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We fabricated an asymmetric nanoscale SQUID consisting of one nanobridge weak link and one Dayem
bridge weak link. The current phase relation of these particular weak links is characterized by multivaluedness
and linearity. While the latter is responsible for a particular magnetic field dependence of the critical current
(so-called vorticity diamonds), the former enables the possibility of different vorticity states (phase winding
numbers) existing at one magnetic field value. In experiments the observed critical current value is stochastic
in nature, does not necessarily coincide with the current associated with the lowest energy state and critically
depends on the measurement conditions. In this paper, we unravel the origin of the observed metastability as a
result of the phase dynamics happening during the freezing process and while sweeping the current. Moreover,
we employ special measurement protocols to prepare the desired vorticity state and identify the (hidden) phase
slip dynamics ruling the detected state of these nanodevices. In order to gain insights into the dynamics of
the condensate and, more specifically the hidden phase slips, we performed time-dependent Ginzburg-Landau
simulations.

DOI: 10.1103/PhysRevB.106.134518

I. INTRODUCTION

Phase slips—topological fluctuations of the order
parameter—are an indispensable ingredient for understanding
the behavior of various superconducting nanodevices [1,2].
In a one-dimensional superconducting nanowire, quantum
and/or thermal phase slip events are responsible for the onset
of a dissipative state [3–5]. Nevertheless, in order to detect
these events using a dc measurement a sufficient high phase
slip rate has to be induced and/or a local hotspot has to be
created [6]. A more pronounced impact of a single phase
slip event can be expected in ring like structures [7,8]. This
stems from the existence of different metastable states at one
magnetic field value, where each state corresponds to a unique
value of the winding number of the superconducting order
parameter along the ring—the vorticity nv . Even a single
phase slip event modifies the vorticity of the ring, which
is directly linked to a variety of macroscopic observables
[9,10]. The ability to detect the impact of a single phase slip
event was recently used to fabricate a persistent Josephson
phase-slip memory cell with topological protection [11].

In case of a superconducting quantum interference de-
vice (SQUID), which is in essence a superconducting loop
with two weak links, the aforementioned ingredients are also
present. Each vorticity state is characterized by a unique crit-
ical current versus field Ic(B) dependence. Therefore it offers
a simple readout method to identify the vorticity state of the
device. Metastability can be induced through the use of a
long nanobridge as one of the weak links [12]. By controlling
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the length and width of this nanobridge, the kinetic induc-
tance and hence the shape of the Ic(B) oscillations of the
device can be controlled [13]. Moreover, the energy barrier
between different vorticity states can be tuned by changing
the applied magnetic flux or the applied bias current. When
the energy barrier approaches zero, a stochastic or deter-
ministic phase slip process induces a transition to either a
dissipative state or to another vorticity state. The ability to
read and write the flux state of a nanoSQUID under well
chosen biasing conditions can be used to design a flux based
memory [14,15].

In order to obtain the critical current of a device (and as
such the vorticity state), the voltage is probed while perform-
ing a sweep from a large positive (or negative) bias current
towards a large negative (or positive) bias current, for a given
external magnetic field. These experiments have demonstrated
that the obtained critical current value (and thus also the
final vorticity state) fluctuates around multiple discrete values
[16,17]. This behavior clearly originates from the metasta-
bility of different vorticity states and the stochastic nature
of the phase slip events. If one wants to use these devices
for memory based applications it is of utmost importance to
understand how the vorticity state preparation and readout are
governed by the underlying phase dynamics.

In this paper we investigate the origin of the observed
vorticity states (uniquely defined by their critical current)
when performing standard V(I) sweeps as a function of the ap-
plied magnetic field of a nanobridge SQUID (NBSQUID). We
present two possible mechanisms for the different observed
current branches. When lowering the bias current random
fluctuations initialize our device in a specific vorticity state,
or the state is altered during the current ramp via so-called
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FIG. 1. (a) The critical currents as a function of the applied magnetic field. The measured critical currents for positive (negative) bias
current are shown in blue (red). The dashed lines represent the vorticity diamonds generated by the model discussed in the text. The vorticity
number is indicated by a number in a rounded square. The nv = 0 diamond is indicated by a light gray fill and a solid edge. The nv = 0
unique vorticity diamond (UVD) has a dark gray fill and corresponds with the phase space where only the nv = 0 state exists. (b) False colored
scanning electron microscopy (SEM) image of a prototypical NBSQUID device as studied here. The top junction is a Dayem bridge, while the
bottom junction indicated in green is a nanobridge with length L and width W . The white scale bar represents 200 nm. When measuring flux
oscillations, the applied field B is oriented as shown. [(c),(d)] A typical IV-curve at zero applied field for positive (negative) bias current sweep
direction is shown in blue (red). The black dot corresponds with the critical current value shown in panel (a). (e) The energy of the different
vorticity states of the SQUID under investigation as a function of the applied field (or the equivalent applied flux) at zero bias current. The
size of the colored dots represents the probability to measure the critical current corresponding to the indicated vorticity state for positive bias
currents, extracted from the experimental data in panel (a)

hidden phase slips. In order to distinguish between both
above-described scenarios, we use a well-thought protocol to
initialize the system into a specific vorticity state [16,18,19].
We demonstrate over a large field range a clear difference in
the SQUID oscillations depending if the system is prepared
in a particular state versus the preparation determined by
the freezing in process during the conventional V(I) sweep.
The observed differences demonstrate that both mechanisms
define the final outcome of a conventional V(I) sweep. In
particular, we observe that for a limited field range around
zero field, only the nv = 0 branch is probed: the Ic(B) is single
valued. For larger field values the Ic(B) becomes multivalued
again. This indicates that the NBSQUID has altered its vor-
ticity state due to a stochastic phase slip event when crossing
the vorticity diamond of the nv = 0 state, which indicates the
presence of so-called hidden phase slips. To the best of our
knowledge, the impact of the initial state on the multivalued-
ness of the Ic(B) characteristic of a NBSQUID has not been
demonstrated before. As the vorticity state is known only after
the transition to a dissipative state, the previous methods do
not allow to investigate the vorticity of the NBSQUID below
the bias current necessary to induce this transition. In order
to gain information about the stability of the nv = 0 state
at low bias currents, we employed a measurement protocol
[14], which relies on the unique properties of an asymmet-
ric NBSQUID to prepare and readout the vorticity state.
We demonstrate that the NBSQUID remains trapped in the

nv = 0 state within the whole so called “vorticity diamond”
region, even though other vorticity states have lower ener-
gies in this region. Finally, time-dependent Ginzburg-Landau
(tdGL) simulations of very similar device geometries gave
a close agreement to the observed dynamics and allowed
us to explore the hidden phase dynamics inaccessible to the
experiment.

II. MULTIPLE METASTABLE VORTICITY STATES
IN A NBSQUID

Figure 1(b) shows a scanning electron microscopy (SEM)
image of a similar NBSQUID device as studied in this paper.
The SQUID contains one Dayem bridge (top junction) and
one nanobridge weak link (bottom junction). For the device
studied in this paper, the nanobridge dimensions are deter-
mined from SEM imaging as length L = 176 nm and width
W = 54 nm. The sample is fabricated using conventional
electron beam lithography, followed by pulsed laser deposi-
tion of a 25-nm/5-nm-thick MoGe/Au film and a standard
lift-off process. The device has a superconductor-to-normal-
state transition temperature of approximately Tc ≈ 6 K. From
measurements of the superconducting-to-normal-state phase
boundary on similarly prepared plain films of MoGe/Au, the
coherence length can be determined as approximately ξ (T =
0 K) ≈ 10 nm [20]. Several devices with varying nanobridge
lengths were fabricated and displayed similar metastability
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[13], as such one sample as a proof-of-concept device was
selected to execute our measurements on.

Figure 1(a) shows the measured critical current versus field
data Ic(B) of the NBSQUID obtained at T = 300 mK. The
Ic(B) is obtained in the conventional measurement method,
meaning that at each magnetic field value, a set of 150 IV
measurements in both current sweep directions is acquired
using a current ramp rate of 1.8 mA/s. An IV curve obtained
at zero field for the positive (negative) current sweep direction
is shown in Fig. 1(c) [1(d)]. Note that the IV curves of the
NBSQUIDS are highly hysteretic as the transition from the
superconducting state to the normal state is dominated by
Joule heating. For each of these curves the critical current
is extracted indicated by the black dot in Fig. 1(c) [1(d)]
and shown in panel a as a small dot. The blue [red] dots
indicate the field dependence of the critical current obtained
when sweeping the current from a large negative [positive]
bias current of ∓90 μA towards a large positive [negative]
bias current of ±90 μA. The observed oscillation period is
�B = 3.48 mT, which agrees with the value expected from
geometrical considerations. Thermal or quantum fluctuations
can cause a premature escape from the superconducting state
before the depairing current is reached, resulting in a stochas-
tic distribution of the critical current around an average value
[2]. The solid-black lines result from a fit of the Ic(B) data to
the model introduced in Ref. [14].

This model considers a SQUID containing two weak links,
which both have a linear current-phase relationship (C�R),

I j = Ic j
ϕ j

ϕc j
= �0

2π

1

LK j
ϕ j . (1)

Here I j represents the supercurrent through the jth weak link,
with j = 1, 2, and ϕ j is the phase difference of the macro-
scopic wavefunction taken between the end points of the jth
weak link. Further, Ic j � 0 is the critical current and ϕc j � 0
is the critical phase difference at which the weak link switches
to the dissipative state. It is customary to introduce the kinetic
inductance LK j = (ϕc j/Ic j )(�0/2π ) of the jth arm. Note that
an almost linear C�R has been predicted for thin and long
wires (L > 3ξ ) [21]. The current through the jth arm can be
determined from the condition that the total current through
the SQUID is given by

Ibias =
∑
j=1,2

I j =
∑
j=1,2

�0

2π

1

LK j
ϕ j, (2)

and the fact that the order parameter must be single valued.
This means that the gauge invariant phase differences around
the loop must add up to an integer multiple of 2π ,

ϕ1 − ϕ2 + 2π
B

�B
= 2πnv. (3)

Here �B is the Little-Parks oscillation period and the phase
difference over each wire is limited to the critical phase
difference ϕc j . For the device studied in this paper, j = 1
denotes the nanobridge SQUID arm while j = 2 denotes the
Dayem bridge arm. As we assume that the contribution from
the geometric inductance of the SQUID (∼2pH � LK j) to
B can be neglected, Eq. (2) and Eq. (3) effectively decou-
ple. Combining Eqs. (2) and (3), and the requirement that

superconductivity should be destroyed if |ϕ j | > ϕc j in any of
the bridges, one can calculate the total critical current of the
NBSQUID for a given vorticity nv and applied magnetic field
B. The total critical current of the SQUID Ic(B, nv ) equals the
smallest total applied current at which the current across either
wire reaches its critical value. For each value of nv the solution
for Ic(B, nv ) forms a so-called vorticity diamond as shown for
nv = 0 by a light gray fill in Fig. 1(a).

For the left (L) and right (R) branch indicated in Fig. 1(a)
the NBSQUID’s transition to the normal state corresponds to
weak link j = 1(2) reaching its critical current [correspond-
ing with a critical phase difference ϕ1 = ϕc1 (ϕ2 = ϕc2)]. The
nvth vorticity diamond is identical to the nv = 0 diamond, but
shifted along the magnetic field axis by B = nv�B. As the
vorticity diamond extends over a range B = ϕc�B/π , where
ϕc = ϕc1 + ϕc2, diamonds of adjacent vorticities overlap for
ϕc > π (i.e., twice the critical phase difference of π/2 of
a conventional tunnel junction), resulting in a multivalued
critical current.

It is clear that the model captures the Ic(B) characteristics
well. From the fit, the physical parameters i.e., the kinetic
inductance LK1,K2, the critical phase difference ϕc1,c2, and the
critical current Ic1,c2 can be obtained. The obtained values
for the device studied here are LK1 = 98 pH, LK2 = 100 pH,
ϕc1 = 13.9 rad, ϕc2 = 12.2 rad, Ic1 = 46.4 μA, and Ic2 =
40.1 μA. As can be seen from the fit, multiple vorticity states
exists at each magnetic field value as ϕc1 + ϕc2 > π . Despite
their existence, the experiment only probes the critical current
of vorticity states that have a critical current value that exceeds
a value of approximately I > 64 μA. For I > 64 μA the sam-
ple transits immediately to the normal state when reaching the
critical current of a particular vorticity state. As such, we can
observe up to three critical current branches at one magnetic
field value. The multivaluedness and the distribution of the
critical current probed at a particular field value reflect the
stochastic nature of the thermal and quantum fluctuations dur-
ing the IV measurement: as the current is swept from ∓90 μA
to ±90 μA, the SQUID first transits from the normal to the
superconducting state at the retrapping current of ∓21.5 μA.
At this transition, the aforementioned thermal and quantum
fluctuations are important and impact the vorticity state, which
the NBSQUID gets frozen into. The stochasticity of this freez-
ing process and the resulting vorticity state initialization are
reflected in the multivaluedness and the spread of the critical
current probed at a particular field value.

The energy stored in the NBSQUID at a given magnetic
field value and current bias is given by

E = 1

2

∑
j=1,2

LK jI
2
j = 1

2

LK1LK2

LK1 + LK2
I2
bias

+ 1

2

1

LK1 + LK2

( B

�B
�0 − �0nv

)2

, (4)

and is quadratic in both the bias current and the applied
magnetic field. Figure 1(e) shows the energy stored in the
NBSQUID, E (nv, B, I ) calculated according to Eq. (4), for
vorticity states nv = −1, 0, 1, 2, and 3 at zero bias current
as a function of the external magnetic field (or equivalently,
flux). Note that an applied bias current just shifts the energy
levels along the energy axis by a vorticity independent factor.
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FIG. 2. (a) The time evolution of the applied current during one cycle of the preparation procedure under zero magnetic field. The current
range between Ic0 and Ic1, indicated in gray, corresponds to the current range of the nv = 0 UVD. The retrapping current Ir is field independent
and approximately ∼21.5 μA. (b) The energy stored in the NBSQUID for vorticity states 0 (blue) and 1 (green) during one cycle of the
preparation procedure according to Eq. (4). The probability to measure these specific vorticity states is denoted by P0 and P1. At Ic1, vorticity
state 1 ceases to exist and the SQUID switches to the normal state. As the applied current is decreased below the retrapping current the SQUID
is frozen into vorticity state 0(1) with probability P0(1). The inset shows a zoom of the energy around the UVD current range. (c) The critical
currents versus the applied magnetic field after first preparing the NBSQUID in vorticity state nv = 0 at B = 0 mT. The dotted lines represent
the vorticity diamonds generated by the model outlined in Sec. II. At each field value, we collected seven critical currents. The nv = 0 UVD
is indicated as a shaded gray fill. The shaded areas indicate the field values where the critical current is multivalued. (d) The energy of the
different vorticity states of the NBSQUID as a function of the applied field (or equivalently, flux) at zero bias current. The size of the colored
dots represents the probability to measure the critical current corresponding to the indicated vorticity state, extracted from the experimental
data in panel (c).

At 2 mT, the energy difference between the nv = 0 and nv = 1
state is about ∼0.01 eV. The size of the colored dots represents
the probability to measure the critical current corresponding to
the indicated vorticity state, extracted from the experimental
data in panel a. It is clear that the nv = 1 state corresponds
to the lower energy state in the range �0/2 < � < 3�0/2.
Nevertheless, Figs. 1(a) and 1(e) show that critical current and
energy values corresponding to the nv = 0 and nv = 2 states
are also observed. This indicates that the NBSQUID can be
rendered in a metastable state during the freezing process,
which is not necessarily the lowest in energy. The NBSQUID
can remain in this metastable state because state relaxation
requires the density of Cooper pairs to be locally suppressed
so that the superconducting order parameter phase can exhibit
a 2π discontinuity—a phase slip [22,23].

III. CRITICAL CURRENT OSCILLATIONS IN A NBSQUID
AFTER INITIALIZING THE VORTICITY STATE

Due to the stochastic nature of the freezing process, it
is impossible to know the vorticity state of the system at
the beginning of the IV measurement. Therefore, no explicit
information can be obtained about the phase dynamics occur-
ring while sweeping the current. However, taking advantage
of the statistics of the freezing process allows to prepare the
NBSQUID into a particular vorticity state with a very high
fidelity [14]. In the preparation procedure, the concept of a
“unique vorticity diamond” (UVD) is introduced. Inside the
UVD there is only one stable vorticity state. In Figs. 1(a) and

2(c), the UVD associated with vorticity nv = 0 is indicated as
a dark gray shaded area.

To prepare the system in a specific vorticity state, one first
needs to apply an external magnetic field corresponding to
the UVD field range. For the nv = 0 diamond, B = 0 mT
is chosen. Then, a bias current of 74 μA, which leads to
the normal state for all vorticity states, except for the one
associated with the UVD is applied. Afterwards, the current
is again reduced to 0 μA. This sequence is illustrated in
Fig. 2(a): it shows the time evolution of the applied current
during the preparation procedure under zero magnetic field.
The current range indicated in gray corresponds to the current
range of the nv = 0 UVD. The retrapping current Ir is also
indicated on the right axis. Its value is field-independent and
approximately ∼21.5 μA. This process can also be looked at
from an energy-standpoint, as shown in Fig. 2(b). The blue
and green curves show the energy stored in the NBSQUID
for the vorticity states as a function of time for nv = 0 and
nv = 1 respectively. The time axes of panels a and b denote the
same time, so that one can also indirectly interpret the curves
in Fig. 2(b) as energy as a function of applied current. If at
the starting time, the NBSQUID is in vorticity state nv = 0,
applying a current above Ic1 but below Ic0 will not change
this: the blue curve still exists. One can apply a current of
74 μA and decrease it again without ever leaving the nv = 0
state. However, if the NBSQUID starts in the nv = 1 state,
this is not true. For currents higher than Ic1, the nv = 1 energy
state no longer exists and the SQUID consequently switches
to the normal state (this can more clearly be seen in the inset).
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FIG. 3. (a) The critical currents vs the applied magnetic field after preparing the NBSQUID in vorticity state nv = 0 are indicated in blue.
The open-black circles with error bar correspond to the experimentally obtained edge of the nv = 0 vorticity state using the measurement
protocol as indicated by the black arrows and described in Sec. IV. (b) The probability to end up in vorticity state nv = 0 after sweeping to
a particular I∗ and B∗. The curves correspond to bias currents I∗ ranging from 5 μA to 75 μA. The field locations of the sudden jumps from
P0 = 1 to P0 �= 1 for a specific I∗ correspond to the right edge of the nv = 0 vorticity diamond in panel (a). (c) The time evolution of the
applied current (black) and field (red) during the measurement protocol as described in Sec. IV, for the case B∗ > Bc0. The gray area denotes
the current range of the nv = 0 UVD at B = 0 mT. (d) The energy stored in the NBSQUID as a function of the time for the vorticity states
nv = 0, 1, 2, and 3 after initializing in nv = 0 and during the measurement protocol outlined in Sec. IV, for I∗ = 50 μA and B∗ = 6 mT > Bc0.
As B∗ = 6 mT exceeds Bc0 the NBSQUID’s vorticity is altered by the means of a n′ × 2π phase slip in the Dayem bridge SQUID arm. During
readout, some of these vorticity states n′ cease to exist and the system switches to another vorticity state by a n′′ × 2π phase slip event in
the nanobridge SQUID arm. (e) The energy stored in the NBSQUID as a function of the time for the vorticity states nv = 0, 1, and 2 after
initializing in nv = 0 and during the measurement protocol outlined in Sec. IV, for I∗ = 50 μA and B∗ < Bc0. As B∗ never exceeds the critical
field value Bc0 of vorticity state nv = 0, the system remains in vorticity state nv = 0.

The SQUID then stays in the normal state, until the applied
current is decreased again to the retrapping current Ir . At this
point, the SQUID gets frozen into the superconducting state
again, but due to the randomness of the freezing process it is
not a priori known into which vorticity state. From the data
shown in Fig. 1(a), the probability to end up in the nv = 0
state after a freezing process is extracted as P0 ∼ 0.99 at B
= 0 mT. So even if the NBSQUID starts in another vorticity
state than nv = 0, the probability to end up in the nv = 0 state
remains high. To ensure a high fidelity of this preparation
process, the current is cycled k = 5 times between I = 0 μA
and I = 74 μA at zero field (B = 0 mT). A zero-voltage
reading in the UVD of nv = 0 at I = 74 μA confirms that
the state is indeed prepared correctly. (If this is not the case, k
is increased.) As such an experimental state preparation with
100% fidelity is guaranteed. We observed that the prepared
state remains stable at an applied bias current of 74 μA for at
least four hours.

Figure 2(c) shows the measured critical current versus field
Ic(B) oscillations of the SQUID after first preparing in vor-
ticity nv = 0 at B = 0 mT. After initialization in the nv = 0
vorticity state, the bias current is set to zero, the applied
magnetic field is changed to the value of interest and finally

the critical current is obtained by performing an IV measure-
ment from 0 μA to 90 μA. The critical current at which the
NBSQUID switches to the normal state is shown by the blue
data points. This measurement procedure was repeated seven
times at each field value. The dashed lines again result from
the fit. Similar to Figs. 1(a) and 1(e) the energy of the different
vorticity states of the NBSQUID as a function of applied
field, together with colored dots whose size represents their
occurrence are shown in Fig. 2(d).

After the state preparation, the SQUID remains in vor-
ticity state nv = 0 in the field range of Bnv=0 ∈ [B(Imax

nv=0) −
4.89 mT, B(Imax

nv=0) + 3.63 mT], where B(Imax
nv=0) = −0.88 mT

is the magnetic field corresponding with the top vertex of the
nv = 0 diamond. This can be seen from the single-valuedness
of the measured critical current corresponding with the nv = 0
state in this field range, as shown by the white region in
Figs. 2(c) and 2(d). For field ranges outside this interval the
critical current is again multivalued, indicating that a hidden
phase slip process altered the vorticity state during the mea-
surement. There are two different distinct regimes observable,
both for positive and negative field values. For field values
inside the green region in Figs. 3(c) and 3(d) vorticity nv = 0
is still observed, indicating the vorticity of the NBSQUID is
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sometimes altered by a hidden phase slip(s). While for the red
indicated region vorticity nv = 0 is never observed, implying
the vorticity is always changed by the means of a hidden phase
slip(s).

From the experimental data in Figs. 2(c) and 2(d) it is
apparent that for positive magnetic field values the nv = 1
vorticity state is barely observed. The notable absence of the
nv = 1 vorticity state can not be explained energetically, as
vorticity the nv = 1 has the lowest energy state in the green re-
gion indicated in Fig. 2(d). This observation implies that upon
leaving the nv = 0 vorticity state, it is more likely to have
multiple phase slips occurring. It should be noted that this has
been observed in MoGe nanowire SQUIDs. In Ref. [24], the
authors concluded that there exists a regime in which paired
phase slips are exponentially more likely to occur than a single
phase slip. In this regime, the parity of the vorticity is thus
conserved, which could be highly relevant for parity-protected
qubits in future generation quantum computing applications
[25]. Finally, we have to remark that the observed vorticity
states are not symmetric around the tip of the vorticity dia-
mond. This indicates that there is a clear difference in phase
slip event occurrence on both sides of the nv = 0 diamond.
Indeed, when leaving the vorticity diamond through the upper
right edge, this happens by means of a phase slip in the Dayem
bridge arm as ϕ2 = ϕ2c. When the diamond is exited through
the upper left side, a phase slip occurs at the nanobridge
SQUID arm as there ϕ1 = ϕ1c. Since the two arms’ parameters
(most importantly, their critical phase differences) differ, the
observed asymmetry is not surprising. The subtle dependence
of the phase dynamics on the geometry of the device and the
exact value of the magnetic field when crossing the vorticity
diamond can be used as a tool to study the metastability of
a certain vorticity state at low bias currents not accessible
through conventional IV measurements.

IV. THE METASTABILITY OF A VORTICITY STATE
IN A NBSQUID AT LOW BIAS CURRENTS

The question remains if the nv = 0 state remains
metastable for field values outside the field interval Bnv=0.
From a measurement of the critical current it is impossible to
obtain this information, as this only reflects the vorticity value
of the NBSQUID for bias currents exceeding I = 53 μA. To
gain more insight in the phase dynamics in the region of lower
bias currents, we use a measurement protocol introduced in
Ref. [14] to explore the metastability of the nv = 0 state and
to reveal the occurrence of hidden phase slips. This procedure
is also applicable to other vorticity states.

In this measurement protocol [see the black arrows in
Fig. 3(a)], we first prepare the NBSQUID in the nv = 0 state
at B = 0 mT, using the procedure described in Sec. III. Sub-
sequently, we fix the bias current to a value I∗, and sweep
the field towards a field value B∗. Finally, we read out the
vorticity state by sweeping the field back to B = 0 mT and
the bias current to I = 74 μA (a location within the nv = 0
UVD), where we can differentiate whether the NBSQUID
is in the nv = 0 state or not by measuring the resistance:
zero resistance corresponds to the nv = 0 state, while normal
state resistance corresponds to another state. This protocol
performed after initializing the NBSQUID state is further

illustrated in Fig. 3(c). In it, the time evolution of the applied
magnetic field and the bias current are shown by red and black
curves respectively. In this figure, B∗ is greater than Bc0, where
Bc0 denotes the field at the right vorticity diamond edge at
a current of I∗. The value of I∗ is 50 μA in this figure and
Bc0 is equal to 5 mT. Ic0 and Ic1 are the critical currents
associated with vorticity states nv = 0, 1 at the readout field
B = 0 mT, such that the gray-shaded area corresponds to the
nv = 0 UVD. Ir is the retrapping current.

For different bias currents I∗ this measurement is per-
formed 10–20 times. Figure 3(b) shows the probability to end
up in the nv = 0 state after sweeping to a particular (in this
case positive) field value B∗ at a fixed bias current I∗ and
performing the readout. Each trace contains a jump at a par-
ticular field value. The field value corresponding to the jump
is indicated by an open circle for the different bias currents
in Fig. 3(a) and corresponds to the right edge of the vorticity
diamond obtained from the fit. An analogous measurement
for negative B∗ values results in values on the left edge of the
nv = 0 vorticity diamond.

For all bias currents the readout indicates that the state
remains 100% in the nv = 0 state within the field range of
the vorticity diamond, i.e., B∗ < Bc0. This indicates that the
NBSQUID remains in the nv = 0 state for the whole field and
current phase space of the corresponding vorticity diamond
[light-gray shaded area in Fig. 1(a)], while this is not neces-
sarily the vorticity state lowest in energy. This is illustrated
in Fig. 3(e), which shows the energy stored in the NBSQUID
as a function of time for I∗ = 50 μA for a B∗ value (4 mT)
chosen inside of the nv = 0 vorticity diamond. The energies
of the nv = 0, 1, 2, and 3 states are shown using blue, green,
orange and yellow curves respectively. As B∗ never exceeds
the critical field value Bc0 of vorticity state nv = 0, the system
remains in vorticity state nv = 0 even though other vorticity
states have lower energies. This indicates a strong level of
metastability of the vorticity state, implying that the phase slip
rate is negligible.

For bias currents exceeding I = 64 μA, the probability to
be in the nv = 0 state at readout condition is zero after leaving
the nv = 0 diamond. For these bias currents, the SQUID tran-
sits immediately to the normal state when leaving the nv = 0
diamond. Upon moving again to the readout condition, the
SQUID remains in the normal state as the retrapping current
of 21.5 μA < 53 μA. For bias currents below I = 53 μA,
the probability to be in the nv = 0 state at readout condition
is below 1 after leaving the nv = 0 diamond. This can be
explained as follows. Consider leaving the nv = 0 diamond
at a current below I = 53 μA by sweeping the field towards
a value outside of the vorticity diamond edge, i.e., B∗ =
6 mT > Bc0 [see Fig. 3(c)]. The energies for vorticity states
nv = 0, 1, 2, 3 during this process are shown in Fig. 3(d) by
blue, green, orange and yellow curves respectively. It is clear
that the SQUID exits the nv = 0 state once the edge of the
vorticity diamond is crossed at a particular (B, I ) position,
indicated by the blue dot labeled Bc0 in Fig. 3(a). As shown
in our previous measurements at this particular (B, I ) position
[Fig. 3(d), blue dot], the vorticity state of the NBSQUID is
in this particular case changed to either nv = 2 or nv = 3 by
a phase-slip process of 2πn′ at the Dayem bridge side with a
particular probability Pn′

v
. Upon moving back to the readout
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point, we leave the nv = 2 or nv = 3 state by a phase-slip
process at the nanobridge side of 2πn′′, with a probability,
which can differ from Pn′

v
. The positions where this occurs

are marked by an orange (nv = 2) and yellow dot (nv = 3) in
Figs. 3(a) and 3(d). Since the change in vorticity in going from
the preparation point to the (B∗, I∗) position is not necessarily
the same as that in the “return trip”, the vorticity at the readout
point can be changed from the prepared vorticity, which is
reflected in the nonzero probabilities in the trace shown in
Fig. 3(b).

V. VALIDATION WITH TIME-DEPENDENT
GINZBURG-LANDAU SIMULATIONS

To validate the vorticity diamond model and gain in-
sight into the phase dynamics, we performed time-dependent
Ginzburg-Landau (tdGL) simulations of the NBSQUID. The
behavior of the superconducting condensate is described by
a complex-valued order parameter, which is allowed to vary
in time and space. We have used the tdGL equations for
dirty superconductors [26,27], where the order parameter is
described by

u√
1 + γ 2|�|2

(
∂

∂t
+ iϕ + γ 2

2

∂|�|2
∂t

)
�

= (∇ − iA)2� + (1 − |�|2)�. (5)

Here u ≈ 5.79 is the ratio of the relaxation time for the
amplitude and phase of the order parameter. A is the external
magnetic vector potential and ϕ is the electrostatic potential. γ
is a measure of the dirtiness of the sample, which characterizes
the influence of the inelastic phonon-electron scattering on the
condensate. Equation (5) is solved self-consistently with the
following equation for the scalar potential:

∇2ϕ = ∇ · Im[�∗(∇ − iA)�]. (6)

An external current is applied as a boundary condition to
the Poisson equation (6). These equations are dimensionless,
i.e., all lengths are measured in units of coherence length ξ ,
magnetic fields in units of the upper critical field Hc2, time
in units of Ginzburg-Landau time τGL = π h̄/8kBTcu, current
densities in units of j0 = 3

√
3

2 jd p, where jd p is the depairing
current density, voltage in ϕ0 = h̄/e∗τGL.

The equations are solved on a spatially discretized lattice,
with four grid points per coherence length ξ = 10 nm, im-
plying that the simulation box of 2 μm × 1 μm is 800 by
400 pixels. The approach of link variables is used, where the
order parameter � is defined on lattice nodes and the vector
potential A on the links between them. The time step is cho-
sen sufficiently small to guarantee the numerical stability of
forward-time central-space integration scheme for Eq. (5). For
the numerical simulations, an idealized geometry was used.
The Dayem bridge is 62.5 nm wide in the narrowest point, the
nanobridge is 55 nm × 175 nm, as shown in Fig. 4(a).

For each value of applied magnetic field, seven current
sweeps were executed. First, the order parameter was ini-
tialized randomly to simulate freezing in from the normal
state, resulting in spontaneous nucleation of vortex-antivortex

pairs. (Anti)Vortices either leave the loop through the external
boundary or enter the hole, contributing to the net vorticity.
The stochasticity of the nucleation process leads to differ-
ent initial vorticity states for the current sweep. A video
visualizing the evolution of the Cooper-pair density for this
nucleation process can be found in the Supplemental Material
[28]. Subsequently, the system was evolved deterministically
as the applied current was ramped up. The multivalued critical
current as a function of the applied field follows the vorticity
diamond model as indicated by the red dots in Fig. 4(b). The
surface area of each dot is proportional to the percentage
of current sweeps at a given magnetic field for which this
particular critical current value was obtained. Direct exam-
ination of the phase of the order parameter just before the
transition to the resistive state shows that the vorticity agrees
with the diamond number. The Little-Parks oscillation period
�B matches exactly the experimental value of 3.48 mT. The
top vertices of diamonds from simulations are less shifted
from B = 0 mT compared to the experiment, indicating a
smaller difference in the critical phases of the bridges. Like
in the experiment, switching currents show rounding at the
top vertices of the vorticity diamonds, reflecting a nonlinear
C�R in this current range. Larger observed differences in the
slopes of left and right branches indicate that bridges in the
simulation exhibit different inductances. This is likely due to
the more pronounced bridge asymmetry in the idealized ge-
ometry versus the case of the real sample. A more quantitative
description of this asymmetry can be found in reference [29].
As the critical phase angle of a bridge is proportional to its
length and the inductance to its aspect ratio [13], increasing
the width of the nanobridge by ∼10% shifts the diamonds to
a closer agreement with experimental data. This adjustment is
indicated by the blue dashed line in Fig. 4(b).

The performed numerical simulations can offer a direct in-
sight into the phase dynamics by following the current-voltage
(IV) characteristics, for example the IV curve obtained at the
field value indicated by the black-dashed line in Fig. 4(b).
There are two possible cases in these IV characteristics, hid-
den phase slip(s) can occur or no hidden phase slip(s) occur.
Figure 4(c) shows the case where no hidden phase slip(s)
take place, the system starts in vorticity nv = –1 (0) and by
increasing the current the system will transit to a dissipative
state indicated in blue (orange). Figure 4(d) shows the case
with two hidden phase slips events. In this figure, the SQUID
was frozen into vorticity nv = 1. By increasing the current the
edge of the vorticity diamond (Jext = 0.1900) of the nv = 1
vorticity is reached. At this point a hidden phase slip indicated
by a small spike (HPS1) occurs, this phase slip brings the
device to vorticity nv = –2. By further increasing the current
value the edge of this state is reached (Jext = 0.1925) and a
second hidden phase slip (HPS2) occurs, resulting in vorticity
nv = 0. Further increasing the current will lead to a switching
to the normal state, as was the case in Fig. 4(c). The evolution
of the Cooper-pair density of the events labeled in Fig. 4(d),
are visualized in Fig. 4(e). As HPS1 (2) occurs on the left
(right) side of the vorticity diamond a discontinuity in the
nano (Dayem) bridge is observed, while the transition to the
normal state (N) is preceded by a running phase slip (PS) in
both bridges.
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FIG. 4. (a) The geometry of the simulated device and the orientation of the applied magnetic field (B) and current density (Jext).
(b) Simulated critical currents as a function of the applied magnetic field (red dots). The surface area of each dot is proportional to the
percentage of current sweeps at a given magnetic field for which this particular critical current value was obtained. The solid-blue lines
represent vorticity diamonds from the simulation data. Increasing the width of the nanobridge by ∼10% shifts the diamonds to a closer
agreement with experimental data (dashed lines). [(c),(d)] Selected current-voltage characteristics (IVs) at the field marked by the dashed black
line in panel (b) (–0.88 mT). Panel (c) shows two IVs without hidden phase slips, starting from vorticity states nv = −1 and nv = 0. While
in panel (d), starting from initial vorticity state nv = 1, two hidden phase slip events occur. The spikes related to hidden phase slips HPS1
and HPS2 lead to the vorticity states indicated in green. The transition to the normal state (N) is preceded by a running phase slip (PS). (e)
Cooper-pair densities of the states marked with red dots in panel (d). HPS1: Three antivortices entering via HPS in the bottom bridge. HPS2:
Two antivortices leaving via HPS in the top bridge. PS: A continuously running phase slip, just before the transition to the normal state (N).

VI. CONCLUSIONS

We investigated the metastability and phase slip dynamics
of the different energy states associated with the vorticity or
winding number of a MoGe nanobridge SQUID. By utilizing
the unique vorticity diamond the system can be initialized in a
specific vorticity state. Based on the measurement conditions
(the freezing process), we demonstrated that the system is
already rendered in a metastable energy state. This could
prove of interest for future technological advancements, e.g.,
time resolved pulses for memory applications, or preparation
in higher vorticity states for signal enhancement similar to
Ref. [30]. By controlling the initial state and determining the
final state by measuring the Ic(B) oscillations this metasta-
bility was examined. Moreover, we are not limited to the
region where the SQUID transits to the normal state. At
low bias currents the used measurement protocol uncovered
the hidden phase slip regime. These phase slip(s) could be
associated with and explained by their corresponding energy

landscape. Not only can we determine in which specific arm
of the SQUID this phase slip happens, for certain cases one
can exactly determine which phase slip occurs [e.g., Fig. 3(a)
at 5 mT]. Due to the translational periodicity of the Ic(B)
oscillations the analysis for different initial vorticity states will
be analogous. Complementary tdGL simulations validated the
vorticity diamond model and demonstrated that the prepared
NBSQUID remains trapped within the whole vorticity di-
amond region. Further simulations showed that phase slips
occurred at certain field values with at least multiplicity two.
The small discrepancy between the experiment and simula-
tions can be explained due to the idealized SQUID geometry.
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