extended or
localized nature, such as the inverse participation ratio (IPR),
the bandwidth distribution, and the level spacing distribution.
To this end, we investigate the quantum criticality and univer-
sality in the AAH model from the perspective of information
measures. In particular, we can extract the universal infor-
mation through the finite-size scaling of these measures, an
impressive result given the limited number of system sizes
in the quasiperiodic systems, whose system sizes are rapidly
growing three-subsequence Fibonacci numbers.
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The extended phase and the critical phase are characterized
by a logarithmic divergence of spectrum-averaged entangle-
ment entropy (SAEE) with the coefficients independent of the
incommensurate modulation within each phase, in analogy
to the bipartite entanglement entropy in the gapless phase.
Notice that many-body entanglement entropy in two gapped
phases admits the area-law scaling in this case. In the ex-
tended state the prefactor is found to be equal to that of
the conformally invariant homogeneous system, while in the
critical state the prefactor is reduced to a smaller value, which
can mark the fractal dimension. Meanwhile, the SAEE will
saturate toward a constant for localized states. It becomes
evident that the phase transitions in the AAH model are
not thermodynamic phase transitions due to the absence of
an explicit symmetry breaking. The transition between the
extended phase and the critical phase can be ascribed to
a reduction of the effective dimensionality across the crit-
ical point. We formulate Widom-like scaling Ansätze for
the SAEE and its derivative, which are corroborated by an
acceptable collapse for odd number of lattice sizes with a
properly chosen correlation-length critical exponent ν. The
numerical results indicate that the multipartite entanglement
can provide us a deep understanding of critical phenomena in
quasiperiodic systems. Furthermore, we show that the eigen-
state generalized fidelity susceptibility (GFS) proves to be
an accelerated method for identifying the location of critical
points. More importantly, the versatility in GFSs of different
orders poses an efficient avenue for retrieving the dynami-
cal critical exponent z, which is unable to be obtained from
nonclosing gap and standard fidelity susceptibility across the
extended-critical transition. The GFSs in the vicinity of the
critical point Vc1 scale onto two separate scaling functions
for each subsequence of odd system sizes N with ν � 1.000
and z � 3.610. The extracted critical exponents are different
from ones of the critical-localized transition point Vc2, i.e.,
ν � 1.000 and z � 1.388.

Our work is interesting from various points of view. First,
to the best of our knowledge, the critical exponents and the
universal scaling analysis of the extended-critical transition
in the p-wave-paired AAH model and other variants have
not been retrieved yet. Second, we find that multipartite en-
tanglement serves as a good indicator of phase transitions
with interesting scaling behavior, which can recapitulate the
fractal dimension. Third, we develop the strategy in terms of
GFSs to analyze the critical phenomena in quasiperiodic sys-
tems and prove that the eigenstate GFS plays an irreplaceable
role in describing the phase transition without gap closing.
We emphasize that the phase transitions under consideration
here, which cannot be diagnosed by the quantities associ-
ated with the many-body ground state, occur at the level of
a single eigenstate in noninteracting systems. Last but not
least, the rapid progress in quantum simulation sheds light
on the experimental measurement of the correlation-length
exponent ν and the dynamical exponent z with a finite number
of ultracold atoms. For instance, z and ν may be extracted
from specific-heat exponent α according to the hyperscaling
relation (d + z)ν = 2 − α or through the Kibble-Zurek ex-
ponent μ = ν/(1 + νz) [40,95]. Thus, the scaling hypothesis
provides a unified and comprehensive description of universal
order parameters, which is propitious for extracting the as-

sociated universal information from limited system sizes of
quasiperiodic quantum critical points. Our work paves a new
routine of exploiting quantum criticality and universality in
quasiperiodic and disordered systems. As a possible future
direction, the present investigations could be extended to vari-
ous generalized AAH models. We expect that the universality
of the extended-critical transition may preserve and in par-
ticular the scaling analysis should hold in generalized AAH
models, which even exhibit a mobility edge in the single-
particle spectrum.
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APPENDIX A: GROUND-STATE FIDELITY
SUSCEPTIBILITY IN FREE FERMI SYSTEMS

Equation (1) describes a quadratic Hamiltonian for
quasifree spinless fermions that in general is given by

H =
N∑

i, j=1

c†
i Ai jc j + 1

2

N∑
i, j=1

(c†
i Bi jc

†
j + c jBi jci ), (A1)

where A (B) is a symmetric (antisymmetric) real N × N
matrix, i.e., AT = A, BT = −B. The Hamiltonian (A1)
can be rewritten in the more compact form as H =
(�†C� + Tr A)/2, where �† = (c†

1, . . . , c†
N , c1, . . . , cN ),

� = (c1, . . . , cN , c†
1, . . . , c†

N )T , and C = σz ⊗ A + iσy ⊗ B.
In this case, the diagonalization of Eq. (A1) can be
implemented efficiently, as it involves operations in the
Nambu space of dimension N2, much less than the dimension
2N of the full Hilbert space.

We consider a linear transformation �′ = V �, where V =
12 ⊗ u + σx ⊗ v is orthogonal, with u, v being real matrices.
The transformation is canonical due to the preservation of the
anticommutation relations:

uuT + vvT = 1 and uvT + (uvT )T = 0. (A2)

Under the real canonical transformations, the Hamiltonian be-
comes H = (�′†C′�′ + TrA)/2, where the eigenvalue matrix
C′ = VCV T = σz ⊗ � with the N×N positive-semidefinite
diagonal matrix � = diag(�1, . . . , �N ). Here the fact that the
eigenvalues of C appear in pairs of real numbers of opposite
sign is guaranteed by the imposed particle-hole symmetry in
the Nambu representation.

In fact, all information of Eq. (A1), including ground-state
properties, can be decoded from an N2-dimensional auxiliary
real matrix Z ≡ A − B [96–98]. One can thus find that Z ′ =
A′ − B′ satisfies the simple relation

Z ′ = (u + v)Z (u − v)T . (A3)

One then has C′ = σz ⊗ A′ + iσy ⊗ B′, so that A′ = �, B′ = 0
and hence Z ′ = A′ − B′ = �. From Eq. (A3), by defining
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� ≡ u + v and � ≡ u − v, one finally gets the important
equations

�Z�T = � and �ZT �T = �. (A4)

Consequently, �, �, and � are simply given by the singular
value decomposition of Z = �T ��. Due to the canonical
conditions, the matrices � and � must be orthogonal. Then
we can derive straightforwardly the following relations �� =
�Z , �� = �ZT . As a consequence, � and � can be calcu-
lated by diagonalizing ZZT or ZT Z , given by

�ZZT = �2�, and �ZT Z = �2�. (A5)

Note that � and � cannot be calculated by diagonalizing ZZT

and ZT Z independently because of Eq. (A4). After solving
Eq. (A5) for orthogonal matrices �, � and diagonal matrix �,
one introduces u ≡ (� + �)/2 and v ≡ (� − �)/2, in terms
of which the canonically transformed operators diagonalizing
the Hamiltonian are defined by

ηk ≡
N∑

j=1

(uk, jc j + vk, jc
†
j ). (A6)

Finally, the Hamiltonian reads

H =
N∑

k=1

�kη
†
kηk + E0, (A7)

where E0 = Tr(A − �)/2 is the ground-state energy with �k

being single-particle energies.
The ground state can be obtained by imposing the con-

dition ηk|�0〉 = 0, ∀ k [99]. Recalling the singular value
decomposition of Z ,

Z = �T �� = (�T ��∗)(�T �) = PT, (A8)

giving rise to the polar decomposition of Z such that Z = PT ,
where P ≡

√
ZZ† = �T ��∗ is a positive-semidefinite ma-

trix and T = �T � is unitary. The ground state has an explicit
BCS-like form in the case of even parity [99],

|gZ〉 = N exp

⎛
⎝1

2

N∑
j,k=1

c†
j G jkc†

k

⎞
⎠|0〉, (A9)

where N is a normalization factor, |0〉 is the fermionic vacuum
(c j |0〉 = 0), and G is a real N×N antisymmetric matrix, which
satisfies

uG + v = 0. (A10)

Note that Eq. (A10) is not always solvable, corresponding
to cases where either the Ansatz (A9) does not hold or the
ground-state parity is odd. We will put these exceptions on
hold for the moment. We will assume Z is invertible and T is
well defined in the following.

When P (and hence Z) is invertible, by using Eq. (A4) one
can write u = �(1 + P−1

� Z )/2, v = �(1 − P−1
� Z )/2, with

P� ≡ �−1P�, so that if u is invertible one has

G = T − 1

T + 1
, (A11)

where G is the Cayley transform of T ≡ P−1
� Z , which is

the orthogonal part of the polar decomposition of Z . From

Eq. (A11), the orthogonality T T = T −1 readily implies the
antisymmetry GT = −G. The inverse Cayley transform then
yields T = (1 + G)/(1 − G), implying det T = 1. We can
then find that the spectrum of the real antisymmetric matrix
G is given by complex conjugate pairs of purely imaginary
eigenvalues.

With the above wisdom, we are ready to calculate the
ground-state fidelity as

F (Z, Z̃ ) ≡ |〈gZ |gZ̃〉|. (A12)

We give an explicit evaluation of the fidelity (A12) from
the unitary matrix T , which can be further simplified into
the following form by recognizing that (A9) is a fermionic
coherent state [100]:

F (Z, Z̃ ) = det(1 + G†G̃)1/2

det(1 + G†G)1/4 det(1 + G̃†G̃)1/4

=
√∣∣∣∣det

1 + T −1T̃

2

∣∣∣∣ =
√∣∣∣∣det

T + T̃

2

∣∣∣∣, (A13)

where T and T̃ are respectively the unitary matrices of Z ≡
Z (V ) and Z̃ ≡ Z (V + δV ) for infinitesimally close parameters
V and V + δV .

Using
√

det(M ) = det(
√

M ) and det(eM ) = eTr(M ),
Eq. (A13) can be further simplified as

F (Z, Z̃ ) =
√∣∣∣∣det

T + T̃

2

∣∣∣∣
= exp

{
Tr ln

(
1 + T †T̃

2

)1/2
}

= exp

{
Tr ln

(
1 + T †(T + δT )

2

)1/2
}

= exp

{
Tr ln

(
1 + T †δT

2

)1/2
}

= exp

{
Tr

1

2
ln

(
1 + T †δT

2

)}

≈ exp

{
Tr

[
1

4
(T †δT ) − 1

16

(
T †δT

)2
]}

, (A14)

where δT = ∂V T dV . The fidelity susceptibility is thus ob-
tained by [91]

χF(V ) = lim
δV →0

−2 ln F

δV 2
. (A15)

To this end, Eq. (A15) can be rewritten in terms of the unitary
matrix T as

χF = 1
8‖∂V T ‖2

F , (A16)

where ‖M‖F ≡
√

Tr(MM†) is the Frobenius norm. As is ob-
served in Fig. 7, the fidelity susceptibility manifests divergent
peaks at Vc2, while there is no anomaly across Vc1 without gap
closing.
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FIG. 7. The ground-state fidelity susceptibility χF/N as a func-
tion of the incommensurate potential strength V for different sizes N .
Here periodic boundary conditions are used with � = 0.5, φ = π .

APPENDIX B: SPECTRUM-AVERAGED
FIDELITY SUSCEPTIBILITY

It has been widely recognized that the fidelity susceptibil-
ity is extensive far away from criticality and superextensive
at criticality with a vanishing small gap. In computing the
spectrum-averaged fidelity susceptibility, the arithmetic mean
is highly sensitive to large values of certain eigenstates, while
the geometric mean gives rise to a more representative mea-
sure of the typical values of the physical quantity under
consideration. Especially in the vicinity of the critical points,
large fidelity susceptibilities skew the arithmetic average to-
ward a greater value than the typical one. The arithmetic mean
generally provides an upper bound for the geometric mean
when taking the mean of a set of positive values and they
become equal only when averaging over a constant set of
values. We will define the average fidelity susceptibility as

χ ave
2 ≡ 1

2N

2N∑
k=1

χ
(k)
2 , (B1)

and the typical fidelity susceptibility as

χ
typ
2 ≡ exp

(
1

2N

2N∑
k=1

ln χ
(k)
2

)
. (B2)

We show both types of spectrum-averaged fidelity
susceptibilities for the AAH model with p-wave
pairing around Vc1 = 1.0. We can observe similar
behaviors in Fig. 8. Linear fits of local peaks reveal
ln(χ typ

2,max) = (1.941 ± 0.121) ln N − (5.472 ± 0.608) and
ln(χ ave

2,max) = (1.957 ± 0.038) ln N − (5.260 ± 0.388) for

N = F3�+1, while for N = F3�+2, we have ln(χ typ
2,max) =

(1.9678 ± 0.054) ln N − (4.994 ± 0.295) and ln(χ ave
2,max) =

(1.969 ± 0.048) ln N − (4.827 ± 0.265), suggesting that the
extracted coefficients of the slopes for the correlation-length

FIG. 8. The spectrum averaged fidelity susceptibility per site
(a) χ ave

2 /N and (b) χ
typ
2 /N as a function of the incommensurate

potential strength V around Vc1 = 1.0. The inset shows the scaling
behavior of the maxima versus the system sizes for N = F3�+1: 13,
55, 233, 987 and N = F3�+2: 21, 89, 377, 1597. Here periodic bound-
ary conditions are used with � = 0.5, φ = 0.

exponent agree well with each other. It is obvious that there is
no qualitative difference between the spectrum-averaged
fidelity susceptibilities (cf. Fig. 8) and the fidelity
susceptibility of |ψ1〉 [cf. Fig. 4(a)]. Therefore, it is
sufficient to retrieve the universal information through the
finite-size scaling of the lowest eigenstate for systems without
mobility edges.
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