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We study 1D quasilattices, especially self-similar ones that can be used to generate two-, three-, and higher
dimensional quasicrystalline tessellations that have matching rules and invertible self-similar substitution rules
(also known as inflation rules) analogous to the rules for generating Penrose tilings. The lattice positions
can be expressed in a closed-form expression we call floor form: xn = S(n − α) + (L − S)�κ (n − β )�, where
L > S > 0 and 0 < κ < 1 is an irrational number. We describe two equivalent geometric constructions of
these quasilattices and show how they can be subdivided into various types of equivalence classes: (i) lattice
equivalent, where any two quasilattices in the same lattice equivalence class may be derived from one another by
a local decoration/gluing rule; (ii) self-similar, a proper subset of lattice equivalent where, in addition, the two
quasilattices are locally isomorphic; and (iii) self-same, a proper subset of self-similar where, in addition, the
two quasilattices are globally isomorphic (i.e., identical up to rescaling). For all three types of equivalence class,
we obtain the explicit transformation law between the floor form expression for two quasilattices in the same
class. We tabulate (in Table I and Fig. 5) the ten special self-similar 1D quasilattices relevant for constructing
Ammann patterns and Penrose-like tilings in two dimensions and higher, and we explicitly construct and catalog
the corresponding self-same quasilattices.
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I. INTRODUCTION

Penrose tilings [1–3] were the inspiration for introducing
the concept of quasicrystals [4] and have stimulated enormous
progress in our understanding of aperiodic order in mathe-
matics and physics [5–10]. These tilings exhibit a fascinating
set of interrelated properties, including: (i) quasiperiodic
translational order, (ii) crystallographically forbidden tenfold
orientational order, (iii) discrete scale invariance (as embodied
in so-called “inflation/deflation” rules [2]), (iv) “matching”
rules that constrain the way two tiles can join edge-to-edge
such that the tiles can only fill the plane by forming perfect
Penrose tilings, and (v) a distinctive class of topological (“de-
capod”) defects. The Penrose tiles also have another important
feature: the two tiles can each be decorated with a certain
pattern of line segments that join together in a perfect Penrose
tiling to form five infinite sets of parallel lines oriented along
the five edges of a pentagon. The lines are spaced according to
a 1D quasiperiodic sequence of long and short intervals called
a “Fibonacci quasilattice” (see Fig. 1). The five sets of 1D
quasilattices together form an Ammann pattern, named after
Robert Ammann, who found this decoration [5,11].

In this paper, we lay the 1D foundation for a new ap-
proach to Penrose tilings (and other objects like them, but
with different symmetries and in higher dimensions) [12].
The perspective developed and applied in Ref. [12] is that a
Penrose-like tiling should be regarded as the dual of a more
fundamental object: an Ammann pattern; and this Ammann
pattern, in turn, can be derived from the relationship between
two naturally paired irreducible reflection groups (which we
call a “Coxeter pair”).

Our focus in this paper is the analysis of the 1D quasilat-
tices that serve as the building blocks for the Ammann patterns
in higher dimensions. Although our ultimate purpose is higher
dimensional quasicrystal tilings as described in [12], the 1D
quasilattices studied here are important objects in their own
right (see, e.g., Refs. [7,10,13–19]), and a number of the new
results about them that we present here are of independent
interest. Let us sketch the outline of this paper and highlight a
few key results.

We begin, in Sec. II, by constructing the simplest class
of 1D quasilattices: we will call them “1D quasilattices of
degree two” or “quadratic 1D quasilattices.” These are 1D
quasiperiodic lattices constructed from just two intervals or
“tiles” (call them L and S, for “long” and “short”), with just
two different separations between successive L’s, and just
two different separations between successive S’s (the simplest
possibility compatible with quasiperiodicity). The quasilattice
point positions can be specified by a closed-form analytic
expression which has the basic “floor form” xn = S(n − α) +
(L − S)�κ (n − β )� where �x� denotes the “floor of x” (i.e.,
the largest integer � x) and L > S > 0, α, β and 0 < κ < 1
are constants.

The quasilattices can be constructed geometrically by first
picking some input data: an arbitrary 2D lattice �, an in-
tegral basis { �m1, �m2} for �, and an arbitrary line �q(t ) that
slices through the lattice with irrational slope. We describe
two equivalent constructions that produce the natural 1D
quasilattice corresponding to this input data: (i) the first con-
struction involves dualizing the “1D bigrid” obtained by inter-
secting the { �m1, �m2} integer grid lines with the line �q(t ); and
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FIG. 1. The red lines show a portion of a Penrose tiling (con-
structed from two tiles—a thin rhomb and a fat rhomb), while the
blue lines show the corresponding Ammann pattern.

(ii) the second construction is based on a cut-and-project
scheme using � as the lattice, �q(t ) as the “cut” surface,
and a parallelogram with sides �m1 and �m2 as the accep-
tance window. At first glance, it might seem like the first
(dualization) construction only defines the 1D quasilattice up
to an overall (unfixed) translational phase ambiguity; but it
will be important for later applications [12] to remove this
phase ambiguity by imposing the condition that the 1D bigrid
is reflection symmetric if and only if the corresponding 1D
quasilattice is reflection symmetric. We then observe that this
condition has a natural geometric interpretation in the second
(cut-and-project) construction: it amounts to the requirement
that, whenever the line �q(t ) intersects one of the { �m1, �m2}
parallelograms in the lattice �, it is the midpoint of that par-
allogram that should be projected onto �q(t ) to define a point
in the 1D quasilattice. We show [see (11) or (14)] that these
two geometric constructions yield 1D quasilattices captured
by the floor-form expression described above; and, conversely,
that any 1D quasilattice in a floor form (for any values of
the parameters S, L, α, β and κ) can be obtained via these
geometric constructions.

Section III concerns the following simple observation. In
Sec. II, we began by choosing a line �q(t ), a lattice �, and an
integral basis { �m1, �m2} for �; and we obtained a correspond-
ing 1D quasilattice xn. If we had instead chosen a different
integral basis { �m′

1, �m′
2}, we would have obtained a different

quasilattice x′
n. We will describe two such quasilattices as

“lattice equivalent.” The quasilattices xn and x′
n might look

quite dissimilar from one another in terms of their tile sizes
and orderings, but (as we explain in Sec. III) each may be
obtained from the other by a local “substitution/gluing” rule
that uses the integer matrix τ to relate the old basis { �m1, �m2}
to the new basis { �m′

1, �m′
2}. In this way, the set of quadratic 1D

quasilattices is partitioned into “lattice equivalence classes”
with a simple geometric interpretation. Namely, the members
of a given class correspond to the same line �q(t ) and the same
lattice �, but different choices for the basis { �m1, �m2}.

In Sec. IV, we identify the subset of quadratic 1D quasi-
lattices that are self-similar. For these lattices, there is a
change of basis { �m1, �m2} → { �m′

1, �m′
2} that maps the quasi-

lattice xn into a new quasilattice x′
n that is not only lattice

equivalent, but also locally isomorphic up to rescaling of
the intervals between points. For each self-similar 1D quasi-
lattice, our construction identifies a canonical self-similar
substitution/decoration rule, specifying not just the number
of “new” tiles which decorate each of the “old” tiles, but also
the particular order and phase of the new tiles in decorating
the old. This canonical substitution rule is always reflection
symmetric. We also obtain a simple and useful analytic ex-
pression for how the parameters in the floor-form expression
for the “old” quasilattice are related to the parameters in the
floor-form expression for the “new” quasilattice obtained from
it by this canonical substitution rule. In a generic (nonsingu-
lar) self-similar quasilattice, the line �q(t ) does not intersect
any of the points in the lattice �; but we also carefully
treat the special (singular) case where �q(t ) does intersect a
point in �, because the corresponding special quasilattices
play an important role in the analysis of topological defects
in Penrose-like tilings in two dimensions and higher [21].
Finally, since we are dealing with quadratic 1D quasilattices,
the corresponding self-similar quasilattices are characterized
by quadratic irrationalities. In fact, only a small subset of
these self-similar quadratic 1D quasilattices play a role as the
building blocks for the Ammann patterns in two dimensions
and higher [12]: the parameters and canonical substitution
rules for these ten special quasilattices are presented in Table I
and Fig. 5.

In Sec. V, we identify the subset of quadratic 1D quasi-
lattices that are not only self-similar under some 2 × 2
transformation τ , but are exactly s-fold self-same; that is,
τ s maps the quasilattice xn to a new quasilattice x′

n that is
not merely locally isomorphic, but actually identical to the
original quasilattice (up to an overall rescaling). We obtain
a simple explicit formula for these s-fold self-same quasi-
lattices, and also for the number of distinct s-fold self-same
quasilattices. These s-fold self-same quasilattices are natu-
rally grouped into irreducible s-cycles: for each of the special
quasi-lattices listed in Table I, we count the number of irre-
ducible s-cycles, and list the results in Table II. In comparing
the results to the Online Encyclopedia of Integer Sequences
(OEIS), some interesting connections appear. These s-fold
self-same 1D quasilattices, and irreducible s-cycles thereof,
are the building blocks for s-fold self-same Ammann patterns
and Penrose-like tilings in two dimensions and higher; and
these, in turn, underlie a new scheme for discretizing scale
invariant systems.

II. QUADRATIC 1D QUASILATTICES:
TWO GEOMETRIC PERSPECTIVES

We will say that a 1D quasilattice is “of degree two”
or “quadratic” if it can be described by the following
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“floor-form” expression:

xn = S(n − α) + (L − S)�κ (n − β )�. (1)

Here {L, S, κ, α, β} are real-valued constants (with L > S > 0
and 0 < κ < 1 irrational), n is an integer that runs from −∞
to +∞, and �x� is the “floor” of x i.e. the greatest integer � x.
Thus, as n increases (from N to N + 1), xn correspondingly in-
creases (from xN to either xN+1 = xN + L or xN+1 = xN + S);
in other words, Eq. (1) describes a sequence of isolated points
along the real line, with just two different intervals between
neighboring points: L and S (“long” and “short”). The L’s
and S’s form an infinite nonrepeating sequence: the relative
frequency with which L and S occur in the sequence is de-
termined by κ and the particular order in which they occur is
determined by β, while α is an overall translation phase that
determines where exactly the sequance is situated along the
real line.

Note that quadratic 1D quasilattices are “as simple as pos-
sible” in the sense that they are built from just two different
intervals (L and S); and, in addition, there are just two different
separations between consecutive S’s, and just two different
separations between consecutive L’s. Anything simpler than
this would be incompatible with quasiperiodicity.

In this section, we present two equivalent geometric
constructions of all such quadratic 1D quasilattices. Our
formulation is designed to clarify the relationship between
cut-and-project sequences, on the one hand, and lattice equiv-
alence, self-similarity and self-sameness, on the other. In the
process, we obtain a number of explicit expressions that will
be needed in subsequent sections, and in our construction of
higher dimensional Ammann patterns in [12].

The starting point for both constructions is the same: an
arbitrary Bravais lattice � in 2D Euclidean space sliced by an
arbitrary line �q(t ); and a choice of a “positive” integer basis
{ �m1, �m2} for �. We begin, then, by introducing these three
ingredients.

A. Geometric preliminaries: the lattice �, the line�q(t ),
and the basis {�m1, �m2}

Let � be an arbitrary lattice in 2D Euclidean space, and
let { �m1, �m2} be a (not necessarily orthonormal) integer basis
for the lattice: every point in � may be written as a unique
integer linear combination of the vectors �m1 and �m2. If we
regard �m1 and �m2 as column vectors, the corresponding dual
basis {m̃1, m̃2} consists of the row vectors m̃1 and m̃2 defined
by the matrix equation[

m̃1

m̃2

]
= [ �m1 �m2]−1 ⇒ m̃i �mj = δi

j . (2)

Let �q(t ) be an arbitrary line slicing through this space, and let
{ê‖, ê⊥} be an orthonormal basis adapted to it: ê‖ points along
the line, ê⊥ points perpendicular to it, and we write

�q(t ) = �q0 + ê‖t . (3)

We will always assume that �q(t ) has irrational slope with
respect to the { �m1, �m2} basis: i.e. (m̃2ê‖)/(m̃1ê‖ is irrational.

It will be convenient to split �q0, �m1, and �m2 into their ê‖ and
ê⊥ components:

�q0 = q ‖
0 ê‖ + q ⊥

0 ê⊥, (4a)

�m1 = m‖
1ê‖ + m⊥

1 ê⊥. (4b)

�m2 = m‖
2ê‖ + m⊥

2 ê⊥. (4c)

In this paper, we will usually focus on the case where { �m1, �m2}
is a “positive basis,” meaning that (for i = 1, 2) it satisfies the
following conditions:

m̃iê‖ > 0, (5a)

�mi · ê‖ > 0. (5b)

Note that, since �m1 and �m2 are not assumed to be orthogonal,
conditions (5a) and (5b) are not redundant. Eq. (5a) says
that the vector ê‖ lies in the “first quadrant” with respect to
the { �m1, �m2} basis (i.e., if we expand ê‖ = α1 �m1 + α2 �m2 in
the { �m1, �m2} basis, then the coordinates α1 and α2 are both
positive); and Eq. (5b) says that �m1 and �m2 both have positive
projections onto ê‖ (i.e., m‖

1 and m‖
2 are both positive).

There is no loss of generality in assuming condition (5a)
since it can always be achieved by flipping the sign of one or
both of the basis vectors �m1 and �m2, as needed. However, there
is the following loss of generality in assuming condition (5b).
This second condition only allows sequences of points xn that
can be reached by walking along the line using steps of two
different lengths, L and S, that are all in the same direction.
By contrast, dropping condition (5b) would allow m̂1 · ê‖ and
�m2 · êparallel to have opposite signs, yielding sequences of
points xn that could be reached by taking steps of the same
lengths but in two different directions (e.g., each step of length
L could be to the right, while each step of length S could be to
the left). When such a sequence of points is read from left to
right (as opposed to in the sequence with which the points
were reached by the walker), it appears to be constructed
of more than two different lengths. We wish to exclude this
situation, since it does not correspond to a 1D tiling in the
usual sense (since the tiles overlap) and cannot be used to
construct standard higher dimensional Ammann patterns or
Penrose-like tilings, for the same reason.

B. Perspective 1: the 1D quasilattice from dualizing a 1D bigrid

The { �m1, �m2} basis defines an “integer grid”: this is the set
of all lines that (in the { �m1, �m2} basis) have a constant integer
value for either their first or second coordinate (like the grid
of lines on an ordinary sheet of graph paper). The intersection
of this integer grid with the line �q(t ) defines a 1D “bigrid.” In
particular, the grid line whose first coordinate (in the { �m1, �m2}
basis) is the integer n ∈ Z intersects �q(t ) at t = t (1)

n , where

m̃1 �q
(
t (1)
n

) = n ⇒ t (1)
n = n − m̃1 �q0

m̃1ê‖
, (6a)

while the grid line whose second coordinate (in the { �m1, �m2}
basis) is the integer n ∈ Z intersects �q(t ) at t = t (2)

n , where

m̃2 �q
(
t (2)
n

) = n ⇒ t (2)
n = n − m̃2 �q0

m̃2ê‖
. (6b)

144112-3



LATHAM BOYLE AND PAUL J. STEINHARDT PHYSICAL REVIEW B 106, 144112 (2022)

The points t (1)
n form a periodic 1D lattice of spacing 1/(m̃1ê‖),

while the points t (2)
n form another periodic 1D lattice of spac-

ing 1/(m̃2ê‖). The superposition of these two periodic lattices
(with incommensurate spacings) is the 1D bigrid.

From this 1D bigrid, we obtain the corresponding 1D
quasilattice by a standard “dualization” procedure [7,20]: to
each space between two consecutive points in the bigrid, we
assign a point x in the dual quasilattice, so that (i) whenever
we cross a point t (1)

n in the bigrid (from the t (1)
n−1 side to the

t (1)
n+1 side), we correspondingly jump x → x + m‖

1 in the dual
quasi-lattice, and (ii) whenever we cross a point t (2)

n in the
bigrid (from the t (2)

n−1 side to the t (2)
n+1 side), we correspondingly

jump x → x + m‖
2 in the dual quasi-lattice. Stated another

way, as the bigrid parameter t continuously sweeps from −∞
to +∞, the quasilattice point x changes discretely, according
to

x = �m̃1 �q(t )�m‖
1 + �m̃2 �q(t )�m‖

2 + C, (7)

where C is a constant.
We can canonically fix C by demanding that the quasilat-

tice dual to a reflection-symmetric bigrid is also reflection-
symmetric, which fixes C to be

C = 1
2 m‖

1 + 1
2 m‖

2 − q‖
0. (8)

Fixing this phase relationship is unimportant in 1D, but plays
an important role when we construct higher dimensional Am-
mann patterns in Ref. [12], since these higher dimensional
Ammann patterns are built from a collection of multiple 1D
quasilattices whose phases must be carefully coordinated with
one another.

C. Perspective 2: the 1D quasilattice
from a cut-and-project algorithm

Equations (7) and (8) also have another geometric inter-
pretation (see Fig. 2). We can think of the { �m1, �m2} integer
grid described in Sec. II B as slicing up the plane into paral-
lelgrams whose edges are the vectors �m1 and �m2, and whose
vertices coincide with the points of �. Now we can construct
our 1D quasilattice by the following “cut-and-project” algo-
rithm: whenever the “cut” line �q(t ) intersects one of these
parallelograms, we orthogonally project the midpoint of that
parallelogram onto the cut line to obtain the point �q(x) (see
Fig. 1). This mapping from t to x is precisely the one described
by Eqs. (7) and (8). In particular, fixing C according to (8)
corresponds to projecting the parallelogram’s midpoint. This
makes sense: by projecting the midpoint (as opposed to say
the upper right corner) of each intersected parallelogram, we
make the algorithm explicitly reflection-symmetric, so it must
yield the same constant C (8) that that we obtained by de-
manding reflection symmetry in the previous (perspective 1)
algorithm. (And this requirement that the algorithm respects
reflection symmetry is also the reason that the substitution
rules derived later are always reflection symmetric.)

This cut-and-project perspective leads to a convenient way
of re-expressing Eqs. (7) and (8). For the rest of this section,
let us assume that { �m1, �m2} are a positive basis (see Sec. II A).
As t runs from −∞ to +∞, the line �q(t ) passes from one
parallelogram to the next, thereby placing the parallelograms

FIG. 2. Illustrates the geometric objects discussed in Secs. II and
III. The black dots are the lattice �. The thick black line is �q(t ),
with its own origin displaced from the origin of � by the vector
�q0. The solid red arrows show an integer basis { �m1, �m2} for �,
while the dashed red lines show the corresponding integer grid; and
the figure illustrates the corresponding cut-and-project construction:
every time the solid black line �q(t ) intersects one of the red dashed
parallelograms, the midpoint of that parallelogram (a red dot) is
orthogonally projected onto �q(t ) to obtain the 1D quasilattice xn.
The solid turquoise arrows then show an alternative integer basis
{ �m′

1, �m′
2} for �, while the dotted turquoise lines show the correspond-

ing integer grid; and this alternative basis could be used in an exactly
analogous way to obtain a second quasilattice x′

n which would be in
the same equivalence class as the first: either one could be obtained
from the other by a local decoration/gluing rule.

that it intersects in a specific order, which can be indexed
by the integer n. In particular, when �q(t ) passes through the
nth parallelogram, it intersects that parallelogram’s transverse
diagonal at a time tn given by

m̃�q(tn) = n ⇒ tn = n − m̃�q0

m̃ê‖
, (9)

where

m̃ = m̃1 + m̃2. (10)

We can use Eqs. (7) and (8) to map this nth intersection
time, tn, to a corresponding nth point in the quasilattice, xn.
Following this procedure and massaging the result a bit, we
obtain the useful formula:

xn =
(⌊

nm⊥
2 − q⊥

0

m⊥
2 − m⊥

1

⌋
+ 1

2

)
m‖

1

+
(⌊

nm⊥
1 − q⊥

0

m⊥
1 − m⊥

2

⌋
+ 1

2

)
m‖

2 − q‖
0. (11)
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Note that the 1/2’s in this expression arise because we project
the midpoint of each parallelogram (as opposed to one of its
corners, say). Let us make three remarks about Eq. (11).

(1) Equation (11) defines the same 1D quasilattice as
Eqs. (7) and (8); the difference is that, whereas (7) and (8)
expressed this quasilattice as the range of a many-to-one map
with a continuous domain (t ∈ R), (11) expresses the same
quasilattice as the range of a one-to-one map from a discrete
domain (n ∈ Z).

(2) Imagine replacing the line �q = �q0 + ê‖t by a new line
�q ′ = �q0

′ + ê‖t which is parallel to the original line, and has
just been translated by a vector in �: �q0

′ = �q0 + n1 �m1 + n2 �m2

(for some integers n1 and n2). Then, via Eq. (11), we obtain a
new quasilattice x′

n with correspondingly shifted parameters:

q ‖
0

′ = q ‖
0 + n1m ‖

1 + n2m ‖
2 ,

q⊥
0

′ = q⊥
0 + n1m⊥

1 + n2m⊥
2 . (12)

However, as may be checked from Eq. (11), the two quasi-
lattices xn and x′

n are actually identical up to reindexing:
x′

n = xn−n1−n2 . This is called an umklaap transformation [22]
and reflects the fact that, when we consider the family of 1D
quasilattices obtained by varying �q0, we can really think of �q0

as living on a torus [23,24].
(3) Since { �m1, �m2} is a positive basis, Eq. (5a) requires

m⊥
2 /m⊥

1 < 0, and Eq. (5b) requires m‖
1 > 0 and m‖

2 > 0. To-
gether these conditions imply that, as the integer index n
increments (from n′ to n′ + 1), the corresponding quasilattice
position xn (11) increases by one of the two positive lengths:
m‖

1 or m‖
2. Furthermore,

( f1/ f2) = −(m⊥
2 /m⊥

1 ), (13)

where f1/ f2 is the relative frequency of steps of length m‖
1

and steps of length m‖
2. If f1/ f2 < 1, the quasilattice consists

of single (isolated) steps of length m‖
1, separated by either

� f2/ f1� or (� f2/ f1� + 1) steps of length m‖
2; and if f2/ f1 < 1,

the quasilattice consists of single (isolated) steps of length m‖
2,

separated by either � f1/ f2� or (� f1/ f2� + 1) steps of length
m‖

1.
Although Eq. (11) has the advantage of being manifestly

symmetric under interchange of 1 ↔ 2 subscripts, it is some-
times convenient to rewrite it in one of the following two
forms, which each only involve one floor function �. . .�, and
are swapped by swapping 1 ↔ 2:

xn = m‖
1(n − χ

‖
1 ) + (m‖

2 − m‖
1)

(�κ1(n − χ⊥
1 )� + 1

2

)
(14a)

= m‖
2(n − χ

‖
2 ) + (m‖

1 − m‖
2)

(�κ2(n − χ⊥
2 )� + 1

2

)
, (14b)

where we have defined the constants

χ
‖
1 ≡ q‖

0/m‖
1, χ⊥

1 ≡ q⊥
0 /m⊥

1 , κ1 ≡ m⊥
1

m⊥
1 − m⊥

2

, (15a)

χ
‖
2 ≡ q‖

0/m‖
2, χ⊥

2 ≡ q⊥
0 /m⊥

2 , κ2 ≡ m⊥
2

m⊥
2 − m⊥

1

. (15b)

Note that Eqs. (14a) and (14b) have the same form as our
original “floor-form” expression (1), except that we have now
switched notation (from L and S to m‖

1 and m‖
2 for the two tile

lengths, and from α and β to χ‖ and χ⊥ for the two phases) to

specify more precisely the relationship to the underlying 2D
lattice. We add three more remarks.

(1) When we re-express the quasilattice (11) in the form
(14), we correspondingly re-express the umklaap transforma-
tion (12) in the form

χ
‖

1
′ = χ

‖
1 + n1 + n2(m ‖

2 /m ‖
1 ),

χ⊥
1

′ = χ⊥
1 + n1 + n2(m⊥

2 /m⊥
1 ), (16a)

χ
‖

2
′ = χ

‖
2 + n2 + n1(m ‖

1 /m ‖
2 ),

χ⊥
2

′ = χ⊥
2 + n2 + n1(m⊥

1 /m⊥
2 ). (16b)

(2) In the generic (nonsingular) case where the line �q(t )
does not intersect any of the points in �, the three expressions
(11), (14a), and (14b) are all equivalent. In the special (singu-
lar) case where the line �q(t ) intersects a point in �, the three
expressions (11), (14a), and (14b) are almost equivalent, but
they differ at one point xn∗ (where the argument of the floor
function �. . .� is precisely an integer). This may seem like a
minor detail, but in fact (as we shall explain in a subsequent
paper [21]) these special cases are not only the 1D analogues
of, but also the 1D building blocks for, a fascinating set of
topological defects which are intrinsic to two- and higher
dimensional Penrose-like tilings (and are known as “decapod
defects” in the case of the standard 2D Penrose tiling [2,5]).
For this reason, we will continue to keep track of this detail at
later points in this paper (see Sec. IV and Appendix B).

(3) Comparing Eqs. (1) and (14), we see that given a
line �q(t ), a lattice �, and a positive basis { �m1, �m2}, the cut-
and-project algorithm described above produces a quadratic
1D quasilattice xn. Conversely, it is easy to check that any
quadratic 1D quasilattice xn may be obtained from such a
cut-and-project algorithm: the “‖” components of �m1 and �m2

can be chosen to obtain the desired parameters S and L, the
“⊥” components of �m1 and �m2 can be chosen to obtain the
desired κ , and the “‖” and “⊥” components of �q0 can be
chosen to obtain the desired {α, β}.

III. LATTICE-EQUIVALENT QUASILATTICES

In Sec. II, we constructed the quadratic 1D quasilattice xn

(11) by first choosing: (i) a line �q(t ), (ii) a lattice �, and (iii) a
“positive” integer basis { �m1, �m2} for �. If, instead, we choose
the same line �q(t ) and the same lattice �, but a different
positive integer basis { �m′

1, �m′
2}, we obtain a different quadratic

quasilattice:

x′
n =

(⌊
nm⊥

2
′ − q⊥

0

m⊥
2

′ − m⊥
1

′

⌋
+ 1

2

)
m‖

1
′

+
(⌊

nm⊥
1

′ − q⊥
0

m⊥
1

′ − m⊥
2

′

⌋
+ 1

2

)
m‖

2
′ − q‖

0. (17)

We will call two quasilattices xn and x′
n that are related in this

way “lattice equivalent.”
To understand lattice equivalence in more detail, let us

write the relationship between the two bases as

�m′
1 = a �m1 + b �m2, (18a)

�m′
2 = c �m1 + d �m2. (18b)
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FIG. 3. Illustrates why two lattice equivalent quasilattices are
related by a fixed decoration rule, as explained in Sec. III.

Since { �m1, �m2}, { �m′
1, �m′

2} are both integer bases for �,

τ =
(

a b
c d

)
(19)

must be an integer matrix with determinant ±1. And since
{ �m1, �m2} and { �m′

1, �m′
2} are both positive integer bases for �

and, without loss of generality, we take the unprimed { �m1, �m2}
parallelogram to be the one that is wider in the ê⊥ direction
(|m⊥

2 − m⊥
1 | > |m⊥

2
′ − m⊥

1
′|), the components {a, b, c, d} of τ

must also all be non-negative (see Appendix A for a proof).
The two lattice-equivalent quasilattices xn (11) and x′

n (17)
are intimately related to one another: the denser quasilattice xn

may be obtained from the sparser quasilattice x′
n by applying

a local “substitution” or “decoration” rule that replaces each
type of interval between points in the sparser quasilattice by a
specific, fixed sequence of intervals in the denser quasilattice;
and in the other direction, the sparser quasilattice may be
recovered from the denser one by a local rule for gluing
together a certain specific, fixed sequence of intervals in the
denser lattice to obtain each type of interval in the sparser one.

To understand this assertion, consider Fig. 3: it shows the
set of (red, elongated, dotted) { �m′

1, �m′
2} parallelograms and the

set of (blue, square, solid) { �m1, �m2} parallelograms that are
intersected by the diagonal black dotted line �q(t ). Note that
the set of { �m1, �m2} parallelograms is precisely the minimal set
needed to cover the set of { �m′

1, �m′
2} parallelograms completely.

(For clarity, in the top panel of Fig. 4 we show a single
{ �m′

1, �m′
2} parallelogram and its minimal covering by { �m1, �m2}

parallelograms; and in the bottom panel of Fig. 4, we show the
minimal covering of two adjacent { �m′

1, �m′
2} parallelograms,

depending on whether they share a common long edge or a
common short edge.) From Figs. 3 and 4, we can see the
simple geometric reason why (as asserted above) the denser
quasilattice xn may be obtained from the sparser quasilattice
x′

n by applying a fixed “substitution” or “decoration” rule to
each of the two intervals (S′ and L′) in the x′

n quasilattice—it
is because (i) whenever two adjacent { �m′

1, �m′
2} parallelograms

share a common short edge (giving rise to an L′ interval in this
example), they are always covered by the same arrangement of

FIG. 4. More about the relationship between the parallelograms
in Fig. 3: the top panel shows the minimal covering of one (red,
elongated, dotted) { �m′

1, �m′
2} parallelogram by (blue, square, solid)

{ �m1, �m2} parallelograms; and the bottom panel shows the minimal
covering of two adjacent { �m′

1, �m′
2}, which just depends on whether

they share a common short edge, or a common long edge.

{ �m1, �m2} parallelograms, which yields a fixed decoration of L′
by S and L; and (ii) whenever two adjacent { �m′

1, �m′
2} parallelo-

grams share a common long edge (giving rise to an S′ interval
in this example), they are covered by the same arrangement of
{ �m1, �m2} parallelograms, yielding a fixed decoration of S′ by
S and L.

Lattice equivalence thus organizes the various quadratic
1D quasilattices xn obtained the previous section into lattice
equivalence classes (with an uncountable infinity of different
lattice equivalence classes, and a countable infinity of differ-
ent quasilattices in any particular lattice equivalence class).
Given a fixed line �q(t ) and a fixed lattice �, the various
members of the corresponding lattice equivalence class come
from all the different ways of choosing a positive integer basis
{ �m1, �m2} for �; and any two members of the family may be
derived from one another by a local substitution/gluing rule
corresponding to the integer matrix τ .

The notion of lattice equivalence elucidates the precise
connection between substitution sequences, on the one hand,
and cut-and-project sequences, on the other. On the one hand,
if the quasilattices xn and x′

n are lattice equivalent, the se-
quence xn (regarded as an infinite string of unprimed letters
S and L) may be algebraically obtained from the sequence x′

n
(regarded as an infinite string of primed letters S′ and L′) by
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a formal substitution rule in which each primed letter (S′ or
L′) is replaced by a fixed finite string of unprimed letters (S
and L). This substitution rule may be summarized by a 2 × 2
integer matrix τ in a standard way. On the other hand, we
see that this same matrix τ has a simple geometric meaning:
it is precisely the matrix that connects the unprimed basis
{ �m1, �m2} (that produces xn via cut-and-project) to the primed
basis { �m′

1, �m′
2} (that produces x′

n via cut-and-project).
Furthermore, from the algebraic perspective, the matrix τ

is not enough to specify the substitution rule, since it doesn’t
fix the particular ordering or overall translational phase of the
substitution rule. For example,

τ =
(

1 1
2 1

)
(20)

might correspond to any of the following rules:

{S′, L′} →
{

L

2
S

L

2
,

L

2
SS

L

2

}
, (21a)

{S′, L′} → {LS, LSS}, (21b)

{S′, L′} → {LS, SLS}. (21c)

Note that, (21a) and (21b) correspond to different phases,
while (21c) corresponds to a different ordering, i.e., if we
start from the same parent sequence and apply these sub-
stitutions, then (21a) and (21b) will produce two sequences
that only differ by an overall translation by L/2, while (21b)
and (21c) will produce two genuinely distinct daughter se-
quences. By contrast, from the geometrical perspective, the
matrix τ also determines an ordering and a phase, i.e., it is
associated with a canonical substitution rule and, in particular,
one that is x → −x reflection symmetric. For example, for
τ given by Eq. (20), the canonical substitution rule is given
by (21a)—see row 2a in Table I. These canonical substitu-
tion rules (including ordering and phase) will be important
in our analysis of higher dimensional Ammann patterns in
Ref. [12].

IV. SELF-SIMILAR QUASILATTICES

Two 1D quasilattices are locally isomorphic if any finite
segment which occurs in one quasilattice also occurs some-
where in the other quasilattice, and vice versa, so that it is
impossible, by inspecting any finite segment, to determine
which of the two quasilattices one is looking at (see, e.g.,
Refs. [2,10,22] for more). Two lattice-equivalent quasilattices
xn and x′

n, related by the matrix τ , may look very different
from one another and, in general, will not be locally isomor-
phic, even after an overall rescaling. If xn and x′

n are also
locally isomophic (up to overall rescaling), then we say they
are self-similar (under the transformation τ ). In this section,
we give the general closed-form expression for a self-similar
quadratic 1D quasilattice, and a simple rule for how its pa-
rameters transform under a self-similarity (inflation/deflation)
transformation. Then, in Table I, we collect the ten special
self-similar sequences that are relevant for constructing higher
dimensional Ammann patterns [12]; and in Fig. 5, we depict
the corresponding substitution rules.

TABLE I. Catalog of the ten 1D self-similar quasilattices rel-
evant to constructing higher dimensional Ammann patterns and
Penrose-like tilings in Ref. [12]. In this table, we use the convenient
notation λ± and m±

i where here the superscript/subscript “+” stands
for the former subscript/superscript “‖”, while the “−” stands for
“⊥.” Within each case, the subcases are in order of increasing L/S.

Case λ± τ m±
2 /m±

1 S′ L′

1 1
2 (1 ± √

5)
( 0 1

1 1

)
1
2 (1 ± √

5) L
2

L
2

L
2 S L

2

2a 1 ± √
2

( 1 1
2 1

) ±√
2 L

2 S L
2

L
2 SS L

2

2b 1 ± √
2

( 0 1
1 2

)
1 ± √

2 L LSL

3a 2 ± √
3

( 1 2
1 3

)
1
2 (1 ± √

3) S
2 LL S

2
S
2 LLL S

2

3b 2 ± √
3

( 2 1
3 2

) ±√
3 SLS SLSLS

3c 2 ± √
3

( 1 1
2 3

)
1 ± √

3 L
2 S L

2
L
2 SLLS L

2

4a 2 ± √
5

( 3 1
4 1

) −1 ± √
5 L

2 SSS L
2

L
2 SSSS L

2

4b 2 ± √
5

( 2 1
5 2

)
0 ± √

5 SLS SLSSSLS

4c 2 ± √
5

( 1 1
4 3

)
1 ± √

5 L
2 S L

2
L
2 SLSSLS L

2

4d 2 ± √
5

( 0 1
1 4

)
2 ± √

5 L LLSLL

To start, let us pick a particular transformation matrix

τ =
(

a b
c d

)
(22)

(with non-negative integer components and determinant ±1).
In the self-similar case, the new quasilattice x′

n (17) is related
to the original one xn (11) by

m‖
1
′

m‖
2
′ = m‖

1

m‖
2

and
m⊥

1
′

m⊥
2

′ = m⊥
1

m⊥
2

; (23)

or, equivalently, (
m‖

1

m‖
2

)
and

(
m⊥

1

m⊥
2

)
(24)

must be two different eigenvectors of τ with corresponding
eigenvalues

λ‖ = 1
2 [a + d +

√
(a + d )2 − 4(ad − bc)], (25a)

λ⊥ = 1
2 [a + d −

√
(a + d )2 − 4(ad − bc)], (25b)

where λ‖ > 1, while |λ⊥| < 1 and sign(λ⊥) = det(τ ).
Note that the ratio m‖

1/m‖
2 determines the relative length of

the two tiles in the quasilattice, while the ratio m⊥
1 /m⊥

2 deter-
mines the relative frequencies of the two tiles. From Eq. (14)
we see that, by holding these two ratios fixed under inflation,
we ensure that the old and new quasilattices xn and x′

n are in
the same local isomorphism class. That is, up to an overall
rescaling, they only differ in their phases {χ‖, χ⊥} versus
{χ‖′, χ⊥′}, which only determine which representatives of the
local isomorphism class we are considering.
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FIG. 5. Illustrations of the ten 1D self-similar substitution rules
relevant to constructing higher dimensional Ammann patterns and
Penrose-like tilings (as catalogued in the last column of Table I). In
each row of this figure, the short (solid, purple) and long (dashed,
turqoise) prototiles are on the bottom, with their corresponding self-
similar decimations into smaller tiles directly above. Open circles
indicate the endpoints of tiles. Complete tiles have have circles at
both ends; half tiles have a circle at one end but none at the half-way
point. For example, row 1 shows how a short prototile S′ (bottom left)
is subdivided into two halves of a long prototile: S′ = (L/2)(L/2)
(top left); and a long prototile L′ (bottom right) is subdivided into
L′ = (L/2)S(L/2) (top right).

If the quasilattice xn (11), (14a), and (14b) is self-similar
with respect to the transformation τ , then after s successive
transformations, the resulting sequence xn,s is

xn,s

λs
‖

=
(⌊

nm⊥
2 − q⊥

0,s

m⊥
2 − m⊥

1

⌋
+ 1

2

)
m‖

1

+
(⌊

nm⊥
1 − q⊥

0,s

m⊥
1 − m⊥

2

⌋
+ 1

2

)
m‖

2 − q‖
0,s (26a)

= m‖
1(n − χ

‖
1,s) + (m‖

2 − m‖
1)

(
�κ1(n − χ⊥

1,s)� + 1

2

)
(26b)

= m‖
2(n − χ

‖
2,s) + (m‖

1 − m‖
2)

(
�κ2(n − χ⊥

2,s)� + 1

2

)
(26c)

with new parameters {q‖
0,s, q⊥

0,s} (or {χ‖
1,s, χ

⊥
1,s} or {χ‖

2,s, χ
⊥
2,s})

which are related to the original parameters {q‖
0, q⊥

0 } (or

{χ‖
1 , χ⊥

1 } or {χ‖
2 , χ⊥

2 }) as follows:

q‖
0,s ≡ q‖

0

λs
‖
, q⊥

0,s ≡ q⊥
0

λs
⊥

, (27a)

χ
‖
1,s ≡ χ

‖
1

λs
‖
, χ⊥

1,s ≡ χ⊥
1

λs
⊥

, (27b)

χ
‖
2,s ≡ χ

‖
2

λs
‖
, χ⊥

2,s ≡ χ⊥
2

λs
⊥

. (27c)

The formulas for a single inflation transformation are obtained
by substituting s = 1 in Eqs. (26) and (27).

If we want to describe 1D quasilattices and their self-
similarity transformations in a way that continues to be
precisely correct, even in the singular case where �q(t ) inter-
sects a point in �, we have to replace Eqs. (26a)–(26c) by
Eqs. (26a′)–(26c′) presented in Appendix B. This case will be
studied further in a subsequent paper [21] where these singular
1D quasilattices are related to the intrinsic defects which can
arise in Penrose-like tilings (like the “decapod” defects in the
Penrose tiling [2,5]).

In our subsequent paper [12], where these self-similar 1D
quasilattices are used as the building blocks for higher dimen-
sional Ammann patterns and Penrose-like tilings, four cases
are relevant (see Table I in Ref. [25]): Case 1, where the
scaling factor is the “golden ratio”, λ‖ = φ = (1 + √

5)/2,
which is the relevant case for describing systems with fivefold
or tenfold order in 2D, some systems with icosahedral (H3)
order in 3D, and systems with “hypericosahedral” (H4) order
in 4D. Case 2, where the scale factor is the “silver ratio” λ‖ =
(1 + √

2), which is the relevant case for describing systems
with eightfold order in 2D; Case 3, where the scale factor
is λ‖ = (2 + √

3), which is the relevant case for describing
systems with 12-fold order in 2D; and Case 4, where the scale
factor is λ‖ = φ3 = 2 + √

5, which is the relevant case for
describing some systems with icosahedral (H3) order in 3D.
In Table I, we list all ten of the 1D self-similar quasilattices
corresponding to these four cases, and provide the relevant
parameters needed to describe them explicitly [27]. Note that
in this table we have used the convenient notation λ± and m±

i
where here the “+” superscript/subscript stands for the for-
mer superscript/subscript “‖,” and the “−” stands for “⊥ .”

Finally, it may be possible to construct 1D quasilattices that
only return to the same local isomorphism class (up to rescal-
ing) after s iterations of the same substitution (inflation) rule.
These would be 1D analogues of the 2D “Ammann cycles”
discussed in our subsequent paper [12]. We leave the study of
these objects in 1D to future work, and thank the anonymous
referee for pointing out this interesting possibility.

V. SELF-SAME QUASILATTICES

In the previous section, we restricted our attention to 1D
quasilattices that were self-similar (i.e., both lattice equivalent
and locally isomorphic) under the transformation τ . In this
section, we restrict our attention further to 1D quasilattices
xn that are s-fold self-same with respect to τ—meaning that
xn is self-similar with respect to τ and, moreover, xn,s (the
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quasilattice obtained by performing s successive τ transfor-
mations) is identical to xn (after an appropriate rescaling).

In the previous section, we found that after s succes-
sive τ transformations, the original quasilattice xn [(11),
(14a), and (14b)] characterized by parameters {q‖

0, q⊥
0 } (or

{χ‖
1 , χ⊥

1 } or {χ‖
2 , χ⊥

2 }) was transformed to a new quasilattice
xn,s [(26a)–(26c)] characterized by new parameters {q‖

0,s, q⊥
0,s}

(or {χ‖
1,s, χ

⊥
1,s} or {χ‖

2,s, χ
⊥
2,s}). In order for xn to be s-fold

self-same, these transformed parameters must be related to
the original parameters by an umklaap transformation [(12),
(16a), and (16b)]. This implies that a quasilattice will be s-fold
self-same with respect to τ if it is self-similar with respect to
τ and, in addition, its parameters are given by

q±
0 = λs

±(n1m±
1 + n2m±

2 )

1 − λs±
, (28a)

χ±
1 = λs

±(n1m±
1 + n2m±

2 )

(1 − λs±)m±
1

, (28b)

χ±
2 = λs

±(n2m±
2 + n1m±

1 )

(1 − λs±)m±
2

, (28c)

for any integers n1 and n2 (where, again in this section, we are
using the notation that superscripts/subscripts + and − stand
for ‖ and ⊥, respectively).

As it stands, this answer is redundant, because there can
be different ordered pairs {n1, n2} and {n′

1, n′
2} of integers

for which the above parameters secretly describe the same
quasilattice (up to umklaap). In order to count the nonredun-
dant self-same crystals, first note that, comparing Eqs. (28) to
Eqs. (12) and (16), the umklaap equivalent values of �q0 form
a 2D lattice (whose fundamental domain is a parallelogram
with edges �m1 and �m2) and the s-fold self-same lattices also
form a 2D lattice but (relative to the fundamental domain of
the umklaap lattice) its fundamental domain is rescaled by
λs

±/(1 − λs
±) along the ê± directions, respectively.

The naive formula for the number of distinct s-fold self-
same lattices is then the ratio of the area of these two
fundamental domains: |(1 − λs

+)(1 − λs
−)/(λs

+λs
−)|. This an-

swer is almost correct, but requires the following correction.
The n1 = n2 = 0 quasilattice is singular, and is actually a
pair of quasilattices that are nearly identical to one another:
see Appendix B. The pair of quasilattices only differ at the
very middle, where one lattice has the sequence “LS” while
the other has “SL”. Beyond this middle pair of intervals,
the two quasilattices are reflection symmetric and identical
to one another. When det τ = +1, these two sequences each
inflate into themselves (i.e., they are both onefold self-same);
and when det τ = −1, they inflate into each other (i.e., they
are twofold self-same). Taking this correction into account, we
find that the number of quasilattices that are s-fold self-same
with respect to τ is given by

Ns =
∣∣∣∣ (1 − λs

+)(1 − λs
−)

λs+λs−

∣∣∣∣ + (det τ )s. (29)

However, this result is not yet what we want, since it includes
quasilattices that are self-same after s inflations, but were
already self same after r inflations, where r is a divisor of s.
After we remove these “reducible” cases, we are left with the

TABLE II. Here we list tabulate the first 8 terms in the sequence
N ′

s/s, for the four scale factors in Table I: φ = (1 + √
5)/2 (column

1); (1 + √
2) (column 2); (2 + √

3) (column 3); and (2 + √
5) (col-

umn 4).

s N ′
s/s N ′

s/s N ′
s/s N ′

s/s

1 0 1 3 3
2 1 2 5 7
3 1 4 16 24
4 1 7 45 76
5 2 16 144 272
6 2 30 440 948
7 4 68 1440 3496
8 5 140 4680 12920

number N ′
s of irreducible s-fold self-same quasilattices. The

value of N ′
s may be determined iteratively by the formula

N ′
s = Ns −

∑
r<s
r|s

N ′
r . (30)

The number N ′
s is divisible by s, since the irreducible s-fold

self-same quasilattices are grouped into families of size s
which cycle into one another under τ -transformation, and
which we will call “s-cycles.” So the most natural thing to
count is the number of s-cycles, N ′

s/s. in Table II, we tabulate
the number of s-cycles for the four important scale factors
catalogued in Table I. Note that self-same quasilattices are
examples of fixed points in the torus parametrization; in this
context, the number of irreducible s-cycles in the golden ratio
case (Case 1) was previously computed in Refs. [23,24].

It is interesting to note that the sequences of numbers in
some of the columns in Table II already appear as entries
in the Online Encyclopedia of Integer Sequences (OEIS) for
various different reasons. Here we mention those entries for
completeness and in the hope that, by tracking down the
relationships, some interesting insights might be uncovered.
The first column is A006206 (“Number of aperiodic binary
necklaces of length n with no subsequence 00, excluding the
necklace 0”); the second column is A215335 (“Cyclically
smooth Lyndon words with 3 colors”); the third column is
A072279 (“Dimension of n-th graded section of a certain Lie
algebra”); and the fourth column is not yet an OEIS sequence.
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APPENDIX A: NON-NEGATIVITY OF τ

In this Appendix, we prove the assertion from Sec. III:
that if { �m1, �m2} and { �m′

1, �m′
2} are both positive integer bases

for � and, without loss of generality, we take the { �m1, �m2}
parallelogram to be wider than the { �m′

1, �m′
2} parallelogram in

the ê⊥ direction, then the components {a, b, c, d} of the 2 × 2
integer matrix τ are non-negative.

144112-9
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We can prove this as follows. The positivity of the basis
{ �m1, �m2} implies that m‖

1 and m‖
2 are both positive, while m⊥

1
and m⊥

2 have opposite signs from one another; and, similarly,
the positivity of the basis { �m′

1, �m′
2} implies that m‖

1
′ and m‖

2
′

are both positive, while m⊥
1

′ and m⊥
2

′ have opposite signs from
one another. Furthermore, for the purposes of this proof, we
can restrict to the case m⊥

1 < 0 and m⊥
2 > 0 (since the other

possibility corresponds to swapping 1 ↔ 2, which just swaps
the columns of τ , and does not affect the question of whether
its components are all non-negative); and, similarly, we can
restrict to the case m⊥

1
′ < 0 and m⊥

2
′ > 0 (since the other pos-

sibility corresponds to swapping 1′ ↔ 2′, which corresponds
to swapping the rows of τ , which again does not affect the
question of whether its components are all non-negative).
With these restrictions, the requirement det(τ ) = ±1 reduces
to the condition

det(τ ) = 1, (A1a)

and the requirement that the { �m1, �m2} parallogram is wider
than the { �m′

1, �m′
2} parallelogram in the ê⊥ direction reduces to

the condition

m⊥
2 − m⊥

1 > m⊥
2

′ − m⊥
1

′. (A1b)

Now, using �m′
1 = a �m1 + b �m2, we see that the conditions

m‖
1
′ > 0 and m⊥

1
′ < 0 become

a > −(m‖
2/m‖

1)b and a > −(m⊥
2 /m⊥

1 )b. (A2a)

In other words, a is greater than both (negative) × b and
(positive) × b, which is only possible if a > 0. Similarly,
using �m′

2 = c �m1 + d �m2, the conditions m‖
2
′ > 0 and m⊥

2
′ > 0

become

d > −(m‖
1/m‖

2)c and d > −(m⊥
1 /m⊥

2 )c, (A2b)

which together imply d > 0.
Next, conditions (A1a) and (A1b) may be rewritten, re-

spectively, as

bc = ad − 1 (A3a)

and

bm⊥
2 − cm⊥

1 > (d − 1)m⊥
2 − (a − 1)m⊥

1 (A3b)

Using the fact that m⊥
2 is positive, m⊥

1 is negative, while a and
d are both positive integers, we see that Eqs. (A3a) and (A3b)
together imply that b and c are both non-negative.

This completes the proof.

APPENDIX B: SINGULAR QUASILATTICES

To describe quasilattices and their self-similarity transfor-
mations by a formula that continues to be precisely correct
even in the singular case (see Secs. II and IV), we must replace
Eqs. (26a)–(26c) by

xn,s

λs
‖

=
([

nm⊥
2 − q⊥

0,s

m⊥
2 − m⊥

1

]
σ1,s

+ σ1,s

2

)
m‖

1

+
([

nm⊥
1 − q⊥

0,s

m⊥
1 − m⊥

2

]
σ2,s

+ σ2,s

2

)
m‖

2 − q‖
0,s (26a′)

= m‖
1(n − χ

‖
1,s) + (m‖

2 − m‖
1)

×
(

[κ1(n − χ⊥
1,s)]σ2,s + σ2,s

2

)
(26b′)

= m‖
2(n − χ

‖
2,s) + (m‖

1 − m‖
2)

×
(

[κ2(n − χ⊥
2,s)]σ1,s + σ1,s

2

)
, (26c′)

where

σ1,s ≡ (det τ )sσ1 and σ2,s ≡ (det τ )sσ2. (B1)

Here σ1 and σ2 are ± signs which may be regarded as in-
dependent in Eq. (26a′), but are assumed to obey σ1 = −σ2

in passing to Eqs. (26b′) and (26c′). Also note that we have
introduced the notation

[x]σ =
{�x� (σ = +)

�x� (σ = −)
, (B2)

where �x� is the “floor” of x (the greatest integer � x) and �x�
is the “roof” of x (the least integer � x).

In particular, note that the “old” self-similarity trans-
formation [(26b) and (26c)] corresponds to a fixed
decoration/gluing rule except in the singular case (where the
gluing/decoration rule hold almost everywhere, but is vio-
lated near the singular point in the quasilattice). By contrast,
the “new” self-similarity transformation [(26b′) and (26c′)]
corresponds to a fixed decoration/gluing rule that applies
everywhere, even in the singular case.
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