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Wall-wall and kink-kink interactions in ferroelastic materials
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Kinks interact with other kinks and antikinks elastically in ferroelastic domain walls and other interfaces in
ferroic materials. In thin samples, suitable for transmission electron-microscopy, the interaction is purely dipolar
with no indication of monopolar or higher order contributions. Kinks and antikinks attract each other while
kink-kink interactions are repulsive. When the kinks are situated in two parallel twin walls, they display the same
attraction/repulsion. We argue that this interaction constitutes, part or all, the elusive wall-wall interaction in
ferroelastics. The dipolar interactions over distances d between the kinks and between walls decay as 1/d2 when
the samples have some nanoscale size. Nanoscale samples bend and tilt when kinks are introduced with typical
bent regions of some 1 nm and tilt angles of some 1.2◦. Multiple kinks will enhance the effect systematically
and bent and modulated twin walls are predicted.
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I. INTRODUCTION

Pattern formation dominates applications of ferroelectrics,
ferromagnets, and ferroelastics in device materials [1–4].
Field induced hysteresis is generated by the change of patterns
under applied fields [5,6] and determines memory effects,
piezoelectricity [7], elastic weakening [8], and avalanche be-
havior at high frequencies [9]. Typically, domain patterns
[10] range from arrays of sparse domain boundaries [11] to
dense fields of domains which usually form domain glasses
[12]. Microscopically, domain patterns and related functional
properties depend on the mobile atomic steps (kinks of atomic
scale) inside ferroic domain boundaries, such as the two kinks
in 90◦ domain wall in lead titanate (Fig. 1).

In most high-density domain patterns, the interaction be-
tween domain boundaries is well understood to stem from
junctions between intersecting boundaries [15–19]. The resul-
tant domain patterns are highly complex with the intersection
of horizontal and vertical domain walls. Many studies focused
on the question how this structural complexity influences the
switching process [20]. Surprisingly, interactions even in the
simplest configuration of domain boundaries, namely two
parallel domain walls, is still not understood. This topic is
of great importance to applications when domain boundary
patterns are fully engineered [21] while being also of a great
challenge to theoretical approaches. Two trivial effects are
first identified to focus on the key challenge. The first obvious
effect relates to wall nucleating under appropriate boundary
conditions [22,23], which is at the core of the famous Kittel
law when the domain periodicity scales as the square-root of
the sample dimension [24]. The Kittel law is brought about by
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the energy scaling of the nucleation energy balanced by the
self-energy of the wall [25]. As such, these approaches use
global energy minimization and provide no further insight into
the geometrical nature of wall-wall interactions. The second
obvious mechanism applies when the interwall distances are
comparable with those of the local strain fields of the walls.
In this case the interaction energy of two adjacent walls is
reduced by forming needle domains [15,26]. The needle tip
is located according to the trade-off between the wall energy,
the bending energy of the needle and the external boundary
conditions [11,27]. Similar energy minimization strategies
have been applied successfully for the analysis of exsolu-
tion patterns and emphasizes the fundamental role played by
elastic stress interactions [28,29]. Global energy arguments
have already been combined with more local structural argu-
ments in Ref. [30] so that at least some rough ideas of the
actual strain fields emerge from this approach. Nevertheless,
no valid hypothesis how wall-wall interactions was generated
in geometrical terms whereby parallel walls with distances
larger than the wall thickness are supposed to be inert. This
scenario is subject of our paper. More precisely, here we deal
with the scenario where walls are separated beyond the wall
thickness including local atomic relaxations inside the walls
and large-scale shape changes of the sample. No external
stress is applied. We focus on samples which can be imaged
in transmission electron microscopy such as shown in Fig. 1,
thus they are thin samples of nanoscale size.

The first progress in this field was due to Lajzerow-
icz and Levanyuk [31] who considered macroscopic electric
fields arising from thermal fluctuations of two ferroelectric
domain walls. They specifically investigated wall-bending
of the domain boundary and the resulting electric dipoles
which then interact between walls via Coulomb forces. The
attraction energy of two parallel walls in this model de-
cays at large distances d between two walls as d−2 with a
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FIG. 1. Kinks in a 90◦ domain wall in lead titanate observed
by high-resolution transmission electron microscopy (modified after
Stadelmann [13,14]).

prefactor that is proportional to temperature and to a ratio
of dielectric constants that is equal to unity for an isotropic
medium. All distances are considered bigger than the wall
thickness w. Other decay exponents were observed to range
from −1 to −4, as described in Ref. [31]. The exponent −2
is valid for proper ferroelectrics and improper ferroelectrics
with a quadratic dependence of the spontaneous polarization
on the order parameter. They also argued that van der Waals
interactions are weaker than the bending-bending interac-
tion and do not contribute significantly. For nonferroelectric,
nonferroelastic, nonferromagnetic domain walls, the power-
law fluctuation-induced attraction is postulated. Subsequently,
Salje and Vallade showed that this argument needs to be mod-
ified in case of elastically strongly anisotropic interactions
[32]. The outcome of this research in the 1990s was hence that
power law interactions are expected for interwall interactions
in ferroelectrics but, unfortunately, still no detailed structural
properties of the interaction mechanism could be obtained
from this approach. Furthermore, it is now known that ferroe-
lastics, which are not ferroelectric, usually contain large elec-
trical dipoles in the twin walls, but not in the bulk [17,33–36]
so that the electric dipole-dipole interaction will contribute to
domain wall bending (sometimes coined “arching”). This idea
supports [37] a quasi-Rayleigh model which was proposed
to describe the hysteresis behavior of piezoelectric actuators
(PEAs) and piezobased systems. Local wall bending and arch-
ing [38,39] were also observed by mechanical spectroscopy
[8]. The question then arose how exactly the wall bending
occurs on an atomic scale.

The role of boundaries and relaxation of the sample was
emphasized in a series of papers during the same time. Com-
puter simulation demonstrated that freely relaxing samples
showed domain patterns different from constrained samples,
i.e., different boundary conditions [40–43]. These arguments
became even more important when nanoparticles and small
samples are systematically investigated. Domain patterns
deform the sample and simulations of clamped samples sys-
tematically miss this sample deformation. It is, therefore,
crucial that all simulations are performed with open boundary
conditions (stress-free surfaces) to allow the samples to de-
form. We will show in this paper that such deformations have a
significant influence on the patterns even of surprisingly large
samples.

A further approach emerged in 2017 when it was first
proposed that wall bending may induce kinks in domain walls
[44]. Furthermore, the kinks residing inside domain walls
are not necessarily static but accelerate beyond the speed of
sound under even modest external shear stress. The same
kinks were subsequently found to be at the core of domain
switching in metals [45,46] and during interactions with wall
junctions which determine much of the mechanical properties
of ferroelastic materials [47]. A typical example is shown in
Fig. 1 where two kinks have a spacing of around 16 lattice
units. Very high kink concentrations exist also in domain walls
in uniaxial ferroelectrics like LiNbO3 [48]. The twin wall has
often mirror symmetry (in so-called w walls, Ref. [11]). The
mirror symmetry is broken by kinks and local stress fields
lead to significant strains emanating from the kinks. It is the
purpose of this paper to characterize the strain fields and
to show that strain-mediated interactions between kinks is a
likely source for the interaction between parallel domain walls
[49–52].

A step forwards was achieved in 2000 when Pertsev
et al. [53] calculated equilibrium shapes of curved ferroelastic
domain walls in crystals. Smooth kinks in walls were inves-
tigated using their dislocation-disclination model on the basis
that the domain walls are infinitely narrow. They found that
elastic monopoles (the interaction energy decay as 1/d , where
d is the kink-kink distance) exist in the bend regions of a wall
although these authors already evoke the role of disclination
dipoles for specific geometrical configurations. One of the
main issues was, thus, to test the existence of monopolar
elastic interactions in our limit of atomic-scale kinks in thin
samples where strong lattice relaxations occur locally near the
kink and in long-range interactions which modify the sample
shape. After sufficient relaxations using realistic interatomic
potentials, we found no monopolar interactions and an almost
complete dominance of dipolar interactions.

II. THE MODEL

Ferroelastic patterns are described by a well-established
model for ferroelastic transitions based on a double-well po-
tential [4,20]. The construction of present two-dimensional
atomic spring model is based on one Landau spring and two
elastic springs, as schematically shown in Fig. 2. The po-
tential energy U(r) contains three terms, i.e., the harmonic
first-nearest atomic interactions U(r) = 20(r−1)2 (black
springs), the anharmonic second-nearest interactions U(r) =
−25(r−√

2)
2 + 20000(r−√

2) (yellow springs) along diag-
onals in the lattice unit and the fourth-order third-nearest
interactions U(r) = 8(r−2)4 (green springs), where r is the
distance between atoms. The first- and third-nearest inter-
actions are related to the elastic interactions in ferroelastic
materials. Landau spring represents a double-well potential
of the ferroelastic transition with an equilibrium shear angle
of 2°. The construction of this 2° shear angle was inspired
by the well-known second-order phase transition of SrTiO3 at
105 K. The initial twin angle is set to 2° by the second-nearest
double-well potential but changes very slightly after relax-
ation. Similar atomic potentials can be found in our previous
work [54].
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FIG. 2. Interatomic potential for generic ferroelastic model. The
model with nearest-neighbor (black springs), next-nearest-neighbor
(yellow Landau springs), and third-nearest-neighbor (green springs)
interactions. This model ensures an appropriate shear angle with
respect to the cubic unit cell.

In order to fully capture the lattice distortions induced
by kinks, free or open (Dirichlet) boundary conditions are
adopted in both x and y directions, which allows the samples
to relax including shape changes and rotations. No external
stress is applied. We set the equilibrium lattice parameters
in x and y directions before relaxation to a = 1 Å, the re-
laxed single crystal lattice parameter is 1.0001297 Å in x
direction and 0.9995027 Å in y direction for a sample size
of 600 l.u.×201 l.u. (l.u. = lattice unit). The atomic mass
is M = 50 amu. Several different initial simple ferroelastic
patterns with one or two domain walls are constructed to
study the single kink profile, kink-kink, and kink-antikink
interactions. The kinks were initially created inside domain
walls. The system was then relaxed using a conjugate gradient
method. This is followed by 5×106 (5×103 ps) molecular
dynamics (MD) simulation steps to obtain the full ferroelastic
domain pattern. Ferroelastic domain patterns were obtained
by extracting structural snapshots every 1000 MD steps (1ps)
and averaging these patterns. In order to avoid the movement
of kinks in the twin wall, the temperature of the simulation
was kept very low at T = 0.001 K. The sample tempera-
ture was controlled by using Nose-Hoover thermostat method
[55,56]. All simulations are performed using the LAMMPS

code [57]. Visualizations are performed using the OVTIO

software [58].

FIG. 4. Kink profile plotted as compatibility line between ad-
jacent domains. Dashed lines represent the fitting lattice planes in
domain 1 (red) and domain 2 (black). The kink profile follows a
∼ tanh (x/w) profile with w = 1.5 lattice units. The atoms are coded
by atomic strain exx .

III. RESULTS

A. Static kink profiles

We construct a simple domain pattern with a size of
600 l.u.×201 l.u., which contains one horizontal domain
wall located along the y direction. A static kink (Fig. 3) is
initiated at the domain wall, as shown in the inset of Fig. 3.
This configuration was then relaxed for 1×104 ps.

Figure 4 shows the local profile around this kink by extrap-
olating the lattice planes of both domains into the regime of
the other domain. The intersection points of the lattice planes
in the two domains define the compatibility between the lattice
planes and hence the loci of the kink. The kink profile follow
the analytical form ∼ tanh (x/w) where the kink thickness w

is 1.5 l.u. (see the blue lines in Fig. 4) [59]. The vertical lattice
plane in the middle of the kink is shown as black line a in

FIG. 3. Atomic image of a static kink residing inside a horizontal ferroelastic domain wall. The colors are coded by the atomic shear strain
(exy). Green atoms in the inset (indicated by dashed lines) represent the domain walls with a kink.
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FIG. 5. Macroscopic deformations of sample with a static kink inside the horizontal domain wall. The strain map is coded by the strain
component exx . The sample size is 51 l.u. in the y direction. Red dashed lines represent the fitting positions of lattice points on left and right
of the middle kink. The angles between the horizontal direction and the tilted walls characterizes the tilt angles of the left and right end of
the sample (θ1 and θ2). Layer1-layer5 represent different atomic layers of the sample from bottom surface to top surface. Inset (1) shows the
macroscopic tilt angle as a function of sample thickness in the y direction, inset (2) shows the scaling exponent between the sample thickness
and the tilt angle.

Fig. 4. The shear angle of the upper domain deviates from the
lattice plane in the lower domain, the shear angle defines the
twin angle, i.e., a wedge (grey shadow in Fig. 4) between the
extrapolated lattice plane in domain 1 and the lattice planes
in domain 2 (and vice versa). Two additional changes of the
patterns were observed due to the open boundary conditions.
Firstly, the entire sample weakly rotates after relaxation. Sec-
ondly, surface relaxations occur at all surfaces and lead to the
twisting of the sample of such small size.

We observed the macroscopic bending correlated with
kink-induced distortion in thin samples when comparing the
systems with and without kinks [60]. While the twin wall
in the sample without kinks is strictly horizontal, the twin
wall in the kink system is bent. Figure 5 shows the left and
right segment of the tilted twin wall, where the middle section
near the kink is bent locally. The tilt angle is defined as the
macroscopic angle between the twin wall at locations away

from the kink and the horizontal direction (θ1 and θ2 along x
direction in Fig. 5). Five atomic layers from the bottom to top
surfaces [60] are selected to determine the positions of lattice
points in the x direction. The kink inside the domain wall
locally bends the lattice planes and curved lattices on top and
bottom sides of domain wall (see enlarged region in Fig. 5).
Left and right parts of a sample tilt by ±0.066° on the left
and right side of the sample (size of 51 l.u. in the y direction,
see the lattice positions and strain maps in Fig. 5). All atomic
layers from the bottom to top surface show similar tilt angles.
Figure 5 shows the five layers next to the twin walls with
the same tilt behavior but different bending behavior. This is
compared with the construction in Fig. 4 where the middle
vertical lines (indicated by a and b) are strain free besides the
middle two atoms. When the upper middle lines (line ‘1’) was
extrapolated to the domain 2, the triangular wedge appears
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FIG. 6. Strain maps of kink-kink configurations inside horizontal wall with equilibrium separation distances resulting from repulsive
interactions between kinks. The system sizes in y direction are 51 l.u. in (a), 201 l.u. in (b) and 601 l.u. in (c). Strain color maps are coded
by atomic-level normal strains (exx and eyy) and shear strain (exy).

between line ‘c’ and the dotted line for the atomic position
(line ‘b’). To comply with local compatibility, the triangular
wedge is pushed upwards like the treatment of 90° corners in
ferroelastic domains [15] which closes the gap and twists the
domain walls downwards. This effect is strongly dependent
on the sample size. Tilt angles of samples with dimensions of
the y direction between 51 and 601 l.u. are shown in the inset
in Fig. 5. The tilt angles θ decrease as the system thickness
� (size perpendicular to horizontal wall, y direction) in-
creases along the direction perpendicular to the domain walls
[inset (1)] as θ ∼ �−1 [inset (2)].

B. Kink-kink and kink-antikink interactions in a twin wall

We now consider two interacting kinks inside the same
twin wall (Fig. 6). The interaction is attractive for kink-
antikink motions (with kink amplitudes in opposite directions)
and repulsive for kink-kink configurations (with kink ampli-
tudes in the same direction). When a kink-kink configuration
is initialized inside the wall, the repulsive interactions moves
the two kinks apart from each other to reduce the global
energy.

The interaction energy of two kinks in the twin wall is
now analyzed for 23 kink-kink configurations with a separa-
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FIG. 7. Interaction energy of kink-kink configurations as a function of their separation distance. The system sizes in (a), (b) and (c) are
600 l.u.×51 l.u., 600 l.u.×201 l.u., and 600 l.u.×601 l.u.. 1–12 in (a)–(c) indicate the interaction energy of kink-kink configurations with
separation distances of 14 l.u., 23 l.u., 60 l.u. and 198 l.u. (d) the corresponding strain maps for each configuration. Insets in (b) and (c) show
the scaling �E ∼ d−2 between the interaction energy and the kink-kink separation distance. Colors are coded according to the atomic-level
normal strain exx .

FIG. 8. Interaction energy between kink and antikink as a function of interkink distances. The system size in (a), (b) and (c) is
600 l.u.×51 l.u., 600 l.u.×201 l.u., and 600 l.u. × 601 l.u.. 1–12 in (a)–(c) indicate the interaction energy for distances of 15 l.u., 22 l.u.,
55 l.u. and 171 l.u.. (d) The corresponding strain maps. Insets in (b) and (c) show the scaling �E ∼ d−2 between the interaction energy and
the kink-antikink separation distances. Colors are coded by atomic-level normal strain exx .
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FIG. 9. Equilibrium kink-kink distances versus sample thickness
in the y direction.

tion distance ranging from 14 to 198 l.u. in different system
sizes with 51, 201, and 601 l.u. along y direction. For each
configuration, we relax the system for 5×103 ps. A relaxation
with a period of 5×103 ps was used to calculate the averaged
potential energy, as shown in Fig. 7.

To calculate the interaction energy of the kink-kink config-
uration, the total potential energy is reduced by the potential
energy of two noninteracting kinks. The kink-kink dis-
tance shows first a decrease when the distance is smaller

than the equilibrium distance, and then increases [Fig. 7(a)]
when surface strains in numbers 1–4 in Fig. 7(d) domi-
nate. When the sample thickness in y direction extends to
201 l.u., a smooth potential energy minimum in Fig. 7(b)
occurs at an interkink distance of. 90 l.u. The interac-
tion energy follows a typical dipole-dipole interaction for
distances smaller than the equilibrium distance. The scal-
ing exponent is −2 for this interaction energy �E ∼ d−2

[see inset in Fig. 7(b)]. For a system size of 601 l.u. in
the y direction, a wider scaling regime is found with the
same scaling exponent of −2 [see Fig. 7(c)]. The size ef-
fect (surface strains) is very large in small system, and
strongly affects the kink-kink interaction energy while it is
irrelevant for large system sizes. The crossover is at sizes
equivalent to around 200 nm which shows that nanopar-
ticles are prone to size effects while large single crystals
are not.

In contrast to repulsive kink-kink interactions, kink-
antikink interactions are attractive inside twin walls. Figure 8
shows 23 kink-antikink configurations inside the domain wall
with separation distances from 15 to 171 l.u. with all the
parameters identical to the kink-kink interactions.

Like kink-kink interactions, strong size effects are ob-
served for small systems [Fig. 8(a)]. The interaction energy
increases as the separation increases [see Figs. 8(b) and
8(c)]. There exists an energy maximum for the system of

FIG. 10. Position of the twin walls near (anti-) kinks. The bents and tilts are induced by kink-kink pairs (a)–(c) and kink-antikink (d)–(f)
pairs inside wall. The atomic layers (layer 1-layer 5) are the same as those in Fig. 4.
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FIG. 11. Atomic structure of kink-kink (a) and kink-antikink (b) residing inside two parallel domain walls. The colors are coded by the
atomic shear strain (exy). Green atoms (indicated by dashed lines) represent the domain walls with kinks in the insets.

FIG. 12. Interaction energy of kink-kink configurations residing inside two parallel walls as function of wall-wall distances. The system
size in (a), (b), and (c) are 600 l.u.×51 l.u., 600 l.u.×201 l.u., and 600 l.u.×601 l.u.. 1–12 in (a)–(c) indicate the interaction energy
of kink-kink configurations with wall-wall distances of 10 l.u., 18 l.u., 58 l.u. and 200 l.u. (d) The corresponding strain maps for each
configuration. Insets in (b) and (c) show the scaling exponent �E ∼ d−2 between the interaction energy and the wall-wall distances. The
colors are coded by atomic-level normal strain exx .
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FIG. 13. Interaction energy of kink-antikink configurations residing inside two parallel walls as a function of wall-wall distances. The
system size in (a)–(c) are 600 l.u.×51 l.u., 600 l.u.×201 l.u., and 600 l.u.×601 l.u. 1–12 in (a)–(c) indicate the interaction energy of
kink-antikink configurations with wall-wall distances of 9 l.u., 17 l.u., 57 l.u. and 199 l.u.. (d) The corresponding strain maps for each
configuration. Insets in (b) and (c) show the scaling �E ∼ d−2 between the interaction energy and the wall-wall distances. The colors are
coded by atomic-level normal strain exx .

600 l.u.×201 l.u. at distance of ∼90 l.u., below which the
interaction energy follows the typical dipole-dipole interac-
tion �E ∼ d−2 with the same scaling exponent of −2 as
the kink-kink configurations. A power-law interaction en-
ergy is also dominant in larger system of 600 l.u.×601 l.u.

[see Fig. 8(c)].
We now analyze the equilibrium kink-kink configurations

inside the horizontal wall with different thickness in the y
direction when no Peierls pinning applies. To find the opti-
mum positions for the kinks, we increase the temperature from
0.001 to 0.12 K. Figure 9 shows the equilibrium separations
of kink-kink configurations after relaxations for 1×104 ps.
The equilibrium distance for the system size is 21 l.u. when
the size is 15 l.u. in the y direction, and increases to 90
and 297 l.u. when the system size was extended to 201 and
601 l.u.. Kink-kink configurations with sample thickness in
the y direction between 51 and 601 l.u. show a linear relation-
ship between equilibrium distances and sample thicknesses in
the direction perpendicular to the domain wall with (equilib-
rium distance) ∼0.5 (step height) (Fig. 9).

Figure 10 shows the size dependence of the kink-kink and
kink-antikink tilt configurations. The bending and the tilts
become strongest for small sizes [Figs. 10(a)–10(c)]. The
interkink region shows no tilting but some weak bending.
The same singularities at the loci of the kinks are found for
kink-antikink configurations in Figs. 10(d)–10(f). In contrast

to the kink-kink scenario, the downwards tilt on the right end
of the sample is now combined with an upwards tilt on the
left side of the sample. The overall effect on the twin wall
is, hence, that the wall remains overall straight but contains a
double-bending region in between the two linear segments of
the wall.

C. Kink interactions in parallel domain walls

Figure 11 shows the kinks and antikinks in parallel twin
walls. Both structures consist of 600 l.u. layers in the x di-
rection and 201 l.u. in the y direction. The wall is located
the in the middle of the sample. After relaxation, two kinks
(kink-kink and kink-antikink) remain stable at each domain
wall (see insets in Fig. 11).

In order to study the size effects on the kink-kink inter-
actions, we constructed three systems with different system
sizes, i.e., 51, 201, and 601 l.u. along the y direction. For
each system, the wall-wall distance ranges from 10 to 200 l.u.

We created 20 different configurations to calculate the inter-
action energy with different wall-wall distances. Increasing
the activation energy increases the mobility of the twin walls
with the only interaction between the walls due to the kink-
kink repulsion. At each configuration the interaction energy
is obtained by subtracting the self-energy of the two kinks.
Figure 12 shows the resulting interaction energy as a func-
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FIG. 14. Lattice deformation induced by kink-kink pair (a)–(c) and kink-antikink (d)–(f) pair inside two parallel walls. Layers numbered
with 1 to 5 refer to the bottom surface layer, bottom twin wall layer, top twin wall layer, middle layer between two walls, and the top surface
layer in the x direction. d = 10, d = 18, d = 58, and d = 200 in (a)–(c) are the wall-wall distances of different kink-kink configurations.
d = 9, d = 17, d = 57, and d = 199 in (d)–(f) are the wall-wall distances of different kink-antikink configurations.

tion of the wall-wall distances. For sample sizes bigger than
51 l.u. along the y direction, the interaction energy degreases
with increasing wall-wall distance as

Ew-w ∼ d−2.

This dipolar decay is the same as in the case of two kinks
and kinks and antikinks in the same twin wall (see Figs. 7
and 8). The validity range of this simple dipolar interaction
enhances for larger samples and covers most of the sample in
the case of the largest samples of 600 l.u.×601 l.u., but not
for the smallest sample of 600×51 l.u. While the maximum
interaction energy is near zero with typical values near some
10 meV, i.e., not far from the typical wall energy, the inter-
action energy of the smallest sample displays a maximum of
some 16 meV for distances of 25 l.u.. For such small samples,
the strain fields are extremely strong at the sample surface
[see numbers 1–4 in Fig. 12(d)] and no sample region on
either side of the walls exists where the deformation is small.
When the two walls repel each other, the macroscopic shape
of the sample changes dramatically. Each twin wall leads to a
local macroscopic bending of the sample with two twin walls
leading to a zig-zag sample shape.

For kink-antikink initeractions, we consider three differ-
ent system sizes of 51, 201, and 601 l.u. in the y direction.
For each system size, 20 different kink-antikink configura-

tions with wall-wall distances between 9 and 199 l.u. were
constructed as the initial configurations. The sytem is then
relaxed. Figure 13 shows the interaction energy between kink
and antikinks as a function of wall-wall distances in differ-
ent systems. Contrary to the kink-kink scenarios, the kink
and antikinks attract each other [see Figs. 13(a)–13(c)]. For
smaller systems, the surface strains dominate the interactions,
and obvious strain patches can be found in numbers 1–4
in Fig. 13(d). As the system size increases along y direc-
tion, the size effect decreases, following a typical power-law
decay �E ∼ d−2 of the interaction energy in a system of
600 l.u.×201 l.u. [Fig. 13(b)]. A full range power-law de-
cay is found in the larger system of 600 l.u.×201 l.u. with
neglectable size effect. Figure 14 shows the size dependence
of the kink-kink and kink-antikink tilt configurations.

IV. DISCUSSION

We demonstrated that all kink-kink interactions follow, for
nanoscopic system sizes with full local atomic relaxations
and macroscopic shape changes, dipole-dipole interactions
without higher order quadrupolar or logarithmic corrections
[61]. We find no monopolar interactions. Our results mirror
previous results on the interactions between surface steps
in vicinal surfaces [62,63]. The long-range elastic fields of
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surface steps [64] lead to interaction energies of step pairs
separated by a distance d (equivalent to our step-step dis-
tance) which also scale as d−2 in all cases where the last
layer of the surface layer possess the same crystals structure
as the bulk [65,66]. This case was called homoepitaxy by
Houchmandzadeh and Misbah [67] which conceptually in-
cludes our domain wall case. The interaction typically follows
weaker interaction laws (∼ ln d/d0) if the surface layer un-
dergoes a reconstructive change, which we do not observe in
ferroelastic domain walls. On the other hand, step meander-
ing was advocated by Ref. [67] and has a clear equivalence
in domain wall pattern formation when walls deviate from
straight orientations. Wall bending effects were discussed
in Refs. [15,26,68,69]. Meandering domain walls invokes
possible additional symmetry breaking by the appearance
of piezoelectricity in nominally high-symmetry phases [7].
Kinks in walls [70] have been simulated in other materials like
high-Tc superconductors [25] and the mineral feldspar [71].
Extremely high kink concentrations which lead to macro-
scopic meandering was observed by transmission electron
microscopy in LiNbO3 [48] and it is likely that this config-
uration is also common in other uniaxial ferroelectrics. High
kink concentrations tend to order or cluster the kinks inside
the walls [48] so that it becomes useful to characterize the
kink-kink interactions in Fourier space by their wave number.
The wall self-energy obviously increases with increasing kink
concentration, which is not considered here. We expand the
interaction energy for small wave vectors q using the same
dipole-dipole interaction as in wall modulations. This energy
depends crucially on the phase between the kink-modulations
in the two walls where the phase angle � describes the phase
shift between two kink arrays. Following Houchmandzadeh
and Misbah [67], the dipolar interaction energy per unit length
of step �E ∼ [1–d q K1(dq) cos �]/d2, where K1 is the
modified Bessel function of the first order. The q dependence
of the Bessel function was given in Ref [67]. to second order in
q as �E ∼ A(cos �)/d2 + 0.5(B− ln (q∗d ))q2 cos �, where
A and B are numerical constants. The first term reproduces
the d−2 scaling of the wall-wall interactions and depends on
the position of the kinks with respect to each other but not on
the modulation q vector. The second term depends explicitly
on the modulation wave vector. The q dependence scales as
q2 ln q∗d , which differs from the usual line tension of the wall
which follows q2. In kinked walls, the configuration q ∼ 1/d
represents wall distances which are similar in magnitude to the
average interkink distance in each wall. In this likely scenario
the last term ln(qd ) disappears and a simple q2 dependence
dominates the dispersion. The dispersion is positive or nega-
tive depending on the phase angle. This analysis demonstrates

that the dipolar forces between two nonintersecting walls with
several kinks lead not only to attraction or repulsion of the
walls but also to a reshuffle of the kink patterns in the walls.
Mobile kinks will minimize the energy by assuming a phase
angle of π so that each kink is closest to an antikink. Fluc-
tuations in the kink arrays follow, at least over some relevant
parameter space, the usual parabolic dispersion so that one
expects antiphase configurations with long-wavelength fluc-
tuations.

All simulations were performed under open boundary
conditions where the sample could change its shape. This
approach makes the simulations much more realistic for most
ferroelastic materials [11] and particularly the large group
of disordered materials [72] where porosity often plays a
major role [73]. Most ferroelastic minerals, for example, dis-
play porosities between 10% and 60% [68,74] which allows
mineral grains to relax their shape when their microstructure
changes as a function of temperature or pressure. The simula-
tions highlighted that shapes changes occur for small enough
samples when kinks are generated in a twin wall. Depending
on the kink or antikink configuration, the sample bends in
one direction or the opposite. The bents are restricted to a
small area near the (anti-)kink position while the rest of the
sample simply tilts in two opposite directions. The bent region
is ∼10 lattice units wide; the sample tilts continue to the
sample surface. In typical crystal structures like perovskites
with lattice units of ∼0.4 nm or feldspars with 1.3 nm in the
monoclinic b direction these bent regions are some 4–13 nm
wide and are hence observable under the transmission electron
microscope. The tilt angles are in the order of 1.2° for single
kinks and are hence observable. This tilt angle is in the same
order of magnitude as the twin angle of 2◦ in our simulations.
The tilt becomes much greater for higher concentrations of
tilts in the same orientation and could be seen even under
the optical microscope. Kinks and antikinks will compensate
the tilts and lead to a modulated twin wall. We have seen
such modulated twin walls under the transmission electron
microscope, but no analysis of possible kink formation was
undertaken in our laboratory and none are known to the au-
thors from literature.
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