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Explaining the origin of the orientation of the front transformation
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Preferred orientations of the macroscopic high-spin (HS) low-spin (LS) interfaces appearing in spin transition
molecular crystals during their phase transitions are explained through the study of a generalized 3D version
of the electroelastic model accounting for an anisotropic change of the lattice parameters, a, b, and c at the
transition. The investigations are performed at 0 K by analyzing the energy landscape of a lattice made of two
HS and LS phases, separated by a tilted interface with variable orientation, θ as a function of the anisotropy
ratio, λ = �b

�a = �b
�c , where �x = xHS − xLS is the lattice misfit along x ( = a, b, c) direction between HS and

LS states. For large λ < 0, the θ dependence of the relaxed total elastic energy depicts a symmetric double-well
structure with two stable positions, θmin, and an unstable orientation θmax = 90◦. Beyond a critical value, λ−

C < 0,
only one minimum subsists at θ = 90◦, thus recalling the behavior of an order parameter of a 2nd order phase
transition. On increasing λ, this minimum survives until a second threshold value λ+

C > 0 above which, the
elastic energy recovers a double well configuration with two new preferential interface orientations, highlighting
the existence of a re-entrant phenomenon. We demonstrate that the behavior of θmin versus λ follows the same
universality class as that of a second-order phase transition, for which we calculate the critical exponents β and ν

through a finite size scaling analysis. Overall, these investigations reveal that in switchable molecular solids with
anisotropic unit cell deformation between the LS and HS states, there exists a stress-free interface orientation
ensuring their integrity upon a large number of thermal cycles or loads during their practical utilization

DOI: 10.1103/PhysRevB.106.144107

I. INTRODUCTION

Spin-crossover materials (SCO) are an interesting class of
solids in which molecules exhibit two different spin states: the
low-spin (LS) and the high-spin (HS) states [1–3]. SCO solids
are transition metals with an electronic configuration rang-
ing between 3d4 and 3d7 (chromium, manganese, iron, and
cobalt) which coordinate with (sulphur, oxygen or nitrogen)
atoms in octahedral symmetry. In the case of the well-known
Fe(II)-based SCO materials with 3d6 configuration, the cen-
tral transition-metal ion experiences a ligand field energy �

which lifts the degeneracy of the five d orbitals of Fe(II) and
splits them into three weakly bonding and two antibonding
orbitals. According to the value of this ligand field and the
strength of the interaction between neighboring molecules, a
competition rises between two spin states: the diamagnetic
low-spin state (LS, S = 0) and the paramagnetic high-spin
state (HS, S = 2). When the value of � is much stronger
(weaker) than the electrons pairing energy, then the central
metal ion is in the LS (HS): the transition between the two spin
states becomes thermally accessible when � ∼ kBT , where
T is the temperature. The volume of the molecules changes
between these two spin states, becoming larger in the HS
state, and is accompanied by a collective transition in the solid
state. While the LS state is energetically privileged at low
temperature, the HS state is favoured at high temperatures due
to entropy effect. The spin transition can be induced by several
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external parameters such as changes in temperature [2,4,5],
external pressure [6–8], magnetic field [9,10], or light irradi-
ation (via LIESST effect, standing for light induced excited
spin state trapping; which is trapping at low temperature of
HS metastable state by light) [11–14]. The HS-LS transition
produces various changes in properties including structural,
magnetic, vibrational and optical changes at the transition.
This peculiar bistability is an essential feature for applica-
tions of these switchable molecular solids such as molecular
switches, data storage or display devices [15–17]. Depending
of the intensity of the elastic interactions between molecules,
various thermally induced spin transitions can emerge, going
from continuous gradual transitions [18] to first-order hys-
teretic ones [19]. To gather information about cooperativity
of the system, the evolution of the HS fraction nHS relative to
some interesting parameters is used to describe the spin state
of the system. Several theoretical models have been developed
to explain cooperativity and to make links with the transi-
tion [20–23]. One of the various fruitful models, considering
the lattice volume change at the transition, is the electroelastic
models class [24,25], which have been proven useful to clar-
ify experimental spatiotemporal behaviours of the transition
observed by optical microscopy in spin transition materi-
als [26–28]. In these models, SCO molecules are modeled by
fictitious spin states Si having two values, +1 (for HS) and −1
(for LS), occupying the lattice nodes at position coordinates
(x, y, z) and interacting with their neighbors through springs,
whose elastic constants depend on the spin states of the
connected spins. Numerical simulations have been per-
formed mainly on two-dimensional (2D) systems [24,29–33],
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however, three-dimensional (3D) models appear progres-
sively [34–36].

In a previous 3D study [37], we showed that for thermally
induced transition, as well as at low temperature isothermal
relaxation, the HS-LS interface is perpendicular to its propa-
gation axis in a rectangular crystal with the orientation angle
of the HS-LS interface θ = 90◦. On the other hand, since ten
years, the development of observation techniques, particularly
through optical microscopy (OM) method allowed evidencing
the presence of macroscopic spin domains with HS and LS
interfaces with various shapes and kinetics changing from one
single crystal to another, and very sensitive to the structural
quality of the observed crystal. In most of the crystals, the first
switching of the material creates irreversible defects ending
the experience. The strains at work in the material are clearly
identified as due to the volume change (some percent) inher-
ent to the spin transition. Among the rare exceptions to this
disappointing behavior, the compound [{Fe(NCSe)(py)2}2(m-
bpypz)] [14,27,38–43], where py = pyridine and bpypz =
3,5-bis(2-pyridyl)pyrazolate, provided robust single crystals
able to undergo til 100 thermal cycles without any noticeable
structural fatigue. In this crystal, the straight HS/LS interface
observed in fine and thin crystals of high quality, showed
two privileged orientations, obviously related to the struc-
tural changes involved along the spin transition. In all the
large number of studied crystals of this material, the angles
of the interface orientations relative to the propagation axis,
have been evaluated to θ = 60◦ and 120◦. These values are
very stable and changes by only some degrees from one sin-
gle crystal to another, indicating the existence of a common
character to all crystals belonging to this material, whatever
their sizes and shapes. In a more recent work [38], however,
it was demonstrated that the macroscopic crystal bending
may affects the stable interface orientation, which confirms
that the emergence of these two stable orientations have a
structural origin. A 2D anisotropic electroelastic model has
thus been developed in Refs. [38,39], associating the exis-
tence of these two symmetric interface orientations with the
anisotropy of deformation of the unit cell along the thermal
spin transition.

Our previous 3D study [37] predicting an interface angle
θ = 90◦ was based on an isotropic description of the 3D
electroelastic model, where the lattice changes along the spin
transition are so that, �a = �b = �c, where a, b, and c are
the three crystalline directions. Here, we carry out numerical
simulations on an anisotropic electroelastic model for 3D
lattice, with, �a �= �b �= �c. The considered anisotropy is
generated on the elementary cell by modifying the equilibrium
distances between first neighbors (1n) of the connected spins,
relative to the three a, b and c directions. In this work, we
explore the energetic stability of the orientation θ of the HS-
LS interface as a function of the anisotropy ratio λ, which
also measures the elastic frustration rate between the three
directions of the elemental cell.

Numerically, we freeze the electronic degrees of freedom
of the lattice, and we use molecular dynamics algorithm to let
the structural degrees of freedom evolve: thus, the system can
only be mechanically relaxed, in order to reach equilibrium
such as in [44]. We implement this process thanks to the
Compute Unified Device Architecture (CUDA Nvidia) [45]

FIG. 1. Top view of a thin crystal of the compound
[{Fe(NCSe)(py)2}2(m-bpypz)], along the thermal spin transition
from the HS spin (light region) to the low-spin (dark region) at
105 K (1) and in several conditions of photothermal conditions (in
vacuum, intensely illuminated) for a bath temperature ∼75 K (2, 3).
In all snapshots, we see the appearance on thin and tilted HS-LS
interface with two preferred orientations at 60◦ and 120◦ with respect
to the propagation direction. In (3), the crystal bending causes the
appearance and the coexistence of multiple HS-LS domains.

allowing us to improve computation time of our simulations
and to reach larger lattice’s size.

This manuscript is structured as follows: in Sec. II, we
present the experimental interface and the 3D electroelas-
tic model with the numerical ingredients; Sec. III display
the results obtained from these simulations, in Sec. IV,
we conclude.

II. EXPERIMENTAL INTERFACE AND 3D ANISOTROPIC
ELECTROELASTIC MODEL

A. The experimental interface

An example of a snapshot of a thin single crystal of com-
pound [{Fe(NCSe)(py)2}2(m-bpypz)] obtained by optical mi-
croscopy measurements along the thermal spin transition [39]
is depicted in Fig. 1. Three snapshots, labeled (1)–(3),
are presented. Snapshot (1), taken in the course of the phase
transition, shows the formation of the LS phase (dark area)
along the cooling process from the HS phase (light area),
where the corresponding switching temperature is 105 K. The
LS phase starts from the left tip of the crystal and propagates
towards the right corner in the form of a single domain. Once
the LS state nucleates from one corner of the crystal, it pre-
vents other nucleation from the other corner. In addition, in all
OM experiments, the nucleation never starts from the center
of the lattice, which reveals that the spin transition is stress-
driven mechanism. Snapshot (1) also indicates that the front
interface is made of a thin line, tilted with an angle of 60◦ with
respect to the crystal length. Snapshot (2) is obtained from
(1) by increasing the light intensity of the microscope lamp,
which causes the photoheating of the crystal. Thus the crystal
temperature in (2) is much higher than that of the thermal
bath (or cold finger of the cryostat). As a result, the already
transformed LS phase in the left region of snapshot (1) trans-
forms into a HS phase, starting from the left tip of the crystal.
A LS domain with symmetric interfaces orientations (120◦
and 60◦) becomes trapped between two big HS domains,
which indicates that the HS-LS interface has two possible
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FIG. 2. 3D elastic network scheme in a unit cell simulation. A
test site is represented in red, while its neighbors are represented
in grey for the nearest neighbors (1n), in blue for the next-nearest
neighbors (2n) and in green for the next-next-nearest neighbors (3n).
Springs of the same color are visible to illustrate the connections
between spins. Representation of the anisotropic unit cell’s change is
shown through the lattice constant misfit �a, �b, and �c between
the HS and LS lattices along respectively a, b, and c directions.

and symmetric orientations. Finally, the third snapshot (3)
shows an interesting situation demonstrating that the crystal
bending, which happened here spontaneously, after several
illuminations, causes the appearance of multiple coexisting
HS-LS domains separated by interfaces which always have
the two previously presented preferential orientations. These
behaviors denote that these orientations have a microscopic
origin, and are directly related to the unit cell change between
the LS and the HS states. Indeed, x-ray diffraction investi-
gations, provided in Ref. [39], showed that during the spin
transition from LS to HS, for which the total volume increases,
the unit cell parameters exhibit anisotropic deformations, with
an expansion along a and c directions and a contraction along
b direction. This behavior is identified as the key parameter of
the existence of two stable interface orientations, minimizing
the lattice strain in the material. The objective of the present
model is to demonstrate that this conjecture is correct.

B. Anisotropic model

We consider a 3D anisotropic version of the electroelastic
model: the HS and LS states are described by a two-states
fictitious spin Si. The eigenvalues Si = +1 and Si = −1 are
associates with the HS and LS states, respectively, for the ith
molecule of the lattice. We bind each molecule to its neighbors
via an elastic spring. The anisotropy is introduced through
the equilibrium distances of the nearest neighbors (1n) which
depend on the direction of space, while for the next-nearest
neighbors (2n) and next-next-nearest neighbors (3n) equilib-
rium distance depends only on the connected spin states and
change in the isotropic way. As illustrated in Fig. 2, the 1n
neighbors are located along the edges of the cube, while the
2n are along the diagonals of the faces and the 3n along the
long diagonals of the elementary cell. Equilibrium distance
between two neighboring HS sites is naturally brought greater
than that between two LS sites.

The total “Hamiltonian” of the system is defined by

H =
∑

i

(� − kBT ln g)Si + Helast, (1)

TABLE I. Values of the nearest-neighbor (1n) equilibrium lattice
parameters used for the anisotropic unit cell’s change. Only bHH is
variable while the others lattice constants are kept invariant.

1n distances (nm)

along x direction aHH = 1.20 aLL = 1.00
along y direction bHH bLL = 1.00
along z direction cHH = 1.20 cLL = 1.00

where the temperature-dependent (� − kBT ln g) term of
Eq. (1) represents the effective “ligand field” electronic con-
tribution, accounting for the ligand field energy gap � and
the degeneracy ratio g = gHS/gLS between HS and LS states,
which plays the role of an entropic term. T is the temperature
and kB is the Boltzmann constant. The Helast term represents
the elastic energy of the lattice defined by

Helast = V1n(|�r|) + V2n(|�r|) + V3n(|�r|)
= A1n

∑
(i, j)

(ri j − d1n(Si, S j ))
2

︸ ︷︷ ︸
1n neighbors

+ B2n

∑
(i,k)

(rik − d2n(Si, Sk ))2

︸ ︷︷ ︸
2n neighbors

+ C3n

∑
(i,p)

(rip − d3n(Si, Sp))2

︸ ︷︷ ︸
3n neighbors

. (2)

The elastic constants connecting a site to its neighbors
are defined by A1n for 1n neighbors, B2n for 2n neighbors,
and C3n for 3n neighbors. Euclidean distances are given by
ri j (respectively rik and rip) between the 1n sites i and j
(respectively between 2n sites i and k, and 3n sites i and p).
Equilibrium bond lengths between two 1n sites is d1n(Si, S j ),
d2n(Si, Sk between two 2n sites and d3n(Si, Sp) between two
3n sites. We indicate by aHL (respectively bHL, cHL), aLL

(respectively bLL, cLL), aHH (respectively bHH , cHH ), equi-
librium distances between 1n HS-HS, LS-LS, and HS-LS
configurations along the x direction (respectively y and z
directions): we have a(+1,+1) = aHH , a(−1,−1) = aLL,
a(+1,−1) = a(−1,+1) = aHL and similarly for b and c
parameters. We summarize in Table I the values of the equi-
librium lattice parameters used for the anisotropic unit cell’s
change. The equilibrium distances between 2n and 3n depend
on the state of the linked spins by the formula

d1n(Si, S j ) = R(Si, S j ),

d2n(Si, Sk ) =
√

φ2(Si, Sk ) + ψ2(Si, Sk ), (3)

d3n(Si, Sp) =
√

(a2(Si, Sk ) + b2(Si, Sk )) + c2(Si, Sp), (4)

where R(Si, S j ) = {a(Si, S j ), b(Si, S j ), c(Si, S j )} is the equi-
librium nn distance along the three directions, a, b, are c,
while φ or ψ are the pair distances along the diagonals of
the faces between 1n and 2n ({φ,ψ} = {a, b, c}), and the
general formula is given by φ(Si, S j ) = φHL + �φ

4 (Si + S j ),
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∀(i, j). Simulations performed in this paper have been done
with the parameter values: � = 450 K and g = 150 leading to
the equilibrium transition temperature of the Ising-like model
Teq = �

kB ln g ≈ 90 K and entropy change �S = R ln(g) ≈
42 J K−1 mol−1, where R is the perfect gas constant. The
isotropic elastic constants used is A1n = 3 000 K nm−2, lead-
ing to a bulk modulus E ≈ A1n

R0
≈ 5 GPa, which is in quite

good agreement with those reported in literature [46]. For sim-
plicity, we arbitrary choose B2n = C3n = 0.3 A1n for second
and third neighbors, whose essential role here is to maintain
the stability of the lattice, and we assume that aHL = (aHH +aLL )

2
and similarly for b and c, so that comparisons can be done with
previous study at 3D [37].

The anisotropic unit cell’s change is revealed through
the lattice constant misfit �a = aHH − aLL, �b = bHH − bLL,
and �c = cHH − cLL between the HS and LS lattices along re-
spectively a, b and c directions. We define the anisotropy ratio
parameter λ = �b

�a = �b
�c , which will be a tunable parameter in

our simulations allowing to modify the rate of the anisotropy
introduced in the lattice. We have chosen to monitor only the
lattice parameter bHH , allowing only �b to change, and we
opt for the same equilibrium lattice parameter along the a and
c direction. Therefore anisotropy can occur in the b direction:
�a
�c = 1. This choice has been done to approach what has been
observed experimentally in [{Fe(NCSe)(py)2}2(m-bpypz)], as
previously discussed, where during LS-HS transition a con-
traction along one direction and an expansion along another
direction can be achieved. Because of this choice, there will
be three different situations for the anisotropic unit cell’s
change: for λ < 0, the unit cell contracts along the b direc-
tion, when the crystal converts from LS to HS, while along
the a and c directions it stretches. For λ > 0, the unit cell
stretches along the three directions, but in anisotropic way:
smaller expansion along the b direction relative to the a and
c directions for 0 < λ < 1, and bigger expansion along the
b direction relative to the two others directions for λ > 1).
The isotropic expansion (contraction) case is indeed obtained
for λ = 1.

C. Numerical ingredients

We have implemented a CUDA code (Compute Unified De-
vice Architecture - Nvidia), letting us to do massive parallel
simulations, and improving the size of our simulation cells,
with a reasonable computational time. The graphic card used
is a Nvidia RTX A5000 based on the Ampere architecture
with 8192 cores, 24 GB GDDR6 memory available, a single
precision performance up to 27.8 TFLOPS, and the CUDA

driver version installed is 11.4.
We compute 3D parallelipedic lattices of size (Nx×Ny×Nz )

with free boundary conditions allowing the lattice to ex-
pand/contract and to distort. We choose reasonable sizes
in the three directions of space, to keep acceptable com-
putational time without effect on physical quantities, with
Nx ∈ [16, 192], Ny ∈ [16, 72], and Nz ∈ [16, 72]. We will
show in a further paragraph the influence of the lattice size
on the results, and we will confirm then the legitimate choice
of sizes.

When the code is executed, CUDA generates a grid of
threads that are organized in a three-dimensional hierarchy.

FIG. 3. Example of spatial configuration of the fixed HS-LS
phases for a lattice of size (192×48×16) with an orientation of the
interface θ = 120◦ with respect to the a direction. Yellow (blue)
spheres represent HS (LS) sites.

Each grid is organized into an array of thread blocks, where
each one can contain up to 1024 threads and thread block size
should be a multiple of 32 due to the multiprocessor of the
cards wich can create, manage, schedule, and execute threads
in groups of 32 parallel threads called warps. For each chosen
simulation size of the system, the thread block size has to be
well defined for a better efficiency. Thus very small block
sizes, e.g., 32 threads per block, may limit performance due
to occupancy, whereas very large block sizes, for example,
1024 threads per block, may also limit performance. Each
site of the lattice represents a spin-crossover molecule whose
degrees of freedom are defined by its spin value ±1 and its
coordinates (x, y, z) in the lattice. The entire lattice is divided
into sublattices which are then mapped onto thread blocks,
where each of the sublattice/block contains (16×4×4) = 265
threads, representing 256 molecules, that are also called sites
through the paper. Overall, this forms a three-dimensional grid
of (6×8×8) = 384 thread blocks. These blocks are contigu-
ous, as the sites inside each block: we subdivide the lattice into
multiple blocks in order to improve the computational time.
Our GPU can perform operations on up to 8192 threads simul-
taneously. Indeed, the GPU is built on an array of Streaming
Multiprocessors (64 in our case), where each Streaming Mul-
tiprocessors has a total of 128 cores and performs operations
on only one thread block at a time. Also the order in which
thread blocks are scheduled on the Streaming Multiprocessors
is decided by the hardware at runtime. Indeed, in CUDA each
block of threads is scheduled (independently from the others)
on any of the available multiprocessors within the GPU, in any
order, concurrently or sequentially, so that the program can be
executed on the maximum number of multiprocessors.

As depicted in Fig. 3, we define two fixed spin states phases
in the lattice with a tilted HS-LS interface separating these two
phases. The orientation θ of the interface is measured between
the a direction and the interface. Furthermore, the interface
is kept always perpendicular to the plane (a, b). It would be
interesting to study the impact of the angular orientation of
the interface with respect to the plan (a, b), we let this for a
later study.

As discussed formerly, the present study is done to re-
produce the experimental results of optical microscopy of
[{Fe(NCSe)(py)2}2(m-bpypz)] displaying tilted HS/LS inter-
faces with two symmetric angles with respect to the crystal
length. The interface crosses the center of the 3D simula-
tion cell, giving thus a value of nHS = 0.5 (as many HS as
LS sites).
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1. Initial electronic and structural states and lattice
relaxation procedure

The lattice is initially set with all of the 1n, 2n, and 3n
equilibrium distances equal to those of the HS state. This
means that from the structural point of view, the lattice is
set in the HS phase: rx

i j = aHH , ry
i j = bHH , rz

i j = cHH , where
rx

i j (respectively ry
i j , rz

i j) is the instantaneous distance along
the x (respectively y and z) direction. On the other hand, the
half left (respectively right) part of the lattice represented in
blue (respectively yellow) is set with a spin value S = −1
(respectively S = +1) corresponding to the LS (respectively
HS) electronic state. Thus, initially, the lattice experiences
a high elastic strain in the left part, in which antagonist
electronic and structural configurations are imposed initially,
while in the right part, the system is in the HS state from
both electronic and structural point of view. Consequently, it
is expected in the course of the simulations that the LS part
reacts first in an explosive way so as to minimize the initial
injected strain. To solve the Hamiltonian of Eq. (2), since the
spins are not allowed to change their value, only the structural
degrees of freedom (lattice positions) are allowed to evolve
via a molecular dynamics (MD) algorithm where the elastic
relaxation is made by classical mechanics by solving New-
ton’s equations at 0 K while imposing a strong viscosity to
avoid oscillations. Instead of using a numerical parameter for
the damping factor, we impose Vi = 0 for the speed of all sites
after each step of simulation. More precisely at each time step,
the gradient of potential energy of each site is calculated in
order to evaluate the force vector �Fi = −�∇Hi acting on every
particle. The obtained forces are then renormalized by diving
by the highest one (denoted Fmax) �fi = �Fi/Fmax, which are
then multiplied by δt to calculate the velocities �Vi = �fi×δt ,
which are in turn used to determine the new positions of all
particles �ri = �Vi×δt + �r0 = �fi×δt2 + �r0, where δt2 = 0.001.
This procedure is repeated until getting to the equilibrium
state, which can be controlled with the time dependence of the
total elastic energy of the system which reaches a minimum
averaged value or a zero total force acting on each site.

III. RESULTS

A. Anisotropy ratio λ < 0

Hereafter, we will focus primarily our attention on the
peculiar case of anisotropy λ < 0 where the unit cell contracts
along the b direction and stretches along the a and c directions
along the LS to HS transition. This choice is made to get
closer to experimental reality, like it has been observed in
[{Fe(NCSe)(py)2}2(m-bpypz)], where the anisotropic defor-
mation of the SCO unit cell exhibited λ < 0.

1. Energy angular dependency

For each anisotropy ratio value λ, we select several θ values
in the interval θ ∈ [20◦, 160◦], then for each one, we let the
lattice relax mechanically to reach asymptotically the stable
mechanical state. The value of the total elastic energy 〈E〉
of the system is measured after relaxation, and we reiter-
ate the relaxation for a new different fixed θ value, looking
for the energetically preferential orientation of the HS-LS

FIG. 4. Time evolution (in time steps units (ts)) of the total elastic
energy 〈E〉 (K ) of the system for the case of (48×48×48) and
λ = −0.5. Each colored plot correspond to a fixed θ value between
20◦ and 160◦. Remark that the minimal averaged value is non zero,
because of the HS-LS interface. The lattice relaxation deforms the
lattice but does not modify the interface orientation. (a) Overview
of the time evolution of 〈E〉; (b) zoom on the time evolution of 〈E〉
around the stationary states where the top curve corresponds to 133◦

and the bottom one to 113◦ with an angle step �θ = 2◦ separating
two curves from top to down.

interface. Figure 4 displays typical results obtained for the
time evolution of 〈E〉, here for the case of (48×48×48)
and λ = −0.5. In Fig. 4(a), we present an overview of 〈E〉
reaching a minimal averaged value, and in Fig. 4(b), a zoom
on the asymptotical reaching of the latter. We observe that
higher curves in energy on the graphic correspond to edge
values of the orientation θ of the interface (around 20◦ and
160◦). Furthermore, we notice that curves are symmetrically
distributed in energy around the value θ = 90◦, which is the
interface orientation perpendicular to a direction: curves at
90◦ ± |θ − 90◦| are overlaid on each other. We can mention
that the minimal averaged value 〈E〉 is non zero, because of
the HS-LS interface storing elastic energy, and involving a
residual strain inside the lattice, as explained previously [37].

Because of the symmetrical distribution in energy around
θ = 90◦, we draw the energetic landscape 〈E〉 relative to θ for
each studied anisotropy ratio value λ, as illustrated in Fig. 5
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FIG. 5. Energetic landscape 〈E〉 (K ) relative to θ (degrees) for
different anisotropy ratio values λ for the case of (96×96×16). In red
is represented the height of the energy barrier �E (K ) between peak
values θmax and θmin for different λ values. (a) λ = −0.6, (b) −0.5,
and (c) −0.1.

for the typical case (96×96×16) which is representative of
what we obtain for all of our simulation sizes. We note that
this energy landscape has a double well structure for large
negative λ [Figs. 5(a) and 5(b)], where the two minima θmin

(isoenergetic) correspond to stable positions of the interface,
while the θmax = 90◦ maximum corresponds to an unstable
position. However, beyond a critical value of the anisotropy
ratio the situation is transformed and only one minimum sur-
vives θmin = 90◦ [Fig. 5(c)].

2. Relaxed spatiotemporal configurations and local pressure field

We display in Fig. 6 the spatial configurations of the lat-
tice and the corresponding distribution of the local pressure

field, for the initial configuration (t = 0) and the relaxed one
(t = 34 650 ts), for the simulation size (96×96×16) and
λ = −0.6 at θmax = 90◦ in Fig. 6(a) and at θmin = 130◦ in
Fig. 6(b). The local pressure, Pi at site i, is calculated by the
following expression:

Pi = −A1n

∑
j

(ri j − d1n(Si, S j )) − B2n

∑
k

(rik − d2n(Si, Sk ))

− C3n

∑
p

(rip − d3n(Si, Sp)). (5)

This physical quantity is interesting because the local
pressure may be positive or negative according to the stress
applied on the site: a compressive strain is equivalent to a
positive pressure exerted on the site, while a tensile strain
results in a negative pressure.

We observe from the two relaxed spatial configurations of
Fig. 6 that the sublattice of the LS state phase stretches along
the b direction and contracts along the a and c directions,
which is coherent since the whole lattice was initially set with
all of the 1n equilibrium distances equal to those of the HS
state, imposing the sublattice of the LS state phase to reach its
equilibrium position during the relaxation process. Because
�a > 0 and �c > 0, then λ < 0 imply �b < 0 meaning that
bHH < bLL, it corresponds to a stretching along the b direc-
tion in the mechanical equilibrium, and the reverse argument
for a and c directions. We remark from the relaxed spatial
distribution of the local pressure field that the elastic strain
deploys at longer distance from both sides of the electronic
HS-LS interface at θmax = 90◦ in Fig. 6(a) than at θmin = 130◦
in Fig. 6(b) where the elastic strain is mainly localized around
the interface.

In the movie S1 (respectively S2) of Ref. [51], we present
the spatiotemporal distribution of the local pressure field
through the lattice during the relaxation process at θmax =
90◦ (respectively θmin = 130◦). We observe the spread of the
pressure field inside the lattice: in Fig. 7, we show snap-
shots from the movie S1 in Fig. 7(a) [respectively S2 in
Fig. 7(b)] at different times, representing the growth of the
pressure field during the relaxation process. We can notice that
there is a phenomenon of propagation and reflection waves,
particularly marked in the LS state where for example the
compressive strain is propagating from the (left) edge of the
lattice toward the HS-LS interface, before reflecting back-
ward on the latter. At the same time, while going backward,
the compressive strain extent along the interface, as can be
seen for example in Fig. 7(b). Moreover, the establishment
of the elastic strain during the relaxation process leads to an
antisymmetric distribution of the pressure field around the
interface: we show this behavior in Fig. 8, where we display
the spatial distribution of the local pressure field through the
lattice through the diagonal plane of coordinates ( Nx

2 ,
Ny

2 , z)
perpendicular to the HS-LS interface and related to Fig. 6 for
the relaxed configuration (t = 34 650 ts) at θmax = 90◦ and
at θmin = 130◦.

Furthermore, the intensity of the maximum strain is 25%
weaker at θmin = 130◦ (Pmax ∼ 1500) than at θmax = 90◦
(Pmax ∼ 2000). Moreover, we observe that the LS (respec-
tively HS) phase is experiencing a positive (respectively
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FIG. 6. Spatial configurations of the lattice (top row) and the corresponding distribution of the local pressure field (bottom row), for the
initial configuration (t = 0 ts, left column) and the relaxed one (t = 34 650 ts, right column) for the lattice size (96×96×16) and λ = −0.6:
at (a) θmax = 90◦ and (b) θmin = 130◦. Yellow (blue) spheres represent HS (LS) sites.

negative) pressure close to the interface in the (a, b) plane,
while the situation is reversed in the (a, c) plane. This is due
to the previous arguments of stretching (along b direction)
and contraction (along a and c directions). Moreover, we
present in Fig. 9 the time dependence of the average local

pressure, 〈P〉, calculated through the whole lattice during the
relaxation process for θmin = 130◦. Two regimes can be seen
in 〈P〉 for the whole lattice: (i) a first “explosive” regime
between t = 0 and around t = 5000 where the LS phase
was under tension, and (ii) a second slower regime between
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FIG. 7. Spatiotemporal distribution of the local pressure field through the lattice related to Fig. 6, during the relaxation process at different
times t (ts), for the lattice size (96×96×16) and λ = −0.6 at different orientation angles θmin. (a) θmax = 90◦ and (b) θmin = 130◦.

around t = 5000 until the end of the relaxation t = 34 650
where the change in the pressure occurs essentially in the HS
phase, but with a small (about an order of magnitude weaker)
variation in the LS phase. In inset, we display the respective
contributions, 〈P〉HS and 〈P〉LS of the LS and HS phases to
the average local pressure field. Here, we see that during the
first rapid contraction of the “LS” phase (blue curve), initially
prepared with the HS lattice parameter, the HS phase which
is supposed to be at equilibrium from the mechanical point
of view, is subject to a tension which decreases its average
local pressure (yellowish curve) during the 5000 time steps
of the simulation. This behavior is interpreted as the reaction
of the HS phase to the rapid “crunch” of the LS phase, where
the maximum of stress transferred from LS to HS phase is
obtained at the minimum of 〈P〉HS. When the LS lattice enters
in the second regime (t > 50000) where the relaxation slows

down, the average HS local pressure increases and recovers
its initial value, 〈P〉HS = 0. We conducted similar simulations
for the case θmax = 90◦ for comparison, and the results are
summarized in the Figure S1 of [51]. We can observe that
there is no significant difference in the global behavior of
the latter with respect to the interface’s orientation angle,
however we see that (i) for θmin = 130◦ the contribution of
the HS phase to the local pressure field is weaker than for
θmax = 90◦, and a meticulous inspection shows that (ii) the
curve profiles of 〈P〉HS are very slightly different for the two
cases, due to the different spatiotemporal dynamics of the
interfaces.

In addition, for θmin = 130◦, we remark that the lattice
exhibits a bending with a curvature along the a direction.
This implies that the shape of the geometry of the system
can adjust itself, thanks to the free boundary conditions, in
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FIG. 8. Spatial distribution of the local pressure field through the
lattice in the perpendicular plane of the HS-LS interface located at
Nx/2 and Ny/2 and related to Fig. 6, for the relaxed configuration
(t = 34 650 ts), the lattice size (96×96×16) and λ = −0.6: at θmax =
90◦ (top) and θmin = 130◦ (bottom).

order to reduce the total elastic energy of the lattice. It would
be interesting to check if, as in Ref. [38] for 2D systems, the
application of a force F at remarkable points of the simulation
lattice here in 3D, could break the symmetry between the two
isoenergetic-degenerate minima θmin, and thereby identify the
existence of a new bistability in the space parameters θmin-F :
this work is let for a next study.

3. Energy barrier

We depict in red in Figs. 5(a) and 5(b), where a double well
structure appears, the height of the energy barrier �E (K ) =
〈E (θmax)〉 − 〈E (θmin)〉 to overpass in order to switch the inter-

FIG. 9. Average local pressure 〈P〉 calculated for the whole lat-
tice as a function of the time t given in time steps units (ts) during the
relaxation process at θmin = 130◦, for the lattice size (96×96×16)
and λ = −0.6. (Inset) Contributions of the LS (〈P〉LS in blue) and
HS (〈P〉HS in yellowish) phase to 〈P〉.

FIG. 10. Height of the energy barrier �E as a function of the
square of the anisotropy ratio parameter λ showing a linear behavior
for (96×96×16). In blue, we plot a linear regression with 95%
confidence bounds.

face orientation from one minimum to the other. This quantity
should be of application interest, indicating the energy bar-
rier to overcome to allow experimenter to switch from one
minimum to the other isoenergetic one. As one can notice in
Figs. 5(a) and 5(b), the height �E seems to increase with |λ|:
from few K to dozens of K .

Thus we display in Fig. 10 for the case of (96×96×16)
the behavior of �E according to λ, which is a measurable
experimental quantity (related to structural/crystallographic
data): we realize that the dependence of �E follows a power
law almost parabolic with a positive slope (≈36). We plot a
nonlinear regression with a power law �E = f (λ2) where a
95% confidence is found. This behavior has been confirmed in
all of our tested lattice sizes. This result provides estimation
that could be useful for potential applications.

Next, we investigate the size-dependence of �E , which
should be of interest for 3D spin crossover nanoparticles. We
show in Fig. 11 the size dependence of �E for the case of
λ = −0.4 for “square” shapes (Nx×Nx×16) for computa-
tional convenience with Nx ∈ [32, 128]: a power law can be
found. We plot a linear regression using a logarithmic scale
on the x and y axes, with a power law �E ∼ (Nx )κ , which
fits the data with a standard deviation R2 � 0.96. A better
agreement can be found for the fitting (see Fig. S2 [51]) when
using smaller λ values (λ = −0.6). Indeed, as summarized in
Fig. 11(b) displaying λ dependence of κ , one can see that the
amplitude of the fluctuations are smaller for large negative λ

values, for which the exponent κ seems to reach asymptoti-
cally a constant value κ = (0.25 ± 0.14).

4. Order parameter θmin - β exponent

From the characteristics of Fig. 5, the behavior of the
relaxed elastic energy 〈E (θmin)〉 is similar to that of the free
energy of a second-order phase transition, where the order
parameter would be the angle θmin and the control parameter
would be the anisotropy ratio λ. We visualize in Fig. 12 the
evolution of θmin as a function of λ for the cubic case of
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FIG. 11. (a) Size dependence, in a log-log scale, of �E (K ) for
the case of λ = −0.4 for rectangular shapes (Nx×Nx×16) with Nx ∈
[32, 128]. (b) Evolution of the κ exponent relative to the anisotropy
ratio parameter λ, reaching asymptotically a constant value κ = 0.25
for large negative λ values. (a) �E fits with the linear regression
(blue curve) here with a slope κ ≈ 1.235, suggesting the power law
�E ∼ (Nx )κ for λ = −0.4. (b) Error bars correspond to the confi-
dence bounds (95% level of confidence) for the fitted slopes during
the regression of (a) for different values of λ.

(32×32×32), for computational convenience. This confirms
a second-order-like phase transition behavior with the order
parameter θmin �= 0 for λ < λc = −0.48 (for this case) and
θmin = 0 for λc < λ < 0, with the order parameter remaining
“continuous” at the transition. We can see that θmin saturates
in the “ordered phase” (below λc, at 14◦ and 166◦), and that
in the region from λc to 0 only one minimum is present
corresponding to the perpendicular interface θmin = 90◦. This
is interesting because we would naively expect this to happen
only in the isotropic case λ = 1 as observe previously at
3D [37]. The same kind of results have been obtained for 2D
systems [38]. We will come back, later in the paper, on this
feature.

In order to study the singular behavior of physical quan-
tities in the vicinity of a second-order phase transition, it
is usual to represent them as power laws of a reduced

FIG. 12. Evolution of θmin (degrees) as a function of λ < 0 for
the cubic lattice of size (32×32×32). θmin behaves like an order
parameter of a second-order phase transition. See text for more
explanations.

variable. We note � = (λ − λc)/λc the adimensional reduced
anisotropy ratio, measuring the difference in λ with respect to
λc (distance from the critical point λc). According to this, we
are supposed to have θmin ∼ �β with β the critical exponent
measuring the strength of the singularity at the critical point
λc. Subsequently, we will keep only the points of the upper
curve of θmin(λ) in the “ordered phase” because of the sym-
metry of the latter around the axis θmin = 90◦.

We show in Fig. 13(a) the � dependence of θmin for the
case of a cubic size (64×64×64): a power law can be found.
We plot a nonlinear regression using a logarithmic scale on
the x and y axes, with a power law θmin ∼ �β , confirming this
critical behavior. Via Fig. 13(b), we realize that this exponent
display a constant value respectively to the size of the system,
that is equal to β = (0.0844 ± 0.0030) by averaging all the
data of Fig. 13(b).

Above, we showed the critical exponent β value for cubic
sizes of the system only, implicitly guessing that the system
undergoes an isotropic phase transition, meaning that only
one relevant length scale (the correlation length ξ ) exists in
the vicinity of the phase transition point. To verify if the
critical exponent value is size-dependent, we have done the
same estimations of β for 37 rectangular system sizes, with
Nx ranging from 16 to 128, Ny from 16 to 128 and Nz from
16 to 72. Thereby, in Fig. 14, we exhibit the evolution of β

relative to the number of spins (Nx · Ny · Nz ) inside the lattice,
for each of these rectangular system sizes: the number of
spins ranges from 4096 to 524 288. We observe that for small
system sizes, the exponent values are more spread around
the mean value and error bars are wider, which makes sense
because for small sizes near the critical point the role of ξ

should be taken by the system size, and this finite value of the
correlation length implies that divergences of thermodynamic
quantities should be rounded and shifted. On the other hand,
for large system sizes the β values are less scattered around
the mean and they are found more often into the standard devi-
ation. From this graphic, we found a value of β = (0.0929 ±
0.0215), which is consistent with the exponent found for
cubic sizes.
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FIG. 13. (a) Evolution of θmin (degrees), in semi-log x scale,
relative to � for the case of cubic size (64×64×64). (b) Evolution of
the β exponent relative to the cubic sizes of the system (Nx×Nx×Nx )
displaying a constant value within the error bars which are signifi-
cantly lowered for big sizes. (a) θmin fits with the linear regression
(blue curve) here with a slope β = 0.0864 ± 0.0074, suggesting the
power law θmin ∼ �β . (b) Error bars correspond to the confidence
bounds (95% level of confidence) for the fitted slopes during the
regression of (a).

5. Correlation length ξ-ν exponent

A characteristic of a second-order phase transition is the
divergence of the correlation length ξ at the critical value
of the control parameter λc = λc(∞), where λc(∞) is the
critical anisotropy ratio obtained for infinitely large systems
(in the thermodynamic limit) where Li = NiRHH

0 → ∞ with
i = {x, y, z}.

In the same way as for β exponent, we should have
ξ ∼ �−ν ∼ (λ − λc(∞))−ν with ν the intrinsic exponent of
the correlation length. As previously mentioned, in numerical
simulations system size is inevitably finite, and close to λc

the correlation length is cut-off by the system size. In the
rest of the document, we will take the number Ni instead of
the size Li because of the straightforward relation between
both of them. Thus, by manipulating the previous relations
and replacing ξ by Ni, we obtain λc(∞) − λc(Ni ) ∼ (Ni )−1/ν ,

FIG. 14. Evolution of β as a function of the number of spins
(Nx×Ny×Nz ) for rectangular system sizes. As before, error bars cor-
respond to the confidence bounds (95% level of confidence) for the
fitted slopes of θmin ∼ �β during the regression. The green dashed
line represent the mean of these 37 values, while the pink one
describe the standard deviation.

where λc(Ni ) is the anisotropy ratio that is now a function of
the size of the system in the relation. Through this relation,
we can roughly estimate the value of the ν exponent for our
simulations. We take only cubic system sizes (Nx×Nx×Nx ),
and we measure for each of them the critical point value
λc(Nx ): we observe that these values increase with Nx [from
λc(Nx = 20) = −0.58 to λc(Nx = 72) = −0.42], and that
λc(Nx ) values approach asymptotically a constant value for
large sizes, that we estimate as λc(∞) ≈ −0.40.

As depicted in Fig. 15, we notice that λc(∞) − λc(Nx )
follows a power law: we plot in blue a nonlinear re-
gression using a logarithmic scale on the x and y axes,
with λc(∞) − λc(Nx ) ∼ (Nx )−1/ν , which gives the value of

FIG. 15. Evolution of λc(∞) − λc(Ni ), in log-log scale, relative
to Nx for different cubic sizes (Nx×Nx×Nx ). λc(∞) − λc(Nx ) fits
with the linear regression (blue curve) here with a slope ν = 0.63 ±
0.25, suggesting the power law λc(∞) − λc(Nx ) ∼ (Nx )−1/ν .
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FIG. 16. Evolution of θminN (β/ν )
x , in a log-log scale, relative to

�N1/ν

i for different cubic sizes (Nx×Nx×Nx ) with Nx ∈ [16, 72]. All
data collapse on a single curve for β = 0.1 and ν = 0.63.

ν = (0.63 ± 0.25), with 95% confidence bounds for the fitted
slope during the regression.

6. Finite size scaling theory

Since phase transitions can only be really observed in
the thermodynamic limit, the calculated observables are
system-size dependent, and thus quite different from their
thermodynamic limit values, especially for small sizes. A
finite size scaling (FSS) theory has been developed, thanks
to which we can check the critical exponents determined
previously. The scaling law connecting the order parameter
θmin, the reduced control parameter � and the size of the
system Ni is relevant close to the transition and for sufficiently
large sizes. Applying the FSS to our case, the scaling form for
θmin ∼ �β for finite system with linear size Ni is given by

θmin(Ni, λ) ∼ N (−β/ν)
i θ̃

(
�N1/ν

i

)
(6)

The function θ̃ is the scaling function of the preferential
orientation θmin, and �N1/ν

i is the scaling variable. By invert-
ing Eq. (6), one has θmin(Ni, λ)N (β/ν)

i ∼ θ̃ (�N1/ν
i ). Figure 16

displays in a log-log scale the plot of the left-hand side of
this relation θmin(Ni, λ)N (β/ν)

i as a function of the right one
�N1/ν

i for different system sizes. All the points should fall on
a single master curve for the correct values of the exponents β

and ν. On this graphic we have used only cubic system sizes
(Nx×Nx×Nx ) from Nx = 16 (4096 spins) to Nx = 72 (373 248
spins), and Ni = Nx here.

The best data collapse, by the eye, on a single curve is
obtained for β = 0.1 and ν = 0.63. These values are in good
agreement with those found above; which tends to confirm
that the critical exponent values previously determined are
correct. The fact that all data collapse also allows us to con-
firm that the previous used sizes for our simulations where
adequate for the study of the phase transition.

It is interesting to notice that the present values β =
(0.0844 ± 0.0030) and ν = (0.63 ± 0.25), found for cubic
sizes, are consistent with those of the universality class of
the four-state S = 3/2 bidimensional Potts model [47,48],

FIG. 17. Evolution of θmin (degrees) as a function of λ for the
case of (192×48×16): λ−

c is the critical point of a phase transition
for λ < 0 values, and λ+

c is the one for λ > 0 values.

where β = 1/12 and ν = 2/3. In two-dimensional q-state
Potts model, which is a generalization of the Ising model
where spins can take more that two values (q � 2 values,
q = 2 being the case of the Ising model), when q � 4, phase
transitions are of second order in the system. Nonetheless,
our exponent values don’t agree with those of mean field
universality class, as it has been found for elastic model
of spin-crossover materials (β = 1/2 and ν∗ = 2/3 for 2D
systems) [49] along the thermally induced transitions. How-
ever, the critical exponents determined here correspond to a
system with fixed average order parameter (magnetization).
In addition, one should notice that the present second-order-
like phase transition on the interface orientation is caused by
the anisotropic deformation of the unit cell along the spin
transition. However, this anisotropy ratio is not a conjugate
variable of temperature, as does the isotropic pressure in
spin-crossover systems [7,50], which probably complicates
the comparison with the critical exponents of the previous
studies.

7. Stripe bidimensional-like system

Curiously, for stripe bidimensional-like system size we
found a peculiar behavior for the preferential orientation θmin

of the HS-LS interface. We visualize in Fig. 17 the evolution
of θmin as a function of λ for the case of (192×48×16), from
a negative range of λ values to a positive one.

From Fig. 17, we see that, as previously in our preced-
ing paragraph Sec. III A 4, θmin saturates in the two “ordered
phases” [regions (1) and (3), below λ−

c and above λ+
c here at

30◦ and 150◦], while in the region (2) from λ−
c to λ+

c only one
minimum is present (the perpendicular interface θmin = 90◦).
The same results have been obtained for 2D stripe-like system
with similar (Nx×Ny) size [38], but for a narrower interval
of λ (a width in λ equal to 1 unit in 2D while the width is
almost equal to 2 units here in 3D). This larger window of
λ, separating two symmetrical minima, could eventually be
of practical interest for experimental designers of switchable
molecular solids with respect to the geometry of crystals and
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FIG. 18. Energetic landscape 〈E〉 (K ) as a function of θ (degrees) for different anisotropy ratio values λ for a lattice size of (192×48×16).
In red is represented the height of the energy barrier �E (K ) between peak values θmax and θmin for different λ values. (a) λ = −1.0 in region
(1); (b) λ = 1.0 in region (2); (c) λ = 2.4 in region (3); and (d) λ = 2.8 in region (3).

the propagation of the HS-LS interface along a direction of
space, if wanted to have only a perpendicular interface in the
crystal (and not a tilted one).

For λ < 0, we found similar results as in Sec. III A 4, with
a second-order phase transition behavior for the order param-
eter θmin (with β− = 0.0819 ± 0.0262 here) and θmin = 90◦
for λ > λ−

c values, with the order parameter remaining “con-
tinuous” at the transition. However, beyond a certain value
(λ > λ+

c = 1.7), we can observe a re-entrant phenomenon for
θmin which present again two symmetrical minima.

As depicted in Fig. 18, we display the energetic landscape
〈E〉 as a function of θ , for lattice size (192×48×16), and
for different anisotropy ratio values λ taken in the three re-
gions (1)–(3) of Fig. 17. In Fig. 18(a) [and Fig. 18(b)], we
display the energetic landscape for λ = −1.0 (respectively for
λ = 1.0) which is in the region (1) [respectively in region (2)]:
as explained just above, we found the same behavior as in
Sec. III A 1 with two symmetrical preferential (stable) orien-
tation θmin and an unstable orientation θmax = 90◦ in region
(1), and only one stable orientation θmin = 90◦ in region (2).
However, in Figs. 18(c) and 18(d), we exhibit the energetic
landscape for λ = 2.4 (respectively for λ = 2.8) which are
both in the region (3). We observe the re-entrant phenomenon
for θmin which present again two symmetrical minima θmin and
a unstable orientation θmax = 90◦.

Analysing this re-entrant phenomenon as a phase transition
too, with θmin ∼ (�†)β

†
where �† = (λ − λ+

c )/λ+
c , we find

that β† = 0.14 ± 0.02, which could naively be compared to
the 2D Ising model (where β = 1/8). Nonetheless, further
investigations have to be done in stripe bidimensional-like
system sizes to confirm those results, and thus to really com-
pare with other universality classes, this work is left for later.

Moreover, during this re-entrant phenomenon (above λ+
c ),

the height of the energy barrier �E relative to the anisotropy
ratio λ behaves in the same way as the energy barrier for the
case λ < 0. We exhibit this behavior in Fig. 19: �E follows
also here a power law almost parabolic with a positive slope
(≈9), as indicated by the nonlinear regression �E = f (λ2)
for which a 95% confidence is found. This parabolic com-
portment reinforce our hypothesis of a common behavior of
the height of the energy barrier between peak values.

We show in Fig. 20 the spatial configurations and the
corresponding spatial distribution of the local pressure field,
for the initial configuration (t = 0) and the relaxed one (t =
95 000 ts), for the lattice size (192×48×16) for λ = 2.4
[region (3) of Fig. 17] at θmax = 90◦ in Fig. 20(a) and at
θmin = 130◦ in Fig. 20(b).

We see from the two relaxed spatial configurations of
Fig. 20 that the sublattice of the LS state phase contracts
anisotropically along the b, a and c directions with a stronger
contraction along the b direction relative to the two others
directions, as expected by the same considerations as in the
paragraph Sec. III A 2. Indeed, since the whole lattice was
initially set with all of the 1n equilibrium distances equal

144107-13



NICOLAS DI SCALA et al. PHYSICAL REVIEW B 106, 144107 (2022)

FIG. 19. Height of the energy barrier �E (K ) for the re-entrant
phenomenon [region (3) of Fig. 17] as a function of the square
of the anisotropy ratio parameter λ showing a linear behavior for
(192×48×16). In blue, we plot a linear regression with 95% confi-
dence bounds.

to those of the HS state, this imposes the sublattice of the
LS state phase to reach its equilibrium position during the
relaxation process. Because �a > 0 and �c > 0, then λ > 0
imply �b > 0 meaning that bHH > bLL, corresponding to a
contraction along the b direction in the mechanical equilib-
rium, and the similar argument for a and c directions.

Through the spatial distribution of the local pressure field
for relaxed configurations, we notice that the elastic strain
deploys at longer distance from both sides of the electronic
HS-LS interface at θmax = 90◦ [in Fig. 20(a)] than at θmin =
130◦ [in Fig. 20(b)] where the elastic strain is narrower around
the interface. However, we note that at θmax = 90◦, despite the
spread of the elastic strain from both side of the interface, the
local pressure field intensity is weaker than at θmin = 130◦,
where even if the elastic strain is spatially restricted around the
interface, the compressive (tensile) strain is almost multiplied
by a factor 2.

B. Anisotropy ratio λ > 0

Now, we study the case of anisotropy λ = �b/�a > 0
where the unit cell stretches anisotropically along the three
directions (slower expansion along the b direction relative to
the a and c directions for 0 < λ < 1, and stronger expansion
along the b direction relative to the two others directions
for λ > 1) along the LS to HS transition. As a remainder,
isotropic case is defined by λ = 1.

1. Energy angular dependency

Following the same procedure as in Sec. III A 1 for λ <

0, we look for the preferential orientation for the HS-LS
interface, and calculate the energetic landscape 〈E〉 relative
to θ for different anisotropy ratio rates λ > 0, as shown in
Fig. 21 for the lattice size (96×96×16) and θ ∈ [0◦, 180◦].
The landscape presented here is representative of what we
obtain for our few tested lattice sizes in this region of λ

compare to the λ < 0 situation. We should point out that we

found the same energetic behavior for another bidimensional-
like size (32×32×16), as well as for cubic lattices such as
(32×32×32) or (56×56×56).

In the interval from λ = 0.3 to λ = 0.6 [Figs. 21(a)
and 21(b)], 〈E (θ )〉 shows a single minimum at θmin = 90◦,
corresponding to the interface in the (b, c) plane.

Increasing λ [Figs. 21(c), 21(d), and 21(e)] from λ = 0.9 to
λ = 1.1), two symmetrical maxima θmax appear between 90◦
and the edges of the angular interval. θmin = 90◦ is still the
preferential orientation, and the HS-LS interface is stuck in
this orientation because of the large energy barrier �E (K ) =
〈E (θmax)〉 − 〈E (θmin)〉 between peak values θmax and θmin. We
remark that the θmin = 90◦ minima rises in energy when λ

increases, and then the energy barrier �E (K ) decreases: from
�E (K ) ≈ 22 K for λ = 0.9 to �E (K ) ≈ 14 K for λ = 1.1.
This behavior lasts until λ = 1.7 where the energy barrier
vanishes. In addition, we remark that the total elastic energy
of the system increases at θmax with λ, from 〈E (θmax)〉 ≈ 72 K
for λ = 0.9 to 〈E (θmax)〉 ≈ 86 K for λ = 1.1.

Beyond λ > 1.7 [Fig. 21(f) where λ = 2.0], θmax = 90◦
become a maximum, and so an unstable position for the in-
terface, where the total elastic energy comes to 〈E (θmax)〉 ≈
220 K.

This is interesting because it means that the perpendicu-
lar orientation that have been see previously in the thermal
isotropic 3D case [37] stays the preferential orientational
response from the system to the HS-LS transition for “mod-
erate” positive λ values. However, for large positive λ value
(>1.7), the perpendicular orientation turn to be unstable and
it is energetically better for the lattice to have tilted (non
perpendicular) interface during the HS-LS transition.

2. Relaxed spatial configurations and local pressure field

We show in Fig. 22 the spatial configurations of the lattice,
and the corresponding distribution of the local pressure field
of the lattice, for different positive λ values for the relaxed
configuration (t = 33 250 ts) at θ = 90◦ and the lattice size
(96×96×16).

As can be seen in Fig. 22(a), the sublattice of the LS state
phase contracts anisotropically along the b, a and c directions
(with a stronger contraction along the b direction relative to
the two others directions when λ > 1), as expected by the
same considerations as in the paragraph Sec. III A 7.

Through the spatial distribution of the local pressure field
in Fig. 22(b), we notice that the elastic strain deploys at longer
distance from both sides of the electronic HS-LS interface for
large positive λ values than for smaller ones where the elastic
strain is narrower around the interface. We observe for small
values of λ that the LS (respectively HS) phase is experiencing
a positive (respectively negative) pressure close to the inter-
face in the (a, b) plane, while the situation is reversed in the
(a, c) plane. Whereas, for large values of λ, the situation is
reversed with the LS (respectively HS) phase experiencing a
negative (respectively positive) pressure close to the interface
in the (a, b) plane, and inversely in the (a, c) plane. Moreover,
for small values of anisotropy ratio (e.g., λ = 0.3) the local
pressure field intensity is weaker than for large values (e.g.,
λ = 2.0): the compressive (tensile) strain is multiplied by a
factor 2 (2.5).
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FIG. 20. Spatial configurations of the lattice (top row) and the corresponding distribution of the local pressure field (bottom row), for the
initial configuration (t = 0 ts, left column) and the relaxed one (t = 95 000 ts, right column) for the lattice size (192×48×16) and λ = 2.4:
(a) at θmax = 90◦ and (b) at θmin = 130◦. Yellow (blue) spheres represent HS (LS) sites. (a) θmax = 90◦ and (b) θmin = 130◦.

These results (Fig. 22) are consistent with the fact that
θ = 90◦ goes from minimum to maximum, and so from stable
to unstable orientation of the interface, while λ increases in
positive values.

We display in Fig. 23 the spatial configurations of the
lattice and the corresponding distribution of the local pressure
field, for the relaxed configuration (t = 33 250 ts) at θmax

and the simulation size (96×96×16), for different positive
λ values where a minimum θmin = 90◦ and two symmetrical
maxima θmax coexist in the energetic landscape. We choose to
display only the maximum θmax > 90◦ for easiness because of
the symmetry of the energetic landscape.

From the spatial configurations of the lattice of Fig. 23,
we remark for all λ values the presence of an additional
bending along the b direction, coexisting with the previously
obtained one along the a direction, discussed in Sec. III A 1.
The lattice is more distorted in the case of positive λ values

than in negative values, where we saw previously an abrupt
bending along the a direction (more like a “fracture” along
this direction) in Fig. 6(b), however for positive values the
lattice is here smoother deformed. This behavior could give
insights about the resilience of experimental crystals, upon
repeated switching, with regard to the anisotropy ratio rate λ.

From spatial distribution of the local pressure field of the
lattice in Fig. 23, we can notice that the elastic strain deploys
here too from both sides of the electronic HS-LS interface,
however the maximal strain (compressive or tensile) is local-
ized in the nearby of the interface. In addition, for λ = 1.0
the isotropic case, the strain scale has a smaller range than for
0 < λ < 1 or λ > 1.

Besides, we present in Fig. 24 the spatial distribution
of the local elastic energy field through the lattice for the
relaxed configuration (t = 33 250 ts) and the simulation size
(96×96×16) at θmin = 90◦ and at θmax, for different λ values.
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FIG. 21. Energetic landscape 〈E〉 (K ) as a function of θ (degrees) for different anisotropy ratio values λ > 0 for a lattice size of
(96×96×16). We note θmax maxima and θmin minima. In red is represented the height of the energy barrier �E (K ) between peak values
θmax and θmin for different λ values. (a) λ = 0.3, (b) 0.6, (c) 0.9, (d) 1.0, (e) 1.1, and (f) λ = 2.0.

We realize that the elastic energy is mainly stored around the
HS-LS interface, whatever the angle θ is. However, at θmin =
90◦, the elastic energy stored increases with the λ value, while
the elastic energy stored around the interface exhibits a mini-
mum for the isotropic case λ = 1.0 at θmax (with a maximum
value of the elastic energy field ≈750 K for 0 < λ < 1 and for
λ > 1, but a maximum value of the field ≈650 K for λ = 1.0).

Therefore the isotropic case λ = 1.0 is more favorable for
the system than when anisotropy is introduced in the lattice
with 0 < λ < 1 or λ > 1.

3. Energy barrier

Furthermore, the height of the energy barrier �E (K ) =
〈E (θmax)〉 − 〈E (90◦)〉, relative to the anisotropy ratio λ be-
haves quite well as the energy barrier for the case λ < 0 (see
Fig. 10). In Fig. 25, we plot a nonlinear regression with a

power law �E = f (λ2) where a 95% confidence is found. �E
follows here a power law almost parabolic but with a negative
slope (≈ −20), whereas for the case λ < 0 it was parabolic
with a positive slope.

This negative slope is due to the fact that θ = 90◦ is a
maximum for large negative λ values, while it becomes a
maximum for large positive λ values. The behavior of the
energy barrier between peak values for this anisotropy region
is similar to the λ < 0 region, leaving open the possibility of
a common behavior of the height of the energy barrier with
respect to λ, no matter what kind of anisotropy is introduced
in the system.

4. Order parameter θmax-β+ exponent

We realize that the symmetrical maxima θmax in
Figs. 21(c), 21(d), and 21(e) tend toward θmax = 90◦ while
increasing λ.
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FIG. 22. For the relaxed configuration (t = 33 250 ts) at θ = 90◦ and the lattice size (96×96×16): (a) selected spatial configurations of
the lattice - yellow (blue) spheres represent HS (LS) sites, and (b) corresponding distribution of the local pressure field, for different λ values.
(a) Spatial configurations of the lattice at θ = 90◦ for different λ values. (b) Spatial distribution of the local pressure field of the lattice at
θ = 90◦ for different λ values.

As previously done, for computational convenience, we
show in Fig. 26(a) the evolution of θmax relative to λ for
the cubic lattice (32×32×32), always implicitly guessing that
the system undergoes an isotropic phase transition, and thus
we choose a cubic lattice where previous results showed that
they were size-independent. We remark that it behaves like a
second-order phase transition with a critical point at λ+

c = 1.7.
It is noteworthy that λ = 1.7 is equal to the value of the critical
point for the phase transition of θmax found in Secs. III A 7
and III B 1.

Taking the same assumptions as before, we suppose it
should behave as θmax ∼ (�+)β

+
with θmax the order parame-

ter and �+ = |(λ − λ+
c )/λ+

c | the reduced anisotropy ratio.
We display, in a semilogarithmic x scale, in Fig. 26(b), θmax

as a function of �+: we plot a nonlinear regression (in blue)
with a power law θmax ∼ (�+)β

+
, which fits quite good the

data with β+ = 0.082 ± 0.018. To ensure that these data are

size-independent, we perform the same procedure to a larger
cubic size (56×56×56) and we find β+ = 0.088 ± 0.010.
This β+ exponent is in good agreement with the β critical
exponent determined for the order parameter θmin in the region
of anisotropy ratio λ < 0, in Sec. III A 4. It would suggest that
the two phase transitions, θmin for anisotropy ratio λ < 0 and
θmax for λ > 0, fall in the same universality class.

IV. CONCLUSION

In conclusion, SCO materials are among the most fascinat-
ing molecular-based solids displaying spectacular reversible
first-order solid to solid phase transitions accompanied with
the switching of several physical and chemical properties,
affecting their electronic, elastic, magnetic, optical and vi-
brational responses. These transitions can be controlled by
several external stimuli, such as temperature, electric field,

144107-17



NICOLAS DI SCALA et al. PHYSICAL REVIEW B 106, 144107 (2022)

FIG. 23. Spatial configurations of the lattice (left column) and
the corresponding distribution of the local pressure field (right col-
umn) for the relaxed configuration (t = 33 250 ts) and the simulation
size (96×96×16) at (top) θmax = 138◦ for λ = 0.9, (middle) θmax =
134◦ for λ = 1.0, (bottom) θmax = 132◦ for λ = 1.1. Yellow (blue)
spheres represent HS (LS) sites.

light, magnetic field, pressure, etc. Despite of their exciting
properties opening the way for their integration in future
devices for molecular electronics or as displays, or a new
generation of sensors, these materials suffer from a several
drawbacks when used as single crystals. The most serious
one relates to their fragile character which causes their de-
terioration at the transition, due to the significant volume
change between the LS and the HS states leading in most

FIG. 24. Spatial distribution of the local elastic energy field of
the lattice for the relaxed configuration (t = 33 250 ts) and the simu-
lation size (96×96×16) at θmin = 90◦ (left column) and at θmax (right
column), for (top) λ = 0.9, (middle) 1.0, and (bottom) 1.1.

FIG. 25. Height of the energy barrier �E (K ) = 〈E (θmax)〉 −
〈E (90◦)〉 as a function of the square of the anisotropy ratio parameter
λ showing a linear behavior for (96×96×16). In blue, we plot a
linear regression with 95% confidence bounds.

of the cases to the accumulation of high elastic stress along
their transformation. A hope is born with the observation
of few exceptions showing SCO single crystals undergoing
several thermal cycles keeping their integrity and their physi-
cal properties. These systems, showed tilted interfaces having
two preferential orientations that emerge spontaneously in the
experiments. The aim of the present work is to demonstrate
that: (i) the tilting of the interface has a microscopic structural
origin and is related to the change of the unit cell between
the LS and HS states on the one hand, (ii) and on the other,
this orientation results from the optimization of the elastic
energy related to lattice misfit and allows to minimize the
elastic strain in the lattice which helps to keep the integrity
of the crystals.

We have confirmed in this work that anisotropic structural
transformations are among the physical reasons at the origin
of the emergence of preferential front interface orientations,
leading to resilient SCO crystals along the solid to solid LS to
HS phase transformations. We have developed an anisotropic
version of 3D electroelastic model describing SCO transition,
including both spin and volume change during the conversion
between the LS and the HS states. In this work, we considered
pallelepipedic 3D constituted of unit cells with lattice parame-
ters, a, b, c, in the three space directions. During the transition
from LS to HS, the unit cell parameters change by �a, �b,
and �c, where we set �a = �c and use the anisotropic ratio,
λ = �b/�a, as a control parameter. We have examined sep-
arately the two possible situations of anisotropy where λ < 0
or λ > 0, while the isotropic case is defined by λ = 1.

For λ < 0, the unit cell contracts along the y direction and
stretches along the x and z directions along the LS to HS
transition. The analysis of the relaxed total elastic energy,
Eelas with respect to the interface tilting, θ , revealed that the
quantity, (θmin − 90◦) (where θmin is the preferential orien-
tation) behaves like a second-order phase transition with λ.
Moreover, the height of the energy barrier �E (K ) between
extrema θmin and θmax = 90◦ has been found to follow a
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FIG. 26. Evolution of θmax (degrees) for the case of cubic lattice
(32×32×32). (a) θmax (degrees) relative to λ. (b) θmax (degrees), in
semi-log x scale, relative to �+: θmax fits with the linear regression
(blue curve) here with a slope β+ = 0.082 ± 0.018, suggesting the
power law θmax ∼ (�+)β

+
.

power law almost parabolic relative to λ (with a positive
slope). The system size-dependence of this energy barrier has
also been found to follow a power law with an exponent,
κ = 0.25 ± 0.14, for large sizes. As for the second-order
phase transition, of θmin vs λ, various critical exponents have
been determined: (i) β = 0.0844 ± 0.0030 exponent charac-
terising the behavior of θmin ∼ �β and (ii) ν = 0.63 ± 0.25
characterising the behavior of the correlation length ξ ∼ �−ν ,
where � = (λ − λc)/λc is the reduced anisotropic ratio and λc

is the critical point. These values of the critical exponents have
been corroborated by a finite size scaling analysis, and overall
these critical exponents seem to fall in the universality class of
the four-state bidimensional Potts model. It seems that there

is a close relation between the stable interface orientations
θmin, π + θmin, −θmin and −π − θmin, and the value of the
critical exponent which suggests the four states Potts model.
However, for a complete study, one needs to evaluate the other
critical exponents to confirm this assumption.

Finally, we evidenced an unusual behavior for the pref-
erential orientation θmin of the HS-LS interface for stripe
bidimensional-like system size (192×48×16). The stable in-
terface is tilted (θmin �= 90◦) with two symmetric stable orien-
tations for λ < λ−

C < 0, then changes to a straight one (θmin =
90◦) for λ−

C < λ < λ+
C , where λ+

C > 0 and finally becomes
again tilted for λ > λ+

C . In this behavior of re-entrant phase
transition with two successive “classical” second-order-like
phase transitions, where in the 2nd one the order parame-
ter experiences a bifurcation point and behaving as θmin ∼
(�†)β

†
where �† = (λ − λ+

c )/λ+
c with β† = 0.14 ± 0.02,

which could naively be compared to the value of the critical
exponent of the 2D Ising model (β = 1/8). This result might
be attributed to the stripe bidimensional-like shape of the
studied system, leading to a lattice size along the z direction
which is probably smaller than the correlation length. How-
ever, additional extensive investigations should be carried out
to confirm this conjecture.

Overall, the present results highlight the role of the unit cell
deformation (isotropic/anisotropic) along the spin transition in
the emergence of the macroscopic interface as well as in the
release of the elastic strain at the interface. When the unit cell
expands or contracts isotropically in the three directions, the
elastic energy depicts a single minimum with the interface ori-
entation where strong elastic strain subsists in the vicinity of
the HS-LS interface where the large part of the elastic energy
due to volume misfit is stored, explaining the deterioration of
the SCO crystals in most of the experiments. In contrast, when
the unit cell stretches in the anisotropic way, there exists a
preferential orientation of the interface that almost cancels the
elastic strain due to the lattice parameter misfit, thus explain-
ing the robust character of the crystals showing tilted HS-LS
interfaces. Thus understanding the fundamental mechanism
leading to minimize the stress along the spin transition is of
high importance for their potential applications as re-usable
reversible memories and sensors. These concepts are very
general and can be applied to other families of switchable
materials such as Prussian blue analogs and thermosalient
materials etc.
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