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Coxeter pairs, Ammann patterns, and Penrose-like tilings

Latham Boyle 1 and Paul J. Steinhardt 1,2,3

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
2Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA

3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

(Received 25 April 2022; accepted 4 October 2022; published 31 October 2022)

We identify a precise geometric relationship between (i) certain natural pairs of irreducible reflection groups
(“Coxeter pairs”), (ii) self-similar quasicrystalline patterns formed by superposing sets of 1D quasiperiodically
spaced lines, planes or hyperplanes (“Ammann patterns”), and (iii) the tilings dual to these patterns (“Penrose-
like tilings”). We use this relationship to obtain all irreducible Ammann patterns and their dual Penrose-like
tilings, along with their key properties in a simple, systematic and unified way, expanding the number of known
examples from four to infinity. For each symmetry, we identify the minimal Ammann patterns (those composed
of the fewest 1d quasiperiodic sets) and construct the associated Penrose-like tilings: 11 in 2D, 9 in 3D, and
one in 4D. These include the original Penrose tiling, the four other previously known Penrose-like tilings, and
sixteen that are new. We also complete the enumeration of the quasicrystallographic space groups corresponding
to the irreducible noncrystallographic reflection groups, by showing that there is a unique such space group in
4D (with nothing beyond 4D).
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I. INTRODUCTION

The Penrose tilings [1–3] (see Fig. 6) have been a source
of fascination for mathematicians and physicists ever since
their discovery in the 1970s (see, e.g., Refs. [4–9]). Here we
present a new perspective on these important objects (and oth-
ers like them). In particular, we point out a precise geometric
relationship between: (i) certain natural pairs of irreducible
reflection groups (which we call “Coxeter pairs”); (ii) self-
similar quasicrystalline patterns formed by superposing sets
of 1D quasiperiodicially spaced lines, planes, or hyperplanes
(which we call “Ammann patterns”); and (iii) the Penrose-like
tilings that correspond to these patterns. More specifically, the
perspective we propose is that a Penrose-like tiling should
be regarded as the dual of a more fundamental object: an
Ammann pattern; and this Ammann pattern, in turn, can be
derived from the relationship between the two members of a
Coxeter pair, in a way that we will make precise. We hope to
convey some of the advantages of this perspective.

Let us start by briefly summarizing our results. We first
introduce the notion of a Coxeter pair, and enumerate all such
pairs (there are two infinite families plus four exceptional
cases). We then provide an explicit, simple, systematic proce-
dure for using these pairs to construct all irreducible Ammann
patterns. The construction relies upon the list of reflection
quasilattices enumerated in Ref. [10] and the list of the ten
special self-similar 1D quasilattices enumerated in Ref. [11].
However, more is required. In order for an Ammann pattern
to be self-similar, a precise choice of relative “phases” of the
1D quasilattices must be adopted. An important feature of
our construction is that it automatically generates the correct
phases. Consequently, all such Ammann patterns and their

self-similarity transformations turn out to be described explic-
itly by a single, closed-form analytic expression, which is one
of our main results.

Our next step is to derive a precise “dualization formula”
(32). We explain how this formula may be used to con-
vert each Ammann pattern into a dual Penrose-like tiling,
and to systematically derive key properties of that tiling in-
cluding its Ammann decoration, its inflation transformation,
and its matching rules. We emphasize that our approach is
rather different from the previous generalized dual [12,13]
and cut-and-project [9,12,14–17] methods in that these other
approaches generate a wide range of tilings for any given sym-
metry that are not generally self-similar and do not possess
inflation rules.

Using these techniques, we then present the complete set
of minimal Ammann patterns and Penrose-like tilings. These
have the minimal set of 1D Ammann directions compatible
with their orientational symmetry. There are only a handful of
such minimal patterns/tilings: eleven in 2D, nine in 3D, one in
4D, and none in higher dimensions. These include all of the
previously obtained Ammann patterns/Penrose-like tilings:
the original Penrose tiling [1–4,12,19] (in 2D, with tenfold
symmetry), the Ammann-Beenker pattern [4,18,20,22] (in 2D,
with eightfold symmetry), the Ammann-Socolar tiling [20] (in
2D, with 12-fold symmetry), a previously unpublished tiling
found by Socolar (in 2D, with 12-fold symmetry) [21], and
the Socolar-Steinhardt tiling [19] (in 3D, with icosahedral
symmetry). The remaining minimal patterns/tilings are new:
seven of the eleven 2D patterns, eight of the nine 3D patterns,
and the 4D pattern. We provide figures displaying each of the
eleven minimal 2D patterns/tilings along with their Ammann
decorations and inflation rules.
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Our construction of the minimal Ammann patterns also
yields, as a byproduct, a number of interesting “Ammann
cycles”—sets of minimal Ammann-like patterns that are dif-
ferent from one another (i.e., in different local isomorphism
classes), but that cycle into one another under inflation. These
are not strictly Ammann patterns, as they are not self-similar
after a single inflation (but only after two or three inflations).
However, they are closely related, and of comparable interest.
We find that there are four such minimal Ammann cycles,
all in 2D: (i) a trio of three different patterns with tenfold
symmetry (previously found by Socolar [21]) that cycle into
one another under inflation; and (ii) three separate duos of
12-fold symmetric patterns (all new), where each duo consists
of two different 12-fold symmetric patterns which cycle into
one another in alternating fashion under inflation.

Finally, we complete the enumeration of the quasicrystallo-
graphic space groups [23–25] corresponding to the irreducible
noncrystallographic reflection point groups, by showing that
there is a unique such space group in 4D. Since there are none
in higher dimensions, this 4D space group is the maximal one
in terms of both its dimension and point symmetry.

As part of this investigation, we wish to promote the view
that the Ammann pattern is an important entity in and of itself,
not simply the decoration of a certain tesselation. First, the
Ammann pattern is a quasicrystal tiling in its own right, since
the Ammann lines/planes/hyperplanes divide up space into
a finite number of polytopes arranged quasiperiodically in a
crystallographically forbidden pattern. Its diffraction pattern
consists of Bragg peaks arranged with the same crystallo-
graphically forbidden symmetry. (This is in contrast to de
Bruijn’s periodic pentagrid [12], which contains an infinite
number of different “tiles,” including tiles of arbitrarily small
size.) While a Penrose-like tiling has the simplifying property
that all the edge lengths of all the tiles are the same, an
Ammann pattern (regarded as a tiling) has the simplifying
property that all the tile edges join up to form infinite unbro-
ken straight lines (or, more correctly, all the codimension-one
tile “faces” join up to form infinite unbroken codimension-one
affine spaces).

In fact, the Ammann pattern with orientational symmetry
G is in many ways the simplest type of quasicrystal with
orientational symmetry G. In particular, as far as we are
aware, the Ammann pattern is the only type of quasicrystal
(with orientational order G) that can be explicitly described
by a closed-form analytic expression. The same is true for its
diffraction pattern [26]. By contrast, we cannot explicitly de-
scribe the corresponding Penrose-like tiling by a closed-form
analytic expression, and must instead content ourselves with
an algorithm for constructing it (e.g., by the cut-and-project
method, by one of the two dualization methods described
above, or by simply piecing together tiles according to the
matching rules). This point becomes increasingly significant
as we move from the original (2D, tenfold) case to other
analogues in higher dimension and/or with more complicated
orientational symmetries: in these more complicated cases,
the number of Penrose-like tiles proliferates, and constructing
and analyzing the tiling becomes unwieldy. By contrast, all of
the different Ammann patterns (regardless of their symmetry
or dimension) are described by essentially the same formula,
so that the higher-dimension or higher-symmetry cases are

no more complicated than the original one. Since one of the
main purposes of these tilings is to provide a simple and
useful model for investigating quasicrystalline order, this is
an important point.

We also note that the Ammann pattern brings out most
directly a deep fact about quasicrystalline order with orien-
tational symmetry G: namely, that it may be built up from (or
decomposed into) 1D quasiperiodic constituents. Of course,
in many physics problems, separation of a higher dimen-
sional problem into 1D problems is an important step. In
this regard, we note that in quasicrystals in particular, some
striking analytical results have been obtained in 1D (see,
e.g., Refs. [27–29]), while analogous problems in higher di-
mension have often resisted solution. The fact that Ammann
patterns are described by a closed-form analytical expression,
and are already decomposed into their 1D constituents, sug-
gests that they are likely to be a particularly fruitful starting
point for future investigations.

The outline of the paper (in more detail) is as follows.
In Sec. II, we introduce the notion of a Coxeter pair. We be-

gin, in Sec. II A, by briefly reviewing Coxeter’s classification
of the finite reflection groups in terms of root systems and
Coxeter-Dynkin diagrams, and some basic facts about non-
crystallographic root systems. Then, in Sec. II B, we explain
that, in some cases, a noncrystallographic reflection group (of
lower rank) has a natural crystallographic partner (of higher
rank). We find all such “Coxeter pairs” in Appendix A and
collect them in Table II: they are organized into two infinite
families plus four exceptional cases.

In Sec. III, we show how to construct all irreducible Am-
mann patterns. For starters, in Sec. III A, we introduce the idea
of an irreducible Ammann pattern – the natural generalization
of the original Ammann pattern shown in Fig. 6. Then, in
Sec. III B we explain how to obtain all irreducible Ammann
patterns via a geometrical construction based on the Coxeter
pairs introduced previously; and we obtain a useful closed-
form analytic expression that describes all such Ammann
patterns in a simple and unified way.

In Sec. IV, we show how to construct all of the Penrose-
like tilings dual to these Ammann patterns. First, in Sec. IV A,
we derive a dualization formula that allows us to convert any
irreducible Ammann pattern into a dual Penrose tiling, and
to scale and shift this Penrose tiling by the right amount (so
that, if we superpose it on the original Ammann pattern, the
Ammann lines decorate the Penrose prototiles in only a finite
number of different ways). Then, in Secs. IV B and IV C, we
show to use this formula to derive the Ammann decorations
and inflation rules for the prototiles in the Penrose-like tilings.

Applying these techniques, in Sec. V, we present the com-
plete set of minimal Ammann patterns and Penrose-like tilings
(eleven in 2D, nine in 3D, one in 4D, and none in higher
dimensions). At the end of the section, we present figures ex-
plicitly displaying the eleven 2D patterns/tilings, along with
their Ammann decorations and inflation rules, as well as the
four minimal “Ammann cycles” (one tenfold-symmetric “Am-
mann trio” and three “12-fold-symmetricAmmann duos”)
obtained as a byproduct.

In Sec. VII, we discuss matching rules: in particular, we
show how the Ammann-pattern perspective makes the exis-
tence of perfect local matching rules particularly transparent;
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FIG. 1. The Coxeter-Dynkin diagrams for the finite irreducible
root systems (or, equivalently, the finite irreducible reflection
groups). The noncrystallographic cases are boxed.

and we point out that the Coxeter-pair perspective suggests a
beautiful implementation of these rules.

Finally, in Appendix B, we complete the enumeration of
the quasicrystallographic space groups corresponding to the
irreducible noncrystallographic reflection point groups, by
showing that there is a unique such space group in 4D (with
nothing in higher dimensions, so that this 4D space group is
maximal in terms of both its dimension and point symmetry).

Throughout the paper, to illustrate our formalism, we will
use the following two examples:

Example 1: the Penrose tiling [1,3],
Example 2: the Ammann-Beenker tiling [4,18,22].
In what follows R are the real numbers, Q are the rationals,

and H are the quaternions.

II. ROOT SYSTEMS AND COXETER PAIRS

A. Root systems

The modern classification of the finite reflection groups
(finite Coxeter groups) in terms of irreducible root systems
and Coxeter-Dynkin diagrams is due to Coxeter [30–34].
For an introduction to these topics, see Chapter 4, Sec. 2 in
Ref. [35] (for a brief introduction) and part 1 (i.e., Chaps. 1–4)
in Ref. [36] (for more detail). Here we review a few relevant
points.

The irreducible finite reflection groups and their corre-
sponding root systems may be neatly described by Coxeter-
Dynkin diagrams (see Refs. [35,36] and Fig. 1). These come
in two varieties: crystallographic and noncrystallographic.
The crystallographic cases are familiar from the theory of Lie
groups and Lie algebras, and are summarized in Table 4.1
in [35]: they come in four infinite families (An with n � 1,
Bn with n � 2, Cn with n � 3 and Dn with n � 4) and five
exceptional cases (G2, F4, E6, E7, and E8). The remaining
roots systems are noncrystallographic: almost all of these are
in 2D (In

2 , n = 5, 7, 8, 9, . . .), with just one in 3D (H3), one in
4D (H4), and none in higher dimensions.

Let us briefly describe the noncrystallographic roots sys-
tems, since they will be of particular interest to us in this paper.

First consider In
2 . In geometric terms, the 2n roots of In

2
are perpendicular to the n mirror planes of a regular n-sided
polygon; note that when n is odd, these mirror planes are all
equivalent (each intersects a vertex and its opposite edge), but

when n is even the mirror planes split into two sets (those that
intersect two opposite vertices, and those that intersect two op-
posite edges). In algebraic terms, we can think of the 2n roots
as 2n complex numbers. When n is odd, these are the (2n)th
roots of unity: ζ k

2n (k = 1, . . . , 2n), where ζn ≡ exp(2π i/n).
When n is even, the 2n roots break into two rings: (i) a first
ring of roots ζ k

n (k = 1, . . . , n) which point to the vertices of
the regular n-gon; and (ii) a second ring of roots that point to
the edge midpoints of the regular n-gon (and may be expressed
as integer linear combinations of the roots in the first ring).
The In

2 reflections generate the symmetry group of the regular
n-gon, of order 2n.

Next consider H3. If τ and σ are the golden ratio and its
Galois conjugate, respectively:

τ ≡ 1

2
(1 +

√
5), σ ≡ 1

2
(1 −

√
5), (1)

then the H3 roots are the 30 vectors obtained from

{±1, 0, 0} (2a)
1
2 {±τ,±1,±σ } (2b)

by taking all combinations of ± signs, and all even per-
mutations of the three coordinates. These point to the 30
edge midpoints of a regular icosahedron [33], and the corre-
sponding reflections generate the full symmetry group of the
icosahedron (of order 120).

Finally consider H4. The H4 roots are the 120 vectors
obtained from

{±1, 0, 0, 0} (3a)
1
2 {±1,±1,±1,±1} (3b)

1
2 {0,±τ,±1,±σ } (3c)

by taking all combinations of ± signs, and all even permuta-
tions of the four coordinates. From a geometric standpoint,
these are the 120 vertices of a 4D regular polytope called
the 600 cell [33]. From an algebraic standpoint, each 4-
vector v ∈ R4 corresponds to a quaternion q ∈ H: that is,
the 4-vector v = {w, x, y, z} ∈ R4 corresponds to the quater-
nion q = w + xi + yj + zk ∈ H (where the three imaginary
quaternion units {i, j, k} satisfy Hamilton’s celebrated rela-
tions i2 = j2 = k2 = ijk = −1 [37]). In this way, the H4 roots
are mapped to a special set of 120 quaternions known as
the unit icosians [35,38]. The H4 reflections generate the full
symmetry group of the 600 cell: this group has 1202 = 14400
elements, corresponding to all maps from H → H of the form
q → q̄1qq2 or q → q̄1q̄q2, where q1 and q2 are unit icosians
[37,38].

Given a root system θ :
(1) its “rank” d is the dimension of the vector space (over

R) generated by taking all real linear combinations of the
roots; and

(2) its “rational rank” dQ is the dimension of the vector
space (over Q) generated by taking all rational linear combi-
nations of the roots.

When θ is crystallographic, the rational rank is the same
as the ordinary rank (dQ = d); but in the noncrystallo-
graphic case, the rational rank is larger than the ordinary rank
(dQ > d). Thus a noncrystallographic root system lives a
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TABLE I. The noncrystallographic roots systems, with their or-
dinary and rational ranks. Here Euler’s totient function, φ(n), is the
number of natural numbers < n that are relatively prime to n.

Noncrystallographic Rational
root system Rank d rank dQ

I (n)
2 2 φ(n)

H3 3 6
H4 4 8

double life: in one sense, its roots live in the lower-
dimensional space Rd ; but in another sense, they live in the
higher dimensional space QdQ . The ordinary and rational
ranks of the noncrystallographic root systems are summarized
in Table I.

B. Coxeter pairs

Now consider two irreducible root systems, θ and θ‖:
(1) θ is a crystallographic root system of rank d , whose

jth root (denoted r j) corresponds to a reflection Rj that acts
on the d-dimensional coordinates x as

Rj : x → x − 2
x · r j

r j · r j
r j . (4a)

(2) θ‖ is a noncrystallographic root system of rank d‖,
whose jth root (denoted r‖

j ) corresponds to a reflection R‖
j that

acts on the d‖-dimensional coordinate x‖ as

R‖
j : x‖ → x‖− 2

x‖ · r‖
j

r‖
j · r‖

j

r‖
j . (4b)

We say θ and θ‖ form a “Coxeter pair” (of degree N) if
(1) they have the same rational rank (i.e., they both live

in Qd ) and
(2) from the maximally symmetric orthogonal projec-

tion of the θ roots onto a d‖-dimensional plane (the
“parallel space”) we obtain (N copies of) the θ‖ roots.
Let us illustrate with our two basic examples:
Example 1. The root systems θ = A4 (with d = 4) and

θ‖ = I5
2 (with d‖ = 2) form a Coxeter pair (of degree N =

d/d‖ = 2). In both cases, the roots live in Q4; and if we take
the maximally symmetric 2D projection of the 20 roots of A4,
we obtain (N = 2 copies of) the 10 roots of I5

2 (see Fig. 3).
This is the Coxeter pair relevant to the Penrose tiling (Fig. 5).

Example 2. The root systems θ = B4 (with d = 4) and
θ‖ = I8

2 (with d‖ = 2) form a Coxeter pair (of degree N =
d/d‖ = 2). In both cases, the roots live in Q4; and if we take
the maximally symmetric 2D projection of the 32 roots of B4,
we obtain (N = 2 copies of) the 16 roots of I8

2 (see Fig. 8).
This is the Coxeter pair relevant to the Ammann-Beenker
tiling (Fig. 10).

In Appendix A, we obtain the complete list of Coxeter
pairs. The results are summarized in Table II: the Coxeter
pairs fall into two infinite families and four exceptional cases.
Note that most noncrystallographic root systems do not be-
long to a Coxeter pair; and if the noncrystallographic root
system θ‖ does belong to a Coxeter pair, it belongs to a unique
Coxeter pair (i.e., it has a unique crystallographic partner θ ).

TABLE II. The complete list of Coxeter pairs. Here θ‖ is the
noncrystallographic root system, θ is the crystallographic partner,
and N = d/d‖ is the degree.

θ ‖ θ N = d/d‖

I p
2 (p any prime �5) Ap−1 (p − 1)/2

I2m

2 (m any integer �3) B2m−1/C2m−1 2m−2

I12
2 F4 2

I30
2 E8 4

H3 D6 2
H4 E8 2

There is another way to think about the relationship
between the higher dimensional root system θ and the lower-
dimensional root system θ‖: the intersection of any θ mirror
(a codimension-one plane in d dimensions) with the parallel
space yields a θ‖ mirror (a codimension-one plane in d‖
dimensions); and, in fact, each θ‖ mirror arises in this man-
ner in N distinct ways (i.e., from N distinct θ mirrors that
differ in d dimensions, but all degenerate with one another in
their intersection with the d‖-dimensional parallel space—see
Fig. 2).

Now let fk (k = 1, . . . , d) be the fundamental roots of θ

(the d roots perpendicular to one of the fundamental regions
bounded by the mirror planes of θ – see Sec. 4.2 in [35]); let
f‖
k (k = 1, . . . , d‖) be the fundamental roots of θ‖; and let P‖

denote the orthogonal projection operator from d dimensions
onto the d‖-dimensional parallel space: x‖ = P‖x. Any point
x in the higher dimensional space Qd may be written as a
Q-linear combination of the fk:

x =
d∑

k=1

ϕkfk (ϕk ∈ Q); (5)

and when we orthogonally project this point onto the parallel
space, the resulting point x‖ = P‖x is a Q-linear combination
of the projected fundamental roots P‖fk of θ or, equivalently, a
K-linear combination of the fundamental roots f‖

k of θ‖ (where
the field K is a degree N extension of Q, i.e., a field obtained
by adjoining to the rational numbers an appropriate root of a
N th-order polynomial):

x‖ =
d∑

k=1

ϕkP‖fk =
d‖∑

k=1

ϕ
‖
k f‖

k (ϕk ∈ Q, ϕ
‖
k ∈ K). (6)

This map is invertible: given a point x‖ in the parallel space
(i.e., a K-linear combination

∑
ϕ

‖
k f‖

k or, equivalently, a Q-
linear combination

∑
ϕkP‖fk) it lifts to a unique point x in the

embedding space (namely, the point x = ∑
ϕkfk).

For example, the noncrystallographic root system I5
2 , with

two fundamental roots f‖
k (k = 1, 2), is paired with the crys-

tallographic root system A4, with four fundamental roots fk

(k = 1, . . . , 4); and, under the maximally symmetric orthogo-
nal projection of the A4 roots onto 2D (i.e., onto the “Coxeter
plane”—see Appendix A), any 4D point x that is a rational
linear combination of the fundamental roots fk of A4 projects
to a 2D point x‖ that may either be written as a rational linear
combination of the projected fundamental roots of A4, P‖fk , or
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FIG. 2. In this figure, the pink and blue planes represent two
different θ mirrors that live in the higher dimensional space (i.e.,
the d-dimensional embedding space in which the θ mirrors act),
while the xy plane represents the lower-dimensional space (i.e., the
d‖-dimensional parallel space in which the θ‖ mirrors act). The
intersection of the blue θ mirror with the parallel space (the xy plane)
defines a θ ‖ mirror (which, in this case, is the y axis); and the pink
θ mirror intersects the parallel space in exactly the same place, and
thus defines exactly the same θ ‖ mirror. In a Coxeter pair of degree
N , there are N such θ mirrors that all have the same intersection with
the parallel space, and thus all define the same θ‖ mirror; all the θ ‖

mirrors arise in this way, and the θ mirrors are naturally grouped into
N-fold multiplets in the process.

else as a K-linear combination of the two fundamental roots of
I5
2 , f‖

k , where in this case K = Q(
√

5) is a quadratic extension
of the rationals; and the map is invertible, so any such 2D point
x‖ lifts to a corresponding 4D point x.

C. Quadratic coxeter pairs

Let us distinguish between the N = 2 (or “quadratic”)
Coxeter pairs, and the N > 2 (or “higher”) Coxeter pairs.
From Table II, we see that all of the noncrystallographic root
systems in dimension d‖ > 2, and three of the simplest in
dimension d‖ = 2 are “quadratic,” while the rest (which are
all in dimension d‖ = 2) are “higher.” In the remainder of this
paper, we will only need the quadratic Coxeter pairs: we will
show how they may be used to elegantly construct all of the
irreducible Ammann patterns and their dual Penrose tilings.
In future work, it will be interesting to study the “higher”
Coxeter pairs, and the possibility of using them to con-
struct “higher” Ammann patterns and “higher” Penrose tilings
in 2D.

In the N = 2 case, K is a real quadratic field Q(
√

D),
where D is a square-free positive integer (see Table III) and
the d-dimensional embedding space is split into two parts
(the ‖ and ⊥ spaces), both of which have the same dimen-

TABLE III. Quadratic (N = 2) Coxeter pairs and their corre-
sponding field extensions. Here θ‖ is the noncrystallographic root
system, θ is the crystallographic partner, and K is the field extension.

θ‖ θ K

I5
2 A4 Q(

√
5)

I8
2 B4/C4 Q(

√
2)

I12
2 F4 Q(

√
3)

H3 D6 Q(
√

5)
H4 E8 Q(

√
5)

sion (d‖ = d/2) and are simply related by Galois conjugation√
D → −√

D. For this reason, instead of using “‖” and “⊥”
super/subscripts, it will be more convenient to use “+” and
“−” super/subscripts (so that “+” and “−” stand for “‖” and
“⊥”, respective, just as in Table 1 of Ref. [11]).

In particular, if P+ and P− denote the orthogonal projectors
onto the ‖ and ⊥ spaces, respectively, and we split each
fundamental root fk of θ into its ‖-space part P+fk and its
⊥-space part P−fk:

fk = P+fk + P−fk (7)

and then express these parts in the original fk basis

P±fk =
d∑

k′=1

ζ±
k,k′ fk′ ζ±

k,k′ ∈ Q(
√

D) (8)

then the “+” coefficients ζ+
k,k′ will be related to the “−”

coefficients ζ−
k,k′ by

√
D → −√

D. And thus, if we consider
any point x = ∑

ϕkfk that is a rational linear combination of
the fk , and express the ‖ and ⊥ parts in the fk basis,

P±x =
d∑

k=1

η±
k fk η±

k ∈ Q(
√

D) (9)

then the “+” coefficients η+
k will also be related to the “−”

coefficients η−
k by

√
D → −√

D. Note that, in our definition
of Coxeter pairs, we have taken both members of the pair,
θ‖ and θ , to be irreducible. This is because, in this paper
(as explained in the next section), we are interested in con-
structing all irreducible Ammann patterns (which is why θ‖
is irreducible and characterized by quadratic irrationalities);
and in all such cases, θ‖ does have a higher-rank partner θ

that is also irreducible, so this definition leads to no loss of
generality in terms of constructing the irreducible Ammann
patterns. However, it might nevertheless be interesting to also
consider generalized Coxeter pairs in which θ‖, and possibly
also θ , are reducible; and to study the corresponding reducible
quasicrystals they generate. We leave this as a subject for
future work.

III. CONSTRUCTING ALL IRREDUCIBLE
AMMANN PATTERNS

A. Introducing irreducible Ammann patterns

Ammann noticed [4,39] that the two Penrose tiles could
each be decorated with a special pattern of five line segments
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so that, in a defect-free Penrose tiling, the line segments
join together to form five infinite sets of unbroken straight
lines, parallel to the five edges of a regular pentagon (see
the thin blue lines in Fig. 6). The pattern formed by these
five infinite sets of lines is the prototype for what we will
call an “Ammann pattern.” It has three key properties. (i)
First, if we focus on any one of the five sets of parallel lines,
they turn out to be spaced according to a 1D quasiperiodic
sequence of long and short intervals. More specifically, they
form the simplest possible type of self-similar 1D quasilattice:
a self-similar 1D quasilattice of degree two [11]. (ii) Second,
the pattern’s (tenfold) orientational symmetry is described by
an irreducible noncrystallographic reflection group and all
of its constituent 1D quasilattices are equivalent up to this
symmetry. (iii) Third, the pattern is self-similar: that is, each
of its constituent 1D quasilattices is equipped with a natural
self-similarity (or “inflation”) transformation and, moreover,
if we inflate each of the 1D constituents simultaneously, the
pattern formed by their superposition is also self-similar. We
would like to find and understand all patterns with these three
properties.

In more detail, consider a collection of J unit vectors e+
j

( j = 1, . . . , J) in d+ dimensions. We will say that these vec-
tors form an irreducible noncrystallographic star if

(1) the set S = {±e+
1 , . . . ,±e+

J } (of all the vectors e+
j and

their opposites) is invariant under the action of an irreducible
noncrystallographic reflection group G(θ+); and

(2) the symmetry group G(θ+) acts transitively on the
elements in S (so that any two vectors in the set are equivalent
up to symmetry).

First focus on one vector e+
j in this star, and imagine

that, along this direction, we have an infinite sequence of
(codimension-one) planes that are perpendicular to e+

j , with
their locations along e+

j forming a self-similar 1D quasilattice
of degree two; and now imagine an analogous 1D quasilattice
along each direction e+

j in the star (where these 1D quasilat-
tices are all locally isomorphic to one another). Next consider
the resulting “multigrid” (formed from the superposition of
these J differently oriented 1D quasilattices): since each of
the constituent 1D quasilattices is equipped with its own
“inflation” transformation under which it is self-similar (see
Ref. [11] for a more detailed explanation), it is natural to
consider the operation where we inflate all the constituent 1D
quasilattices simultaneously, and to ask whether the multigrid
as a whole is also self-similar under this operation. As we shall
see, if the phases of the constituent 1D quasilattices are chosen
generically, then the multigrid will not be self-similar under
inflation; but for a special choice of phases, the multigrid
will be – and in this special case, we call the multigrid an
irreducible Ammann pattern.

In this paper, we focus on patterns with irreducible re-
flection symmetry, because this captures and generalizes a
natural feature of the Penrose tiling. If an Ammann pattern
is characterized by an irreducible reflection symmetry, then
its dual Penrose-like tiling will be as well (and, of course,
the original Ammann pattern and Penrose tiling have this
property). If, instead, a pattern in Euclidean space Rn is char-
acterized by the reducible reflection group G1×G2 (where G1

and G2 are two irreducible reflection groups of rank r1 and r2,

respectively, with r1 + r2 = n), it means that G1 acts purely
on the subspace Rr1 , while leaving the orthogonal subspace
Rr2 invariant, while G2 acts purely on the subspace Rr2 , while
leaving the orthogonal subspace Rr1 invariant. Indeed, given
two quasicrystalline point sets X1 = {x1,i} (a quasicrystalline
subset of points in Rr1 with irreducible orientational symme-
try G1) and X2 = {x2,i} (a quasicrystalline subset of points
in Rr2 with irreducible orientational symmetry G2), we can
trivially construct a new quasicrystalline set with orientational
symmetry G1×G2 by simply taking the product of these two
sets, i.e., by considering the set X = {(x1,i, x2, j} of points
in Rr1+r2 consisting of all pairs of points from the original
two sets. We consider Ammann patterns with irreducible re-
flection symmetry to rule out quasicrystals like these that
are decomposable into a product of two quasicrystals and,
more generally, less tightly knit together by their orientational
symmetry than an irreducible quasicrystal like the Penrose
tiling is.

It is important to emphasize that our definition of irre-
ducible Ammann patterns (and our definition of Penrose-like
tilings as the duals of these patterns) represents a choice about
how to define a class of objects that nicely generalize the
original Ammann pattern and Penrose tiling, but this choice
excludes other types of patterns that may also be very interest-
ing,and represent generalizations of the Ammann pattern and
Penrose tiling in a different sense, e.g., quasiperidic patterns
with crystallographic orientational symmetries, quasiperi-
odic tilings with reducible noncrystallographic symmetries,
quasiperiodic tilings whose orientational symmetry is de-
scribed by a noncrystallographic rotation group rather than a
noncrystallographic reflection group (e.g., because the pattern
is chiral), quasiperiodic patterns that are characterized by
cubic irrationalities or higher-order irrationalities, etc. These
are potentially interesting extensions of the present work that
we leave as topics for future investigation.

As mentioned above, Ammann patterns are built from
1D self-similar quasilattices of the simplest possible kind:
those consisting of just two different intervals (L and S),
with just two possible separations between successive L’s,
and just two possible separations between successive S’s.
(These are the self-similar 1D quasilattices of degree two
studied in Ref. [11].) Under a self-similarity transformation,
such quasilattices rescale by a quadratic irrationality; and, as
we will see, this will restrict us to those noncrystallographic
root systems that belong to a quadratic Coxeter pair (and are
hence characterized by quadratic irrationalities). As explained
in Sec. II C, in dimension d‖ > 2, this is no restriction at all
(since all the noncrystallographic root systems in those dimen-
sions – namely H3 and H4 – do indeed belong to quadratic
root systems); but in dimension d‖ = 2, where not all Coxeter
pairs are quadratic, it amounts to restricting our attention to
the root systems I5

2 , I8
2 , and I12

2 (which will yield 2D Ammann
patterns with five-/tenfold, eightfold, and 12-fold symmetry,
respectively). It is worth noting that that these symmetries
stand out as being of particular importance: (i) as the symme-
try axes that have been experimentally observed in physical
quasicrystals in the laboratory; and (ii) also in the study of
mathematical quasicrystals and quasicrystalline tilings, where
many of the most interesting and widely studied examples
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have these symmetries (in addition to the Penrose tiling with
tenfold order in 2D, these include the Ammann-Beenker tiling
with eightfold order in 2D; the Ammann-Socolar tiling [20],
Schlottmann’s square-triangle tiling [9,40], and the shield
tiling [9,41,42] with 12-fold symmetry in 2D; the Socolar-
Steinhardt tiling [19], Ammann’s rhombohedral tiling [43]
and Danzer’s tetrahedral tiling [44] with icosahedral (H3)
order in 3D; and the Elser-Sloane quasicrystal with hyperi-
cosahedral (H4) order in 4D [38,45–49]). These symmetries
are also distinguished for other reasons: they are the ones
expected to arise from “strong” local matching rules [50,51]
or from the stable ground state of a local Hamiltonian [52].

In an Ammann pattern, each of the constituent 1D
quasilattices is characterized by two “phase” parameters (a
translational phase and a “phason” phase); and, as explained
above, these phase parameters must be carefully chosen in
order to ensure that the overall multigrid is self-similar when
a simultaneous inflation transformation is applied to all of the
1D constituents. How are these special phases to be found?
Prior to this work, the correct phases were only found in a few
cases, using techniques which applied on a case-by-case basis:
as described above, the original (2D tenfold) Ammann pattern
was obtained by stumbling on a clever decoration of the orig-
inal Penrose tiles; and several more Ammann patterns (a 2D
eightfold pattern, a 2D 12-fold pattern, and a 3D icosahedral
pattern) were obtained by noticing a particularly symmetric
special case where it was easy enough to solve for the req-
uisite phases directly [19,20]. But these techniques have the
drawback that they only work in some cases (for example, in
the particularly fascinating H4 case in four dimensions, it does
not seem possible to find a configuration that is sufficiently
simple to allow one to solve for the phases directly); and,
moreover, they do not yield any insight into the underlying
meaning of the special phase arrangement, or where it comes
from, thus making it difficult to answer various interesting
follow-up questions.

In this section, we present a new, unified geometric con-
struction that yields all irreducible Ammann patterns directly.
The correct phases are obtained automatically, without having
to solve for them, and are described by a simple analytical
formula that reveals their underlying geometric meaning, and
makes them particularly easy to work with.

B. Constructing irreducible Ammann patterns

Here is our recipe for generating any irreducible Ammann
pattern:

(1) Choose a (quadratic) Coxeter pair {θ+, θ} (the non-
crystallographic root system θ+ has lower rank d+ and the
crystallographic root system θ has higher rank d).

(2) Pick a (d+-dimensional) vector a+
0 , which is a

Q(
√

D)-linear combination of the simple roots of θ+, and
act on it with all the elements of the reflection group G(θ+)
to obtain a G(θ+)-symmetric collection of (d+-dimensional)
vectors—the “star” s(a+

0 ). Let a+
j denote the jth vector in

this star. (Actually, if the vectors come in pairs ±a+
j , we

can simplify our life by arbitrarily deleting from the star
one member of each pair of vectors. Note that this deletion
step is optional—the formalism in the remainder of the paper
works whether we do it or not, as long as we remember to be

consistent about always using either all of the vectors in the
original star, or half of them.)

(3) Now pick an appropriate value m−
2 /m−

1 from Table 1
in Ref. [11] (i.e., a value corresponding to one of the θ+
scale factors—see Table 1 in Ref. [10]) and define the new
d+-dimensional vectors b+

j = −(m−
1 /m−

2 )a+
j , so that we can

write

a+
j = a+e+

j , (10a)

b+
j = b+e+

j , (10b)

where the unit vectors e+
j form (all or half of) a G(θ+)-

symmetric star s(e+
0 ), while the magnitudes a+ ≡ (a+

j · a+
j )1/2

and b+ ≡ (b+
j · b+

j )1/2 obey b+ = −(m−
1 /m−

2 )a+.
(4) As described in Sec. II, the d+-dimensional vectors a+

j

and b+
j lift to d-dimensional vectors a j and b j , respectively,

which are Q-linear combinations of the simple roots of θ .
Note that, for fixed j, the d+-dimensional vectors a+

j and b+
j

are parallel, but their d-dimensional counterparts a j and b j are
not.

(5) Along each d-dimensional vector a j , construct an in-
finite sequence of codimension-one hyperplanes, with the Ath
hyperplane (A ∈ Z) defined by

a j · x = A + α, (11a)

where x is the position coordinate in d-dimensional space.
In other words, these “a j hyperplanes” are perpendicular to
a j , and evenly spaced along a j . In order for the a j hyper-
planes to have θ symmetry, we should take {α} = α − 	α

(i.e., the fractional part of α) to be either 0 (so that A +
α = . . . ,−2,−1, 0,+1,+2, . . .) or 1/2 (so that A + α =
. . . ,−3/2,−1/2,+1/2,+3/2, . . .). Similarly, along each
d-dimensional vector b j , construct a sequence of “b j hyper-
planes”:

b j · x = B + β, (11b)

where, again, {β} = β − 	β
 is either 0 or 1/2. The collec-
tion of all the a j and b j hyperplanes (for all A, B, j ∈ Z)
together form a (crystallographic) d-dimensional pattern: a
d-dimensional honeycomb (with symmetry described by θ ).

(6) Now consider a d+-dimensional slice through this
honeycomb—the slice is parallel to the original maximally
symmetric d+-dimensional space on which θ+ lives and acts,
but its origin is displaced by an arbitrary d-dimensional vector
q0 (relative to the origin of the coordinate x); so the d+-
dimensional coordinate x+ on the hyperplane is related to the
d-dimensional coordinate x by

x = q0 + x+. (12)

Let us call this d+-dimensional hyperplane the “Coxeter
slice.”

(7) Consider the intersection of this Coxeter slice with the
d-dimensional honeycomb. Along each direction e+

j , we ob-
tain a 1D bigrid, i.e., a superposition of two infinite sequences
of (d+− 1) dimensional hyperplanes that are perpendicular
to e+

j , and evenly spaced along e+
j . (In particular, the first

sequence, produced by the a j planes, has regular spacing
1/a+, while the second sequence, produced by the b j planes,
has regular spacing 1/b+.) The (d+− 1) dimensional planes
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perpendicular to the direction e+
j are at a location e+

j · x+
given by

x(a)
j,A = (A − a j · q0 + α)/a+, (13a)

x(b)
j,B = (B − b j · q0 + β )/b+. (13b)

(8) In Ref. [11], we explain that there is a canonical pair-
ing between a 1D bigrid like this one and an associated 1D
quasilattice: in geometrical terms, if we consider a 1D line
q(t ) which slices through a 2D lattice � equipped with an
integer basis {m1, m2}, then the integer grid lines associated
with the {m1, m2} basis slice up the 2D plane into parallel-
ograms, and the 1D bigrid corresponds to the intersection
of the line q(t ) with the edges of these parallelograms (see
Sec. 2.2 in Ref. [11]), while the 1D quasilattice corresponds
to the sequence of points obtained by orthogonally projecting
onto q(t ) the center of every parallelogram that is intersected
by q(t ) (see Sec. 2.3 in Ref. [11]). In particular, although
there might seem to be an overall translational ambiguity in
relating the 1D bigrid to the dual 1D quasilattice, as explained
in Sec. 2 of Ref. [11], this ambiguity may be canonically fixed
by the requirement that the 1D bigrid is reflection symmetric
if and only if the 1D quasilattice is, too. It follows that the
1D bigrid along the e+

j direction that is described by Eq. (13)
corresponds to a 1D quasilattice x j,n that may be described in
the following two equivalent forms for x j,n:

= m+
1 (n−χ+

1, j )+(m+
2 −m+

1 )
(	κ1(n−χ−

1, j )
 + 1
2

)
, (14)

= m+
2 (n−χ+

2, j )+(m+
1 −m+

2 )
(	κ2(n−χ−

2, j )
 + 1
2

)
, (15)

where the parameters are given as follows. First, the ratios
m+

2 /m+
1 and m−

2 /m−
1 are fixed by our choice of a row from

Table 1 in Ref. [11]; the parameters κ1 and κ2 are

κ1 = 1

1 − (m−
2 /m−

1 )
, κ2 = 1

1 − (m−
1 /m−

2 )
; (16)

the parameters m+
1 and m+

2 are

m+
1 =

[(
1 − m−

1

m−
2

m+
2

m+
1

)
a+

]−1

, (17a)

m+
2 =

[(
1 − m−

2

m−
1

m+
1

m+
2

)
b+

]−1

; (17b)

and the parameters χ±
1, j and χ±

2, j are given by

m±
1 χ±

1, j = m±
2 χ±

2, j = (m±
1 a±

j + m±
2 b±

j ) · q±
0 − (m±

1 α + m±
2 β ),

(18)

where, in this last equation, we have split the d-dimensional
vectors a j , b j and q0 into the parts that are parallel and
perpendicular to the Coxeter slice

a j = a+
j + a−

j , (19a)

b j = b+
j + b−

j , (19b)

q0 = q+
0 + q−

0 , (19c)

and used the fact that, as a consequence of our original def-
inition b+

j = −(m−
1 /m−

2 )a+
j , the parallel and perpendicular

components satisfy the identities:

m±
1 a∓

j + m±
2 b∓

j = 0. (20)

(9) At first glance, we seem to have constructed four dif-
ferent patterns, depending on whether the fractional parts of
α and β are given by ({α}, {β}) = (0, 0), (1/2, 0), (0, 1/2)
or (1/2, 1/2). But, often, by shifting the origin of the d-
dimensional coordinate x, we may find that some of these
four options turn out to be equivalent to one another, i.e.,
two options ({α}, {β}) and ({α′}, {β ′}) may secretly define
the same d-dimensional honeycomb, expressed with respect
to two different origins.

(10) Now, we know from Ref. [11] that, under an inflation
transformation, all the 1D phase parameters χ±

1, j and χ±
2, j

given by (18) should transform to new parameters χ±
1, j

′ and
χ±

2, j
′ given by

χ±
j

′ = χ±
j /λ±, (21)

where the parameters λ± are again obtained from our chosen
row in Table 1 of Ref. [11]. If the new inflated parameters
χ±

j
′ could alternatively be obtained by shifting the origin of

the Coxeter slice from its initial position q0 to a new position
q′

0 [i.e., if the new parameters χ±
j

′ can be obtained from the
simple substitution q0 → q′

0 in Eq. (18)], then the pattern is
self-similar – it is an Ammann pattern. On the other hand,
if the new inflated parameters χ±

j
′ could alternatively be ob-

tained by shifting the origin of the Coxeter slice from its initial
position q0 to a new position q′

0 and simultaneously shifting
the choice ({α}, {β}) to a new inequivalent choice ({α′}, {β ′}),
then, instead of an Ammann pattern, we have a member of an
“Ammann cycle,” since we must repeat the inflation two or
more times before obtaining a pattern that is similar to the
original.

We again illustrate with our two basic examples.
Example 1 (Penrose). To obtain the original Ammann pat-

tern (Fig. 4), whose dual is the Penrose tiling (Fig. 5), we
take the Coxeter pair {θ+, θ} = {I5

2 , A4}, the minimal fivefold-
symmetric star a+

j = (cos 2π j
5 , sin 2π j

5 } ( j = 1, . . . , 5), and

the values m±
2 /m±

1 = 1
2 (1 ± √

5) and λ± = 1
2 (1 ± √

5) from
row 1 of Table 1 in Ref. [11]. It follows that a+ = 1, b+ =
1
2 (1 + √

5), κ1 = 1
2 (−1 + √

5), κ2 = 1
2 (3 − √

5), m+
1 = (5 −√

5)/10, and m+
2 = 1/

√
5. Taking ({α}, {β}) = (0, 0) for the

fractional parts of α and β, and carrying out the above proce-
dure then yields the Ammann pattern Fig. 4 (whose dual is the
Penrose tiling Fig. 5).

Example 2 (Ammann-Beenker). To obtain the Ammann
pattern (Fig. 9), whose dual is the Ammann-Beenker tiling
(Fig. 10), we take the Coxeter pair {θ+, θ} = {I8

2 , B4},
the minimal eightfold-symmetric star a+

j = (cos 2π j
8 , sin 2π j

8 }
( j = 1, . . . , 8), and the values m±

2 /m±
1 = ±√

2 and λ± = 1 ±√
2 from row 2a of Table 1 in Ref. [11]. It follows that a+ = 1,

b+ = 1/
√

2, κ1 = −1 + √
2, κ2 = 2 − √

2, m+
1 = 1/2, and

m+
2 = 1/

√
2. Taking ({α}, {β}) = (0, 0) for the fractional

parts of α and β, and carrying out the above procedure yields
the Ammann pattern Fig. 9 (whose dual is the Ammann-
Beenker tiling, Fig. 10).
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IV. CONSTRUCTING THE CORRESPONDING
PENROSE TILINGS

In this section, we explain how to dualize any Ammann
pattern to obtain the associated Penrose tiling (along with its
Ammann decoration and inflation rule).

The idea that a Penrose tiling could be generated by dualiz-
ing a periodic (penta-)grid was first systematically developed
and studied by de Bruijn [12–14] (and it is worth noting that
the basic idea was also described informally by Ammann in
earlier correspondence to Gardner [39]). Socolar and Stein-
hardt subsequently discovered [19] that a Penrose tiling could,
instead, be obtained by dualizing an Ammann (penta-)grid
in an analogous fashion. Moreover, they realized that this
approach had a fundamental advantage: it allowed one to
derive two key properties of the Penrose tiling (the Ammann
decoration and the inflation rule) which had previously been
obtained by inspired guesswork.

Here we build upon this second approach. In order for the
Socolar-Steinhardt approach to work, the Penrose tiling must
be correctly scaled and translated so that it is properly situated
relative to the original Ammann pattern. In earlier work, the
correct scaling and translation were achieved by inspection;
but in Sec. IV A, we derive a simple “dualization formula”
(32) that yields the correct scaling and translation automat-
ically. Then, in Secs. IV B and IV C, we explain how this
formula may be used to systematically generate the Ammann
decoration and the inflation rule for the Penrose tiling, and to
ensure that they are in one-to-one correspondence with one
another. Our approach is completely systematic, and does not
involve any inspection or guess work (which is particularly
important in more complicated cases—like the 4D case—
where inspection or guesswork become impractical).

A. The dualization formula

Consider an Ammann pattern in which the Ammann planes
are arrayed along the J different directions e j ( j = 1, . . . , J ).
These planes slice up d-dimensional Euclidean space into
open d-dimensional regions (“cells”). To each cell, we assign
a set of J integer coordinates {n1, . . . , nJ}: the jth coordinate
n j indicates that, along the e j direction, the cell lies between
the hyperplanes labeled n j and n j + 1 (i.e., the position x‖ of
any point in the cell satisfies x j,n j

< e j · x‖ < x j,n j+1).
The dualization procedure maps each cell in the Ammann

pattern to a vertex in the corresponding Penrose tiling. In
particular, any point (with position x‖) in the cell with integer
coordinates {n1, . . . , nJ} gets mapped to a point (with position
x′

‖) in the Penrose tiling via an equation of the form

x′
‖(x‖) = z + C

J∑
j=1

n je j . (22)

We now want to determine what the scaling parameter C and
overall translation z should be in order to ensure that the
Penrose tiling produced by this formula is always properly
situated relative to the original Ammann pattern from which
it came.

To determine the formula for the scaling parameter C, first
note that in the 1D quasilattice x j,n, a fraction κ1 of the steps

have length m+
2 , and a fraction κ2 have length m+

1 , so that the
average step size is

〈m+〉 = κ1m+
2 + κ2m+

1 . (23)

The point with position x‖ lies within an Ammann-pattern cell
whose jth integer coordinate is roughly n j ≈ (x‖ · ê j )/〈m+〉
(with an error that doesn’t grow with |x‖|). So, from (22),
dualization maps the point x‖ to a point x′

‖ roughly given by

x′
‖ ≈ z + C

J∑
j=1

(x‖ · e j )

〈m+〉 e j = z + Cγ

〈m+〉x‖ (24)

where, in the last equality, we have used the fact that if we
take the outer product of e j with itself, and then sum over j,
we obtain a multiple of the identity matrix δαβ :

J∑
j=1

eα
j eβ

j = γ δαβ, (25)

where the coefficient γ depends on the star formed by the
±e j . If the Penrose tiling is correctly situated with respect
to the original Ammann pattern, the position x′

‖ estimated in
(24) should be close to the original position x‖ (with an error
that does not grow with |x‖|). This requires the coefficient
Cγ /〈m+〉 on the right-hand side of (24) to be unity:

C = 〈m+〉
γ

. (26)

To determine the overall translation z, first note that if we
change q0 in the “parallel” direction (q0 → q̄0 = q0 + �q‖

0)
while holding everything else fixed, this leaves the Ammann
pattern unchanged apart from an overall translation x‖ →
x̄‖ = x‖ − �q‖

0; and since the Penrose tiling must shift in
lock-step with the Ammann pattern, the overall translation
z must depend on q0 as follows: z = −q‖

0 + δz, where δz is
q0-independent.

Finally, the precise form of δz may then be determined
from the requirement that, when the Ammann pattern is
inversion symmetric (under x‖ → −x‖), the corresponding
Penrose-like tiling should be, too (under x′

‖ → −x′
‖). Now, the

Ammann pattern as a whole is inversion symmetric if and only
if each 1D quasilattice x j,n is separately inversion-symmetric:
i.e., if −x j,n (the inversion of the jth 1D quasilattice) is the
same as x j,N−n (the jth 1D quasilattice with the points labeled
in the opposite order). Using the “umklaap” formulas from
Sec. 2.3 of Ref. [11], one can check that the 1D quasilattice
x j,n is inversion-symmetric if and only if

m±
1 χ±

1, j = m±
2 χ±

2, j = 1
2 (p1, jm

±
1 + p2, jm

±
2 ), (27)

where p1, j and p2, j are integers. Specifically, in this case, one
has

−x j,n = x j,p1, j+p2, j−n, (28)

and if we compare Eqs. (18) and (27), we find that the integers
p1, j and p2, j are given by

p1, j = 2(a j · q0 − α), (29a)

p2, j = 2(b j · q0 − β ). (29b)
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Now, if the point x‖ in the Ammann pattern satisfies x j,n j <

x‖ · e j < x j,n j+1 (so that it lies in the Ammann cell with inte-
ger coordinates {n j}) then −x‖ (the inversion of the original
point) satisfies −x j,n j+1 < −x‖ · e j < −x j,n or, equivalently
[using Eq. (28)], x j,p1, j+p2, j−n j−1 < −x‖ · e j < xp1, j+p2, j−n j (so
that it lies in the Ammann cell with integer coordinates {p1, j +
p2, j − n j − 1}). So, while the dualization formula (22) maps
the original point x‖ to a Penrose vertex at position

x′
‖(x‖) = −q‖

0 + δz + 〈m+〉
γ

J∑
j=1

n je j (30a)

it maps the inverted point −x‖ to a Penrose vertex at position

x′
‖(−x‖) = −q‖

0 + δz + 〈m+〉
γ

J∑
j=1

(p1, j + p2, j − n j − 1)e j .

(30b)
Now the above requirement (that an inversion-symmetric Am-
mann pattern should map two points ±x‖ related by inversion
to two Penrose vertices related by inversion) means that we
should have x′

‖(x‖) = −x′
‖(−x‖). Using Eqs. (30a) and (30b)

and simplifying, this becomes

δz = q‖
0+ 〈m+〉

2γ

∑
j

(1 − p1, j − p2, j )e j (31a)

= q‖
0+ 〈m+〉

γ

∑
j

(
1

2
+α+β−a j ·q0−b j ·q0

)
e j (31b)

= 〈m+〉
γ

∑
j

(
1

2
+ α + β

)
e j (31c)

Finally notice that it is natural to reabsorb δz into a re-
labelling of the Ammann cells: if, along the e j direction,
an Ammann cell lies between the Ammann planes x j,n j and
x j,n j+1, instead of assigning it the integer coordinate n j , let us
assign it the half-integer coordinate ν j = n j + 1/2 + α + β,
so that the Ammann cell is labeled by J such integer or
half-integer coordinates {ν1, . . . , νJ}.

Then what we have shown is that the dualization formula
(22) finally assumes the following simple form:

x′
‖(x‖) = −q‖

0 + 〈m+〉
γ

J∑
j=1

ν je j . (32)

Once again, let us illustrate with our two basic examples.
Example 1 (Penrose). Using Eqs. (23) and (25), along with

the values summarized in Example 1 of Sec. III B, we obtain
〈m+〉 = 1

2 (3 − √
5) and γ = 5/2. Apply dualization formula

(32) with these constants to the Ammann pattern in Fig. 4
yields the dual Penrose tiling (Fig. 5), its Ammann decoration
(Fig. 6), and its inflation (Fig. 7), as further explained in the
following two sections.

Example 2 (Ammann-Beenker). Using Eqs. (23) and (25),
along with the values summarized in Example 2 of Sec. III B,
we obtain 〈m+〉 = 2 − √

2 and γ = 4. Apply dualization for-
mula (32) with these constants to the Ammann pattern in
Fig. 9 yields the dual Ammann-Beenker tiling (Fig. 10), its
Ammann decoration (Fig. 11), and its inflation (Fig. 12), as
explained in the following two sections.

B. Obtaining the Ammann decorations

In Sec. IV A, we explained how to start with the Ammann
pattern x j,n given by Eq. (14) [with parameters given by
Eqs. (16)–(18)] and use the dualization formula (32) to obtain
the dual Penrose tiling with vertices x′

‖(x‖).
Now let us consider a new Ammann pattern x̄ j,n which is

obtained from the original Ammann pattern x j,n by a single
inflation (so that x̄ j,n is one level denser or more refined than
x j,n). In other words, using the results of Sec. 4 in Ref. [11],
we find that the refined Ammann pattern is described by the
following equation for x̄ j,n:

= 1

λ+

[
m+

1 (n−χ̄+
1, j )+(m+

2 −m+
1 )

(
	κ1(n−χ̄−

1, j )
+
1

2

)]
,

(33a)

= 1

λ+

[
m+

2 (n−χ̄+
2, j )+(m+

1 −m+
2 )

(
	κ2(n−χ̄−

2, j )
+
1

2

)]
,

(33b)

where the parameters m+
1,2 and κ1,2 are the same as before,

while the new “phases” χ̄±
1,2 are related to the original phases

χ±
1,2 by

χ̄±
1 = λ±χ±

1 χ̄±
2 = λ±χ±

2 . (34)

and λ± are obtained from the appropriate row of Table 1 in
Ref. [11] (the same row as the ratios m±

2 /m±
1 were obtained

from in specifying the original Ammann pattern in Sec. III).
Now the Ammann decoration is automatically obtained by

simply superposing the refined Ammann pattern x̄ j,n directly
on top of the Penrose tiling x′

‖(x‖).

C. Obtaining the inflation rules

In Sec. IV B, we started with the original Ammann pattern
x j,n and explained how to obtain the more refined Ammann
pattern x̄ j,n. In Sec. IV A, we explained how to use Eq. (32)
to dualize the original Ammann pattern x j,n to obtain the
corresponding Penrose tiling x′

‖(x‖). Similarly, we can dualize
the refined Ammann pattern x̄ j,n to obtain a refined Penrose
tiling x̄′

‖(x‖): if, along the e j direction, a point x‖ in a cell of
the refined Ammann pattern lies between the Ammann planes
x̄ j,n̄ j and x̄ j,n̄ j+1, then we say its jth integer or half-integer
coordinate is ν̄ j = n̄ j + 1/2 + ᾱ + β̄, and we map this point
to a vertex in the refined Penrose tiling with position

x̄′
‖(x‖) = −q‖

0 + 1

λ+
〈m+〉

γ

J∑
j=1

ν̄ je j . (35)

Now we automatically obtain the inflation rule for the Penrose
tiling by simply superposing the new refined tiling (35) on the
original Penrose tiling (32).

In the next section, we will apply these techniques to
generate all of the minimal Penrose tilings as well as their
Ammann decorations and inflation rules. But here we make
a remark. The procedures outlined in this section reproduce
the standard tenfold Penrose tiling, along with its standard
Ammann decoration and inflation rule. In Ref. [20], a similar
technique was used to produce an an eightfold tiling and
a 12-fold tiling; but note that in those cases, the suggested
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Ammann decoration was obtained by taking the dual of the
original Ammann pattern x j,n to obtain a Penrose tiling, and
then superposing on this tiling the same Ammann pattern x j,n

(rather than its refinement x̄ j,n). However, note that the deco-
ration obtained by superposing the original Ammann pattern
x j,n will, in general, be too sparse: tiles that are distinct (i.e.,
they have the same shape, but distinct inflation rules) can wind
up receiving the same decoration, while tiles that are actually
identical (i.e., they have the same shape and the same inflation
rule) can wind up receiving distinct decorations. By contrast,
if we superpose the refined Ammann pattern x̄ j,n we obtain
an Ammann decoration that is in one-to-one correspondence
with the tiles and their inflation rules, i.e., two tiles receive the
same Ammann decoration if and only if they have the same
inflation rule.

V. THE MINIMAL AMMANN PATTERNS
AND PENROSE-LIKE TILINGS

We now apply the approach developed in the previous
sections to construct all the minimal Penrose-like tilings, i.e.,
all tilings obtained by dualizing a minimal Ammann pattern
(an Ammann pattern with the minimal star compatible with
its orientational symmetry).

Since the formalism for constructing such tilings has al-
ready been explained in detail in Secs. III and IV, we will be
brief in this section, just providing the information needed to
specify each tiling, along with a few other relevant facts.

As we have already explained, each of the tilings corre-
sponds to one of the five quadratic Coxeter pairs listed in
Table III, and we will present them in this same order.

At the end of the section, we present figures illustrating
all eleven of the 2D patterns/tilings, as well as their Am-
mann decorations and inflation rules; and we also display
the four “Ammann cycles” (one tenfold-symmetric “Ammann
trio” and three 12-fold-symmetric “Ammann duos”). The fig-
ures are arranged in the following order. For each Coxeter
pair, we begin by depicting it via its root diagram, i.e., by
showing the maximally symmetric 2D projection (i.e., the
Coxeter-plane projection) of the θ roots onto 2D (yielding two
concentric copies of the θ‖ roots). Following each root dia-
gram, we present the associated self-similar patterns/tilings,
with the relevant Cases ordered as in Table 1 of Ref. [11].
For each pattern/tiling, we (i) display the (undecorated) Am-
mann pattern and the (undecorated) Penrose-like tiling (on the
same page); and (ii) display a decorated Penrose-like tiling
(first with its Ammann decoration and then with its inflation
decoration, on the same page).

Then, in Figs. 50–67, we present all four Ammann cycles
(the tenfold-symmetric Ammann trio, and three 12-fold-
symmetric Ammann duos); and for each of the three members
of the tenfold-symmetric Ammann trio, we also show the dual
Penrose-like tiling, its Ammann decoration, and its inflation.

Singular and nonSingular Ammann patterns. Note that,
in a d‖-dimensional Ammann pattern, since each Ammann
plane has codimension one, we generically expect d‖ such
planes to intersect at a point. But some Ammann patterns
are “singular” in the sense that they contain points where
more than d‖ Ammann planes intersect. In particular, a 2D
Ammann pattern is nonsingular if at most two Ammann lines

intersect at any point, and singular if there are points where
three or more Ammann lines intersect. When we dualize an
Ammann pattern, each intersection point in the pattern is in
one-two-one correspondence with a tile in the dual tiling.
In particular, in 2D, if n Ammann lines intersect at a point,
then the tile dual to that intersection (in the dual Penrose-like
tiling) will have 2n sides. Hence, a nonsingular 2D Ammann
pattern will have a dual Penrose-like tiling in which all the
tiles are four-sided rhombs, while a singular 2D Ammann
pattern in which three, four, or more Ammann lines intersect
at a point will have a dual Penrose-like tiling in which the
tiles will be corresponding polygons with six, eight or more
sides. For example, the eightfold-symmetric “A2” and “B1”
Ammann patterns described below are singular: they contain
points where four Ammann lines intersect, and hence the dual
Penrose-like tilings contain octagonal tiles.

A. The I5
2 (2D tenfold) tiling

Here the relevant Coxeter pair is {θ‖, θ} = {I5
2 , A4}. The

A4 root system has 20 roots: all vectors obtained from
{+1,−1, 0, 0, 0} by allowing all permutations of the co-
ordinates. The maximally symmetric orthogonal projection
onto d‖ = 2 dimensions may be found by the Coxeter-plane
construction (see Appendix A in this paper, or Sec. 4.2 in
Ref. [35]). The columns of the following matrix are a standard
choice for the fundamental roots fk (see, e.g., Sec. 6.1 in
Ref. [35]):

(f1 f2 f3 f4) =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0

+1 −1 0 0

0 +1 −1 0

0 0 +1 −1

0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎠

. (36)

(Note that the angles between these fundamental roots agree
with the A4 diagram in Fig. 1.) From these we can compute
the corresponding Coxeter element:

C = F1F2F3F4 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

. (37)

We can project the 20 roots of A4 onto the Coxeter plane
spanned by the eigenvectors u± of C (corresponding to the
eigenvalues e±2π i/5); the result is shown in Fig. 3.

To proceed we just need to choose: (i) the underlying star
{e+

j } (which, in this case, points to the five vertices of a regular
pentagon); and (ii) a relevant row from Table 1 in Ref. [11]
(the only relevant row in this case is row 1).

Carrying out the procedure described in Secs. III and
IV, when ({α}, {β}) = (0, 0) we obtain the self-similar pat-
tern/tiling shown in Figs. 4–7. Comparing these figures with
Refs. [4,19], we see that this is precisely the original tenfold
Penrose tiling, with its standard Ammann decoration and in-
flation rule.
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B. The I8
2 (2D eightfold) tilings (A1, A2, B1, B2)

Here the relevant Coxeter pair is {θ‖, θ} = {I8
2 , B4} (or,

equivalently, {I8
2 ,C4}). The B4 root system has 32 roots: all

vectors obtained from (±1, 0, 0, 0) or (±1,±1, 0, 0) by al-
lowing all combinations of signs, and all permutations of the
coordinates. Again, the maximally symmetric 2D orthogonal
projection may be found by the Coxeter-plane construction.
The columns of the following matrix are a standard choice for
the fundamental roots fk:

(f1 f2 f3 f4) =

⎛
⎜⎜⎜⎝

+1 −1 0 0

0 +1 −1 0

0 0 +1 −1

0 0 0 +1

⎞
⎟⎟⎟⎠. (38)

(Note that the angles between these fundamental roots agree
with the B4 diagram in Fig. 1.) From these we can compute
the corresponding Coxeter element:

C = F1F2F3F4 =

⎛
⎜⎜⎜⎝

0 0 0 −1

+1 0 0 0

0 +1 0 0

0 0 +1 0

⎞
⎟⎟⎟⎠. (39)

We can project the 32 roots of B4 onto the Coxeter plane
spanned by the eigenvectors u± of C (corresponding to the
eigenvalues e±2π i/8); the result is shown in Fig. 8.

To proceed we just need to choose: (i) the underlying
star {e+

j } (the minimal star in this case is an eight-pointed
star aligned with the “long” roots of I8

2 ; or, equivalently, an
eight-pointed star aligned with the “short” roots of I8

2 ); and
(ii) a relevant row from Table 1 in Ref. [11] (the relevant rows
are 2a and 2b).

The eightfold “A1” and “A2” tilings. Consider Table 1,
row 2a in Ref. [11]. Then, if we take ({α}, {β}) = (0, 0) or,
equivalently, ({α}, {β}) = (0, 1/2), we obtain the self-similar
eightfold A1 tiling shown in Figs. 9–12. Alternatively, if
we take ({α}, {β}) = (1/2, 0) or, equivalently, ({α}, {β}) =
(1/2, 1/2), we obtain the self-similar eightfold A2 tiling
shown in Figs. 13–16.

The eightfold “B1” and “B2” tilings. Consider Table
1, row 2b in Ref. [11]. Then, if we take ({α}, {β}) =
(0, 0) or, equivalently, ({α}, {β}) = (1/2, 1/2), we obtain the
self-similar eightfold B1 tiling shown in Figs. 17–20. Al-
ternatively, if we take ({α}, {β}) = (1/2, 0) or, equivalently,
({α}, {β}) = (0, 1/2), we obtain the self-similar eightfold B2
tiling shown in Figs. 21–24.

Comparing Figs. 9–12 with Refs. [4,20], we see the eight-
fold A1 tiling is the well-known Ammann-Beenker tiling,
with its standard inflation rule. And the Ammann decoration
of this tiling produced by our procedure is closely related to
the one suggested in [20], but differs as follows: our deco-
ration produces an Ammann pattern which is precisely the
inflation of the Ammann pattern produced by the decoration
suggestion in [20] (i.e., our decoration is “denser” by one level
of inflation). The eightfold A2, B1 and B2 tilings are new.

C. The I12
2 (2D 12-fold) tilings (A1, A2, B1, B2, C1, C2)

Here the relevant Coxeter pair is {θ‖, θ} = {I12
2 , F4}. The

F4 root system has 48 roots: the union of the vertices of a
24-cell and the vertices of the dual 24-cell [33]. The vertices
of the first 24-cell are obtained from 1

2 (±1,±1,±1,±1) and
(±1, 0, 0, 0) by allowing all combinations of ± signs and all
permutations of the coordinates; and, similarly, the vertices of
the dual 24-cell are obtained from (±1,±1, 0, 0) by allow-
ing all combinations of ± signs and all permutations of the
coordinates. Again, the maximally symmetric 2D orthogonal
projection may be found by the Coxeter-plane construction.
The columns of the following matrix are a choice for the
fundamental roots fk of F4:

(f1 f2 f3 f4) =

⎛
⎜⎜⎜⎝

+1 0 0 −1/2

−1 +1 0 −1/2

0 −1 +1 −1/2

0 0 0 −1/2

⎞
⎟⎟⎟⎠. (40)

(Note that the angles between these fundamental roots agree
with the F4 diagram in Fig. 1.) From these we can compute
the corresponding Coxeter element:

C = R1R2R3R4 = 1

2

⎛
⎜⎜⎜⎝

+1 +1 −1 +1

+1 −1 −1 −1

−1 +1 −1 −1

−1 −1 −1 +1

⎞
⎟⎟⎟⎠. (41)

We can project the 48 roots of F4 onto the Coxeter plane
spanned by the eigenvectors u± of C (corresponding to the
eigenvalues e±2π i/12); the result is shown in Fig. 25.

To proceed we just need to choose: (i) the underlying star
{e+

j } (the minimal star in this case is a 12-pointed star aligned
with the “long” roots of I12

2 ; or, equivalently, a 12-pointed star
aligned with the “short” roots of I12

2 ); and (ii) a relevant row
from Table 1 in Ref. [11] (the relevant rows are 3a, 3b, and 3c).

The 12-fold “A1” and “A2” tilings. Consider Table 1,
row 3a in Ref. [11]. Then, if we take ({α}, {β}) = (0, 0), we
obtain the self-similar 12-fold A1 tiling shown in Figs. 26–29.
Alternatively, if we take ({α}, {β}) = (1/2, 0), we obtain the
self-similar 12-fold A2 tiling shown in Figs. 30–33.

The 12-fold “B1” and “B2” tilings. Consider Table 1,
row 3b in Ref. [11]. Then, if we take ({α}, {β}) = (0, 0), we
obtain the self-similar 12-fold B1 tiling shown in Figs. 34–37.
Alternatively, if we take ({α}, {β}) = (1/2, 1/2), we obtain
the self-similar 12-fold B2 tiling shown in Figs. 38–41.

The 12-fold “C1” and “C2” tilings. Consider Table 1,
row 3c in Ref. [11]. Then, if we take ({α}, {β}) = (0, 0), we
obtain the self-similar 12-fold C1 tiling shown in Figs. 42–45.
Alternatively, if we take ({α}, {β}) = (0, 1/2), we obtain the
self-similar 12-fold C2 tiling shown in Figs. 46–49.

Comparing with Ref. [20], we see that our 12-fold A1
tiling corresponds to the 12-fold Ammann-Socolar tiling [20]
(including the inflation rule and Ammann decoration). Note
that, as for the eightfold “A” tiling, our approach produces
an Ammann decoration that is closely related to the one sug-
gested in [20], but one level of inflation “denser.” The 12-fold
A2 tiling was first discovered by Socolar [21]. The 12-fold
B1, B2, C1, and C2 tilings are new, as are Ammann duos A,
B, and C.
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D. The 2D Ammann Cycles: tenfold Ammann trio,
12-fold Ammann duos (A,B,C)

The remaining choices for ({α}, {β}) all yield “Ammann
cycles” which, instead of inflating into themselves, inflate into
one another in a cycle. We collect these interesting objects in
this section.

The tenfold Ammann trio. In the I5
2 case, consider Table 1,

row 1 in Ref. [11]: if we take ({α}, {β}) to be (1/2, 0) or
(0, 1/2) or (1/2, 1/2), we obtain the three different Ammann
patterns show in Figs. 50, 54, 58, which inflate into one
another in an “Ammann 3-cycle” or “Ammann trio.” This
Ammann trio was first discovered by Socolar [21]. The three
Penrose-like-tilings dual to these three Ammann patterns are
shown in Figs. 51, 55, 59, respectively; the Ammann deco-
rations of these three tilings are shown in Figs. 52, 56, 60,
respectively; and the inflations of these three tilings are shown
in Figs. 53, 57, 61, respectively. It would be interesting to un-
derstand the relationship of these tilings to those obtained by
dualizing de Bruijn pentagrids with

∑
j γ j �= 0 (e.g.,

∑
j γ j =

1/7, 3/7, 2/7). (We thank the referee for pointing this out.)
The 12-fold Ammann duo “A.” In the I12

2 case, con-
sider Table 1, row 3A in Ref. [11]: if we take ({α}, {β}) =
(0, 1/2) or ({α}, {β}) = (1/2, 1/2), we obtain the two dif-
ferent Ammann patterns show in Figs. 62 and 63 which
inflate into one another in an “Ammann 2-cycle”: Ammann
duo A.

The 12-fold Ammann duo “B.” In the I12
2 case, consider

Table 1, row 3B in Ref. [11]: if we take ({α}, {β}) = (0, 1/2)
or ({α}, {β}) = (1/2, 0), we obtain the two different Ammann
patterns show in Figs. 64 and 65 which inflate into one an-
other, forming an Ammann 2-cycle: Ammann duo B.

The 12-fold Ammann duo “C.” In the I12
2 case, consider

Table 1, Row 3C in [11]: if we take ({α}, {β}) = (1/2, 0) or
({α}, {β}) = (1/2, 1/2), we obtain the two different Ammann
patterns show in Figs. 66 and 67 which inflate into one an-
other, forming an Ammann 2-cycle: Ammann duo C.

E. The H3 (3D icosahedral) tilings
(A1, A2, B1, B2, C1, C2, D1, D2 and E)

Here the relevant Coxeter pair is {θ‖, θ} = {H3, D6}. The
D6 root system has 60 roots: all vectors obtained from
(±1,±1, 0, 0, 0, 0) by allowing all combinations of signs and
all permuations of the coordinates. The columns of the fol-
lowing matrix are a standard choice for the fundamental roots
[35]:

(f1 f2 f3 f4 f5 f6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0

−1 −1 +1 0 0 0

0 0 −1 +1 0 0

0 0 0 −1 +1 0

0 0 0 0 −1 +1

0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(42)

In this case, the maximally symmetric 3D orthogonal projec-
tion of the D6 roots may be achieved by taking the six columns

of the 6×6 matrix

(v+
1 v+

2 v+
3 v−

1 v−
2 v−

3 )=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ +1 0 σ +1 0

0 τ +1 0 σ +1

+1 0 τ +1 0 σ

τ −1 0 σ −1 0

0 τ −1 0 σ −1

−1 0 τ −1 0 σ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(43)
as an orthogonal basis in six dimensions and choosing
{v+

1 , v+
2 , v+

3 } as a basis for the ‖ space, while {v−
1 , v−

2 , v−
3 }

are a basis for the ⊥ space. It is easy to check that, with this
choice, the 12 faces of the 6-cube in 6D [i.e., the 12 vectors
obtained from (±1, 0, 0, 0, 0, 0) by allowing both signs and
permutations of the coordinates] are project onto the ‖ space
to yield the 12 vertices of the icosahedron in 3D, while the
60 D6 roots project to two copies of the 30 H3 roots (an inner
copy and an outer copy that is longer by τ ).

To proceed we just need to choose: (i) the underlying star
{e+

j } (the minimal star in this case is a 12-pointed star pointing
towards the vertices of the icosahedron) and (ii) a relevant row
from Table 1 in Ref. [11] (the relevant rows are 4a, 4b, 4c, 4d,
and 1).

The icosahedral “A1” and “A2” tilings. Consider Table 1,
row 4a in Ref. [11]. Then, if we take ({α}, {β}) = (0, 0) or,
equivalently, ({α}, {β}) = (0, 1/2), we obtain the self-similar
icosahedral A1 tiling. Alternatively, if we take ({α}, {β}) =
(1/2, 0) or, equivalently, ({α}, {β}) = (1/2, 1/2), we obtain
the self-similar icosahedral A2 tiling.

The icosahedral “B1” and “B2” tilings. Consider
Table 1, row 4b in Ref. [11]. Then, if we take ({α}, {β}) =
(0, 0) or, equivalently, ({α}, {β}) = (1/2, 1/2), we obtain the
self-similar icosahedral B1 tiling. Alternatively, if we take
({α}, {β}) = (1/2, 0) or, equivalently, ({α}, {β}) = (0, 1/2),
we obtain the self-similar icosahedral B2 tiling.

The icosahedral “C1” and “C2” tilings. Consider Table 1,
row 4c in Ref. [11]. Then, if we take ({α}, {β}) = (0, 0) or,
equivalently, ({α}, {β}) = (0, 1/2), we obtain the self-similar
icosahedral C1 tiling. Alternatively, if we take ({α}, {β}) =
(1/2, 0) or, equivalently, ({α}, {β}) = (1/2, 1/2), we obtain
the self-similar icosahedral C2 tiling.

The icosahedral “D1” and “D2” tilings. Consider Ta-
ble 1, row 4d in Ref. [11]. Then, if we take ({α}, {β}) =
(0, 0) or, equivalently, ({α}, {β}) = (1/2, 1/2), we obtain the
self-similar icosahedral D1 tiling. Alternatively, if we take
({α}, {β}) = (1/2, 0) or, equivalently, ({α}, {β}) = (0, 1/2),
we obtain the self-similar icosahedral D2 tiling.

The icosahedral “E” tiling. Consider Table 1, row 1 in
Ref. [11]. Then the cases where ({α}, {β}) are (0,0), (1/2, 0),
(0, 1/2) or, 1/2, 1/2) are all equivalent, and all yield the
self-similar icosahedral E tiling.

We note that in the first eight cases (A1, A2, B1, B2, C1,
C2, D1, and D2), we obtain Ammann patterns and Penrose
tilings that exhibit τ 3 scaling and are all new. In the fifth case
(E), we obtain an Ammann pattern and Penrose tiling with
τ scaling: this is precisely the icosahedral tiling found in by
Socolar and Steinhardt in Ref. [19].
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Although all nine Ammann patterns are directly obtained
from our construction, we will leave for future work the
explicit presentation of the corresponding Penrose tiles, in-
flation rules and Ammann decorations, but we emphasize that
they are completely specified by the above information and,
although they are harder to display than the 2D cases, working
them out is ultimately just a matter of turning the same crank
that we used to produce the 2D tilings above.

We also emphasize that, in each of these nine icosahedral
cases, the Ammann pattern that is directly produced by our
construction is already an icosahedral quasicrystalline tiling in
its own right, with a finite number of tiles, and self-similarity;
and, in contrast to the dual Penrose tiling, it has the advantage
that it is much easier to work with analytically – an advantage
that becomes more useful as we get to higher dimensions,
where it becomes harder and harder to study the tiles by
inspection.

F. The H4 (4D hypericosahedral) tiling

Here the relevant Coxeter pair is {θ‖, θ} = {H4, E8}. The
E8 root system has 240 roots: all 128 vectors of the form
(1/2)(±1,±1,±1,±1,±1,±1,±1,±1) (with an even num-
ber of minus signs), along with all 112 vectors of the form
(±1,±1, 0, 0, 0, 0, 0, 0) (including all sign combinations and
permutations of the coordinates). The columns of the follow-
ing matrix are a standard choice for the fundamental roots fk

[35]:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+2 −1 0 0 0 0 0 1/2

0 +1 −1 0 0 0 0 1/2

0 0 +1 −1 0 0 0 1/2

0 0 0 +1 −1 0 0 1/2

0 0 0 0 +1 −1 0 1/2

0 0 0 0 0 +1 −1 1/2

0 0 0 0 0 0 +1 1/2

0 0 0 0 0 0 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

In this case, if we take I to be the 4×4 unit matrix and H to
be the Hadamard matrix:

H = 1

2

⎡
⎢⎢⎢⎣

−1 −1 −1 −1

1 −1 −1 1

1 1 −1 −1

1 −1 1 −1

⎤
⎥⎥⎥⎦ (45)

then the maximally symmetric 4D orthogonal projection of
the E8 roots may be achieved by taking the eight columns of
the 8×8 matrix

(v+
1 v+

2 v+
3 v+

4 v−
1 v−

2 v−
3 v−

4 ) =
[
(I + σH ) (I+τH )
(I−σH ) (I−τH )

]
(46)

as an orthogonal basis in eight dimensions, and choos-
ing {v+

1 , v+
2 , v+

3 , v+
4 } as a basis for the ‖ space, while

{v−
1 , v−

2 , v−
3 , v−

4 } are a basis for the ⊥ space. With this choice,
the 240 E8 roots project onto the parallel space to yield two
copies of the 120 H4 roots (an inner copy and an outer copy
that is longer by τ ).

To proceed we just need to choose: (i) the underlying
star {e+

j } (the minimal star in this case is a 120-pointed star
pointing towards the vertices of the 600-cell [33]); and (ii) a
relevant row from Table 1 in Ref. [11] (the only relevant row
is row 1).

The resulting Ammann pattern and the dual Penrose tiling
are both new. As in the icosahedral case, we emphasize
that the Ammann pattern is directly obtained from our con-
struction, whereas we will leave for future work the explicit
presentation of the corresponding Penrose tiles, inflation rules
and Ammann decorations (but, as before, we emphasize that
they are completely specified by the above information and,
although they are now much harder to display than the 2D
cases, working them out is ultimately just a matter of turning
the same crank that we used to produce the 2D tilings above).

FIG. 3. The 20 A4 roots, projected on the Coxeter plane.

FIG. 4. The 2D tenfold Ammann pattern.
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FIG. 5. The dual 2D tenfold (Penrose) tiling.

FIG. 6. The 2D tenfold tiling (thick, purple), with Ammann lines
(thin, blue).

FIG. 7. The 2D tenfold tiling (thick, purple), and its inflation
(thin, pink).

FIG. 8. The 32 B4 roots, projected on the Coxeter plane.

FIG. 9. The 2D eightfold A1 Ammann pattern.

FIG. 10. The dual 2D eightfold A1 (Ammann-Beenker) tiling.
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FIG. 11. The 2D eightfold A1 (Ammann-Beenker) tiling (thick,
purple), with Ammann lines (thin, blue).

FIG. 12. The 2D eightfold A1 (Ammann-Beenker) tiling (thick,
purple), and its inflation (thin, pink).

FIG. 13. The 2D eightfold A2 Ammann pattern.

FIG. 14. The dual 2D eightfold A2 tiling.

FIG. 15. The 2D eightfold A2 tiling (thick, purple), with Am-
mann lines (thin, blue).

FIG. 16. The 2D eightfold A2 tiling (thick, purple), and its infla-
tion (thin, pink).
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FIG. 17. The 2D eightfold B1 Ammann pattern.

FIG. 18. The dual 2D eightfold B1 tiling.

FIG. 19. The 2D eightfold B1 tiling (thick, purple), with
Ammann lines (thin, blue).

FIG. 20. The 2D eightfold B1 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 21. The 2D eightfold B2 Ammann pattern.

FIG. 22. The dual 2D eightfold B2 tiling.
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FIG. 23. The 2D eightfold B2 tiling (thick, purple), with
Ammann lines (thin, blue).

FIG. 24. The 2D eightfold B2 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 25. The 48 F4 roots, projected on the Coxeter plane.

FIG. 26. The 2D 12-fold A1 Ammann pattern.

FIG. 27. The dual 2D 12-fold A1 tiling.

FIG. 28. The 2D 12-fold A1 tiling (thick, purple), with Ammann
lines (thin, blue).

144113-18



COXETER PAIRS, AMMANN PATTERNS, AND … PHYSICAL REVIEW B 106, 144113 (2022)

FIG. 29. The 2D 12-fold A1 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 30. The 2D 12-fold A2 Ammann pattern.

FIG. 31. The dual 2D 12-fold A2 tiling.

FIG. 32. The 2D 12-fold A2 tiling (thick, purple), with Ammann
lines (thin, blue).

FIG. 33. The 2D 12-fold A2 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 34. The 2D 12-fold B1 Ammann pattern.

144113-19



LATHAM BOYLE AND PAUL J. STEINHARDT PHYSICAL REVIEW B 106, 144113 (2022)

FIG. 35. The dual 2D 12-fold B1 tiling.

FIG. 36. The 2D 12-fold B1 tiling (thick, purple), with Ammann
lines (thin, blue).

FIG. 37. The 2D 12-fold B1 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 38. The 2D 12-fold B2 Ammann pattern.

FIG. 39. The dual 2D 12-fold B2 tiling.

FIG. 40. The 2D 12-fold B2 tiling (thick, purple), with Ammann
lines (thin, blue).
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FIG. 41. The 2D 12-fold B2 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 42. The 2D 12-fold C1 Ammann pattern.

FIG. 43. The dual 2D 12-fold C1 tiling.

FIG. 44. The 2D 12-fold C1 tiling (thick, purple), with Ammann
lines (thin, blue).

FIG. 45. The 2D 12-fold C1 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 46. The 2D 12-fold C2 Ammann pattern.
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FIG. 47. The dual 2D 12-fold C2 Penrose-like tiling.

FIG. 48. The 2D 12-fold C2 tiling (thick, purple), with Ammann
lines (thin, blue).

FIG. 49. The 2D 12-fold C2 tiling (thick, purple), and its infla-
tion (thin, pink).

FIG. 50. The 2D tenfold Ammann trio: pattern (i).

FIG. 51. The 2D tenfold Ammann trio: dual tiling (i).

FIG. 52. 2D tenfold Ammann trio: 2D tenfold tiling (i) (thick,
purple), with Ammann pattern (i) (thin, blue).
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FIG. 53. 2D tenfold Ammann trio: 2D tenfold tiling (i) (thick,
purple), and its inflation (thin, pink).

FIG. 54. The 2D tenfold Ammann trio: pattern (ii).

FIG. 55. The 2D tenfold Ammann trio: dual tiling (ii).

FIG. 56. 2D tenfold Ammann trio: 2D tenfold tiling (ii) (thick,
purple), with Ammann pattern (ii) (thin, blue).

FIG. 57. 2D tenfold Ammann trio: 2D tenfold tiling (ii) (thick,
purple), and its inflation (thin, pink).

FIG. 58. The 2D tenfold Ammann trio: pattern (iii).
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FIG. 59. The 2D tenfold Ammann trio: dual tiling (iii).

FIG. 60. 2D tenfold Ammann trio: 2D tenfold tiling (iii) (thick,
purple), with Ammann pattern (iii) (thin, blue).

FIG. 61. 2D tenfold Ammann trio: 2D tenfold tiling (iii) (thick,
purple), and its inflation (thin, pink).

FIG. 62. The 2D 12-fold Ammann duo A: pattern (i).

FIG. 63. The 2D 12-fold Ammann duo A: pattern (ii).

FIG. 64. The 2D 12-fold Ammann duo B: pattern (i).144113-24
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FIG. 65. The 2D 12-fold Ammann duo B: pattern (ii).

FIG. 66. The 2D 12-fold Ammann duo C: pattern (i).

FIG. 67. The 2D 12-fold Ammann duo C: pattern (ii).

VI. MATCHING RULES

In this section, we turn to the issue of matching rules.
We emphasize that the Ammann pattern and its dual

Penrose-like tiling can both be thought of as quasicrystalline
tilings, with perfect local matching rules that we can system-
atically construct. To see this, first note that the Ammann
pattern and its dual Penrose-like tiling are both examples of
substitution tilings, i.e., they are both equipped with infla-
tion rules and, by repeated iteration of those rules, arbitrarily
large patches of the tiling can be generated from an initial
seed. If a substitution tiling is in the class covered by the
Goodman-Strauss theorem [53], then one can systematically
construct perfect local matching rules for the tiling (i.e., local
rules that constrain how nearby tiles may join, so that any
two legal tilings are forced to be locally indistinguishable
from one another). In particular, let us call an inflation rule
“wall-to-wall” if, when we apply the inflation rule to each
tile, the new (smaller) tiles are entirely contained within the
original (larger) tile (so that the smaller tiles never cross the
boundaries of the larger tiles). If we have a substitution tiling
whose inflation rule is not wall-to-wall, but we can slice the
set of prototiles up into a finite set of smaller prototiles that
inherit an inflation rule that is wall-to-wall, then we can apply
Goodman-Strauss’s result to infer (and systematically derive)
perfect local matching rules.

At first glance, finding the right way to slice up a given
tiling (to make its inflation rule wall-to-wall) looks like it
might be difficult; but we will now explain that, for any
Ammann pattern, it is actually easily done. To see why, first
consider the ten special 1D inflation rules collected in Table 1
and Fig. 5 of Ref. [11]: as inflation rules for the two-tile set
{L, S}, four of these these ten cases (2b, 3b, 4b, and 4d) are
automatically wall-to-wall, while the remaining six cases (1,
2a, 3a, 3c, 4a, and 4c) are not. But it is easy to check that,
in the remaining six cases, if we cut each tile in half (i.e., we
cut S into left and right halves, Sleft and Sright, and we cut L
into left and right halves, Lleft and Lright) the new four-tile set
{Sleft, Sright, Lleft, Lright} is wall-to-wall.

Now we turn from the 1D quasilattices to the Ammann
patterns, and proceed in two steps. Step 1. First consider
the simpler case where the Ammann pattern is constructed
from 1D tiles that inflate wall-to-wall. In this case, since
the boundaries of the Ammann tiles are directly given by
the Ammann lines/planes/hyperplanes, the Ammann tiles will
also inflate wall-to-wall (see Fig. 68 for an illustration of this
point). Step 2. Next consider the seemingly more-complicated
case where the 1D tiles (and hence the Ammann tiles) do
not inflate wall-to-wall. We want to find a way to slice up
the Ammann tiles so that the pieces do inflate wall-to-wall.
However, if we try to work with the Ammann tiles directly,
the problem looks complicated. Fortunately, the Ammann
pattern’s 1D decomposition comes to the rescue. If starting
with the 1D tiles, then it is clear how to split them up: we
just split them in half, as explained above. But that, in turn,
determines how to slice up the Ammann tiles: go back to
the original Ammann pattern and, halfway between every
pair of parallel lines/planes/hyperplanes, add another parallel
line/plane/hyperplane, and in this way, the original Ammann
tiles are sliced into smaller tiles that inflate wall-to-wall (for

144113-25



LATHAM BOYLE AND PAUL J. STEINHARDT PHYSICAL REVIEW B 106, 144113 (2022)

FIG. 68. An eightfold “B” Ammann pattern, superposed on its
inflation, illustrates how the larger tiles (with thin solid green edges)
are decomposed into “smaller” tiles (with thick dotted yellow edges)
in wall-to-wall fashion. That is, for any tile created by the dotted
yellow lines, each segment of its boundary lies within or right along
the boundary of a larger tile created by the solid green lines; or
equivalently, no tile created by the dotted yellow lines crosses a solid
green line.

the same reason that the Ammann tiles inflated wall-to-wall
in step 1). Thus we can apply Goodman-Strauss’s result to
infer (and systematically construct) local matching rules for
an Ammann pattern (regarded as a tiling). And then, since the
Ammann pattern and its corresponding Penrose-like tiling are
dual to one another, and mutually locally derivable, it follows
that the dual Penrose-like tiling also has perfect local match-
ing rules [9]. Hence, matching rules are another feature of the
Ammann patterns (viewed as tessellations) and Penrose-like
tilings generated by our procedure. Since this applies to all the
irreducible Ammann patterns, of which there were previously
only four, we have uncovered by our procedure an infinite
number of new tilings with matching rules.

So far we have argued (using Ref. [53]) that local matching
rules exist and can be systematically derived. Now let us turn
to the question of how those rules can be best implemented.
In the original (2D, tenfold) Penrose tiling, something nice
happens: if we begin with an Ammann pattern and use it to
derive the Penrose prototiles and their Ammann decorations
(as described in Sec. 4), we find that the Ammann decora-
tions of the tiles, combined with the requirement that they
join together across tile boundaries to form infinite straight
lines, precisely provide the perfect local matching rule we
want! By contrast, if we repeat this procedure in the eightfold
and 12-fold cases, the resulting Ammann decorations are not
strong enough to give a perfect matching rule. In fact, they are
compatible with a periodic arrangement of the tiles. Is there
some natural way to adjust the Ammann decoration so that it
provides a perfect matching rule in all cases?

Our Coxeter-pair formalism suggests a beautiful answer.
First, let us distinguish between the Ammann pattern that is
used to generate the tiling (by dualization) and the Ammann
pattern that is used to decorate the tiling. Suppose that, to

generate the tiling, we use the same minimal Ammann pattern
as before. But then, in constructing the Ammann pattern that
will decorate the tiling, instead of taking the initial star of
d‖-dimensional vectors to be a minimal star (i.e., with the
minimal set of vectors compatible with the Ammann pattern’s
desired orientational symmetry), we take it to be the θ‖ root
system itself (where θ‖ is the lower-dimensional noncrystal-
lographic member of the associated Coxeter pair). Note that
in 2D, where θ‖ = In

2 , these two possibilities (the minimal
star vs the root star) yield exactly the same Ammann pattern
when n is odd. But when n is even, the root star yields an
Ammann pattern that is the superposition of two minimal
Ammann patterns (rotated by π/n relative to one another).
This neatly explains why in the tenfold (I5

2 ) case, the minimal
Ammann decoration already yields a perfect local matching
rule, while in the eightfold (I8

2 ) and 12-fold (I12
2 ) cases, it does

not; and, moreover, why Socolar found [20] that a perfect
local matching rule could be obtained in the eightfold and 12-
fold cases by adding a second minimal Ammann decoration
rotated by π/n relative to the first. In fact, the Coxeter pair
perspective goes further. The Ammann pattern based on the
(lower-dimensional) θ‖ root system is naturally obtained from
a “Coxeter slice” of the higher dimensional honeycomb based
on the θ roots system, via the approach of Sec. 3. This, in
turn, means that when n is even, the In

2 Ammann decoration is
actually a superposition of two minimal Ammann grids built
from two different 1D quasilattices (based on two different
rows in Table 1 of Ref. [11], corresponding to the same scale
factor). We plan to flesh out this idea in future work.

VII. DISCUSSION

As we already introduced, motivated and outlined our re-
sults at length in Sec. I, here we will just provide a brief
recapitulation.

In Sec. II, we introduced the notion of a Coxeter pair: a
natural pairing between a lower-rank noncrystallographic re-
flection group and a higher-rank crystallographic partner. We
found all such “Coxeter pairs” and collected them in Table II.
They form two infinite families plus four exceptional cases.

In Sec. III, we define what we mean by an irreducible Am-
mann pattern, we explain how to construct all such patterns
using a geometric construction based on Coxeter pairs, and we
obtain a useful closed form analytic expression that describes
all such Ammann patterns in a simple and unified way.

The tilings obtained by dualizing these Ammann patterns
share many of the key properties of the Penrose tiling, so we
call them Penrose-like. In Sec. IV, we derived a dualization
formula that allows us to convert any irreducible Ammann
pattern into a dual Penrose-like tiling, and to obtain the Am-
mann decorations and inflation rules for this tiling.

Using these results, in Sec. V we construct all the minimal
Ammann patterns (i.e., Ammann patterns with an irreducible
noncrystallographic symmetry, built from the minimal set of
1D quasilattices compatible with that symmetry), and all the
corresponding dual Penrose-like tilings, along with their Am-
mann decorations and inflation rules. There are 11 cases in
2D, 9 in 3D, one in 4D, and none in higher dimensions, and
the 2D results are shown explicitly in Figs. 3–49. The same
procedure also yields the four minimal “Ammann cycles”
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(one tenfold-symmetric “Ammann trio” and three 12-fold-
symmetric “Ammann duos”) which are shown in Figs. 50–67.

In Sec. VII, we discuss the matching rules for our tilings.
We first explain how the Ammann perspective allows us to see
that the Goodman-Strauss theorem [53] applies to our tilings,
and guaruntees that they have perfect local matching rules.
Then we point out that the Coxeter-pair perspective suggests
a particular concrete and elegant implementation of the local
matching rules: we leave the detailed fleshing out of this final
point as a topic for future work.

Finally, note that for the 2D Ammann patterns and
the tenfold-symmetric Ammann trio, we have explicitly
constructed their dual Penrose-like tilings, their Ammann
decorations, and inflations. By contrast, although we have
also constructed the three 12-fold-symmetric Ammann duos
shown in Figs. 62–67, we have not yet constructed their dual
tilings, Ammann decorations, or inflations. This is another
point we leave for future work.
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APPENDIX A: FINDING ALL COXETER PAIRS

In order to find the complete list of Coxeter pairs, we begin
by reviewing three notions: Coxeter element, Coxeter number
and Coxeter plane. Corresponding to each d-dimensional fun-
damental root f j ∈ θ we have a reflection matrix Fj that acts
on the d-dimensional coordinate x as follows:

Fj : x → x − 2
x · f j

f j · f j
f j . (A1)

The product of all d of these reflection matrices is a “Coxeter
element” of θ :

C = F1 . . . Fd . (A2)

The “Coxeter number” of θ is the smallest positive integer h
for which

Ch = 1, (A3)

and it is given by a simple formula: the total number of roots
in θ divided by the rank d . (In Table IV, we list the number
of roots and the Coxeter number for each crystallographic
root system.) Thus the eigenvalues of C are hth roots of
unity exp[±2π ik/h]. In particular, two of the eigenvalues
are exp[±2π i/h], and the two corresponding eigenvectors u±
span a two-dimensional plane called the “Coxeter plane.” The
orthogonal projection of the roots of θ onto the Coxeter plane
is the two-dimensional projection of maximal symmetry. If θ

has Coxeter number h, then its roots project onto the Coxeter

TABLE IV. For the various crystallographic root systems, we list
the total number of roots, and the Coxeter number h.

Crystallographic Number Coxeter
root system of roots number (h)

An (n � 1) n(n + 1) n + 1
Bn (n � 2) 2n2 2n
Cn (n � 3) 2n2 2n
Dn (n � 4) 2n(n − 1) 2(n − 1)

G2 12 6
F4 48 12
E6 72 12
E7 126 18
E8 240 30

plane to form an Ih
2 -like pattern (as Figs. 3 and 8 illustrate in

case where h is odd or even, respectively).
Now we turn to our basic question: given an irreducible

noncrystallographic root system θ‖, when does it have a cor-
responding irreducible crystallographic partner θ such that:
(i) θ‖ and θ have the same rational rank d; and (ii) the max-
imally symmetric projection of θ onto d‖ dimensions yields
N copies of θ‖? Let us answer this question by considering
the various possible values of d‖ in turn. In the d‖ = 2 case,
the question becomes the following: for which n does the
noncrystallographic root system In

2 have a crystallographic
partner of rank φ(n) and Coxeter number h = n? Consider the
various possibilities in Table IV:

(1) If θ is Aφ(n), the h requirement becomes φ(n) + 1 = n:
this is precisely the requirement that n is prime.

(2) If θ is Bφ(n) or Cφ(n), the h requirement becomes
2φ(n) = n; from Euler’s product formula φ(n) = ∏

p|n[1 −
(1/p)] (where the product is over all distinct prime factors
p of n), we see that this is precisely the requirement that n is a
power of 2.

(3) If θ is Dφ(n), the h requirement becomes 2[φ(n) − 1] =
n. This equation has no solution since, on the one hand, it says
n is even but, on the other hand, if n is even, then φ(n) � n/2.

(4) Finally, among the exceptional cases θ =
{G2, F4, E6, E7, E8}, we easily check that the only two
that work are F4 (n = 12) and E8 (n = 30).

Next consider the d‖ = 3 case: then θ‖ = H3, which has
rational rank 6. From Table IV, we see that the only candidate
crystallographic partner θ of rank d = 6 is D6, since this is the
only rank-six root system whose total number of roots (60) is
a multiple of the total number of H3 roots (30); and, as is well
known (and as we see in Sec. V E), D6 does indeed have a
projection onto d‖ = 3 dimensions with G(H3) (icosahedral)
symmetry, where the projected roots split into two copies of
H3. Finally consider the d‖ = 4 case: then θ‖ = H4, which has
rational rank 8. From Table IV, we see that the only candidate
crystallographic partner θ of rank d = 8 is E8, since this is
the only rank eight root system whose total number of roots
(240) is a multiple of the total number of H4 roots (120);
and, as is well known (an as we see in Sec. V F), E8 does
indeed have a projection onto d‖ = 4 dimensions with G(H4)
(hypericosahedral) symmetry, where the projected roots split
into two copies of H4. Since there are no more irreducible
noncrystallographic Coxeter groups in d‖ > 4, this completes
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FIG. 69. The labeling of the H4 roots.

the enumeration of all Coxeter pairs: they come in two infinite
families and four exceptional cases, as summarized in Table II.

APPENDIX B: UNIQUENESS OF THE H4 SPACE GROUP

As mentioned above, the finite irreducible noncrystallo-
graphic reflection groups were classified by Coxeter [30–34]:
they are In

2 (the symmetries of an equilateral n-gon in 2D),
H3 (the symmetries of the icosahedron in 3D), and H4 (the
symmetries of the 600-cell in 4D).

In this Appendix, we complete the enumeration of the
space groups associated with these point groups. In particular,
since the 2D (In

2 ) and 3D (H3) space groups were already
treated in Refs. [23–25], it remains for us to analyze the 4D
(H4) case: we will prove that there is a unique 4D space group
associated to H4 (namely, the symmorphic space group).

We follow the formalism developed in Sec. 2 of Ref. [25]
(see also Ref. [23]) for working out all the space groups
corresponding to a given point group. In that formalism, given
a point group G, the first preliminary step is to determine
the relevant set of lattices corresponding to G (see Sec. 2F
in Ref. [25]). Since the point groups of interest to us are the
irreducible reflection groups, the relevant lattices are precisely
the reflection (quasi)lattices defined in Ref. [10]. In particular,
the unique reflection quasilattice corresponding to H4 is the H4

root quasilattice (integer linear combinations of the H4 roots).
The second preliminary step is to choose a set of primitive

generating vectors for the H4 reflection quasilattice �, i.e.,
a set of vectors {bk} such that � precisely consists of all
integer linear combinations

∑
k nkbk (again, see Sec. 2F in

Ref. [25]). Let {b1, b2, b3, b4} be the simple roots of H4,
labeled as in Fig. 69; e.g., the roots could concretely be given
by b1 = {1, 0, 0, 0}, b2 = − 1

2 {1, 1, 1, 1}, b3 = 1
2 {0, 1, σ, τ },

b4 = 1
2 {0, σ, τ,−1}, where τ = (1/2)(1 + √

5) is the golden

ratio and σ = (1/2)(1 − √
5) is its algebraic conjugate. And

let {b5, b6, b7, b8} = τ {b1, b2, b3, b4} be another copy of the
simple roots, multiplied by the golden ratio. Then the eight
vectors {b1, . . . , b8} form a convenient set of primitive gener-
ating vectors for H4.

The third preliminary step is to choose a set of generators
and relations for G(H4), the reflection group corresponding
to H4. We will take the standard set of generators and re-
lations for a reflection group: in other words, the generators
are {R1, R2, R3, R4} (the four reflections corresponding to the
four simple roots {b1, b2, b3, b4}, respectively). The corre-
sponding relations are then neatly summarized by the H4

Coxeter-Dynkin diagram in Fig. 69; explicitly, they are

R2
1 = R2

2 = R2
3 = R2

4 = 1, (B1a)

(R1R2)3 = (R2R3)3 = (R3R4)5 = 1, (B1b)

(R1R3)2 = (R1R4)2 = (R2R4)2 = 1. (B1c)

Now, as explained in Sec. 2B of Ref. [25], if a system has
point group G then, in Fourier space, for any element g ∈ G,
the density ρ(k) transforms as

ρ(gk) = e2π i�g(k)ρ(k). (B2)

Classifying the possible space groups boils down to constrain-
ing and classifying the gauge-inequivalent phase functions
�g(k) that can consistently appear in this equation, where
the phase functions �g(k) and �′

g(k) are said to be gauge
equivalent if there is a function χ (k) such that

�′
g(k) ≡ �g(k) + χ (gk) − χ (k) (B3)

for all g ∈ G and for all k ∈ � (see Sec. 2C in Ref. [25]). As
in Ref. [25], we use the symbol “≡” to denote equality up to
an additive integer.

In constraining and classifying the possible phase functions
�g(k), we don’t need to consider each g ∈ G separately. In-
stead, since each g ∈ G may be written as a product of the four
generators {R1, R2, R3, R4}, it suffices to consider the four cor-
responding phase functions {�1(k), �2(k), �3(k), �4(k)};
any arbitrary phase function �g(k) may then be expressed in
terms of these four by successive application of Eq. (2.11)
in Ref. [25]. Furthermore, we do not need to consider each
wave vector k ∈ � separately: instead, it is enough to consider
the cases where k is one of the eight primitive generating
vectors {b1, . . . , b8}. Thus our goal here is to constrain the
4×8 = 32 numbers, �i(b j ). From each relation in Eq. (B1)
we obtain constraints on these 32 numbers, and we will show
that, when taken together, these constraints imply that the
32 values �i(b j ) all vanish (in an appropriate gauge). Thus
there is a unique 4D space group corresponding to H4: the
symmorphic one.

Before we begin analyzing the various constraints on
�i(b j ), it will be useful to have the matrix expressions for
the four generators {R1, R2, R3, R4}. Note that the generator
Ri maps the primitive generating vector b j to an integer linear
combination of the eight bk’s so that, in the {b1, . . . , b8} basis,
it is an 8×8 integer matrix.

R1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0 0 0
0 +1 0 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 +1 0 0 0 0
0 0 0 0 −1 +1 0 0
0 0 0 0 0 +1 0 0
0 0 0 0 0 0 +1 0
0 0 0 0 0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B4a)

R2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 0 0 0 0 0 0 0
+1 −1 +1 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 +1 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 +1 −1 +1 0
0 0 0 0 0 0 +1 0
0 0 0 0 0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B4b)
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R3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 0 0 0 0 0 0 0
0 +1 0 0 0 0 0 0
0 +1 −1 0 0 0 0 +1
0 0 0 +1 0 0 0 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 +1 0 0
0 0 0 +1 0 +1 −1 +1
0 0 0 0 0 0 0 +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B4c)

R4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1 0 0 0 0 0 0 0
0 +1 0 0 0 0 0 0
0 0 +1 0 0 0 0 0
0 0 0 −1 0 0 +1 0
0 0 0 0 +1 0 0 0
0 0 0 0 0 +1 0 0
0 0 0 0 0 0 +1 0
0 0 +1 0 0 0 +1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B4d)

Also note that each relation in Eq. (B1) is of the form 1 =
gn, which translates into the constraint 0 ≡ �gn (k). Then, by
repeated application of Eq. (2.11) in Ref. [25], this may be
re-written in the more convenient (but equivalent) form

0 ≡ �g([1 + g1 + · · · + gn−1]k). (B5)
Now we proceed to analyze the constraints on �i(b j ) com-

ing from each relation in (B1). The overview is as follows: we
first analyze the four relations in (B1a) and, in the process,
completely fix the gauge freedom; we then proceed to analyze
the other relations (B1b) and (B1c) and see that they force the
remaining gauge-fixed phase functions to vanish.

We proceed to consider the first constraint in (B1a); we will
describe the analysis of this first relation in detail, to illustrate
how the calculation proceeds. The first relation in (B1a) is
R2

1 = 1. From Eq. (B5), we see that this translates into the
constraint 0 ≡ �1([1 + R1]k); and we can use Eq. (B4a) to
calculate:

1 + R1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 +1 0 0 0 0 0 0
0 +2 0 0 0 0 0 0
0 0 +2 0 0 0 0 0
0 0 0 +2 0 0 0 0
0 0 0 0 0 +1 0 0
0 0 0 0 0 +2 0 0
0 0 0 0 0 0 +2 0
0 0 0 0 0 0 0 +2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B6)
From the six nonvanishing columns of this matrix we read off
the six nontrivial constraints:

0 ≡ �1(b1) + 2�1(b2), (B7a)

0 ≡ 2�1(b3), (B7b)

0 ≡ 2�1(b4), (B7c)

0 ≡ �1(b5) + 2�1(b6), (B7d)

0 ≡ 2�1(b7), (B7e)

0 ≡ 2�1(b8). (B7f)

Now, from (B3), we see that by choosing χ (b1) = −�1(b2)
and χ (b5) = −�1(b6) we can do a gauge transformation

to set �′
1(b1) ≡ �′

1(b2) ≡ �′
1(b5) ≡ �′

1(b6) ≡ 0, while the
other phases {�′

1(b3), �′
1(b4), �′

1(b7), �′
1(b8)} are con-

strained to be 0 or 1/2.
The remaining relations in Eq. (B1a) may be analyzed in a

completely analogous way, so we will be brief.
For the second relation in (B1a): R2

2 = 1 ⇒ 0 ≡ �2([1 +
R2]k). From the six nonzero columns of the matrix 1 + R2 we
read off the six constraints

0 ≡ 2�2(b1) + �2(b2), (B8a)

0 ≡ �2(b2) + 2�2(b3), (B8b)

0 ≡ 2�2(b4), (B8c)

0 ≡ 2�2(b5) + �2(b6), (B8d)

0 ≡ �2(b6) + 2�2(b7), (B8e)

0 ≡ 2�2(b8). (B8f)

Then by choosing χ (b2) = −�2(b1) and χ (b6) = −�2(b5)
we can set �′

2(b1) ≡ �′
2(b2) ≡ �′

2(b5) ≡ �′
2(b6) ≡ 0, while

the other phases {�′
2(b3), �′

2(b4), �′
2(b7), �′

2(b8)} are con-
strained to be 0 or 1/2.

For the third relation in (B1a): R2
3 = 1 ⇒ 0 ≡ �3([1 +

R3]k). From the six nonzero columns of the matrix 1 + R3

we read off the six constraints

0 ≡ 2�3(b1), (B9a)

0 ≡ 2�3(b2) + �3(b3), (B9b)

0 ≡ 2�3(b4) + �3(b7), (B9c)

0 ≡ 2�3(b5), (B9d)

0 ≡ 2�3(b6) + �3(b7), (B9e)

0 ≡ �3(b3) + �3(b7) + 2�3(b8). (B9f)

Then by choosing χ (b3) = �3(b4) − �3(b8) and χ (b7) =
−�3(b4) we can set �′

3(b3) ≡ �′
3(b4) ≡ �′

3(b7) ≡ �′
3(b8) ≡

0, while the other phases {�′
3(b1), �′

3(b2), �′
3(b5), �′

3(b6)}
are constrained to be 0 or 1/2.

For the fourth relation in (B1a): R2
4 = 1 ⇒ 0 ≡ �4([1 +

R4]k). From the six nonzero columns of the matrix 1 + R4 we
read off the six constraints

0 ≡ 2�4(b1), (B10a)

0 ≡ 2�4(b2), (B10b)

0 ≡ 2�4(b3) + �4(b8), (B10c)

0 ≡ 2�4(b5), (B10d)

0 ≡ 2�4(b6), (B10e)

0 ≡ �4(b4) + 2�4(b7) + �4(b8). (B10f)

Then by choosing χ (b4) = �4(b3) − �4(b7) and
χ (b8) = −�4(b3) we can set �′

4(b3) ≡ �′
4(b4) ≡ �′

4(b7) ≡
�′

4(b8) ≡ 0, while the other phases {�′
4(b1), �′

4(b2), �′
4(b5),

�′
4(b6)} are constrained to be 0 or 1/2.
Let us pause to summarize the situation thus far: we have

analyzed the four relations in (B1a). In the process, we have
chosen values for {χ (b1), . . . , χ (b8)} – in this way we com-
pletely fix the gauge and set 16 of the 32 quantities �i(b j ) to
zero, while the remaining 16 quantities have been constrained
to be 0 or 1/2.
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We will now show that the remaining relations—those in
Eqs. (B1b) and (B1c)—actually constrain these remaining
16 quantities to all be 0. Note that each of the remain-
ing constraints has the form 1 = (RiRj )n. Using (B5), this
may be rewritten in the form 0 ≡ �RiR j ([1 + RiRj + . . . +
(RiRj )n−1]k) and then, by a further application of Eq. (2.11)
in [25], in the more convenient form

0 ≡ �i(Rj[1 + RiRj + · · · + (RiRj )
n−1]k)

+ � j ([1 + RiRj + · · · + (RiRj )
n−1]k). (B11)

Let us apply this to the first constraint in (B1b): (R1R2)3 =
1. From Eq. (B11), this becomes 0 ≡ �1(R2[1 + R1R2 +
(R1R2)2]k) + �2([1 + R1R2 + (R1R2)2]k). From Eqs. (B4a)
and (B4b), we find that 1 + R1R2 + (R1R2)2 and R2[1 +
R1R2 + (R1R2)2] are both

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B12)

Now, if we take into account the 16 quantities that have al-
ready been previously set to zero (≡ 0), along with the fact
that other 16 quantities are either integer or half-integer (≡ 0
or ≡ 1/2) so that any even multiple of such a quantity is ≡ 0,
we find that the four nonzero columns of this matrix yield the
four constraints:

�1(b3) ≡ �2(b3), (B13a)

�1(b4) ≡ �2(b4), (B13b)

�1(b7) ≡ �2(b7), (B13c)

�1(b8) ≡ �2(b8). (B13d)

Again, the remaining relations in Eqs. (B1b) and (B1c)
may be analyzed in a completely analogous way, so in brief.

From the second relation in Eq. (B1b), (R2R3)3 = 1:

�2(b3) ≡ �3(b1), (B14a)

�2(b4) ≡ �3(b6), (B14b)

�2(b7) ≡ �3(b5), (B14c)

�2(b8) ≡ �3(b2) + �3(b6). (B14d)

From the third relation in Eq. (B1b), (R3R4)5 = 1:

�3(b1) ≡ �4(b1), (B15a)

�3(b2) ≡ �4(b2), (B15b)

�3(b5) ≡ �4(b5), (B15c)

�3(b6) ≡ �4(b6). (B15d)

From the first relation in Eq. (B1c), (R1R3)2 = 1:

�1(b4) ≡ �3(b1), (B16a)

�1(b7) ≡ 0, (B16b)

�1(b7) ≡ �3(b5), (B16c)
�1(b7) ≡ �1(b3). (B16d)

From the second relation in Eq. (B1c), (R1R4)2 = 1:

�4(b1) ≡ 0, (B17a)

�1(b8) ≡ 0, (B17b)

�4(b5) ≡ 0, (B17c)

�1(b4) ≡ 0. (B17d)

From the third relation in Eq. (B1c), (R2R4)2 = 1:

�4(b2) ≡ 0, (B18a)

�2(b8) ≡ 0, (B18b)

�4(b6) ≡ 0, (B18c)

�2(b4) ≡ 0. (B18d)

It is now straightforward to check that the above constraints
together imply that all 16 remaining quantities �i(b j ) vanish,
so we have shown that it is possible to choose a gauge in which
�1(k) ≡ �2(k) ≡ �3(k) ≡ �4(k) ≡ 0 and hence �g(k) ≡ 0
for arbitrary g ∈ G and k ∈ �. This completes the proof that
there is a unique 4D space group corresponding to (the unique
irreducible noncrystallographic roots system) H4.
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