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Spin-triplet superconducting pairing in doped MoS2
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The search for triplet superconductivity has been pursued intensively in a broad field of material science and
quantum information for decades. Nevertheless, these novel states remain rare. Within a simplified effective
three-orbital model, we reveal a spin triplet pairing in doped MoS2 by employing both the finite-temperature de-
terminant quantum Monte Carlo approach and the ground-state constrained-phase quantum Monte Carlo method.
In a wide filling region of 〈n〉 = 0.60–0.80 around charge neutrality 〈n〉 = 2/3, the f -wave pairing dominates
over other symmetries. The pairing susceptibility strongly increases as the on-site Coulomb interaction increases,
and it is insensitive to spin-orbit coupling.
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I. INTRODUCTION

Currently, physics with electronic states described by the
Bloch wave functions obeying the Dirac equation has been
attracting widespread attention, with graphene and the surface
of three-dimensional (3D) topological insulators as notable
examples [1–3]. When combined with superconductivity, the
long sought-after Majorana fermions are expected to occur as
bound states at vortices in the topological superconducting
state [4]. The growing interest in realizing unconventional
superconductivity, particularly in graphene [5–10], is justified
not only because it pushes us to understand the superconduct-
ing mechanisms in solids, but also because it may present
more opportunities for topological quantum physics [2]. In
particular, possible triplet superconductivity [7–10] has been
pursued intensively, as it may be instrumental in the realiza-
tion of topological quantum computation [11–16].

Recently, MoS2 has been shown to undergo a supercon-
ducting transition at high carrier concentrations when the
material is heavily gated to the conducting regime [17–22].
Interestingly, the Brillouin zone of MoS2 is hexagonal and,
around the edges of this zone, the low-energy fermionic ex-
citations behave as massive Dirac particles [23]. MoS2 is a
monolayer of molybdenum disulfide, which consists of trian-
gularly arranged Mo atoms sandwiched between two layers of
triangularly arranged S atoms [24,25]. Ferromagnetic behav-
ior has been reported associated to defects or edges [26–29],
indicating that the electron-electron interactions in MoS2 are
non-negligible [30]. Spontaneous valley polarization has also
been detected experimentally [31], which was attributed to
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correlated behavior stemming from the transition-metal atoms
[32,33]. The combination of electron correlations and massive
Dirac physics in MoS2 is expected to lead to novel proper-
ties, as, for example, unconventional superconductivity, which
could share similarities to that found in doped cuprates or
iron-based superconductors [34].

The origin of superconductivity in heavily doped MoS2

has been previously studied, and different superconducting
pairing phases have been theoretically suggested [35–38].
For example, depending on the electron-electron interactions
and Rashba spin-orbit coupling, MoS2 may show possi-
ble topological superconducting phases [37]. When both
the electron-phonon and electron-electron interactions are
taken into account, some authors report conventional pairing
phases [36], while others find unconventional superconduc-
tivity [35,38]. In this scenario, where electron correlations are
non-negligible and different methods point to different pairing
mechanisms, it is essential to predict the pairing symmetry
using unbiased, numerically exact tools. Hartree-Fork-type
approaches, which have been used widely, are biased if elec-
tronic correlations dominate in the system. Experimentally,
recent measurements have excluded a fully gapped supercon-
ducting state in MoS2, revealing the presence of a density of
states (DOS) that vanishes linearly with energy [39]. This is
a strong indication that a conventional, purely phonon-driven
mechanism is not enough and that electronic correlations do
play a role.

There are multiple numerical techniques that have been
devoted to the calculations of pairing order parameters. A
remarkable theoretical study using dynamical mean-field the-
ory reports triplet pairing superconductivity in Sr2RuO4 [40].
The possible topological superconducting phases of MoS2

were found using the group theoretical approach [37]. By em-
ploying the variational Monte Carlo method, the d-wave and
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FIG. 1. (a) MoS2 lattice with indication of unit cell posi-
tion r = ma1 + na2. The vectors connecting nearest neighbors
are α, β, γ , while those connecting next-nearest neighbors are
α′, β ′, γ ′ (or R1, R2, . . . , R6). (b) Hopping integrals between
two transition-metal atoms connected by the lattice vector R1.
(c) Electronic structure of MoS2 for the three-orbital tight-binding
model with t0 = −1.0, t1 = 2.2, t2 = 2.3, t11 = 1.3, t12 = 1.6, t22 =
0.16, ε1 = 4.6, and ε2 = 10.5 in units of |t0|. (d) Site-dependent form
factors for f -wave and f n-wave pairing in the triangular lattice.

p-wave pairing states on the square lattice have been investi-
gated [41]. There are also some newly developed methods that
embed machine learning techniques to tackle the many-body
problem in correlated systems [42]. However, due to the rather
complex structure of the complete model of MoS2 with 11
orbitals [43], numerical tools are difficult to use if one wants
to treat both the electronic correlations and lattice geometry
on the same footing.

In the present work, within a minimum three-orbital
tight-binding model [44], we establish spin-triplet supercon-
ductivity in doped MoS2 due to electron correlations, using
both the finite-temperature determinant quantum Monte Carlo
(DQMC) [45–48] method and the constrained-phase quantum
Monte Carlo (PCPMC) method [10,49–51]. The influence of
spin-orbit couplings is also examined.

II. MODEL AND METHODS

To make use of highly controllable and unbiased nu-
merical methods to study the physical properties caused by
electronic correlations in MoS2, a simplified Hamiltonian
is required. Next, we briefly introduce the effective three-
orbital tight-binding model for MoS2 [44], which contains
two key ingredients for this material: d orbitals coming from
transition-metal atoms and the concomitant massive Dirac
physics at low energies.

Essentially, this material forms a hexagonal lattice with
three atoms per unit cell: one transition metal and two chalco-
gens, and its lattice structure is shown in Fig. 1(a). The
honeycomb structure occurs only in the so-called 2H phase,
which is the phase of MoS2. The lattice is composed of three
layers: the top and bottom layer made of chalcogen atoms,
and the middle layer, halfway between these two, made of
molybdenum atoms, shown as red circles in Fig. 1(a). The two
chalcogens, shown as blue circles in Fig. 1(a), are vertically
aligned and sit on top of each other.

The simplest tight-binding model for this material [44]
considers only three d orbitals sitting at the sites of the trian-
gular lattice. As shown in Fig. 1(b), we can define six hopping
parameters, which, following the notation of Ref. [44], can be
denoted by t0, t1, t2, t11, t22, t12. In the figure, we indicate both
forward and backward hoppings (see the arrows). Note that for
hopping integrals involving the orbitals dxy, there is a negative
sign difference between forward and backward hoppings due
to the symmetry of the dxy orbital.

The model we consider in this work is the three-orbital
tight-binding model on a triangular lattice with Hubbard-like
on-site interaction. The Hamiltonian may be written as H =
H0 + HU , where, for the kinetic part H0, the complication
comes from the fact that we have three orbitals per lattice site
and six different direction-dependent hoppings between the
three orbitals. In the basis dz2 , dxy, dx2−y2 , the matrix elements
of H0 can be written in direct space as 3 × 3 matrices,

Hr,r =
⎡
⎣ε1 0 0

0 ε2 0
0 0 ε2

⎤
⎦, (1)

Hr,r±a1 =
⎡
⎣ t0 ±t1 t2

∓t1 t11 ±t12

t2 ∓t12 t22

⎤
⎦, (2)

Hr,r±a2 =

⎡
⎢⎣

t0 ± 1
2 t1 −

√
3

2 t2 ∓
√

3
2 t1 − 1

2 t2
∓ 1

2 t1 −
√

3
2 t2

1
4 t11 + 3

4 t22

√
3

4 [t22 − t11] ∓ t12

±
√

3
2 t1 − 1

2 t2
√

3
4 [t22 − t11] ± t12

3
4 t11 + 1

4 t22

⎤
⎥⎦, (3)

Hr,r±(a2−a1 ) =

⎡
⎢⎣

t0 ± 1
2 t1 +

√
3

2 t2 ∓
√

3
2 t1 − 1

2 t2
∓ 1

2 t1 +
√

3
2 t2

1
4 t11 + 3

4 t22 −
√

3
4 [t22 − t11] ± t12

±
√

3
2 t1 − 1

2 t2 −
√

3
4 [t22 − t11] ∓ t12

3
4 t11 + 1

4 t22

⎤
⎥⎦. (4)

The band structure for H0 along path � − M − K − � in
the hexagonal Brillouin zone is shown in Fig. 1(c). Charge
neutrality occurs when the lowest band is totally filled, with
a number of electrons per unit cell and orbit of 〈n〉 = 2/3.

The finite band gap to the next band makes these materials
semiconducting. Around the K point, where the low-energy
massive Dirac spectrum appears, the result is in good agree-
ment with the 11-orbital model [43,52]. Working in units of
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|t0|, the parameters used here are t0 = −1.0, t1 = 2.2, t2 =
2.3, t11 = 1.3, t12 = 1.6, t22 = 0.16, ε1 = 4.6, and ε2 = 10.5.
These parameters are also representative for other members
of the transition-metal dichalcogenides family [44], such as
WSe2 (as a reference, t0 = −0.184 eV for MoS2 and t0 =
−0.207 eV for WSe2). In the following, we use t ≡ |t0| as the
energy unit.

A distinctive aspect of MoS2 is that unlike graphene, the
spin-orbit coupling in these materials cannot be neglected
[1]. Actually, the spin-valley coupling in transition-metal
dichalcogenides, which opens the door to the possible control
of spin and valley degrees of freedom [23,53], is rooted in
the non-negligible spin-orbit coupling of these materials. The
origin of the spin-orbit coupling in MoS2 is due to the heavy
transition-metal atoms and is well described by the intrinsic
contribution HSO = λL · S [23,44]. It gives rise to a charac-
teristic spin splitting of the valence-band maximum, which
has been measured in excellent agreement with theory [54].
The value of the spin-orbit coupling parameter λ depends on
the specific transition-metal atom, but is found to be in the
range λ ≈ t (according to Ref. [44], for MoS2 it is λ 	 0.40t ,
and for WSe2, it is λ 	 1.1t). Within first-order perturbation
theory, we can readily identify the matrix elements of the
spin-orbit Hamiltonian in our tight-binding approach,

H (spin)
r,r =

[
Hr,r + λ

2 Lz 0
0 Hr,r − λ

2 Lz

]
, (5)

where Hr,r is given by Eq. (1) and the matrix Lz is the z
component of the orbital angular momentum,

Lz =
⎡
⎣0 0 0

0 0 2i
0 −2i 0

⎤
⎦. (6)

The simplified effective three-orbital tight-binding model
may be seen as a three-layer triangular lattice: one layer for
each of the three d orbitals in the model. For these types
of structures, one can design a lattice with 3 × 3 × L2 sites,
which could be reachable by using the finite-temperature
DQMC and PCPMC methods for L � 5. Thus, the effec-
tive simplified model provides an opportunity to make use
of highly controllable and unbiased numerical methods to
study the possible electronic correlation-driven phases in
transition-metal dichalcogenide materials, in particular super-
conductivity.

From the simplified effective three-orbital tight-binding
model, the Hamiltonian can be written as

H =
∑

〈r,r′〉,σ
c†

rσHr,r′cr′σ +
∑
r,σ

c†
rσ

(
Hr,r + λ

2
σLz

)
crσ

+U
∑
r,γ

nrγ↑nrγ↓ − μ
∑
r,γ ,σ

nrγ σ , (7)

where c†
rσ = (c†

r,dz2 ,σ
, c†

r,dxy,σ
, c†

r,dx2−y2 ,σ
) is a row vector in or-

bital space and c†
r,γ ,σ is the electron creation operator at lattice

site r of the effective layer (orbital) γ and with spin polariza-
tion σ =↑,↓. The third term is HU , where U labels the on-site
repulsive interaction, and in the last term, μ is the chemical
potential. The explicit expressions for the Hr,r′ matrices, with
r, r′ nearest neighbors, are given in Eqs. (1)–(4).

The numerical method used is the DQMC approach and
PCPMC method. The DQMC approach has been widely
used for decades [9,45–48,55–58]. The PCPMC method is a
generalization of the constrained-path Monte Carlo (CPMC)
method [49–51] and is an analog of the fixed-phase general-
ization of the fixed-node diffusion Monte Carlo method [59].
The PCPMC method has yielded very accurate results for
the ground-state energy and other ground-state observables
for various strongly correlated lattice models [60–63] and for
atoms, molecules, and nuclei [64].

The constrained-path method approximately handles the
sign problem, which is caused by a broken symmetry in
the space of Slater determinants, by eliminating any random
walker as soon as 〈φi|ψT 〉 < 0. The presence of the spin-orbit
interaction in the Hamiltonian means that the ground state
cannot be real. To ensure that samples come from a real,
non-negative distribution, the constrained-phase approxima-
tion generalizes the constrained-path condition: with a phase
θ defined by

eiθ ≡ 〈φ|ψT 〉/|〈φ|ψT 〉|,
two simple forms of the constrained-phase method follow
[49] by replacing the walker either by |φ〉 ← cos(θ )e−iθ |φi〉,
and eliminating the walker if Re〈φi|ψT 〉 < 0, or by |φ〉 ←
e−iθ |φi〉, which makes 〈φi|ψT 〉 > 0. Here, we used the first
constraint. In the PCPMC method, extensive benchmark cal-
culations showed that the systematic error induced by the
constraint is within a few percent and the ground-state observ-
ables are insensitive to the choice of trial wave function. In our
PCPMC simulations, we employ closed-shell electron fillings
and use the corresponding free-electron U = 0 wave function
as the trial wave function. To further justify the accuracy
of our PCPMC method, we provide a comparison between
PCPMC and exact-diagonalization methods in Appendix A.
For more details, we refer to Refs. [10,64,65].

To investigate the superconducting properties, we compute
the pairing susceptibility [9,47,48,55–58],

Pα = 1

Ns

∑
r,r′,γ

∫ β

0
dτ 〈†

α (r, γ , τ )α (r′, γ , 0)〉, (8)

where †
α (r, γ ) is the corresponding order parameter,

written as

†
α (r, γ ) =

∑
m

f †
α (δm)(crγ↑cr+δmγ↓±crγ↓cr+δmγ↑)†. (9)

Here, α stands for the pairing symmetry, fα (δm) is the form
factor of the pairing function, and the vectors δm connect
nearest neighbor (m = 1, 2, . . . , 6) or next-to-nearest neigh-
bor (m = 1, 2, . . . , 12) sites. We specify below the pairing
symmetries that we consider in this work.

The pairing correlation function that we compute is
given by

Cα (r = ri − rj) =
∑

γ

〈†
α (ri, γ )α (rj, γ )〉. (10)

To extract the intrinsic pairing correlation in the finite system,
we also examined the vertex contributions to the correlations
defined by

Vα (r) = Cα (r) − Cα (r), (11)
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FIG. 2. (a) Pairing susceptibility Pα for different pairing sym-
metries vs temperature T at U = 3.0t , 〈n〉 = 0.60 and λ = 1.0t .
(b) f -wave pairing susceptibility vs temperature T at U = 3.0t and
λ = 1.0t for different electronic fillings around charge neutrality.

where Cα (r) represents the uncorrelated single-particle con-
tribution. Each term in Cα (r), such as 〈a†

↑a↑a†
↓a↓〉, has a

corresponding term 〈a†
↑a↑〉〈a†

↓a↓〉.

III. RESULTS AND DISCUSSION

The basic geometry in the structure of the simplified model
is a three-layer triangular lattice. For the superconductivity in
MoS2, the possible dominant pairing symmetry in one plane
of the triangular lattice may play a key role, as in doped
cuprates for multilayer superconductors [66]. In a triangular
lattice, we may consider seven types of pairing forms, with
form factors fs(l ), fd (l ), and fdn (l ) for the singlet pairing,
and fp(l ), fpn (l ), f f (l ), and f fn (l ) for the triplet pairing (see
Refs. [67–69]). The subscript n in pn-, dn-, and fn-wave sym-
metry refers to the next-to-nearest-neighbor version of Eq. (9).
Among those we study, the f - and fn-wave pairing factors are
shown in Fig. 1(d), which are both triplet pairing forms.

In Fig. 2(a), we present the pairing susceptibility with dif-
ferent symmetries as a function of temperature at the electron
filling 〈n〉 = 0.6 for U = 3.0t and spin-orbit coupling param-
eter λ = 1.0t . It is interesting to see that for the electronic
filling we investigated, triplet pairing with f -wave symme-
try dominates. Moreover, as the temperature decreases, the
pairing susceptibility increases, which means that the pairing
susceptibility may diverge at some low temperature, result-
ing in the existence of superconductivity. Figure 2(b) shows
the pairing susceptibility with f -wave symmetry for different
electronic fillings around charge neutrality. Recall that charge
neutrality occurs at 〈n〉 = 2/3, when the lowest band shown
in Fig. 1(c) is completely filled. In Fig. 2(b), for 〈n〉 = 0.65,
the pairing susceptibility hardly increases as T is lowered.
In this case, the system is very close to the band insulating
state. As either the hole or electron density is increased, the
pairing susceptibility also increases at lower temperatures.
This agrees with experiments, where high carrier densities are
required for superconductivity to be observed.

To further identify which pairing symmetry is dominant
through numerical calculations in finite-size systems, we
investigate the long-range part of the ground-state pairing
correlation function [55,70,71] using the PCPMC method. In
Fig. 3, we compare the long-range part of the pairing correla-

FIG. 3. The pairing correlation function for different pairing
symmetries vs the distance r at U = 3.0t and 〈n〉 ≈ 0.60 with (a) λ =
0 and (b) λ = 1.0t . Here a refers the lattice spacing.

tion function for different pairing symmetries. In Fig. 3(a),
we show the results obtained in the absence of spin-orbit
coupling, λ = 0, and in Fig. 3(b) for a finite spin-orbit cou-
pling of λ = t . The simulations were performed on the L = 5
lattice at U = 3.0t and 〈n〉 ≈ 0.60, with a closed-shell filling
of Nup = Ndn = 67. As can be seen in Fig. 3(a), when there is
no spin-orbit coupling, the f -wave pairing symmetry plays a
dominant role. When the spin-orbit coupling increases to λ =
1.0t in Fig. 3(b), the f -wave pairing symmetry still dominates
for all long-range distances between electron pairs. When the
spin-orbit coupling increases from λ = 0 to λ = 1.0t , the pair-
ing correlation function for d-, p-, f -, and dn-wave symmetry
decreases, while that for the pn-wave always stays close to
zero. We conclude that while an increased spin-orbit coupling
may inhibit the pairing correlations, it does not affect the main
electron pairing forms.

To study the influence of the electron density on the pairing
correlations function Cα , we increased the electron density
to 〈n〉 ≈ 0.79, which corresponds to a closed-shell filling of
Nup = Ndn = 89. The results are shown in Fig. 4. Apart from
a different electron density, we used the same parameters as
those in Fig. 3(b). It can be seen that increasing the electron
density to 〈n〉 ≈ 0.79 increases the Cα of all pairing sym-
metries. Nevertheless, the f -wave symmetry still dominates
over other pairing symmetries, which points to an f -wave
superconducting state. This also reinforces our findings in
Fig. 3.

In Fig. 5, we show the vertex contribution to the pairing
correlation function, given by Eq. (11), for the f -wave pairing
symmetry at zero temperature. In Fig. 5(a), the electron den-
sity was set to 〈n〉 = 0.60, and in Fig. 5(b), to 〈n〉 = 0.79, both
with a spin-orbit coupling λ = 1.0t . The results are shown at
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FIG. 4. The pairing correlation function for different pairing
symmetries vs the distance r at U = 3.0t and 〈n〉 ≈ 0.79 with λ =
1.0t .

three different values of the interaction: U = 0.0, 1.5t , and
3.0t . It is clear that the vertex contribution becomes larger
when the interaction increases. Comparing Figs. 5(a) and 5(b),
we find that an increased electron density makes the vertex
contribution smaller.

In this work, we focus on the closed-shell case, which leads
us to naturally choose the corresponding free-electron wave
function as the trial wave function. The selection of closed-
shell filling can generally reflect the physical properties of
the doped system. To further verify our results, Fig. 6 shows
simulations performed on a larger lattice of L = 6 at U = 3.0t
and 〈n〉 ≈ 0.61, with a closed-shell filling of Nup = Ndn = 99.
By comparing Figs. 3 and 6, it can be seen that in the L = 6
lattice, it remains the same as in the L = 5 lattice that the
f -wave pairing symmetry still dominates among all the elec-

FIG. 5. The vertex contribution to the pairing correlation func-
tion for different interactions U vs the distance r at (a) 〈n〉 ≈ 0.60
and (b) 〈n〉 ≈ 0.79. In both panels, we set λ = 1.0t and show the
results for U = 0.0, U = 1.5t , and U = 3.0t .

FIG. 6. The pairing correlation function for different pairing
symmetries vs the distance r on L = 6 lattice at U = 3.0t and 〈n〉 ≈
0.61, with a closed-shell filling of Nup = Ndn = 99. The spin-orbit
coupling is (a) λ = 0 and (b) λ = 1.0t .

tron pairing symmetries. These data provide evidence that the
finite-size effect caused by closed-shell filling does not affect
the qualitative results we are concerned with, where we need
not make a filling-dependent systematic finite-size study.

IV. CONCLUSIONS

By using finite-temperature determinant quantum Monte
Carlo and the constrained-phase quantum Monte Carlo meth-
ods, we revealed spin-triplet superconducting pairing in doped
MoS2 within a simplified effective three-orbital model. Our
intensive unbiased numerical results show that in a wide
electron filling region, superconducting pairing with f -wave
symmetry dominates, regardless of the spin-orbit couplings.
The enhanced pairing susceptibility with increasing interac-
tion indicates that in a scenario where electronic correlations
dominate over the electron-phonon coupling, unconventional
triplet superconductivity is to be expected in doped MoS2.
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(a) (b)

FIG. 7. 4 × 4 Hubbard model in a magnetic field of 1/4 flux
quanta per plaquette with four spin-up (and four spin-down) elec-
trons. (a) The potential energy and (b) the double occupancy as a
function of U for ED (red line with circles) and PCPMC (blue dots).
The error bar is within the symbol.

APPENDIX A: BENCHMARKING THE PCPMC METHOD

To justify the accuracy of the PCPMC method, here we
present results that confirm the reliability of this computa-
tional method.

In Table I, we show a comparison of the PCPMC method
with exact-diagonalization (ED) results on the square lat-
tice with different electron dopings and spin-orbit interaction
strengths. The PCPMC method agrees well with the ED
results for the energies, double occupancies, and spin-spin
correlations. We also make a comparison of the PCPMC
method with the projective auxiliary-field quantum Monte
Carlo (PQMC) algorithm on the Kane-Mele-Hubbard model,
and at half filling, where there is no sign problem in the cor-
responding PQMC simulations. The PQMC algorithm used
for the simulations constitutes an unbiased, controlled, and
numerically exact method [72]. For the three cases shown in
Table I, the key point is that the PCPMC method agrees well

FIG. 8. Total energy E as a function of electronic density 〈n〉 for
the (a) L = 5 lattice and (b) L = 6 lattice with λ = 1 at T = 0 in the
noninteracting limit (U = 0).
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FIG. 9. The pairing correlation function for different pairing
symmetries vs the distance r at (a) 〈n〉 ≈ 0.58 and (b) 〈n〉 ≈ 0.78,
which are both open-shell fillings. Here, U = 3.0t , λ = 1.0t , and
L = 5.

with both ED and PQMC results, thus allowing for accurate
simulations.

Figure 7 shows the 4 × 4 site Hubbard model in a magnetic
field of 1/4 flux quanta per plaquette with four spin-up (and
four spin-down) electrons. The potential energy is shown in
Fig. 7(a) and the double occupancy in Fig. 7(b), both as a
function of U . The red line with circles is for ED and the blue
dots are for PCPMC. The error bar is within the symbols. One
can see that the free-electron U = 0 wave function tends to be
a good choice for |�T 〉, even when U is increased up to the
bandwidth of the square lattice.

APPENDIX B: PAIRING CORRELATION
AT OPEN-SHELL FILLINGS

We present more results on pairing correlation at open-
shell fillings to further support the conclusion derived from
closed-shell fillings. To have a global picture of the closed-
shell and open-shell fillings, the total energy as a function of
the electronic density 〈n〉 for a 3 × 3 × 52 lattice Fig. 8(a) and

FIG. 10. The pairing correlation function for different pairing
symmetries vs the distance r at (a) 〈n〉 ≈ 0.57 and (b) 〈n〉 ≈ 0.61,
which are both open-shell fillings. Here, U = 3.0t , λ = 1.0t , and
L = 6.

3 × 3 × 62 lattice [Fig. 8(b)] at U = 0 is shown in Fig. 8.
Some closed-shell fillings are marked by horizontal dashed
lines in red color, and the open-shell fillings are on the “plat-
form.” indicating the system degeneracy.

In Fig. 9, the pairing correlation with different symme-
tries is shown at Nup = Ndn = 65, 〈n〉 ≈ 0.58 [Fig. 9(a)] and
Nup = Ndn = 88, 〈n〉 ≈ 0.78 [Fig. 9(b)], which are all at open-
shell filling. As they are at open-shell filling, we use the
unrestricted Hartree-Fock wave functions as the trial wave
function. One can see that within the filling range that we
studied, the pairing correlation function with f -wave symme-
try dominates, which is consistent with that of closed-shell
fillings.

Similar results are shown for L = 6 in Fig. 10, in which
pairing correlation at two open-shell fillings, Nup = Ndn = 92
[Fig. 10(a)] and Nup = Ndn = 98 [Fig. 10(b)], is shown. Again
we see that the pairing correlation with f -wave symmetry
dominates over other symmetries. These data at open-shell
fillings further support the conclusion in the main body of this
paper.
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