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Many-body localization transition with correlated disorder
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We address the critical properties of the many-body localization (MBL) phase transition in one-dimensional
systems subject to spatially correlated disorder. Rather than starting from a microscopic model, we analyze the
transition within a strong-randomness renormalization group (RG) framework. We introduce disorder directly
at the level of scaling variables appearing in the RG and consider a general family of spatial correlations,
parameterized by how strong the fluctuations of the disordered couplings are when coarse-grained over a region
of size �. For uncorrelated randomness, the characteristic scale for these fluctuations is

√
�; more generally they

scale as �γ . We discuss both positively correlated disorder (1/2 < γ < 1) and anticorrelated, or “hyperuniform,”
disorder (γ < 1/2). We argue that anticorrelations in the disorder are generally irrelevant at the MBL transition.
Moreover, assuming the MBL transition is described by the recently developed renormalization-group scheme
of Morningstar et al. [Phys. Rev. B 102, 125134 (2020)], we argue that even positively correlated disorder leaves
the critical theory unchanged, although it modifies certain properties of the many-body localized phase.
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I. INTRODUCTION

In generic quantum many-body systems, interactions
scramble local quantum information and bring subsystems
towards thermal equilibrium [1–3]. This “thermalization” pro-
cess fails for systems in the many-body localized (MBL)
phase [4,5]. The MBL phase is best understood for systems
subject to strong spatial randomness, but is also believed
to occur for quasiperiodic potentials [6,7]. Systems deep in
the MBL phase possess an extensive set of emergent local
integrals of motion, “l bits”, which leads to area-law entan-
glement in all eigenstates as well as Poisson statistics in the
nearest-neighbor energy spacing distribution [8–12]. This is to
be contrasted with the thermal phase that features volume-law
entanglement and local energy-level repulsion conforming to
random matrix theory.

While the physical picture deep inside each phase is rel-
atively well understood, the transition between them remains
mysterious. Analytically, since the transition involves singular
changes in the structure of highly excited eigenstates, critical
properties cannot be extracted from a conventional low en-
ergy effective field theory approach.1 Furthermore, the lack
of exactly solvable models makes it difficult to pin down key

1The MBL-thermal transition is accompanied by a transition be-
tween Poisson and Wigner-Dyson local spectral statistics. Aspects of
this spectral transition can be understood from a novel effective field
theory discussed, for example, in Refs. [13] and [14]. Whether or not
these effective field theories can describe all the critical singularities
near the transition remains an open question.

ingredients that would go into a general conceptual frame-
work. Numerically, state-of-the-art exact-diagonalization is
limited to small system sizes L � 25 (see, e.g., Refs. [15–19])
and produces a correlation length exponent ν that appears
to violate the rigorous Harris bound ν � 2 in one dimen-
sion [20–22], making any attempt to extrapolate the critical
scaling difficult in the near future.

Recently, significant progress has been made by
means of approximate or phenomenological real-space
renormalization-group (RG) approaches [23–29]. In strongly
disordered systems, one should in general consider how entire
probability distributions of couplings flow as the system
is coarse grained. This kind of flow fits into the general
framework of strong disorder renormalization group (SDRG)
invented by Dasgupta-Hu-Ma in Ref. [30], rigorously
developed by Fisher in Refs. [31,32] and subsequently
applied to numerous examples (see the review articles
[33,34] for details). On the analytic side, the main appeal
of SDRG is that the flow equations sometimes admit exact
solutions, giving solvable models that are unavailable at the
microscopic level; on the numerical side, the computational
complexity of SDRGs is exponentially lower than that of
exact diagonalization, allowing simulations with O(107)
initial degrees of freedom and thus providing a better chance
of accessing the critical scaling.

Note that these RGs only attempt to describe the asymp-
totic MBL transition at the largest length and timescales,
while the finite-size or finite-time MBL crossover observed
in numerics (see Ref. [35] for recent results with corre-
lated disorder) and experiments is believed to be described
by “many-body resonances” involving rare superpositions of
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localized states that differ substantially in extensively many
local regions [36–38]. We will also assume the existence of
the MBL phase [8,39], see, e.g., Refs. [18,40–42] for recent
discussions.

Roughly, the existing RG schemes fall into two types. The
first type starts with microscopic l bits in the MBL phase,
which can delocalize due to rare resonances mediated by
interactions [24,26,27]. At strong disorder, resonant clusters
are isolated and localization is robust. But as the disorder is
reduced, resonances proliferate and tend to span the entire
system, leading to thermalization.

Unfortunately, due to the complexity of the cluster for-
mation rules, no analytic solution has been possible within
the first type of RGs, thus preventing a complete understand-
ing of the critical scaling. For this reason, we focus instead
on the second type of RG scheme, which aims for analytic
tractability at the expense of further coarse graining. The basic
strategy is to forget about individual spins and regard the
system as composed of alternating thermal (T) and insulating
(I) blocks initially decoupled from each other [23]. Disorder
in the microscopic couplings then translates to disorder in
a few important parameters that characterize each block—
the physical length, the localization length of any putative l
bits it contains, the rate of entanglement growth within each
block etc. [23]. When interactions between blocks are turned
on, individual blocks merge into larger and larger composite
blocks whose phase (T or I) and parameters are determined
iteratively in terms of the parameters of their constituents. In
the simplest block RG of this kind, there is a chain of blocks
indexed by i, where even/odd i’s correspond to T/I blocks,
respectively. Each block is characterized only by its physi-
cal length lT/I

i and at each RG step, the shortest block gets
absorbed into the surrounding blocks following a “symmet-
ric” RG rule lT/I

new = lT/I
i−1 + l I/T

i + lT/I
i+1 [25]. While completely

solvable, this RG missed the important asymmetry between
T and I blocks implied by the avalanche mechanism (a de-
tailed review of avalanche will be given in Sec. III B) [43]. A
followup Ref. [28] incorporated this asymmetry and obtained
a family of RGs, lT/I

new = lT/I
i−1 + αI/T lI/T

i + lT/I
i+1 , controlled by

the parameter αI/T . In the maximally asymmetric limit where
αI → ∞ and αT → 0 (henceforth referred to as GVS), the
important RG directions form a two-dimensional subspace in
which a critical curve separates the thermal and insulating
phases. The correlation length ξ is related to the distance δ

from the fixed line via ξ ∼ e
1√
δ , putting GVS in the Kosterlitz-

Thouless (KT) universality class. Some recent numerical
studies also seem consistent with KT scaling [44–47]. (Some
previous attempts to numerically extract the correlation length
ξ ∼ δ−ν from the RGs had found ν ≈ 3.3 as opposed to the
KT value ν = ∞, but these numerical values of ν exhibited
considerable finite-size drifts.)

A modification of the GVS rules was proposed, and moti-
vated on semimicroscopic grounds, in a paper by Morningstar
and Huse [29]. In effect, this RG scheme promoted the pa-
rameter αI in GVS to a dynamical variable that has its own
RG flow. The flow of the anisotropy is motivated by the
following physical picture, which we will explore in more
depth in Sec. III B. Slightly on the insulating side of the
MBL transition, a single small thermal block can thermalize

a large insulating region (of size set by the decay length of
l-bit-flip interactions) before its thermalization is eventually
blocked by the discreteness of energy levels in the insulator.
(At the critical point, this avalanche instead spreads through-
out the system.) Thus, a typical large insulating block contains
large thermal regions, through which correlations can spread
without exponential suppression (i.e., that act as local short
circuits for information). These short circuits renormalize the
effective decay length, making it possible for a single thermal
block to thermalize an even larger insulating region, and so
on. Thus the anisotropy parameter αI diverges in a specific
way at the transition. The critical behavior predicted by this
RG scheme was subsequently solved by Morningstar, Huse,
and Imbrie [48], and we will refer to it as the MHI scheme
in what follows. The critical exponent ν = ∞ of MHI agrees
with that of GVS, but the precise correlation length scaling
ξ ∼ δ− log log δ−1

differs from KT scaling. This can be traced
to the nonanalytic scale dependence of the coefficients in
the two-parameter MHI flow. From a general RG perspective
this scale dependence seems unnatural, but it has a natural
physical origin in terms of the flowing anisotropy parameter.
Moreover, the MHI solution lacks certain peculiar features
of the GVS solution: for example, the MHI solution predicts
that thermal regions in the insulating phase have a finite frac-
tal dimension that vanishes at the transition (consistent with
rare-region counting arguments), whereas the GVS solution
predicts fractal dimension zero in the MBL phase.

Since the physics of the MBL transition, within the MHI
scheme, is dominated by rare regions, it is natural to ask
how sensitive its unusual critical properties are to assumptions
about the statistics of these rare regions. A drastic way to
modify these statistics is to replace the random couplings
with quasiperiodically modulated couplings. In quasiperi-
odic systems, rare regions (to the extent that they exist) are
strongly spatially correlated, apparently invalidating many of
the assumptions of MHI. Indeed, some numerical studies
[6,7,49–56] and an application of the GVS RG scheme sug-
gest that the MBL transition has a very different character
from the random transition [57] (see also Ref. [58] for a differ-
ent prediction using RG approaches). If in fact there are two
different universality classes of the MBL transition [7], it is
natural to ask whether there might be many more, correspond-
ing to modulations that are neither conventionally random nor
quasiperiodic.

In the rest of this paper we study the effects of a family
of long-range (i.e., power-law) correlated disorder on the crit-
ical properties of the MBL transition.2 In Sec. II, we review
existing results and conjectures about the interplay between
long-range correlated disorder and critical singularities at
random fixed points, focusing on extensions of the conven-
tional Harris bound in the presence of correlated disorder.
In Sec. III B we specialize to the MHI RG rule in Ref. [48]
and review the quantum avalanche mechanism that motivates
it. In Sec. III D, we state the three main results of the MHI
analysis for uncorrelated disorder and preview our results on

2see, e.g., Refs. [59–63] for previous papers on the interplay be-
tween correlated disorder and single-particle localization.
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the effects of long-range correlated disorder. The key finding
is that correlations do not change the characteristics of fractal
thermal inclusions driving the transition and hence leave the
correlation length scaling near criticality invariant. In Sec. IV,
we give general arguments for the irrelevance of hyperuni-
form correlations in a wide class of asymptotically additive
RGs (which includes all existing phenomonological RGs for
the MBL transition). For positive correlations discussed in
Sec. V, no such general argument applies. Nevertheless, using
properties of the avalanche mechanism, we can still show
that critical singularities of the MHI RG are stable against
positive correlations, first via an intuitive physical argument
in Secs. V A, V B, and then through a more rigorous analysis
of the functional RG equations in Sec. V C (with some techni-
cal details relegated to the Appendices). Finally, in Sec. VI
we discuss the robustness of our result to changes in the
phenomenological RG rule and comment on the existence of
possibly relevant perturbations (for example the quasiperiodic
initial conditions considered in Refs. [57,64]).

II. LONG RANGE CORRELATIONS AND CRITICAL
EXPONENTS: A BRIEF HISTORY

The interplay between correlations and criticality has a
long history. The earliest papers focused on perturbations
around a clean critical point, where a simple scaling argument
gives a definitive stability criterion that generalizes the Harris
bound [20,21,65]. Suppose the correlation length scales as
ξ ∼ δ−ν where δ is the deviation of the order parameter from
its critical value. In the presence of disorder, δ is no longer
well defined globally. Any region of linear size L can be
described by the average order parameter δ̄ = 1

Ld

∑Ld

i=1 δi and
the standard deviation σ (δ̄). In order for the correlation length
scaling of the clean critical point to be stable, the fluctuation
σ (δ̄) over a correlation volume ξ d must be much smaller than
the mean δ. For uncorrelated/short-range correlated disorder,
σ (δ̄) ∼ L−d/2 by the central limit theorem. Long-range corre-
lations generally modify this scaling to σ (δ̄) ∼ Ld (w−1) (w ∈
[0, 1] is defined as the wandering exponent), implying a sim-
ple stability criterion ξ d (w−1) = δ−d (w−1)ν < δ or equivalently
ν > 1

d (1−w) . This is the correlated Harris bound [66], which
reduces to the usual Harris bound once we take w = 1/2.

However, the above bound is inadequate for inherently
disordered fixed points (the MHI fixed point being an example
to keep in mind). Historically, two approaches have been taken
to cure this deficiency. The first approach is perturbative and
only covers stability around weak uncorrelated random fixed
points. The basic strategy is to perturb a clean fixed point
by weak uncorrelated disorder within a replica path integral
description and run the Wilsonian RG. When the disorder
is weakly relevant, the theory flows to a weak uncorrelated
random fixed point. After that, one adds weak correlated dis-
order to the uncorrelated fixed point and run the Wilsonian
RG again (see Refs. [67,68] for a detailed derivation that goes
through all the diagrammatics). The stability criterion thus
found agrees with the correlated Harris bound. The second
approach seeks to derive general bounds on ν for intrinsically
disordered fixed points (that may or may not arise as perturba-
tions of uncorrelated fixed points) [21,22]. The first rigorous

result along this line of thinking is the Chayes-Chayes-Fisher-
Spencer (CCFS) bound ν � 2

d proven in Ref. [21] for arbitrary
uncorrelated/short-range correlated disorder (including infi-
nite randomness fixed points). For correlated disorder, the
authors of Ref. [21] conjecture a correlated CCFS bound
ν � 1

d (1−w) . If true, this bound would provide a necessary but
not sufficient condition for stability, which is weaker than
the correlated Harris bound. (For example, if the uncorre-
lated fixed point has exponent ν, then it is unstable against
correlations with wandering exponent w when ν < 1

d (1−w) .
But the bound gives no information on stability otherwise.)
The stability criterion ν � 1

d (1−w) has been checked in all
SDRGs known to date (see Refs. [33,34] for comprehensive
reviews). Therefore, it is conceivable that ν � 1

d (1−w) is in fact
a necessary and sufficient stability criterion for arbitrary fixed
points, a conjecture that we will refer to as the generalized
Harris bound. We emphasize that to our knowledge there is no
convincing argument for the validity of the generalized Harris
bound at strong-randomness fixed points.

With this historical background in mind, let us return to
the MHI RG. Since the uncorrelated fixed point has ν = ∞,
the generalized Harris bound would suggest that long-range
correlations with arbitrary w �= 1 cannot change ν unless w

flows to 1 in the IR limit. In a large class of RGs including
MHI, we will explicitly calculate the flow of w and show that
it does not approach 1 in the IR (see Sec. IV). Therefore,
if we believe in the generalized Harris bound, the corre-
lated fixed point still has ν = ∞. This discussion leaves open
the possibility that the fixed point might flow to a different
universality class within the ν = ∞ family. As the scaling
theory of Ref. [69] shows, any microscopic RG rule with the
avalanche mechanism built in must lead to KT scaling, so
long as all β functions are analytic. MHI evades this argument
by generating logarithmic singularities in its β functions. But
since there are infinitely many types of nonanalyticities, it
is natural to expect that correlations can induce a different
type of singularity and give rise to a new universality class.
Surprisingly, under some weak assumptions, we will show
that this does not happen for any initial correlation with w < 1
(w = 1 corresponds to the unphysical case of perfect positive
correlations), implying that the MHI universality class is sta-
ble. The effect of more general perturbations to the RG initial
conditions (e.g., quasiperiodicity) remains an open question
that we hope will be addressed in future works.

III. MODEL SETUP AND SUMMARY OF RESULTS

A. Models of correlated disorder

Before introducing the RG rules, we give a heuristic moti-
vation for how spatially correlated disorder in a microscopic
model can affect the initial conditions of the RG. For con-
creteness, one can have in mind the paradigmatic XYZ model

H =
∑

i,β=x,y,z

Jβσ
β
i σ

β

i+1 +
∑

i

hiσ
z
i , (1)

where hi is a set of spatially correlated random fields with vari-
ance W . Given a particular choice of correlation, we assume
that there exists a critical disorder strength W = Wc separating
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FIG. 1. Correlated disorder. From top to bottom, the three panels show three long-range correlated random sequences with wandering
exponents w = 0.75, 0.5, 0 respectively. The vertical axis 
 measures deviation from the mean and the horizontal axis is a spatial index
for sequence elements. The positively correlated sample features many long stretches of consecutive blocks on one side of the mean. The
uncorrelated sample has fewer stretches, while the hyperuniform sample has strong local anticorrelation and hence no coherent fluctuation. In
the RG, we impose these long-range disorder correlations directly on the block parameters. The translation between microscopic disorder and
disorder in the block parameters is a complicated problem that is worth exploring in the future.

the thermal phase at weak disorder and the MBL phase at
strong disorder. For every random realization of {hi}, there are
contiguous regions where every |hi| is smaller than Wc. We
refer to these contiguous regions as “T blocks” (T for thermal)
and the regions intervening the T blocks as “I blocks” (I for
insulating). In general, the coarse-grained physical properties
of each T and I block will inherit some spatial correlations
from the microscopic statistics of {hi}. Since we will be inter-
ested only in the long-distance physics near the MBL-thermal
phase transition, we will directly inject spatial correlations
into the coarse-grained block parameters, assuming that they
arise from some more complicated unspecified correlations
in {hi}. The philosophy here is to demonstrate that critical
singularities of the MHI fixed point are preserved by the most
drastic long-range spatial correlations. In realistic models, the
disorder correlations might be weaker and our results would
continue to apply.

We now state more explicitly the forms of correlated
disorder that will be used in this paper. Consider a space
dependent field lx with 〈lx〉 = 0, 〈lxly〉 ∼ W 2C(|x − y|) with
C(·) the position space correlation function normalized so
that C(0) = 1. It is convenient to also introduce the Fourier
transform of C(x), which we refer to as the correlation
spectrum S(k) = ∫

eikxC(x)dx. Throughout the analysis, we
will be interested in a family of correlations with S(k) ∼k→0

|k|1−2w where w ∈ (0, 1) labels the wandering exponent.
When w > 1/2, the spatial profile C(x) ∼ |x|2w−2 is a long-

range “positive correlation” and coherent fluctuations are
enhanced. This is in contrast to “hyperuniform correlation”
with w < 1/2, where the spatial profile C(x) ∼ −|x|2w−2

for all x �= 0 indicates long-range anticorrelation.3 By vary-
ing the structure of S(k) near k = 0, we can therefore
access the full range w ∈ (0, 1) relevant for the general-
ized Harris bound ν � 1

d (1−w) . Some typical samples with
different wandering exponents are shown in Fig. 1. In
accordance with our expectations, positive/hyperuniform cor-
relations lead to local alignment/antialignment and hence a
higher/lower probability for the appearance of long sequences
on one side of the average. When positive correlations are
too strong, coherent fluctuations of contiguous spatial clus-
ters are heavily enhanced, leading to a smaller effective
system size. As a result, we will only be able to gen-
erate reliable samples up to w ≈ 0.85 for O(107) spatial
sites.

3Numerically, one can sample from these correlated distributions
by the following recipe: First draw a vector of independent Gaus-
sians ξx and then consider lx = WF−1[

√
S(k) · F [�ξ ]] where F

denotes a discrete Fourier transform. If we let qk = F (lx ), then it is
easy to check 〈qkq−k′ 〉 = W 2

∑
x,y eikx

√
S(k)e−ik′y√S(−k′)〈ξxξy〉 =

W 2S(k). Therefore, the output of the algorithm �l has the correct
spatial correlation 〈lxly〉 = W 2C(|x − y|).
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FIG. 2. Avalanche picture. The T blocks are treated as thermal baths satisfying ETH (the yellow clouds represent a swarm of scrambled
microscopic degrees of freedom). The I blocks are a chain of exponentially localized l bits. The red curves represent the exponentially decaying
interactions (with decay length ζ represented by the striped regions) between bath degrees of freedom and l bits in I blocks. When ζ is too
large, the bath degrees of freedom thermalize the l bits closest to boundary, thus growing the T-block length until the entire I block is absorbed.
When ζ is small, the T block cannot reach far beyond the boundary and the surrounding I blocks remains insulating. This is the basic physical
picture for the quantum avalanche introduced in Ref. [43].

B. Motivating the MHI RG from quantum avalanche

To motivate the MHI RG rules, we give a brief review of
the quantum avalanche mechanism introduced in Ref. [43].
The basic idea is to approximate each I block as a chain
of conserved l bits and each T block as a fully scrambled
thermal bath satisfying the eigenstate thermalization hypoth-
esis (ETH). For exponentially local interactions, the norm of
operators coupling the bath to l bits a distance x away decays
as 2−x/ζ for some decay length ζ . Now take a T block that
contains n0 microscopic spins. Upon coupling the T block to
nearby I blocks, interactions have a tendency to thermalize
l bits near the boundary. But if the decay length ζ is suffi-
ciently small, the T block may remain trapped in a sea of
l bits. This heuristic reasoning suggests the existence of a
critical ζc past, which thermalization continues indefinitely.
To derive ζc, suppose the T block has absorbed n/2 l bits
from each of the two nearby I blocks. Then the new bath
has size n0 + n. In order for the l bits further away to remain
insulating, we must demand the matrix element of interactions
between faraway l bits and the original thermal bath to be
much smaller than the average level spacing of the bath. By
the eigenstate thermalization hypothesis (ETH), the matrix
element coupling the bath and the nearest surviving l bit is
given by � ∼ 2−n/(2ζ )√

2n0+n
4 [1,2,43]. Comparing � with the level

spacing of the thermal bath δ ∼ 2−(n0+n), we see that the T
block remains trapped iff

2−n/(2ζ )

√
2n0+n

< 2−(n0+n) → − n

ζ
+ n0 + n < 0. (2)

For ζ > 1, the above condition can never be satisfied and the
T block absorbs more and more spins like snowballs in an
avalanche. Therefore the critical value is precisely ζc = 1. We
choose our length units so that n corresponds to the physical
length l I of an I block. Then by the criterion above, the
shortest T block that can thermalize an I block of length l I is
given by d = l I (ζ−1 − 1). Following the convention of MHI,

4Technically what appears in the denominator should be
√

eS(E )

where S(E ) is the entropy density associated with a typical infinite
temperature state. But for an order of magnitude estimate, it is
sufficient to approximate the denominator as 2Deff where Deff is the
dimension of the full Hilbert space.

we refer to d as the “deficit” (see Fig. 2 for a cartoon of the
avalanche mechanism). Deep in the MBL phase, we expect
that d

lI → const > 0. As the transition is approached from
the MBL side, d

lI → 0 as T blocks eat up larger and larger
I blocks, eventually taking over the entire spatial chain.

C. The recipe for MHI RG

The intuitive picture in Sec. III B immediately motivates
the following RG procedure:

(1) Consider a chain labeled by an integer index i ∈
{1, . . . , L} where odd/even i corresponds to T/I blocks. For
each T block, there is a single parameter lT

i denoting the
length of the T block. For each I block, there are two param-
eters l I

i , di denoting the physical length and the deficit length.
The initial sequences {lT

i }, {di} are two independent correlated
sequences with wandering exponent w generated by the recipe
in Sec. III A. The initial decay length ζ0 < 1 is chosen to be
spatially uniform so that di = l I

i (ζ−1
0 − 1) for all i. The value

of ζ0 can be used to tune across the phase transition.
(2) At each RG step, we find the cutoff  = mini{di, lT

i }.
If the shortest block is insulating, then the nearby T blocks
absorb it and acquire a total physical length lT

new = lT
i−1 + l I

i (=

xi

) + lT
i+1 where xi = ζ−1

i − 1. If the shortest block is thermal,
it is too short to destabilize the nearby I blocks and therefore
gets stuck in the middle (remember that di is the shortest
T block that can thermalize the ith I block and di, di+1 >

). This means we get a new I block with physical length
l I
new = l I

i−1 + lT
i (= ) + l I

i+1. The new deficit involves more
thought. The T block that gets stuck in the middle is a seed
for danger: an additional T block of length di−1 −  + di+1

could cooperate with the T block already nested inside the
new I block to destabilize all of the l bits in between. Thus,
contrary to naive expectations, dnew = di−1 −  + di+1 (see
Fig. 3 for a pictorial representation).

(3) After each RG step, di/l I
i and hence xi will not remain

uniform. So we perform an additional average over all I blocks
to obtain a single value x = 1

N

∑
i xi where N is the number

of blocks remaining when the cutoff is . Following this, we
update the deficit length to di = xlI

i .
(4) Steps 2 and 3 are repeated until  reaches the length

scale of interest.
At first sight, the averaging procedure in step 3 has the

potential to alter critical properties. But we show that this
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FIG. 3. RG rules. A pictorial representation of MHI RG rules.
Each I block is characterized by a deficit di (represented by the
striped region) and a physical length l I

i (striped plus gray region),
while each T block is characterized by a single physical length lT

i

(the orange region). On the LHS, the T blocks are longer than the
striped region and a T IT → T follows. On the RHS, the T block in
the middle is shorter than the striped region and a IT I → I ensues.

is not the case for weak inhomogeneities in xi at some late
stage in the RG: within the MBL phase, the average deficit
〈d〉 is much larger than , and the average 〈l I〉 is much larger
than 〈lT 〉. Therefore, the RG rule for IT I → I move (which
is the only move that can change xi, can be approximated
as dnew = di−1 + di+1, l I

new = l I
i−1 + l I

i+1. This means that
if xi−1, xi+1 are initially close, then min{xi, xi+1} < xnew =
(di−1 + di+1)/(l I

i−1 + l I
i+1) < max{xi−1, xi+1}. Therefore, in-

homogeneities are irrelevant under the RG flow.
Before analyzing the MHI RG in detail, we remark on

some important similarities and differences between the MHI
RG and the two-parameter GVS RG defined by the update rule

lT
new = lT

i−1 + αI l
I
i + lT

i+1, l I
new = l I

i−1 + αT lT
i + l I

i+1. (3)

In GVS, there are two ad hoc parameters αT , αI whose ratio
αI/αT encodes the asymmetric power of T and I blocks to
absorb their neighbors. The avalanche mechanism is crudely
realized as the limit where αI/αT → ∞. In MHI, the ratio
αI/αT is replaced by a much more physical parameter x−1,
which directly relates to the average decay length of I blocks.
Furthermore, instead of imposing a diverging x−1 from the
beginning, the MHI RG rules allow x to flow according to
the avalanche mechanism. Therefore, although GVS and MHI
are both motivated by the avalanche, MHI should be viewed
as a significant improvement over GVS where interactions
between nearby blocks are more faithfully represented.

D. Recap of MHI analysis and summary of new results

Now we turn to the analysis of the RG. The complete
data at each cutoff  consist of a probability distribution
P({di}, {lT

i }) for all remaining block parameters. When the
initial condition is spatially uncorrelated, the RG procedure
does not generate spatial correlations and P factorizes as

P

({di},
{
lT
i

}) =
∏

i

ρT


(
lT
i

)
μI

(di ) (4)

where ρT
(lT

i ), μI
(di ) are the single-block marginal distribu-

tions obtained from integrating over all but one of the block
parameters in P. In the continuum limit, the RG can then be
formulated as PDEs for ρT

,μI
 rather than the full P. This

simplifying feature is essential to the RG solution in Ref. [48].

The main findings of their analysis can be summarized as
follows:

(1) Eventually at infinite  and within the MBL phase,
x converges to some value on the fixed line {x > 0}. The
value of x determines the fractal dimension of thermal in-
clusions d f and the stretching exponent of T-block lengths
ε via ε = d f = log 2

log(x−1 ) . Physically, d f is defined so that a

composite T block with length lT late in the RG is made up
of microscopic T blocks with total length scaling as (lT )d f .
Relatedly, ε is defined so that ρT

(l ) ∼ e−#lε for large l . Both
d f and ε measure the difficulty of generating large T blocks in
the MBL phase and hence control dynamical properties whose
leading contribution comes from rare T block inclusions (e.g.,
the conductivity).

(2) The functional RG of T-block and I-block distributions
can be projected to a two-dimensional subspace spanned by
the excess decay rate x = ζ−1 − ζ−1

c and the thermal fraction

f = 〈lT 〉
〈lT 〉+〈l I 〉 . For technical reasons, it is more convenient to

replace f with y = x2

〈d〉 ρT
(), which we later demonstrate

to be approximately equal to f near criticality. The MBL
and thermal phases meet at a critical separatrix y(x) and the
correlation length exponent ν = ∞.

(3) The RG flow equations valid near the separatrix are
given by

dx

d
= − (1 + x)y


, y/x

=
(

y

x

)2

〈d〉μI
(). (5)

where 〈d〉 the expectation value of the deficit length and
μI

() is the probability density of having a deficit length pre-
cisely at cutoff. In the absence of correlations, 〈d〉μI

() ≈ 1
at large  and the second equation simplifies. One can then
infer the form of the separatrix y = x2. For an infinitesi-
mal perturbation δ0 away from the separatrix, the correlation

length scales as ξ ∼ δ
− log log δ−1

0
0 , which puts uncorrelated

MHI in a universality class distinct from the more familiar
Kosterlitz-Thouless transition (which also satisfies ν = ∞).

In the presence of correlations, technical challenges im-
mediately arise because the full RG flow can no longer be
captured by the single block marginal distributions. For hy-
peruniform correlations, we will give a general argument that
shows their irrelevance in a class of asymptotically additive
RGs (with the MHI RG as a specific example). For positive
correlations, irrelevance is a special property of the MHI
RG (and likely all asymptotically additive RGs based on the
avalanche mechanism). Via a combination of analytic and
numerical arguments, we will arrive at the following stability
results parallel to the main findings of MHI:

(1) At infinite , the fractal dimension of thermal inclu-
sions in an I block is d f ∼ log 2

log x−1 while the stretching exponent

for T blocks is ε ∼ log(2−η)
log x−1 where 0 � η < 1 is a constant

that cannot be determined precisely. This shows that ε, d f

can behave differently, although they match in the absence of
correlations.

(2) The correlation length critical exponent ν = ∞ is pre-
served.

(3) With some additional technical assumptions, the flow
equations along and below the separatrix will continue to take
the MHI form. However, positive correlations may potentially
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change the value of 〈d〉μI
() but do not modify the corre-

lation length scaling, up to nonuniversal constant coefficients
that are independent of , δ0.

IV. STABILITY AGAINST HYPERUNIFORM
CORRELATIONS

In this section, we define a general class of asymptotically
additive RGs (including the MHI RG as a special case) for
which hyperuniform correlations in the initial block configu-
rations do not modify the critical behavior in the vicinity of the
fixed point. To arrive at this conclusion, we will argue that any
initial wandering exponent w < 1/2 always flows back to the
uncorrelated value w = 1/2. This fragility of hyperuniform
correlations is to be contrasted with the robustness of positive
correlations, whose wandering exponents generally do not
flow under the same class of RGs.

We first explain the basic setup. Start with N0 spatial sites
labeled by an index i, such that microscopic blocks at site i
are characterized by p positive parameters Li,α=1,...,p bounded
from below by some initial RG cutoff 0. In each step of
the RG, these microscopic blocks combine to form larger
composite blocks whose parameters are determined by a set
of RG rules. The minimum of the updated block parameters
sets the new cutoff . We call the RG rules “asymptotically
additive” if parameters of the new block can be written as a
linear combination of parameters of the constituent blocks up
to corrections subleading in −1. In other words, the updated
block parameters approximately satisfy Lnew

i,α = ∑
j,β rαβLj,β

for some set of fixed constants rαβ independent of the spatial
location. To give a concrete example, consider the symmetric
RG of Ref. [25]. If we take a perspective slightly different
from Sec. I and view each neighboring pair of thermal and
insulating blocks as living on a single spatial site, then initially
we have a correlated sequence Li,1 = lT

i , Li,2 = l I
i . When the

shortest block is l I
i , the spatial site i is eliminated and the

spatial site i + 1 has an updated thermal length Lnew
i+1,1 = Li,1 +

Li,2 + Li+1,1 = lT
i + l I

i + lT
i+1; when the shortest block is lT

i ,
the spatial site i is eliminated and the spatial site i − 1 has
an updated insulating length Lnew

i−1,2 = Li−1,2 + Li,1 + Li,2 =
l I
i−1 + lT

i + l I
i . All nonvanishing components of rαβ are equal

to one in this example and we have asymptotic additivity.
One can easily verify that the GVS RG of Ref. [28] and the
MHI RG of Ref. [48] are also asymptotically additive with
p = 2, p = 3 respectively.

We now run a general asymptotically additive RG on
a spatial chain of length N0. The initial block parameters
are drawn from a translation-invariant probability distribution
where for every α, {Li,α} is a set of N0 spatially correlated
parameters with mean 〈Li〉 = L (L is a constant p-component
vector) and wandering exponent 0 < w < 1. As the RG pro-
gresses to some larger cutoff , the N0 microscopic blocks
are replaced by N composite blocks with parameters {LA,α}
where A = 1, . . . , N. It is useful to introduce a set of in-
tegers c(A) monotonically increasing with A such that the
composite block A contains all microscopic blocks with initial
spatial index i ∈ {c(A), c(A) + 1, . . . , c(A + 1) − 1}. In an
asymptotically additive RG, the composite block parameters
are approximately equal to a linear combination of param-

eters of microscopic blocks with i ∈ {c(A), c(A) + 1, . . . ,

c(A + 1) − 1}
LA,α ≈

∑
c(A)�i<c(A+1)

∑
β

r̃αβLi,β =
∑

c(A)�i<c(A+1)

L̃i,α, (6)

where L̃i,α = ∑
β r̃αβLi,β and r̃αβ is a set of coefficients that

depend on rαβ and the initial configuration {Li,α} in some
complicated way that will not be essential to the argument.

Now we think about the consequence of this additive struc-
ture for the wandering exponent w at scale . Recall that
w is defined such that σ [Lα (K )] ∼ Kw where σ [. . .] is
the standard deviation and Lα (K ) = ∑K

A=1 LA,α is a sum over
K consecutive composite blocks. Since the initial disorder
distribution is translation invariant, the average composite
block size 〈c(A + 1) − c(A)〉 = S is independent of A and
〈∑β r̃αβLi,β〉 = L̃α is independent of i. We thus have the fol-
lowing decomposition

σ [Lα (K )]2 =
〈(

K∑
A=1

LA,α − KSL̃α

)2〉

=
〈[

c(K )L̃α − KSL̃α +
c(K )∑
i=1

(L̃i,α − L̃α )

]2〉

= 〈[c(K ) − KS]2〉L̃α +
c(K )∑
i=1

〈[L̃i,α − L̃α]2〉

+ 2L̃α〈[c(K ) − KS][L̃i,α − L̃α]〉. (7)

In the last line, the first term captures fluctuations in the
number of microscopic blocks contained in the K composite
blocks. The second term captures fluctuations in the block
parameters holding the number of microscopic blocks fixed.
The third term encodes correlations between these two types
of fluctuations. We examine the cases L̃α = 0 and L̃α �= 0
separately.

(1) If L̃α = 0, then only the second term of (7) survives.
Since fluctuations in block parameters start out hyperuniform,
there is a chance that {L̃i,α} remains hyperuniform at all stages
(we will see an example of this later). If that is the case,
σ [Lα (K )]2 ∼ c(K )2w ∼ K2w and the wandering exponent w

does not flow.
(2) If L̃α �= 0 (which is the generic case), all three terms

in (7) compete. Initially, there is no hyperuniformity in the
number fluctuations because there is no fluctuation at all. Af-
ter n  N0 RG moves, there are N0 − 2n blocks of size 1 and
n composite blocks of size 2. The number fluctuations are now
directly associated with the fluctuations of spatial locations for
the n smallest numbers in a hyperuniform sequence of length
N0. We checked numerically that the distribution of these
locations do not inherit any hyperuniformity and the number
fluctuations have wandering exponent w = 1/2 early in the
RG. What does this mean in terms of the correlation spectrum
S(k)? The signature of hyperuniformity is a correlation hole
S(k) ∼ |k|1−2w as k → 0. Our argument above shows that a
dilute set of block combinations already fill the correlation
hole so that w = 1/2 and S(k) �= 0 as k → 0. To remove
this constant term and restore the correlation hole requires
an unphysical fine-tuning later on in the RG. Hence, even
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if the second term in (7) retains hyperuniformity, the first
term always wins since K1/2 � Kw for w < 1/2. As a result,
w → 1/2 late in the RG.

In contrast, positive correlations are signaled by a singular-
ity of S(k) near k = 0. Numerically we find that the singularity
is inherited by the number fluctuations and all three terms
in (7) scale as K2w with w > 1/2. Hence, w does not flow
for positive correlations.

The above casework implies that the only way to preserve
hyperuniform correlations in Lα (K ) is to have L̃α = 0 and L̃i,α

hyperuniform at all RG stages. In fact, a simple generalization
of the above argument shows that hyperuniformity can also
be preserved if a linear combination δi = ∑

α tαLi,α satisfies
the same properties. For general RG rules with p > 1 and
generic rαβ coefficients, no such special parameter can exist.
We therefore conclude that hyperuniformity is irrelevant in a
generic asymptotically additive RG. Since nonlinear RG rules
are even more destructive to the wandering exponents, we
expect the same conclusion to hold for nonlinear RGs.

To get a concrete feel for the argument, let us consider a
few examples. In the symmetric RG of Ref. [25], the basic
block parameters are just the lengths lT , l I of T/I blocks. The
RG rule is strictly additive and satisfies the assumptions in the
claim:

lT
new = lT

i + l I
i + lT

i+1, l I
new = l I

i−1 + lT
i + l I

i . (8)

At criticality, 〈lT 〉 = 〈l I〉 = O() �= 0 where  is the mov-
ing cutoff. Therefore, hyperuniform correlations in lT

A , l I
A get

washed out by the number fluctuations. The only order pa-
rameter that has zero mean is δA = lT

A − l I
A. But in general

δA cannot be written as a linear combination of microscopic
δi (this is easy to prove by contradiction). Therefore hyper-
uniform correlations are always irrelevant and ν(w < 1/2) =
ν(w = 1/2) ≈ 2.5 for every w < 1/2. This conclusion has
been checked through finite-size scaling numerics in Ap-
pendix C.

For the random transverse field Ising model (RTFIM)
with microscopic Hamiltonian H = ∑

i JiZiZi+1 + ∑
i hiXi,

the RG parameters for each block are βi = − log Ji and ζi =
− log hi with cutoff �= log �0−log � where � = max Ji, hi.
Late in the RG, � flows to infinity and βi, ζi � �� 0. The RG
rules are still linear combinations of βi, ζi:

βnew = βi − ζi+1 + βi+1, ζnew = ζi − βi+1 + ζi+1. (9)

These RG rules are identical to the symmetric RG except for
the minus signs. By our general arguments, the composite
block parameters 〈βA〉, 〈ζA〉 will not remain hyperuniform at
large . However, the special structure of the RG rules force
δA = βA − ζA = ∑

i∈A

∑
i βi − ζi. Since δA has zero mean at

criticality, we must conclude that number fluctuations do not
contribute and the fluctuations of δA remain hyperuniform
at all RG scales! In fact, an exact solution shows that the
hyperuniform RTFIM saturates the generalized Harris bound
for all values of 0 < w < 1/2 (see Ref. [70] for a complete
analysis of this problem).

Finally we come to the MHI RG. Clearly, the T IT → T
and the IT I → I moves are both asymptotically additive. But
within the MBL phase and along the critical separatrix, the
average deficit 〈dA〉, 〈lT

A 〉 �= 0 and hyperuniformity in lT
A , dA

is killed by the RG flow. Moreover, since the flow along

the critical separatrix ends in the localized phase, there is
an asymmetry between T and I blocks such that 〈dA〉

〈lT
A 〉 → ∞.

This means that there cannot be a zero-mean order parameter
written as a finite linear combination of dA, lT

A . As a result, hy-
peruniform correlations are always irrelevant in the MHI RG.
For positive correlations, the wandering exponent remains
different from the uncorrelated value for arbitrarily large ,
potentially giving rise to a new universality class within the
ν = ∞ family. Whether or not this occurs will be explored in
the next section.

V. STABILITY AGAINST POSITIVE CORRELATIONS

Positive correlations are generally relevant for asymptoti-
cally additive RG schemes. Nevertheless, for the MHI scheme
(and likely other asymptotically additive RGs based on the
avalanche mechanism with infinite ν at the uncorrelated ran-
dom fixed point) we will find that they are irrelevant. The
essential feature of avalanche-driven transitions that leads to
this conclusion is that the excess interaction decay rate x → 0
at the critical point. In what follows, we will specialize to
the MHI scheme and argue for each of the three properties
we previewed in Sec. III D: (1) that the scaling of the fractal
dimension d f is unmodified from MHI; (2) that the correlation
length exponent ν = ∞ for positive correlations; and (3) that
(under some technical assumptions) the scaling of the corre-
lation length is also unmodified from MHI.

A. Fractal dimension scaling survives correlations

We will use physical arguments to show that the structure
of typical T/I blocks near criticality is not affected by pos-
itive correlations. This analysis will not provide a concrete
understanding of the flow equations, but will be sufficient to
establish the more qualitative notions of stability captured by
properties (1) and (2).

The essential feature of the MHI RG that we will use
is the asymmetric thermalizing powers of T and I blocks:
While small T blocks can easily thermalize I blocks with
large physical lengths, I blocks must start out much larger
than their neighbors to remain insulating. Deep in the MBL
phase, the deficit lengths di of the I blocks are an appreciable
fraction of their physical lengths l I

i (i.e., x is not too small).
As a result, a rare T block that absorbs a neighboring I block
does not grow appreciably in size and has weak thermalizing
power. In order to cause an instability, we would thus need to
increase the thermal fraction f = 〈lT 〉

〈l I 〉+〈lT 〉 by seeding a critical
mass of T blocks. This implies the existence of a transition
point f∗ corresponding to every x∗ > 0. Now suppose we
decrease the value of x∗, then each T block has a higher
thermalizing power and the threshold f∗ should decrease. As
x∗ → 0, f∗ must also approach 0, because when x = 0, a
single T block automatically thermalizes the whole system
and no MBL phase can exist. Hence the critical point is pinned
at (x, f ) = (0, 0) even in the presence of positive correlations.
This argument is self-consistent as long as the fluctuations in
xi = di/l I

i are always much smaller than the mean, so that
all the I blocks late in the RG can be characterized by the
average x. This self-averaging property turns out to be true
everywhere outside the thermal phase: Due to the asymmetric
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thermalizing capacities, the MBL phase (including the criti-
cal separatrix) must satisfy 〈LI〉 > 〈d〉 � 〈lT 〉. Recapitulating
an argument in Sec. III D, the RG rule for IT I → I move
(which is the only move that can change xi), can be approx-
imated as dnew = di−1 + di+1, l I

new = l I
i−1 + l I

i+1. This means
that if xi−1, xi+1 are initially close, then min{xi−1, xi+1} <

xnew = (di−1 + di+1)/(l I
i−1 + l I

i+1) < max{xi−1, xi+1}, imply-
ing the irrelevance of inhomogeneities in {xi}. The exis-
tence of a well-defined separatrix even in the presence
of positive correlations has an immediate implication: if
we initialize the system sufficiently close to the separa-
trix, we will always end up in the regime where typi-
cal I blocks have uniformly small x and large physical
lengths.

As for the T blocks, living in between these gigantic I
blocks is a huge challenge, and they have to fight for every
opportunity to grow. Below the separatrix and within the
x, f  1 limit, the most efficient way to form large T blocks is
through successive T IT → T moves where lT

i−1 = lT
i+1 = 

and l I
i = 

x at every stage. The resulting fractal structure has
a fractal dimension d f ≈ log 2

log(2+x−1 ) , which slowly approaches
zero near the critical point. Now we would like to argue that
typical T blocks late in the RG have precisely this structure.
If the T block lengths lT

i were independently distributed,
then the probability of growing a fractal T block of length

l scales as exp −ld f ∼ exp −l
log 2

log x−1 . This is to be contrasted
with the probability of having a nonfractal T block of length
l , which scales as exp −l . As x → 0, exp −ld f � exp −l and
hence fractal regions dominate late in the RG, precisely as
shown in the uncorrelated MHI analysis [48]. In the correlated
case, to establish a similar dominance, we need two crucial
ingredients: (a) The probability of having a pair of neigh-
boring T block at cutoff CT T

 (,) should approximately
factorize into ρT

()2 where ρT
(l ) is the marginal distribution

of single T block lengths. (b) The presence of a T block at
cutoff should not be strongly correlated with the presence of a
neighboring I block at cutoff. This avoids the appearance of a
long chain T IT I . . . T where all I blocks are at cutoff and the
whole chain merges into a single T block with O(1) fractal
dimension.

To argue for these “factorization”-type results, we again
take advantage of the asymmetric thermalizing powers of T
and I blocks. Let us consider two composite T blocks with
length LT

A , LT
A+1, each containing O() microscopic blocks.

Then as x → 0, the composite I block sandwiched by the
T blocks contains at least O( 

x ) microscopic blocks, re-
flecting the asymmetry. If we denote the microscopic block
lengths by li, then by the general arguments of Sec. IV,
block length correlations dominate over number fluctua-
tions and the covariance of LT

A , LT
A+1 can be approximated

by

〈
LT

A LT
A+1

〉
conn ≈

〈(
∑

i=1

li

)(
∑

j=1

l
O
(


x

)
+ j

)〉
conn

∼
∑

i, j=1

1∣∣O(

x

) + j − i
∣∣c � 2

(


x

)−c

. (10)

On the other hand, the variance of an individual composite
block LT

A is

〈
LT

A LT
A

〉
conn =

〈(
∑

i=1

li

)(
∑

j=1

l+ j

)〉
conn

∼ 2−c. (11)

Comparing the two estimates above, we see〈
LT

A LT
A+1

〉
conn ∼ xc

〈
LT

A LT
A

〉
conn, (12)

implying that for every 0 < c < 1, the correlations between
nearby T blocks are asymptotically suppressed in the limit
x → 0. This argument easily generalizes to multipoint cor-
relations between distant composite T blocks, giving the

estimate
〈(LT

A )n(LT
A+B )n〉conn

〈(LT
A )2n〉conn

∼ xc/Bc. Hence, we have a robust
conclusion that the wandering exponent of T blocks wT →
1/2 as x → 0, and the joint distributions of multiple consec-
utive T blocks should factorize into products of marginals,
giving an even stronger version of ingredient (a). In con-
trast, the fluctuations of I block lengths retain the wandering
exponent wI > 1/2 of UV correlations. This is because the
T block in between nearby I blocks is negligibly short and
the asymptotic RG move is just successive I block additions
LI

new = LI
A + LI

A+1, which preserve the wandering exponent,
as we have shown in Sec. IV.

For ingredient (b), consider now nearby T and I blocks con-
taining  and /x microscopic blocks respectively. Imitating
the calculation before, we have

〈(
LT

A

)n(
LI

A+1

)n〉 − 〈(
LT

A

)n〉〈(
LI

A+1

)n〉 � [


(


x

)1−c]n

. (13)

Rewriting these correlators in terms of joint and marginal
distributions and dividing by a uniform factor x = d

LI , we have∫
lndnCT I

,c(l, d ) ∼
(

x



)cn[∫
lnρT

(l )

]
·
[∫

dnμI
(d )

]
.

(14)

The above moment estimates show that nearby T and I blocks
become weakly correlated late in the RG, thereby establish-
ing a quantitative formulation of ingredient (b). Moreover,
they motivate a stronger pointwise bound CT I

,c(l, d ) 
ρT

(l )μI
(d ) although no rigorous proof can be given in the

absence of additional regularity assumptions. For concrete-
ness, we provide in Fig. 4 some numerical evidence for this
pointwise estimate evaluated at the cutoff d = . Due to the
nature of ν = ∞ RGs, the critical window is extremely nar-
row and we cannot truly approach the x  1 regime even for
very large system sizes (∼4×106). But the trend of decaying
correlations in our numerics is consistent with all the analytic
arguments. We will use these facts again in the analysis of
Sec. V C.

In the bottom figure, we provide an alternative visual-
ization by fixing l = d =  and tracking the evolution of
CT I

,c(,) as a function of . One can clearly see that
|CT I

,c(,)| remains smaller than the product of marginals as
the RG progresses, consistent with (14). The results for CT T

,c

and CII
,c are qualitatively similar.

With ingredients (a) and (b) in hand, we return to the
argument about fractal dimensions. In the presence of UV
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FIG. 4. Suppression of the TI correlations. In the top fig-
ure we provide some numerical evidence for (14) by plotting
CT I

,c(l,)/ρT
(l )μI

() against the physical separation l . We initi-
ated the RG with 4×106 blocks and the top, middle, bottom panels
are snapshots taken when 2×106, 8×105, 1.4105 blocks remain.
Recall that correlations are suppressed when the joint distribution
CT I

 (l,) is close to the product of marginals ρT
(l )μI

() (or equiv-
alently, when the connected joint distribution |CT I

,c(l,)| is smaller
than the product of marginals).

positive correlations with decay exponent c, the probability
of growing a nonfractal T block with large length l scales as
exp −lc where c is the decay exponent of the correlations. By
the factorization argument above, the rare T blocks in the IR
are asymptotically independent and the probability of growing
a fractal inclusion of length l retains its uncorrelated scaling

exp −l
log 2

log x−1 . Comparing exp −l
log 2

log x−1 with exp −lc, we see that
for all 0 < c < 1, taking x  1 always guarantees that the
fractal inclusions eventually dominate over the nonfractal rare
regions, thereby establishing property (1). At first sight, one
may guess that d f is equal to the stretching exponent ε for the
T block distribution because the number of independent rare
events needed to form a rare T block with length l scales as ld f .
But the rarity of those events changes with scale (as pointed
out by Ref. [29]) and with the flow of correlations. Hence,

no precise relationship between ε and d f can be inferred,
although the singular scaling with x should be the same. With
additional technical assumptions, we will verify in Sec. V C
that this is indeed the case. In summary, the most dangerous
thermalizers that prevent the rapid decay of f near the critical
separatrix consist of typical T blocks in the x, f  1 regime
that are fractals with small fractal dimension. Positive corre-
lations might affect the statistics of rare dense T blocks with
larger fractal dimensions, but they play no role when we are
sufficiently close to the critical point.

B. Correlation-length exponent ν = ∞ survives correlations

The structure of typical T and I blocks described above
also helps us understand the correlation length exponent ν.
Let us define the RG time t = log , which keeps track of
the exponentially large physical time elapsed during the block
combination RG moves. At t = 0, we initialize the RG very
close to the critical separatrix and with x, f  1. In the two
dimensional space (x, f ), the separatrix near the fixed point
(0,0) can be approximated by a curve f (x) = xβ where β is
an undetermined coefficient. To define the correlation length
scaling, we slightly perturb away from the separatrix so that
f (x0) = xβ+δ0

0 for some small δ0 > 0 and ask at what RG
length scale  does δ(t ) grow to an O(1) number. Within this
framework, ν = ∞ indicates the failure of a standard scal-
ing ansatz (δ0) = δ−ν

0 . For example, the Kosterlitz-Thouless

transition obeys (δ0) ∼ ebδ−1/2
0 and the uncorrelated MHI

transition obeys (δ0) ∼ δ
− log log δ−1

0
0 . In both cases, (δ0)

grows faster than any power law in δ0, invaliding the hypoth-
esis of finite ν.

Now suppose we start on the separatrix of the correlated
MHI RG and slightly increase the value of x to stay in the
x  1 limit while moving below the critical separatrix. The
new starting point can be regarded as a small perturbation to
the correlated RG f0 = xβ+δ0

0 where δ0 depends smoothly on
the shift of x. Note that this shift does not change the structure
of fluctuations in the T/I blocks and the separatrix itself does
not shift. But since positive correlations enhance coherent
fluctuations, it should be more difficult for the RG flow to
bring the system off criticality and the correlation length
should diverge faster with δ0. Writing the correlation length
exponent ν(w) as a function of the wandering exponent w,
we then expect ν(w > 1/2) � ν(w = 1/2). In the x, f  1
regime, the uncorrelated MHI RG already has ν = ∞. Hence
we expect ν = ∞ for positive correlations as well.

To illustrate this general picture, we can analyze the fractal
inclusions that drive the critical fluctuations more carefully.
Each time a rare I block at cutoff gets absorbed by the near-
est T blocks, the new T block that forms has length O( 

x ).
Slightly off criticality and in the MBL side of the separatrix,
these are the dominant processes that prevent T blocks from
completely vanishing. Hence we can basically run the RG
in discrete steps, where the cutoff gets moved from  → 

x
in each step. If we denote the number of such discrete RG
steps by n, then 
t


n = log x−1. Along the separatrix, due to
critical slowing down, x(t ) is an inverse power law in t and
log x−1 ∼ log t . Therefore, upon integration, the total RG time
T is related to the total number of discrete RG steps by
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T ∼ N log N up to subleading corrections. Now we start with
a small deviation δ0 from the separatrix and suppose that δ(t )
becomes O(1) when t = T (δ0). Using the definition of ν, we
then conclude that

(δ0) ∼ eT (δ0 ) ∼ eN (δ0 ) log N (δ0 ) ∼ δ−ν
0 = eν log δ−1

0 . (15)

If ν < ∞, the above equation implies δ(n) ∼ en log n, which is
faster than the exponential growth δ(n) ∼ en seen in the un-
correlated MHI RG. In order to have such a super-exponential
growth, the fractal thermal inclusions controlling the transi-
tion would have to be easier to suppress in the system with
positive correlation than in an uncorrelated system. This is
opposite from the physical intuition that positive correlations
enhance coherent fluctuations (i.e., in this case the coherent
fluctuations are just the random production of larger and
larger fractal T blocks). As a result, ν = ∞ continues to hold
for positive correlations and property (2) is established. One
caveat of the above reasoning is that positive correlations
modify the location of the separatrix and a direct comparison
of the scaling ansatzes for uncorrelated and correlated RGs
is not strictly justified because δ0’s are defined with different
reference points. We will address these and other subtle issues
in the next section.

C. Precise argument for correlation-length scaling
based on the hierarchy of flow equations

The preceding intuitive discussion explains why positive
correlations are irrelevant on the level of typical fractal block
structures and correlation length exponent ν. However, even
if these results are true, there is no reason to expect that the
universality class of the transition also remains unmodified.
As we have seen, the correlation length scaling is determined
by the rate at which a small perturbation δ0 away from the
critical separatrix increases with the number of fractal steps
n. Since positive correlations are expected to suppress the
growth of δ0 with n, it is in principle possible that they modify
the uncorrelated MHI scaling δ(n) ∼ en to the KT scaling
δ(n) ∼ log n observed in earlier RG studies [28,69]. In fact, as
we will see, when connected correlators CT I

,c(l, d ) and their
higher-order analogues are sufficiently large, the asymptotic
flow equations projected to the two-parameter space will in-
deed have a different structure. Nevertheless, under suitable
assumptions that are supported by analytics and numerics, the
change in flow equations leaves the exponential scaling of
δ(n) invariant, thereby confirming property (3).

To prepare for this technical analysis, we begin by intro-
ducing some notations. As explained already in Sec. III D,
the RG equations form an infinite hierarchy where the flow
of joint probability distributions for n nearest-neighbor blocks
is controlled by a functional involving n + 2 nearest-neighbor
blocks. While this infinite hierarchy of equations is difficult to
solve, a lot of progress can be made by concentrating on the
few-body correlations. Following the convention of Ref. [48],
we first consider the marginal distributions ρT

(l ), μI
(d ) of

single-block lengths obtained from integrating out all but
one of the blocks in the full joint probability distribution
P( �d ), P(�LT ) (by translation invariance the choice of blocks
to integrate over does not matter). By counting the different

FIG. 5. Numerical RG flow. Flow lines of the MHI RG with
w = 0.75 and initial system size N = 4 · 106. The horizontal axis
ζ−1 is the average inverse decay length and the vertical axis f is the
thermal fraction 〈lT 〉/(〈lT 〉 + 〈l I〉). The different flows correspond
to initial values of ζ between 0.245 ∼ 0.305 in steps of 0.01. The
yellow critical flow separates the orange/grey flows, which land in
the T/I phase respectively. The ultra-thermal shaded region is inac-
cessible given the finite density of l bits to start with.

kinds of decimations that can occur at every RG step, we have
the following flow equations:

∂ρT
(l ) = ρT

(l )
[
μI

() + ρT
()

] − 2CT I
 (l,)

+
∫ l− 

x −



CT IT


(
l1,, l − 

x
− l1

)
dl1, (16)

∂μI
(d ) = μI

(d )
[
μI

() + ρT
()

] − 2CT I
 (, d )

+
∫ d



CIT I
 (s,, d +  − s)ds. (17)

These equations differ from MHI due to the appearance of
two-block and three-block joint distributions on the right-hand
side (RHS). In the absence of correlations, all joint distribu-
tions factorize into products of marginals and we recover a
closed set of PDEs for ρT

(l ), μI
(d ) as in MHI. Once we turn

on correlations, the equations no longer close, and we need
to do more work. Fortunately, from Sec. V A, we know that
the phase transition is controlled by a competition between
the tendency of T blocks to proliferate and the presence of
an excess decay rate x > 0 that protects l bits in the I block.
This competition can be understood by projecting the infinite-
dimensional flow to a two-dimensional subspace (x, f ) as
long as there is no additional relevant RG direction. We verify
this numerically by plotting the numerical RG flow lines for
different initial conditions and showing that they have no
crossing down to the largest length scales. An example of this
numerical check is shown in Fig. 5 for w = 0.75 and initial
system size L = 4×106.

Since the thermal fraction f is awkward to work with for
technical reasons, we introduce a rescaled variable y defined
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TABLE I. Notation for important variables.

T-block I-block length, Excess interaction Proxy for Marginal Joint Fractal
length deficit length decay rate thermal fraction distribution distribution dimension

lT /l l I , d x = 〈d〉
〈lI 〉 = ζ−1 − 1 y = 2r() ρT

(l ), μI
(d ) CT I...T

 (l1, . . .) df

as follows:

x = 〈d〉
〈l I〉 , y = 2r(), r(l ) = x

〈d〉ρ
T
(l ). (18)

In the insulating phase,

f = 〈lT 〉
〈l I〉 + 〈lT 〉 ≈ 〈lT 〉

〈l I〉 = x

〈d〉
∫ ∞



lρT
(l )dl. (19)

Along the separatrix, we will later show that 2ρT
() ≈

〈lT 〉, implying the asymptotic equivalence between f and y
at large . Below the separatrix, 〈d〉 grows as a stretched
exponential in  and y, f both tend to zero. Therefore, one
can loosely think about y as a “proxy for the thermal frac-
tion”. These and other notations are summarized in Table I for
convenient reference.

Some qualitative features of this projected RG flow are
now transparent. In the insulating phase, f → 0 and y → 0
as I blocks dominate over T blocks. A finite excess decay
rate x persists to infinite  and we land somewhere on the
MBL fixed line x > 0, y = 0; in the thermal phase, f → 1
and y → ∞ as 〈lT 〉 � 〈LI〉. Therefore, we expect a “critical
separatrix” in (x, y) marking a phase transition. To study this
separatrix and the critical scaling close to it, we need to derive
flow equations for x and y. The flow equation for x requires
only a single lemma:

Lemma V.1. The form of the flow equations for marginal
expectation values 〈lT 〉, 〈LI〉, 〈d〉 are unmodified by correla-
tions.

The proof of this lemma involves a tedious calculation,
which we include in Appendix A. Here, we will merely quote
the results,

d〈LI〉
d

= μI
()

[
〈LI〉 − 

x

]
+ ρT

()[〈LI〉 + ], (20)

d〈lT 〉
d

= ρT
()[〈lT 〉 − ] + μI

()

[
〈lT 〉 + 

x

]
, (21)

d〈d〉
d

= [
μI

() + ρT
()

]
(〈d〉 − ). (22)

It is important to remark that this is a “not” a closed set of
equations for the averages 〈LI〉, 〈lT 〉, 〈d〉 because the RHS
involves the marginal distributions. Therefore, although these
equations are formally equivalent to those in MHI, they are
sensitive to correlations through the flow of single-block
marginals on the RHS.

With this difference in mind, we proceed to work out the
flow equations for x and y. The flow equation for x follows
easily from the flow equations for expectation values derived

above:

dx

d
= 1

〈l I〉
d〈d〉
d

− 〈d〉
〈l I〉2

d〈l I〉
d

= 1

〈l I〉
[
μI

() + ρT
()

]
(〈d〉 − )

− 〈d〉
〈l I〉2

([
〈l I〉 − 

x

]
μI

() + (〈l I〉 + )ρT
()

)

= −(1 + x)xρT
()

〈d〉 = − (1 + x)y


. (23)

The flow of y = 2r() will follow from the flow of r(l ),
which is simple to derive using the flow of ρT

(l ), 〈d〉 in (16)
and (22) (see Appendix B for details),

∂r(l ) =
(

− y


+ μI

()

〈d〉 − 2CT I
 (l,)

ρT
(l )

)
r(l )

+ x

〈d〉
∫ l−(1+x−1 )



CT IT
 (l1,, l − /x − l1)dl1.

(24)

In the absence of correlations, MHI was able to integrate this
flow and obtain a recursion relation that estimates r(/x)
based on knowledge of r(). This recursion, combined with
the flow of x, then gives a complete understanding of the
critical separatrix and small perturbations around it. Crucially,
this recursion relies again on the fact that CT IT

 factorizes into
a product of marginals so that the left-hand side (LHS) and
RHS can be related to the marginals evaluated at different
RG scales. In the presence of correlations, factorization is
no longer possible and a recursion of r requires a different
argument, which we now summarize.

First we make the general decomposition C = C,disc +
C,c where C,disc is a product of marginal distributions and
C,c is the connected part, which vanishes in the absence
of correlations. Under “three fundamental assumptions”, we
will show that the first term on the RHS of (24) is negligible
when we integrate from  = x2l and  = xl , even when the
connected correlators C,c are larger than Cdisc. Within the
same integration range and using the same assumptions on
C,c, we then argue that for positive correlations, although the
integrand cannot be factorized, the full integral nonetheless
reduces to the factorized answer (an intuitive justification of
this fact will be provided along the way). These arguments
would produce a recursion in r that differs from the MHI
answer. In the final step we show that the modified recursion
can lead to a shifted stretching exponent ε inside the MBL
phase but cannot change the fractal dimension d f or the cor-
relation length scaling, providing a precise extension of the
results in Sec. V A. Throughout the argument, we will state
various technical lemmas and provide some intuition. But the
proofs for these lemmas are relegated to Appendix B.
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The first assumption we make is a generic property of
systems driven to criticality:

Assumption 1: Critical slowing down holds along the sep-
aratrix so that x ∼ t−α for some positive exponent α where
t = log  is the RG time. In the uncorrelated MHI RG, α = 1.
Here we only assume that α is finite.

This is physically very reasonable because fluctuations be-
come more and more macroscopic near the critical point at
(x, y) = (0, 0) and relaxation of these macroscopic regions to
equilibrium takes longer and longer. In the language of renor-
malization group, the fastest term in the β function (which
gives rise to exponentially fast growth/decay) vanishes along
the critical separatrix and the subleading terms take over to
give a power law behavior. Surprisingly, critical slowing down
alone already provides a powerful constraint:

Lemma V.2. Under assumption 1, 〈d〉 ∼  log  � ,
μI

() < xρT
(), ρT

() ≈ 1


+ O( 1
Poly(log ) ) in the large

 limit along the critical separatrix. Below the critical separa-
trix (in the MBL phase), 〈d〉 �  and μI

() < xρT
() still

hold.
A direct implication of this lemma is the slow decay of x

with  near the critical separatrix. To see this, we recall the
general flow equation (23) for x,

dx

d
= −(1 + x)x

ρT
()

〈d〉 ≈ −ρT
()

〈d〉 x. (25)

Along the separatrix, Lemma V.2 implies 〈d〉 ∼  log  and
ρT

(), consistent with the logarithmically slow growth rate of
x. Below the separatrix, ρT

() becomes larger than ρT
,crit()

as T blocks are more likely to be decimated. But 〈d〉−1 decays
exponentially fast in

∫ 
ρT

′ (′)d′. Therefore, the decay of
〈d〉−1 overwhelms the growth of ρT

() and dx
d

also becomes
much smaller. As a result, the assumption of slow change in
x can be justified everywhere outside the thermal phase, a
property that we will use repeatedly later.

Despite its power, this lemma only gives information about
the marginal distributions precisely evaluated at the cutoff and
strictly along the separatrix. A more quantitative understand-
ing of the RG flow requires two additional assumptions:

Assumption 2: Along and below the critical separatrix,
as the I blocks become much longer than the T blocks, the
distribution of deficit lengths μI

(d ) for I blocks tends to
become wider and flatter. Concretely, we will assume that
μI

() decreases with  and the derivative ∂dμI
(d ) evaluated

at the cutoff d = goes to zero sufficiently rapidly as → ∞:

−∂d log μI
(d ),−∂d logCT IT

 (l1, d, l2)
∣∣
d=

 ρT
,crit().

(26)
What appears on the RHS is the probability of having T blocks
at cutoff along the critical separatrix. In the uncorrelated RG,
μI

(d ) is an exponential distribution and one can easily show
that

−∂d log μI
(d )

∣∣
d=

∼ μI
(). (27)

When we turn on correlations, we allow the distribution to
change in form, but we relax the right hand side to ρT

,crit().
This should be regarded as a weak assumption because
T-block decimation always dominates along the separatrix,
implying μI

,crit()  ρT
,crit(). Below the separatrix, I

blocks at cutoff become even rarer and the inequality becomes
more strongly satisfied.

Assumption 3: The connected distributions of nearest-
neighbor T and I blocks are upper bounded by a function that
is much larger than the product of marginal distributions for
l ∈ [,/x],

∣∣∣∣ CT I
,c(l,)

ρT
(l )μI

()

∣∣∣∣,
∣∣∣∣ CT IT I

,c (l1,, l2,)

CT IT
 (l1,, l2)μI

()

∣∣∣∣  ρT
,crit()

μI
()

.

(28)
As we have argued in Sec. V A, correlations between nearby T
and I blocks should be washed out in the sense that joint mo-
ments approximately factorize 〈ln

i dm
j 〉 ≈ 〈ln

i 〉〈dm
j 〉. However,

convergence of moments do not really imply pointwise con-
vergence of probability distributions. This is the key difficulty
that necessitates the introduction of additional assumptions
that impose pointwise bounds on the connected correlators.
To maximize the robustness of our arguments, we allow the
connected correlators to be much larger than the product of
marginals pointwise but much smaller than the product of

marginals multiplied by
ρT

,crit ()

μI
() . Along the critical separatrix,

this additional multiplicative factor diverges as a power law in
t ≡ log . Below the separatrix, it diverges even faster since I
blocks at cutoff become stretched-exponentially rare.

With these weakened assumptions, the asymptotic pro-
jected flow equations for x, y could be significantly modified.
Nevertheless, the correlation length scaling does not change.
To show this, we continue the analysis of r(l ) in (24). Re-
call that r(l ) = x

〈d〉ρ
T
(l ). Since the flow of x is slow, the

flow of r(l ) for  ∈ [xl, l] is controlled by the competition
between the growth of ρT

(l ) and 〈d〉 with . Clearly, the
growth of both quantities is due to a monotonic decrease in
the total number of blocks N. But for ρT

(l ), there is an
additional mechanism that reduces ρT

(l ). This comes from
decimations of T blocks with length l when a rare I block is at
cutoff. The rate of these processes is CT I

 (l,)/ρT
(l ). Thus

as long as CT I
 (l,)/ρT

(l )  ρT
(), which is the content of

assumption 3, this decreasing contribution will be negligible
and r(l ) will remain approximately constant for  ∈ [xl, l].
A more precise version of this argument in Appendix B then
leads to the key lemma:

Lemma V.3. Under assumptions 1 and 3, along the sepa-
ratrix we have r(l ) ≈ rl (l ) up to errors of O(log x−1xc) for
all  ∈ (xl, l ) where c > 0 and x = x. Below the separatrix,
the error is strictly smaller, approaching O( 1

Superpoly() ) in the
large  limit.

The constancy of r(l ) for  ∈ (xl, l ), combined with the
estimates in Lemma V.1, allows us to compute the precise
functional form of ρT

(l ) along the critical separatrix. Impor-
tantly, ρT

(l ) decays faster than 1/l2 everywhere below the
separatrix, a property that will be used in the main argument.

Lemma V.4. ρT
(l ) ≈ x−1

  log 

x−1
l l2 log l

for l ∈ [, 2 + 
x ]. This

in turn implies that 〈l〉 ≈  log x−1.
With these technical lemmas in place, we can understand

the flow equation for r(l ) (24) outside the regime  ∈ [xl, l]
where the dominant growth mechanism of ρT

(l ) is the pro-
duction of new T blocks with length l from a T IT → T move.
Following Ref. [48], the strategy is to avoid solving the full
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FIG. 6. In this plot we show the exact and approximate integra-
tion domains relevant for the production term. The opening angle of
the isosceles triangle (exact domain) approaches π/2 as x → 0.

integro-differential equation but instead derive an approxi-
mate recursion relation for r( 

x ) in terms of r(). For that
purpose, we fix l = 

x and integrate (24) from ′ = x to
′ = . Keeping all terms on the RHS for the moment, we
find

r′ (l )
∣∣
x ≈

∫ 

x

{(
− y

′ +
′μI

′ (′)
〈d〉′

− 2CT I
′ (l,′)
ρT

′ (l )

)
r′ (l )

+ x

〈d〉′

∫ l−′ 1+x
x

′
dl1C

T IT
′

(
l1,

′, l− l1− ′

x

)}
.

(29)

For notational convenience, we will refer to the first line on the
RHS as F,depl and the second line as F,prod, in accordance
with the general decomposition of flow equations into deple-
tion and production terms. As a sanity check, note that this
reduces to the analogous flow equation (15) in Ref. [48] after
we plug in the exact solution μI

(d ) = μI
()e−μI

()(d−)

valid for uncorrelated disorder and factorize joint distributions
into product of marginals. Now we make a change of variables
from ′ → l2 = l − l1 − ′

x to elucidate the physical picture.
Using the slow decay of x, the production term F,prod could
be reduced to x2

∫
D dl1dl2

1
〈d〉′ C

T IT
′ (l1,′, l2) where D is an

isosceles triangular integration domain as shown in Fig. 6
and ′ =  + 2x( − l1 − l2) depends implicitly on l1, l2.
Roughly, this term counts all possible ways to form a T block
with length l at scale  by combining smaller blocks at an
earlier stage with cutoff ′ ∈ [x,]. When l = 

x , in order
for the fractal structure of T blocks to be dominant, this
term should receive its dominant contributions from ′ = .
Using the fundamental assumptions and Lemma V.3 we can
show that this is indeed the case. Moreover, the integral over
domain D can be replaced by an integral over an infinite region
[,∞]2 up to errors that are suppressed at large  if the
decay of CT IT

 (l1,, l2) with l1, l2 is sufficiently fast. This is
guaranteed by assumption 3 and the estimate in Lemma V.4.

Finally, since the integral over the infinite region [,∞]2

simply gives μI
(), we immediately conclude

F,prod = x2

〈d〉μ
I
(). (30)

Using the decay properties of ρT
(l ), we can also show that

F,depl is suppressed relative to F,prod, thereby establishing a
recursion relation for r(l )

r/x(/x) ≈ r(/x) ≈ x2

〈d〉μ
I
(). (31)

Using Lemma V.3, we complete the derivation of the projected
flow equations in property (3)

y/x = 2

x2
r/x(/x) ≈ 2

〈d〉μ
I
() =

(
y

x

)2

〈d〉μI
().

(32)
A byproduct of the precise argument in Appendix B is that
〈d〉μI

() ∼ x log  at large  and along the separatrix. As
x → 0, by the assumption of critical slowing down, x scales
as a negative power of log . Thus 〈d〉μI

() ∼ xc for some
c < 1. From this we can simplify the recursion relation as

y/x ∼
(

y

x

)2

xc ≈ y2

x2−c
. (33)

This recursion is solved by y ∼ xβ with α = 2 − c. Plugging
this back into the exact flow equation (23) for x and introduc-
ing the RG time t = log , we can get the parametric form of
the critical separatrix,

dx

dt
≈ −xβ → x(t ) ∼ t

1
c−1 y(t ) ∼ t

2−c
c−1 . (34)

When 〈d〉μI
() ≈ 1 as in the uncorrelated RG, c = 0 and we

recover the uncorrelated separatrix x(t ) ∼ t−1, y ∼ t−2. In the
correlated case, it is possible to have c �= 0 so that x, y have
different scalings with t . Now let us consider deviations from
the critical separatrix y ≈ x2−c+δ0 . For δ0 sufficiently small,
〈d〉μI

() ∼ xc continues to approximately hold. Thus for
every recursion step, t → t + log x−1,

y/x ≈
(

x2−c+δ0

x

)2

xc ≈ x2−c+2δ0 . (35)

The number of RG steps it takes for δ0 to reach an O(1)
value is log2 δ−1

0 . The elapsed RG time per RG step is dt
dn =

log x−1 ≈ log(log )
1

1−c = 1
1−c log t . This implies that the to-

tal RG time T is related to the number of RG steps N as

N ≈
∫ T dt

dt
dn

≈ (1 − c)T

log T
→ T ≈ N

1 − c
log

N

1 − c
.

(36)

Hence in the limit δ0 → 0, the correlation length scales as

ξ = eT ≈ δ
−(1−c)−1 log ( log2 δ−1

0 (1−c)−1 )
0 . (37)

As anticipated by the qualitative argument in Sec. V B, the
above scaling satisfies ν = ∞. The origin of the double log-
arithm is an extreme asymmetry between the logarithmic
slowdown along the separatrix and the exponential speedup
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orthogonal to the separatrix. For any finite value of c, the
double logarithmic scaling is robust up to δ0-independent
constants. We have thus established property (3) in Sec. III D.

Finally, to estimate the stretching exponent ε(x) deep in the
MBL phase and obtain a more quantitative version of property
(1), we have to study the scaling of 〈d〉μI

(). Using the flow
equations for 〈d〉 and μI

(),

d[〈d〉μI
()]

d
≈ −2CT I

,c(,)〈d〉 + 〈d〉∂dμ
I
(d )

∣∣
d=

.

(38)
By the positivity of CT I

 and the numerical observation that
CT I

,c(,) < 0, 0 < −CT I
,c(,) < ρT

()μI
(). Thus

we generally have a scaling

−2CT I
,c(,) ∼ ηρT

()μI
(), (39)

where η < 1 (if η � 1, then μI
() would flow to ∞ as  →

∞, which is impossible). This means that

d[〈d〉μI
()]

d
≈ ηρT

()[〈d〉μI
()], (40)

which gives log[〈d〉μI
()] ≈ η

∫ 
ρT

′ (′)d′ upon inte-
gration. On the other hand, close to the MBL fixed line,
ρT

() � 1


, and log〈d〉 ≈ ∫ 
ρT

′ (′)d′. By definition of

y, we therefore conclude that log y ≈ − ∫ 
ρT

′ (′)d′ +
subleading. Combining these estimates with the recursion re-
lation, we find

−
∫ /x

ρT
′ (′)d′ = (−2 + η)

∫ 

ρT
′ (′)d′ − 2 log x.

(41)
Since x freezes to a constant on the MBL fixed line, we can
drop 2 log x as  → ∞ in the above equation. The remaining
equation is solved by the ansatz

ρT
() ∼ 1

1−ε
, −

(


x

)ε

= (−2 + η)ε. (42)

We now recognize ε as the stretching exponent, which must
satisfy

ε = log(2 − η)

log x−1
, 0 � η < 1. (43)

Though this result holds for general η, the moment bounds
in (14) strongly suggest that η → 0 as  → ∞. Therefore,
the expectation is that ε = log 2

log x−1 , which is exactly the un-
correlated value. At this point all three features promised in
Sec. III D have been established.

VI. DISCUSSION

In this paper, we have argued via an analytic renormaliza-
tion group approach that the Morningstar-Huse-Imbrie critical
scaling for the MBL transition is not affected by the intro-
duction of spatial correlations in the distribution of initial
block parameters. Since our arguments cover correlations with
arbitrary wandering exponents, they provide strong evidence
that the MHI critical scaling is in fact a robust universal-
ity class. Furthermore, many of our arguments continue to
apply beyond the MHI context. For hyperuniform correla-
tions, stability holds for asymptotically additive RGs, a broad

class that includes all existing phenomenological RGs for
the MBL transition. For positive correlations, while the most
precise analytic arguments in Sec. V C rely on details of
the MHI RG, the more physical arguments in Sec. V A and
Sec. V B mostly involve general properties of asymptotically
additive avalanche-based RGs. The “factorization” of higher
moments in Sec. V A only requires asymptotic additiveness
and the vanishing of excess interaction decay rate x at the
transition, which is a defining feature of the avalanche mecha-
nism. Likewise, the key ingredients in Sec. V B are that the
MBL transition is driven by rare fractal thermal inclusions
and the correlation length exponent ν diverges. As pointed
out in Ref. [69], both of these features are likely generic
for avalanche-based RG schemes including MHI and GVS.
Therefore, our arguments suggest that any avalanche-based
description of the MBL transition is stable against arbitrary
long-range disorder correlations.

Moving forward, there remains a few open questions that
need to be addressed. The most important challenge is to go
beyond specific RG schemes and develop a scaling theory of
the MBL transition from which all critical singularities follow.
A first attempt in that direction appeared in Ref. [69], where
the avalanche mechanism, combined with an assumption on
the analyticity of the β functions, led to the KT universality
class on general grounds without invoking specific RG rules.
But this conclusion was called into question by the MHI
RG, which, despite its simple and well-motivated microscopic
rules, featured a nonanalytic β function in the (x, y) plane.
Whether such nonanalyticities should be expected in general
is a question that can hopefully be settled by improving the
arguments of Ref. [69]. An alternative possibility is that an-
alyticity only holds in a higher dimensional parameter space
and fails when we project onto the two dimensional subspace
spanned by (x, y). The challenge would then be to identify
the minimal set of parameters needed for analyticity and con-
strain the form of the β function in this bigger space using
some general physical principles (with quantum avalanche
probably playing a key role). Such a framework will obviate
the need for more microscopic RG models and provide a
much more robust picture of the MBL transition. The effects
of long-range disorder correlations on this transition could
then be analyzed by adapting the techniques developed in this
paper.

Even without a complete scaling theory, it is fruitful to ask
within a specific phenomenological RG scheme whether there
exists a class of initial disorder correlation that would modify
the critical scaling of the uncorrelated random fixed point.
One interesting example is quasiperiodic correlation [7,57].
For the symmetric RG of Ref. [25], quasiperiodic initial con-
ditions give rise to a critical exponent ν = 1 [57], which is
distinct from the value of ν for the two families of correla-
tions that we have considered (see Appendix C for a more
detailed discussion of the symmetric RG), and distinct from
the uncorrelated random case. In the MHI RG, the analytic
framework that we have developed for hyperuniform and pos-
itive correlations does not apply to quasiperiodic correlations
which are described by a fixed set of initial block lengths
rather than an ensemble. Therefore, although the wandering
exponent of quasiperiodic correlation w = 0 coincides with
that of hyperuniform correlation with α = 1, we cannot con-
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clude that ν = ∞ for the quasiperiodic case. Understanding
the fate of the quasiperiodic MBL transition will likely require
new analytic insights.

Finally, we should remark that the moment bounds of joint
distributions CT I...T

 in block RGs and the BBGKY hierarchy
of correlated flows developed in this paper may have appli-
cations to more general functional RGs. One topic where
the formalism might be helpful is the generalized Harris
bound/correlated CCFS bound that we discussed in the intro-
duction.
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APPENDIX A: DERIVATION OF CORRELATED
FLOW EQUATIONS

Spatial correlations in the initial T/I-block lengths force
us to consider a functional RG of the joint probability dis-
tribution P(�l I , �lT ) instead of the single-block marginals
ρT

(lT ), μI
(d ) studied in Ref. [48]. However, to understand

the behavior of the order parameters x, y, which depend
only on single-block marginals and their integrals, we do
not need to keep track of the fine-grained renormaliza-
tion of P(�lT , �l I ). Instead, we will develop a hierarchy of
equations (analogous to the BBGKY hierarchy is classical
statistical mechanics), where the marginal distribution of n
nearest neighbors depends on the distribution of n+2 near-
est neighbors (see Refs. [71–75] for original papers on the

BBGKY hierarchy). This set of equations do not close at any
finite order but will be sufficient for a precise analysis of the
near-critical regime.

The general structure of the flow equations can be under-
stood via the following schematic equation:

∂C(n)
 (l1, d1, . . .) = Fdepl

[
C(n+2)



] + Fprod
[
C(n+2)



]
. (A1)

Here, C(n)
 (l1, d1, . . .) is the probability that a contiguous chain

of n blocks have lengths (l1, d1, . . .) when the length cutoff is
. The flow of C(n)

 has two contributions: Fdepl is a depletion
term that accounts for RG moves where a chain of n blocks
with length (l1, d1, . . .) at cutoff  are destroyed when we
move the cutoff  + d; in contrast, Fprod is a production
term that encodes RG moves that create a new chain of n
blocks with lengths (l1, d1, . . .), which was not present at
cutoff . To be concrete, we consider the case where n =
1, so that the LHS is just a single-block marginal. For T and I
blocks we have

∂ρT
(l ) = ρT

(l )
[
μI

() + ρT
()

] − 2CT I
 (l,)

+
∫ l− 

x −



CT IT
,c

(
l1,, l − 

x
− l1

)
dl1, (A2)

∂μI
(d ) = μI

(d )
[
μI

() + ρT
()

] − 2CT I
 (, d )

+
∫ d



CIT I
 (s,, d +  − s)ds. (A3)

In each of the flow equations above, the first and sec-
ond lines are depletion and production terms respectively.
In the uncorrelated limit, the multiblock correlations fac-
torize as products of single-block marginals CT I (l, d ) =
ρT

(l )μI
(d ),CT IT (l1, d, l2) = ρT (l1)μI (d )ρT (l2) etc., and

the resulting flow equations agree with those obtained in
Ref. [48]. Following the same procedure, it is conceptually
simple to derive the full hierarchy of equations. For clarity, we
will only present the next simplest equation in the hierarchy
(which turns out to be all we need near criticality). This flow
equation will involve two types of contributions: one coming
from the depletion of thermal blocks with length l1, l2 that
have already been produced in earlier stages in the RG (i.e., at
cutoff smaller than ) and the other coming from the produc-
tion of thermal blocks with length l1, l2 due to decimation of
I blocks with d = . Taking both contributions into account,
the number density flows as

nT IT
+d(l1, + d, l2) = nT IT

 (l1,, l2) + d

[
−CIT IT

 (, l1, d, l2) − CT IT I
 (l1, d, l2,)

+
∫ ∞



dl̃1C
T IT IT


(
l̃1,, l1 − 

x
− l̃1, d, l2

)
+

∫ ∞



dl̃1C
T IT IT


(
l1, d, l̃2,, l2 − 

x
− l̃2

)]

+
∫ ∞



dsCT IT IT
 (l1, s,, d +  − s, l2)

]
. (A4)

Let the total number of I blocks be N (which is equal to the number of T blocks) with flow equation N+d = N[1 −
d(ρT

() + μI
()]. Dividing both sides of the previous equation by N+d and recalling the definition nT IT

 /N = CT IT
 ,

we get

∂CT IT
 (l1, d, l2) = Fdepl + Fprod, (A5)
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where the depletion and production terms are given by

Fdepl = CT IT
 (l1, d, l2)[ρT

() + μI
()] − CIT IT

 (, l1, d, l2) − CT IT I
 (l1, d, l2,), (A6)

Fprod =
∫ ∞



ds

[
CT IT IT



(
s,, l1 − 

x
− s, d, l2

)
+ CT IT IT



(
l1, d, s,, l2 − 

x
− s

)
+ CT IT IT

 (l1, s,, d +  − s, l2)

]
.

(A7)

The two-parameter RG flows that we are interested in depend not on the full distribution but rather on the moments of these
distributions. It is easy to derive flow equations for the moments from the full PDEs above. We enumerate a full set of these
equations here:

d〈l I〉
d

= μI
()

[
〈l I〉 − 

x

]
+ ρT

()[〈l I〉 + ], (A8)

d〈lT 〉
d

= ρT
()[〈lT 〉 − ] + μI

()

[
〈lT 〉 + 

x

]
, (A9)

d〈d〉
d

= [
μI

() + ρT
()

]
(〈d〉 − ). (A10)

Note that these equations are equivalent in form to their uncorrelated analogues in Ref. [29]. However, since ρT
(), μI

() are
shifted by correlations, the functional dependence of 〈d〉, 〈l I〉, 〈lT 〉 on  may also be different from the uncorrelated RG.

The proof of these three formulas are structurally identical and rather tedious, so we will only give the simplest version of the
calculation. Consider 〈d〉 = ∫ ∞


ddμI

(d ) · d . A few simple algebraic manipulations lead to

d

d
〈d〉 = −μI

() +
∫ ∞



∂μI
(d ) · d

= −μI
() +

∫ ∞



μI
(d )

[
μI

() + ρT
()

]
d − 2

∫ ∞



CT I
 (, d )d +

∫ ∞



dd
∫ d



dxCIT I
 (d − x + ,, x)d

= −μI
() + 〈d〉[μI

() + ρT
()

] − 2〈di|lT
i = 〉 +

∫ ∞



dx
∫ ∞



dy
∫

ddδ(d − x +  − y)CIT I
 (y,, x)d

= −μI
() + 〈d〉[μI

() + ρT
()

] − 2〈di|lT
i = 〉 + 2〈di|lT

i = 〉 − ρT
()

= [
μI

() + ρT
()

]
(〈d〉 − ). (A11)

where in the third line we introduced the conditional expec-
tation value 〈·|·〉 and in the fourth line we used the following
facts that follow from definition:

∫
CIT I

 (x, l, y)dy = CT I
 (l, x)

∫
CIT I

 (x, l, y)dx = CT I
 (l, y)

∫
CIT I

 (x, l, y)dxdy = ρT
(l ). (A12)

This completes the proof of Lemma V.1.

APPENDIX B: DERIVATION OF RECURSION RELATION
FOR CORRELATED MHI RG

In the main text, we outlined an argument for the stability
of MBL criticality in the MHI RG. In this Appendix, we will
fill in some of the technical details. Recall the fundamental
variables in our RG,

x = 〈d〉
〈l I〉 , r(l ) = x

〈d〉ρ
T
(l ), y = r()2. (B1)

In Sec. V C, we already derived the exact flow equation dx
d

=
− (1+x)y


for x. Here we will derive the flow equation for

r(l ), which will facilitate our analysis of y later. Differentiat-
ing the definition directly and using the exact flow equation for
x, we get three terms, which partially cancel each other,

∂r(l ) = dx

d

ρT
(l )

〈d〉 − x

〈d〉2
ρT

(l )∂〈d〉 + x

〈d〉∂ρT
(l )

= 1

x

dx

d
r(l ) − 〈d〉 − 

〈d〉
[
μI

() + ρT
()

]
r(l )
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+ x

〈d〉

{
ρT

(l )
[
μI

() + ρT
()

] − 2CT I
 (l,) +

∫ l−(1+x−1 )



CT IT


(
l1,, l − 

x
− l1

)
dl1

}

=
(

− y


+ μI

()

〈d〉 − 2CT I
 (l,)

ρT
(l )

)
r(l ) + x

〈d〉
∫ l−(1+x−1 )



CT IT


(
l1,, l − 

x
− l1

)
dl1. (B2)

Integrating the above equation from x to  gives equa-
tion (29) in the main text, which we rewrite below

r′ (l )|x ≈
∫ 

x

{(
− y

′ +
′μI

′ (′)
〈d〉′

− 2CT I
′ (l,′)
ρT

′ (l )

)
r′ (l )

+ x

〈d〉
∫ l−′(1+x−1 )

′
CT IT

′

(
l1,

′, l− ′

x
− l1

)
dl1

}
.

(B3)

As explained in the main text, our goal is to show that the
second term dominates over the other two terms. To do that,
we first recall the “fundamental assumptions” that go into our
analysis:

Assumption 1: Critical slowing down holds along the sep-
aratrix so that x ∼ t−α for some positive exponent α where
t = log  is the RG time. In the uncorrelated MHI RG, α = 1.
Here we only assume that α is finite.

Assumption 2: Along and below the critical separatrix,
as the I blocks become much longer than the T blocks, the
distribution of deficit lengths μI

(d ) for I blocks tends to
become wider and flatter. Concretely, we will assume that
μI

() decreases with  and the derivative ∂dμI
(d ) evaluated

at the cutoff d =  goes to zero sufficiently rapidly as  → ∞,

−∂d log μI
(d ),−∂d logCT IT

 (l1, d, l2)
∣∣
d=

 ρT
,crit ()

(B4)
Assumption 3: The connected distributions of nearest-

neighbor T and I blocks are upper bounded by a function that
is much larger than the product of marginal distributions for
l ∈ [,/x],∣∣∣∣ CT I

,c(l,)

ρT
(l )μI

()

∣∣∣∣,
∣∣∣∣ CT IT I

,c (l1,, l2,)

CT IT
 (l1,, l2)μI

()

∣∣∣∣  ρT
,crit ()

μI
()

.

(B5)
where  means a multiplicative factor that is 1

Poly(t ) and hence
only logarithmically small in log .

The motivation and numerical tests for these assumptions
are discussed in the main text and will not be repeated here.
With these assumptions in mind, we continue the analysis
of (B3). We denote the first term on the RHS of (B3) by
F,depl since it captures the depletion of T blocks that have
been produced at an earlier RG time. The second term, which
captures the production of new T blocks will be denoted by
F,prod. As a general observation, note that the various terms
in F,depl, F,prod correspond to various levels of the hierar-
chy: from the lowest level moments 〈. . .〉 to the highest level
three-block joint distributions. The flow equations are a bridge
between low and high levels in the hierarchy. The general
structure of the two-parameter phase diagram gives us impor-
tant information about low levels in the hierarchy, for example
the relationship between various moments 〈lT 〉, 〈l I〉, 〈d〉. So

our general strategy is to bootstrap the higher level distribu-
tions from the low level information via the flow equations.

Lemma B.1. Under assumption 1, 〈d〉 ∼  log  � ,
μI

() < xρT
(), ρT

 ≈ 1


+ O( 1
Poly(log ) ) in the large 

limit along the critical separatrix. Below the critical separatrix
(in the MBL phase), 〈d〉 �  and μI

() < xρT
() still

hold.
Proof. We begin by showing that 〈d〉 �  without fixing

its precise scaling. Suppose that 〈d〉 �  does not hold, then
since 〈d〉 > , there must be a finite k � 1 such that 〈d〉 ∼
k + subleading at large . The flow equation for 〈d〉 thus
reduces to

k = d〈d〉
d

= [
ρT

() + μI
()

]
(〈d〉 − )

= [
ρT

() + μI
()

]
[(k − 1) + o()] (B6)

If k > 1, then to leading order in , μI
() + ρT

() ≈
k

k−1
1


. By combining the flow equation for 〈l I〉 and 〈lT 〉,
we immediately see that 〈l I〉 + 〈lT 〉 ∼ 1+ 1

k−1 . As argued in
the main text (and suggested by numerics) the thermal frac-
tion flows to zero along the critical separatrix, implying that
〈l I〉 > 〈lT 〉. This forces the scaling 〈l I〉 ∼ 1+ 1

k−1 and hence
x ∼ − 1

k−1 . For any k > 1, this is an exponentially fast decay
in the RG time t = log , violating assumption 1. If k = 1,
then μI

() + ρT
() ≈ 1

o() , which implies that 〈l I〉 + 〈lT 〉
grows faster than any power law in  and x decays faster than
any power law in . This leads to an even stronger violation
of assumption 1. Hence, we conclude that 〈d〉 � .

To learn something about μI
(), ρT

(), we go back to
the flow equation for 〈l I〉, 〈lT 〉. Since 〈lT 〉/〈l I〉 → 0 “along
and below” the critical separatrix, we must demand that d log f

d

be a monotonically decreasing function at large  where f is
the thermal fraction. Using the flow equation for 〈lT 〉, 〈l I〉, it
is easy to see that

d log f

d
= 

〈lT 〉
[
μI

()

x
− ρT

()

]
. (B7)

In order for the RHS to be negative, we must have μI
() <

xρT
() as claimed in the lemma.
To further fix the precise scaling of ρT

() and 〈d〉, we go
back to the flow equation for x,

dx

d
= − 2x

〈d〉ρ
T
() = −xρT

()

〈d〉 → d log x

d log 

= −2ρT
()

〈d〉 . (B8)

In the large  limit, we have already shown that ρT
() �

μI
() and 〈d〉 � . Therefore, the flow equation for 〈d〉

reduces to d〈d〉
d

= [ρT
() + subleading](〈d〉 − ). We now
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do a simple case work. If lim→∞ ρT
() > 1, then 〈d〉

grows at least as fast as 1+ε for some ε > 0. This would
mean d log x

d log 
∼ − 1

ε , which implies that x ∼ 1
Poly() , leading

to a contradiction. On the other hand, if lim→∞ ρT
() <

1


, then 〈d〉 = o(), violating the constraint that 〈d〉 > .
Hence, we conclude that ρT

() ≈ 1


+ subleading. To get
the scaling of the subleading terms, we return again to the
flow equation for x. By assumption, x decays as a polyno-
mial in the RG time log . This implies that dx

d
∼ − x

 log 
,

which, together with the leading-order scaling of ρT
(),

forces 〈d〉 ∼  log . In order for this scaling to be consistent
with ρT

() ≈ 1


,μI
() < xρT

 and the exact flow equa-
tion d〈d〉

d
= [ρT

() + μI
()](〈d〉 − ), we must demand

ρT
() + μI

() ≈ 1


+ o( 1
 log 

). Independent of the pre-

cise scaling of x with , we therefore conclude that ρT
() ≈

1


+ O( 1
Poly(log ) ). This concludes the proof of estimates

along the separatrix.
Below the separatrix, ρT

() > 1


because T blocks be-
come even likely to be decimated. This means that 〈d〉 ∼
e
∫ 

ρT
′ (′ )d′

grows faster than along the separatrix and
hence faster than . This concludes the second part of the
Lemma. �

Lemma B.2. Under assumptions 1 and 3, along the sepa-
ratrix we have r(l ) ≈ rl (l ) up to errors of O(log x−1xc) for
all  ∈ (xl, l ) where c > 0 and x = x. Below the separatrix,
the error is strictly smaller, approaching O( 1

Superpoly() ) in the
large  limit.

Proof. In the flow equation (24), production terms give
zero contribution whenever  ∈ (xl, l ) because the shortest T
block created from a T IT → T move at cutoff  has length
greater than or equal to 

x . Hence we may focus only on the
depletion term

∂r(l ) =
(

− y


+ μI

()

〈d〉 − 2CT I
 (l,)

ρT
(l )

)
r(l )

→ r2 (l ) = e
∫ 2
1

(
− y


+ μI


()

〈d〉 − 2CT I


(l,)

ρT


(l )

)
d

r1 (l ).
(B9)

We first work along the separatrix. At large , y =
x

〈d〉ρ
T
()2 ∼ x

〈d〉 . Since x  1, y


= x
〈d〉 ∼ x

 log 
. Simi-

larly, as μI
() ≈ x


, the second term μI

()
〈d〉 ≈ x

〈d〉 ≈ x
 log 

.

Finally, by assumption 3, CT I
 (l,)/ρT

(l )  ρT
() ∼ 1


.

Here  means a multiplicative factor that is a negative power
of the RG time t = log . By the assumption of critical slow-
ing down, this can also be formulated as a factor xc for some
c > 0. ∫ l

xl

(
− y


+ μI

()

〈d〉 − 2CT I
 (l,)

ρT
(l )

)
d

�
∫ log l

log(xl )
d (log )xc ≈ log x−1xc. (B10)

Along the separatrix, x → 0 at large . Therefore, for suffi-
ciently large , we have

rl (l ) ≈ e− log x−1xc
r(l ) ≈ (1 − log x−1xc)r(l ). (B11)

implying that rl (l ), rxl (l ) are equal up to small corrections.
Since r(l ) decreases monotonically from  = xl to l , it must
in fact be true that rl (l ) ≈ r(l ) for all  ∈ (xl, l ), which is
what we set out to prove.

Below the separatrix, we can reexamine the scaling of all
three terms. As the flow deviates from the separatrix and
tends towards the MBL fixed line, y and μI

() decay to
0 faster, while 〈d〉 grows to ∞ faster as  increases, since
the decimation rate of T blocks increases monotonically. This
trend makes all three terms decay faster towards 0. Hence we
still have rl (l ) ≈ r(l ) for all  ∈ (xl, l ). For very large ,
ρT

() will settle into some asymptotic scaling with  such

that ρT
() � O( 1


). This implies that 〈d〉, y ∼ e

∫ 
ρT

′ (′ ) ∼
Superpoly(). Hence, the asymptotic error rate is

rl (l ) ≈ r(l ) + O

(
1

Superpoly()

)
, (B12)

as we set out to show. �
Lemma B.3. The following more concrete estimates about

the distribution of T-block lengths hold along the separatrix:

ρT
(l ) ≈ x−1

  log 

x−1
l l2 log l

for l ∈ [, 2 + 
x ]. This in turn implies

that 〈l〉 ≈  log x−1.
Proof. From Lemma B.2, we know that for l ∈ [, 

x +
2],

rl (l ) ≈ r(l ) r(l ) = x

〈d〉()
ρT

(l ). (B13)

Using the scaling estimates for 〈d〉(), ρT
() and assump-

tion 1, we can immediate prove the estimate for ρT
(l ),

xl

l log l

1

l
≈ x

 log 
ρT

(l ) → ρT
(l ) ≈ x−1

  log 

x−1
l l2 log l

.

(B14)
Using this formula, we can estimate the average T-block
length,

〈l〉 ≈
∫ /x



x−1
  log 

x−1
l l2 log l

ldl

≈ x−1
  log 

∫ log +log x−1

log 

1

x−1
l log l

d (log l ). (B15)

By assumption 1 again, x−1
 = Poly(log ). This immediately

implies that

〈l〉 ≈  log x−1


x−1
 log 

log x−1 ≈  log x−1, (B16)

which is what we set out to show. �
Using the estimates for ρT

(), we can obtain some more
precise control over μI

() and x:
Corollary B.4. Under assumptions 1 and 3 and along the

separatrix, μI
()/x ≈ ρT

() + O( 1
 log 

).
Proof. By assumptions 1 and 3, the previous two lemmas

hold and we have μI
() < xρT

(). Here, we want to show
that they are in fact equal to leading order in . For that
we return to the flow equation for the thermal fraction f =

〈lT 〉
〈l I 〉+〈lT 〉 (for notational clarity we use 〈lT 〉 instead of 〈l〉 to
denote the average T-block length in this proof). Along the
critical separatrix, we have 〈lT 〉 =  fT (), 〈l I〉 =  fI ()
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where fT () ∼ log x−1 and fI () ∼ log 

x as we flow towards
the fixed point at f = 0. Now the flow equation for f dictates
that

d log f

d log 
≈ − 2

〈lT 〉 [−μI
()/x + ρT

()]. (B17)

Now let us evaluate the LHS approximately,

d log f

d log 
= d log fT ()

d log 
− d log[ fT () + fI ()]

d log 

≈ −d log fI ()

d log 
+ subleading, (B18)

where in the last step we used the fact that fI () grows much
faster than fT () at large . This estimate implies that

d log fI ()

d log 
≈ O

(
[−μI

()/x + ρT
()]

log x−1

)
. (B19)

But if fI () ∼ log /x, d log fI ()
d log 

= O( 1
log 

). Since log x−1 is
smaller than any polynomial in log , the equation above is
inconsistent unless μI

()/x − ρT
() = O( 1

 log 
).

These lemmas already allow us to study the relationship
between x, y strictly along the separatrix. But since we are
interested in the entire region below the separatrix, we need to
give a more precise argument for how the RHS of (B3) scales.
In step (1), we obtain a compact formula for F,prod valid in
the large  limit. In step (2) we argue that F,depl is suppressed
relative to F,prod, thereby establishing the recursion relation
for r(l ) and hence for y = r()2.

As a preface to the remaining arguments, we emphasize
that the logic above is a direct generalization of the logic for
uncorrelated MHI explained in Ref. [48]. In the uncorrelated
case, step (1) requires a careful analysis of the decay proper-
ties of the integrand ρT

′ (l1)μI
′ (′)ρT

′ (l − ′/x − l1) in the
integration domain Fig. 6. For the correlated case, the inte-
gration domain does not change, but the integrand no longer

factorizes. Thus the main challenge is to use the lemmas and
fundamental assumptions to argue for similar decay proper-
ties. Step (2) in the uncorrelated case is a direct application of
Lemma B.2. With correlations, the argument essentially goes
through unscathed given the estimates already proven in the
lemmas. The recursion relation can then be plugged into the
main text to derive critical properties.

Finally, for readers who are already familiar with the MHI
argument in Ref. [48], we will make some occasional com-
ments emphasizing essential ingredients here that are different
from those in MHI. Our argument should be comprehensible
without reading these comments.

1. Compact formula for F�,prod

We start by writing down the production term without
splitting it into disconnected and connected parts,

F,prod(l ) =
∫ 

x
d′ x′

〈d〉′

∫ l−′(1+x−1 )

′

× CT IT
′

(
l1,

′, l− ′

x
− l1

)
dl1. (B20)

Following Ref. [48], we make a change of variables from
′ → l2 = l − ′

x − l1. Since x varies slowly with , we can
disregard the dependence of x on  and pull it out of the
integrals. This allows us to simplify the production term

F,prod(l ) ≈ x2
∫

D
dl2dl1

1

〈d〉′
CT IT

′ (l1,
′, l2), (B21)

where the integration domain D is the blue isosceles triangle
shown in Fig. 6. The integrand now involves a three-block
correlation. We use the flow equation (A5) derived be-
fore to bound its growth in the region x max(l1, l2) � ′ �
min(l1, l2) (this range is chosen so that we can drop the
production term in (A5) involving integrals over five-block
distributions),

∂′ (
CT IT

′ (l1,′, l2)

〈d〉′
) ≈ − 1

〈d〉2
′

[
ρT

′ (′) + μI
′ (′)

]〈d〉′CT IT
′ (l1,

′, l2)

+ 1

〈d〉′

{
CT IT

′ (l1,
′, l2)

[
ρT

′ (′) + μI
′ (′)

] − CT IT I
′ (l1,

′, l2,
′)

− CIT IT
′ (′, l1,

′, l2) + ∂dCT IT
′ (l1, d, l2)|d=′

}
. (B22)

The first line cancels nicely with the first term on the second line. The remaining terms are

∂′ (
CT IT

′ (l1,′, l2)

〈d〉′
) ≈ 1

〈d〉′

{−CT IT I
′ (l1,

′, l2,
′) − CIT IT

′ (′, l1,
′, l2) + ∂dCT IT

′ (l1, d, l2)|d=′
}
. (B23)

Using assumptions 2 and 3, all three terms can be bounded by 1
〈d〉′ C

T IT
′ (l1,′, l2)ρT

′ (′)xc. By an easy adaptation of the
argument in Lemma B.2, we have the uniform estimate

CT IT
′ (l1,′, l2)

〈d〉′
≈ const ∀ max(l1, l2)x � ′ � min(l1, l2). (B24)

Now we are ready to tackle the double integral over D (the
blue + orange region in Fig. 6). The subset of the domain
where l1, l2 �  is an isosceles right triangle with leg length


x − x. Denote this right triangle by T and the remaining
narrow wedges D \ T . Since the two narrow wedges are sym-
metric about the line l1 = l2, we need only demonstrate that
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the integral over one of the wedges is suppressed relative
to the integral over the right triangular domain. This can be
accomplished in two steps:

(1) Let us consider first the right triangular domain T . The
difficulty in estimating this integral is that the cutoff ′ of the
integrand depends implicitly on l1, l2. We would like to make
a series of approximations until we can evaluate the integral
at a fixed cutoff.

To do that, we first consider the orange square
[, 

2x ]×[, 
2x ] contained in T . Outside of this square, l1 �


2x or l2 � 

2x , implying that ′ =  + x(2 − l1 − l2) � 
2 .

As a result, ′
l1

� x or ′
l2

� x. But since the least unlikely

way to produce a large T block with l1 � ′
x is to combine

two positively correlated T blocks at cutoff, CT IT
′ (l1,′, l2)

must be exponentially decaying in l1, l2 for all (l1, l2) /∈
[, 

2x ]×[, 
2x ] with a decay length on the order of ′

x . These
exponential tails will give small corrections and for a leading-
order approximation we can restrict the integral to the orange
square from now on.

For readers familiar with MHI, note that our argument
is subtly different from the original MHI argument that
replaced the cutoff ′ with  everywhere in the orange
square. This replacement is puzzling because x max(l1, l2) �
′ � min(l1, l2) is “not true everywhere in D” and the
analog of Lemma B.2 for uncorrelated RG cannot be
applied. We circumvent this possible loophole by restrict-
ing to an even smaller square S′ = [, 

x1/2 ]×[, 
x1/2 ]. In

this smaller domain, x max(l1, l2) = x1/2, min(l1, l2) = 

and ′ =  + 2x( − l1 − l2) �  + 2x − 2x1/2. When
x  1, x max(l1, l2) � ′ � min(l1, l2) indeed holds and

CT IT
′ (l1,′, l2)

〈d〉′
≈ CT IT

 (l1,, l2)

〈d〉 ∀(l1, l2) ∈ S′. (B25)

Within S′, we can also estimate the decay of the integrand with
l1, l2. Without loss of generality, let l1 � l2. By monotonicity
of the probability distributions,

CT IT
′ (l1,′, l2)

〈d〉′
≈ CT IT

 (l1,, l2)

〈d〉 ∀l1, l2 ∈
[
,



x1/2

]
.

(B26)

For positive correlations, at cutoff l1, 〈d〉, 〈l〉 � l1, l2
and CT IT

 (l1,, l2) should be enhanced relative to
ρT

(l1)ρT
(l2)μI

(). However, the enhancement does
not change the power law scaling in l1, l2 according to
assumption 3. Therefore, by Lemma B.3, we have that along
the separatrix,

CT IT
′ (l1,′, l2)

〈d〉′
∼ O

(
1

l2
1 l2

2

)
. (B27)

When (l1, l2) ∈ S \ S′, we necessarily have
CT IT

′ (l1,′,l2 )
〈d〉′ �

CT IT
 (l1,,l2 )

〈d〉 since ′ < . The 1
l2
1 l2

2
decay therefore guarantees

that the contributions from the region S \ S′ is suppressed by a
factor of x relative to the contributions from S′ and can be thus
neglected. Below the separatrix, the decay of CT IT

 (l1,, l2)
with l1, l2 has to be faster because flowing towards the MBL
fixed line implies a clustering of T blocks close to the cutoff.
Therefore, the suppression factor is much smaller than x and
there is no additional complication.

After restricting to S, we can shift the cutoff uniformly to
 so that

x2
∫

S′

CT IT
′ (l1,′, l2)

〈d〉′
≈ x2

∫
S

CT IT
 (l1,, l2)

〈d〉 . (B28)

Now up to errors that are suppressed by positive powers of x,
we can extend the integration domain to [,∞]2. Therefore,
to leading order,

x2
∫

S

CT IT
 (l1,, l2)

〈d〉 = x2
∫

[,∞]2

1

〈d〉 CT IT
 (l1,, l2)

= x2μI
()

〈d〉 , (B29)

where the last identity follows from the definition of CT IT
 .

(2) The integral over the narrow wedges is much easier
to analyze. As explained above, the value of CT IT

′ (l1,′, l2)
is only appreciable near (l1, l2) = (,) and exponentially
suppressed for l1, l2 � 

2x . But the area of the wedges re-
stricted to l1, l2 � 

2x is only O(x). Hence relative to the
integral in the square region, the wedge integral must be
suppressed at least by an additional factor of x. We thus arrive
at equation (30) in the main text,

F,prod ≈ x2μI
()

〈d〉 . (B30)

2. Bounding F�,depl relative to F�,prod

At this point, it is easy to see that F,depl is suppressed
relative to F,prod. Recall that since the least unlikely way to
create a T block late in the RG is by combining two T blocks
of length lT ≈  with an insulating block with l I = 

x , we
expect ρT

x(l ) to decay exponentially for l > O() (in fact
we do not need it to be an exponential. A fast power law is
enough). This means that

r(l )

rx(l )
≈ 〈d〉ρT

(l )

〈d〉xρT
x(l )

≈ O(x−1e1/x ) � 1, (B31)

since x  1, this immediately shows that F,prod should dom-
inate over F,depl. Hence we obtain the recursion relation

r(l ) = r(/x) ≈ x2μI
()

〈d〉 . (B32)

Now using Lemma B.2, we can turn the above equation into a
recursion relation for y,

y/x = 2

x2
r/x(/x) ≈ 2

x2
r(/x) ≈ 2

x2

x2μI


〈d〉

≈ 2

〈d〉2
〈d〉μI

() =
(

y

x

)2

〈d〉μI
(). (B33)

This recursion is the same as the uncorrelated recursion up to
a factor 〈d〉μI

().

APPENDIX C: EFFECTS OF LONG-RANGE CORRELATED
DISORDER ON THE SYMMETRIC RG

In this Appendix, we expand upon a comment in Sec. VI
about the effect of spatial correlations on earlier iterations
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FIG. 7. The left/right panels show numerical estimates of ν for positive and hyperuniform correlations as a function of correlation strength
as measured by c and maximum system size Lmax used in the scaling collapse. For positive correlations, the critical exponent ν drifts down as
Lmax increases. In the accessible range of Lmax, we are not able to confirm whether the generalized Harris bound is saturated. For hyperuniform
correlations, the finite-size effects are weaker since coherent fluctuations of large regions are suppressed. For 0.7 � α, we confirm that
hyperuniform correlations do not change the uncorrelated value of ν, consistent with the general arguments in Sec. IV. For α < 0.7, the
numerical ν slightly exceeds the uncorrelated ν = 2.5. This deviation is at the 10% level and much smaller than the deviation for positive
correlations at any value of c. Thus we tentatively attribute it to finite-size effects.

of MBL RGs [25,28]. The RG rules in these models can be
summarized as

l I
new = l I

i−1 + αT lT
i (= ) + l I

i+1, (C1)

lT
new = lT

i−1 + αI l
I
i (= ) + lT

i+1, (C2)

where αI , αT are tunable parameters satisfying α = αI =
α−1

T . In the case of α = 1 we recover the symmetric RG of
Ref. [25].

Now we choose the initial block-length distributions so
that 〈lT 〉 = W and 〈l I〉 = 1. For a particular α and spatial
correlation, there is a critical Wc(α) where the production of
T/I blocks exchange dominance. The critical exponent ν(α)
of the phase transition at W = Wc(α) can be extracted from
a finite-size scaling analysis. From here on we focus on the
symmetric RG with αI = αT = Wc = 1.

When correlations are turned on, we expect a shift to
the critical exponent of the uncorrelated fixed point ν = 2.5.

When we turn on positive correlations, numerics show a clear
upward drift in ν as c → 0 (remember that c is the decay
exponent of the initial correlations and small c corresponds
to strong correlations). The numerical values for ν satisfy the
generalized Harris bound, although a precise extrapolation of
ν(Lmax → ∞) is not possible due to finite-size effects (for
concreteness, note the drifts shown in Fig. 7). For hyper-
uniform correlations, the numerically extracted values of ν

stay close to ν = 2.5 for all α, consistent with the general
argument in Sec. IV that hyperuniform correlations should be
irrelevant for asymptotically additive RG flows. At the special
point at α = 1, the wandering exponent w = 0 coincides with
the wandering exponent of quasiperiodic correlations. Inter-
estingly, the symmetric RG with quasiperiodic correlations
have been shown to have ν = 1 rather than ν = 2.5 (see
Ref. [57]). This means that as far as the symmetric RG is con-
cerned, random disorder with w = 0 is qualitatively different
from quasiperiodic disorder. Whether or not this qualitative
difference exists for the MHI RG is an interesting question to
address in the future.
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