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Higher angular momentum pairing states in Sr2RuO4 in the presence of longer-range interactions
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The superconducting symmetry of Sr2RuO4 remains a puzzle. Time-reversal symmetry breaking dx2−y2 +
igxy(x2−y2 ) pairing has been proposed for reconciling multiple key experiments. However, its stability remains
unclear. In this work, we theoretically study the superconducting instabilities in Sr2RuO4, including the effects
of spin-orbit coupling (SOC), in the presence of both local and longer-range interactions within a random-phase
approximation. We show that the inclusion of second-nearest-neighbor repulsions, together with nonlocal SOC
in the B2g channel or orbital-anisotropy of the nonlocal interactions, can have a significant impact on the stability
of both dx2−y2 - and g-wave pairing channels. We analyze the properties, such as Knight shift and spontaneous
edge current, of the realized dx2−y2 + ig, s′ + idxy, and mixed helical pairings in different parameter spaces, and
we find that the dx2−y2 + ig solution is in better agreement with the experimental data.
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I. INTRODUCTION

The nature of the unconventional superconductivity in
Sr2RuO4 (SRO) remains an outstanding open question after
more than 27 years of study, despite this material being sim-
pler than the high-temperature cuprates in many respects. The
samples are clean, and superconductivity condenses from a
well-defined Fermi liquid normal state so that it is natural to
take an itinerant-electron perspective, where superconductiv-
ity is an instability of the Fermi surface (FS). However, despite
intense efforts, an order parameter (OP) that is consistent with
all the key experimental observations is lacking.

A multicomponent OP is inferred from a variety of ex-
periments, including muon spin rotation (μSR) [1,2], polar
Kerr [3], Josephson relation [4], and ultrasound measurements
[5–7]. The multicomponents can be degenerate by symmetry,
belonging to the two-dimensional irreducible representations
(irrep.) of the crystal point symmetry group, or be degenerate
accidentally, belonging to two distinct one-dimensional irreps.

Possible symmetry-related OPs for a crystal with D4h

symmetry are spin-triplet px ± ipy with Eu symmetry and
spin-singlet dxz ± idyz (Eg). Both are difficult to reconcile
with experiments. The px ± ipy pairing is inconsistent with
the significant drop of the in-plane Knight shift below Tc

observed in recent NMR experiments [8,9]. The dxz ± idyz

has symmetry-protected horizontal line nodes at kz = 0 that
conflict with thermal conductivity and scanning tunneling
microscopy (STM) studies, where vertical line nodes are in-
dicated [10,11]. In addition, it would produce a jump in the
elastic modulus associated with shear B1g strain, which is not
observed in experiments [5]. Indeed, no dxz ± idyz pairing has
been found in microscopic calculations for SRO [12,13] ex-
cept in studies of orbital pairings that include sizable interband
pairing [14,15]. We briefly discuss interband pairing in the
conclusions.

The above difficulties associated with the symmetry-
related OPs focused attention on the accidental degeneracy
scenario, even though it usually requires fine-tuning. The need
for fine-tuning can be somewhat relaxed by considering in-
homogeneous states, where, for example, the second OP is
induced by inhomogeneous strains near dislocations [16,17].
This scenario is consistent with recent μSR [2] and ultrasound
attenuation measurements [7].

Recently, a time-reversal symmetry breaking (TRSB)
dx2−y2 ± igxy(x2−y2 ) pairing with symmetry-protected vertical
line nodes has been proposed to explain multiple key experi-
ments [18,19]. Although dx2−y2 -wave is stable in SRO models
in the presence of on-site interactions [20–27], g-wave is not
favored. It has been suggested that the g-wave state may be
stabilized by longer-range interactions based on studies of
single-band Hubbard models [28,29]. A recent study [27]
found that neither dx2−y2 - nor g-wave pairing is favored in SRO
in the presence of orbital-isotropic longer-range Coulomb
repulsions. Instead, an s′ + idxy solution was suggested with
gap minima near (1,1,0), which, like dx2−y2 + ig order, is
also consistent with NMR and ultrasound measurements (s′
labels nodal s-wave states). The calculations in Ref. [27] are
performed in an intermediate Hubbard-U regime, U ≈ 1.1t ,
where t is the primary hopping amplitude.

It was recently reported in Ref. [15] that the g-wave pairing
could be stabilized in SRO by strong nonlocal SOC in the
B2g channel (ηB2g) within the so-called Hund’s coupling mean-
field approach. In this framework, superconducting pairings
are generated by attractive on-site interactions due to strong
Hund’s coupling. However, Refs. [13,30] suggested that, in
general, Hund’s pairing is less favored than spin-fluctuation
pairing in SRO due to its nesting features. Therefore, it is of
interest to study the effects of ηB2g in SRO more generally.

In this work, we study the superconducting instabilities
in the presence of both local and longer-range Coulomb
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repulsions in SRO in a realistic multiorbital model, with local
and nonlocal SOC, over a range of U and other interac-
tion parameters, including the effects of orbital anisotropies.
One focus is identifying the effects that stabilize g-wave. In
this paper, the effective interactions are treated within the
random-phase approximation (RPA). Our studies include both
the weak-coupling limit and finite-U RPA. While RPA in-
cludes some higher-order scatterings associated with finite
interactions and has been shown to agree with other meth-
ods for a one-band model [31], it is unclear whether RPA
provides a more accurate description for SRO beyond weak
coupling.

We find that nearest-neighbor (NN) Coulomb repulsion,
V NN, combined with next-nearest-neighbor (NNN) repulsion,
V NNN, promotes g-wave pairing. Depending on the strength of
U , g-wave pairing becomes the leading or the first subleading
pairing for a substantial range of V NN and V NNN. ηB2g and
orbital anisotropies of V NN and V NNN can further stabilize
the g-wave phase. Although dx2−y2 pairing is not favored in
the presence of orbital-independent V NN and V NNN, it can
be stabilized by the effects of ηB2g and longer-range inter-
action anisotropies. As a result, accidentally/near-degenerate
dx2−y2 and g pairing can be obtained at the phase bound-
aries in certain parameter spaces. We also study the physical
properties of the realized dx2−y2 ± ig pairing and compare it
with another two recently proposed pairing candidates: the
s′ ± idxy [27] and a mixed helical pairing [32]. We find that
the dx2−y2 + ig is somewhat in better agreement with the
experiments.

The paper is organized as follows. The microscopic model
and method employed are discussed in Sec. II and the re-
sults of our RPA calculations are presented in Sec. III. The
physical properties of the possible two-component OPs are
discussed in Sec. IV. Section V contains our conclusions and
further discussion, including a brief discussion of interband
pairing that is found in some studies of SRO [15,33]. Finally,
some details are left to Appendixes, including the deriva-
tion of the effective interactions in Appendix A, the effects
of V NN in Appendix B, the more detailed analysis of the
stability of dx2−y2 - and g-wave pairing in Appendix C, and
the general effects of longer-range interaction anisotropies in
Appendix D.

II. MODEL AND METHOD

We consider the microscopic model Hamiltonian for the
three conduction bands of SRO,

H = HK + Hint, (1)

where HK is the kinetic energy part that gives rise to the
normal state FSs, and Hint is the interaction.

HK can be written in the basis �(k) = [ck,1,↑;
ck,2,↑; ck,3,↓; ck,1,↓; ck,2,↓; ck,3,↑]T , so that it is block-diagonal,

ĤK (k) =
(

H↑↑(k) 0

0 H↓↓(k)

)
, (2)

where {1, 2, 3} = {dyz, dxz, dxy} orbitals, and c†(c) is the elec-
tron creation (annihilation) operator,

Hss(k) =

⎛⎜⎜⎝
εyz,k gk + isη −sη − iη

B2g

k

gk − isη εxz,k iη + sη
B2g

k

−sη + iη
B2g

k −iη + sη
B2g

k εxy,k

⎞⎟⎟⎠,

(3)

with s = 1 (−1) for spin ↑ (↓). εyz(xz),k = −2t cos ky(x) −
2t⊥ cos kx(y) − μ and εxy,k = −2t ′(cos kx + cos ky) −
4t ′′ cos kx cos ky − μc describe intraorbital hoppings;
gk = −4t ′′′ sin kx sin ky is the hopping between dxz and

dyz orbitals. η is the atomic SOC, and η
B2g

k = 4ηB2g sin kx sin ky

is the nonlocal SOC in the B2g channel. Diagonalizing
ĤK gives three doubly degenerate energy bands labeled
by band index, {α, β, γ }, and pseudospin, σ =↑ (↓).
The band parameters are (t, t⊥, t ′′′, t ′, t ′′, μ, μc ) =
(1, 0.11, 0.05, 0.8, 0.32, 1.05, 1.1)t , which capture the
overall band structure and FS sheets of SRO. For now, the
magnitudes of η and ηB2g are left undetermined and will be
suitability varied to analyze the effects of SOC. The resulting
FSs for two different values of the SOC parameters are shown
in Fig. 9 in Appendix C.

The interaction Hamiltonian (with on-site and longer-range
interactions) is

Hint = U

2

∑
i,a

nia↑nia↓ + U ′

2

∑
i,a �=b,s,s′

niasnibs′

+ J

2

∑
i,a �=b,s,s′

c†
iasc

†
ibs′cias′cibs

+ J ′

2

∑
i,a �=b,s �=s′

c†
iasc

†
ias′cibs′cibs (4a)

+
∑

i,δ={±x̂,±ŷ},a,b,s,s′

V NN
ab,δ

2
ni,a,sni+δ,b,s′

+
∑

i,δ={±x̂±ŷ},a,b,s,s′

V NNN
ab,δ

2
ni,a,sni+δ,b,s′ , (4b)

where ni,a,s ≡ c†
i,a,sci,a,s is the spin- and orbital-resolved elec-

tron density operator at site i. Equation (4a) describes the
on-site interaction, where U (U ′) is the intra- (inter)orbital re-
pulsive Hubbard interaction, J is the Hund’s coupling, and J ′
is the pair hopping. Equation (4b) describes the longer-range
interactions, where V NN

ab,δ (V NNN
ab,δ ) is the NN (NNN) Coulomb

repulsion.
For simplicity, we take J ′ = J and U ′ = U − 2J [SO(3)

symmetry] [34] and ignore the dxy/z anisotropy due to hy-
bridization with oxygen orbitals [35,36], but we will briefly
comment on the effect of this anisotropy in Sec. V. V NN

ab,δ and
V NNN

ab,δ are t2g orbital-dependent, and their orbital-anisotropies
are defined as

αab,δ ≡ V NN
ab,δ

V NN
11,x̂

− 1 ≡ V NN
ab,δ

V NN
− 1, (5)

βab,δ ≡ V NNN
ab,δ

V NNN
11,x̂+ŷ

− 1 ≡ V NNN
ab,δ

V NNN
− 1, (6)
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where V NN
11,x̂ (V NNN

11,x̂+ŷ) is the intraorbital interaction between two
NN (NNN) dyz orbitals with δ = x̂ (δ = x̂ + ŷ). {αab,δ} = 0
({βab,δ} = 0) describes the orbital-isotropic V NN (V NNN) case.
From rotation symmetry in the t2g orbital space, there are six
free orbital-anisotropy parameters: α33, α23,±x̂, α12, β33, β13,
and β12. Here, and in the following, we drop the subscript δ in
α33,δ , α12,δ , and βab,δ as these parameters are δ-independent.
Following from symmetry,

α22,±ŷ = α11,±x̂ = 0, (7a)

α33 = α22,±x̂ = α11,±ŷ, (7b)

α12 = α23,±ŷ = α13,±x̂, (7c)

α23,±x̂ = α13,±ŷ, (7d)

and

β11 = β22 = 0, (8a)

β13 = β23. (8b)

To study the superconducting instabilities, we obtain effec-
tive pairing vertices within the RPA. Taking the static limit,
the effective interaction in the orbital basis reads

Veff = 1

4

∑
k,k′

[
(k, k′)]ã1ã2
ã3ã4

c†
k,ã1

c†
−k,ã3

c−k′,ã4 ck′,ã2 , (9)

where ã1 = {a1, s1} is a composite index that labels both or-
bital and spin, and

[
(k, k′)]ã1ã2
ã3ã4

=
∑
δ,δ′

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)
[W̃ (δ)]ã1ã2

ã3ã4

(
e−ik′ ·δ 0

0 eik′ ·δ

)
(10a)

−
(

eik·δ 0

0 eik·δ

)
[W̃ (δ)χRPA(k, k′; δ, δ′)W̃ (δ′)]ã1ã2

ã3ã4

(
e−ik′ ·δ′

0

0 eik′ ·δ′

)
(10b)

+
(

eik·δ 0

0 eik·δ

)
[W̃ (δ)χRPA(k,−k′; δ, δ′)W̃ (δ′)]ã1ã4

ã3ã2

(
eik′ ·δ′

0

0 e−ik′ ·δ′

)]
i j

. (10c)

Here,

χRPA(k, k′; δ, δ′) = 1

1 + χ (k, k′; δ, δ′)W̃ (δ′)
χ (k, k′; δ, δ′) (11)

is a generalized δ-dependent RPA particle-hole susceptibility matrix, with χ (k, k′; δ, δ′) the corresponding bare susceptibility,
whose matrix element is

χ
b̃1b̃2

b̃3b̃4
(k, k′; δ, δ′) =

∑
p

∑
α,β

nF
(
ξα

p

)− nF
(
ξ

β

p−(k−k′ )

)
ξ

β

p−(k−k′ ) − ξα
p

F b̃1b̃2

b̃3b̃4
(α, β; p, k − k′)

(
e−ik′ ·δ+ik·δ′

e−ik′ ·δ+ip·δ′

e−ip·δ+ik·δ′
e−ip·(δ−δ′ )

)
. (12)

F b̃1b̃2

b̃3b̃4
(α, β; p, q) is the form factor associated with the band-to-orbital transformations,

F b̃1b̃2

b̃3b̃4
(α, β; p, q) = ψα

b̃2
(p)
[
ψα

b̃3
(p)
]∗[

ψ
β

b̃1
(p − q)

]∗
ψ

β

b̃4
(p − q). (13)

In these equations, α and β are energy band labels (including
the pseudospin). ξα

k is the αth band dispersion, ψα

b̃
(k) is the

corresponding matrix element of the orbital-to-band transfor-
mation, and nF is the Fermi-Dirac distribution function. W̃ (δ)
is the bare interaction, Hint, written in k-space but with its k-
dependence peeled off and absorbed into the definition of the
susceptibility χ , which reduces the computational complexity.
(Similar methods have been introduced in Ref. [27].) This is
achieved by introducing a redundant 2 × 2 subspace, indexed
by {i, j} in Eq. (10). More details can be found in Appendix A.
W̃ , χ , and χRPA are N × N matrices for given momenta with
N = 6 × 6 × 9 × 2, where 6 × 6 comes from the two sets of
composite indices {ã1, ã2}, each of which consists of three
orbitals ⊗ two spin species, nine from the label of neighbor-
ing sites δ = {0, x̂, ŷ, −x̂, −ŷ, x̂ + ŷ, −x̂ + ŷ, −x̂ − ŷ, x̂ −
ŷ}, and two from the additional subspace label i = {1, 2}.
Equation (12) will be evaluated at low temperatures where
χ is temperature-independent and using a sufficiently large
k-mesh in the first Brillouin zone [29]. Throughout this work,

we choose kBT = 0.001t and a 512 × 512 grid mesh for the
integration.

Transforming Veff in Eq. (9) to the band basis leads to

Veff =
∑
k,k′

∑
α,β


αβ (k, k′)c†
α (k)c†

α (−k)cβ (−k′)cβ (k′), (14)

where


αβ (k, k′) = 1

4

∑
ãi



ã1ã2
ã3ã4

(k, k′)
[
ψα

ã1
(k)
]∗[

ψα
ã3

(−k)
]∗

× ψ
β
ã4

(−k′)ψβ
ã2

(k′). (15)

Note that we have used 
 for both the orbital- and band-basis
effective interaction, which are distinguished by their indices.
Projecting 
αβ onto the FS, one can determine the supercon-
ducting instabilities by solving the following BCS linearized
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gap equation [21]:∑
β

∫
Sβ

dk′
‖

|Sβ |g(kα, k′
β )ψ (k′

β ) = λψ (kα ), (16)

where

g(kα, k′
β ) =

√
ρα v̄F,α

vF (kα )

αβ (kα, k′

β )

√
ρβ v̄F,β

vF (k′
β )

, (17)

and λ = ρVeff , where ρ is the density of states at the Fermi
level [37]. In Eq. (16), all momenta are defined on the FS. Sβ

is the FS of the βth band, which is a one-dimensional contour
for our two-dimensional calculations; |Sβ | is its corresponding
area (or contour length). ρα is the density of states of the αth
band, and the average of the norm of the Fermi velocity is
given by v̄−1

F,α = ∫
Sα

dk‖
|Sα |v

−1
F (kα ). After discretizing Eq. (16), it

becomes a matrix equation to be solved numerically. To get
good convergence, we discretize the FS contours with ∼1000
equally spaced points. Alternatively, one can take an easier
method by discretizing the whole first Brillouin zone, but only
keeping states that lie within a thin energy window from the
Fermi level. However, as pointed out in Ref. [38], a much
larger number of points is then required for the same level
of accuracy.

The critical temperature, Tc, is determined by the most
negative eigenvalue, λ, through Tc ∼ We−1/|λ|, where W is
of the order of the bandwidth. The superconducting gap is

�(kα ) ∝
√

vF (kα )

ρα v̄F,α

ψ (kα ), (18)

where �(kα ) can be written in the pseudospin basis as

�(kα ) =
(

�↑↑ �↑↓
�↓↑ �↓↓

)
(19)

for a given kα point on one of the three FS sheets.

III. PAIRING RESULTS IN THE PRESENCE
OF LONGER-RANGE INTERACTIONS

We first ignore the effects of nonlocal SOC, ηB2g = 0,
but we include a sizable atomic SOC of η/t = 0.2. Simi-
lar calculations have been conducted in several theoretical
works with only local interactions, where s′-, dx2−y2 -, heli-
cal, or chiral pairing is obtained depending on microscopic
details [22,24,26]. As in Ref. [27], we investigate the ef-

fects of orbital-independent NN Coulomb repulsions, V NN, in
Appendix B. We include a wide range of Hubbard-U from
weak to intermediate coupling, i.e., U/t ∈ (10−4, 1.1), as U
can strongly influence the leading pairing within the RPA
[22,26,31]. Hund’s coupling is set as J/U = 0.2 as obtained
via the constrained local-density approximation [39] and the
constrained RPA [36]. The size of V NN for SRO is not clear.
For cuprates with identical crystal structures, V NN/U is about
[40] 0.2, and this value was used in Ref. [27]. As Ru 4d
orbitals are more extended than Cu 3d orbitals, V NN/U for
SRO may be larger. One finds V NN/U ≈ 0.38 from integrals
over Slater-type Ru d orbitals where screening effects and
hybridizations between the Ru d and oxygen p orbitals are
neglected [41]. By comparison, the same calculation for Cu
dx2−y2 orbitals gives V NN/U ≈ 0.22, suggesting the effects of
hybridization and screening in the cuprates essentially cancel
each other. Guided by this analysis, we perform calculations
for SRO in the range of V NN/U ∈ (0, 0.4). We find that V NN

has little effect in stabilizing g-wave pairing and tends to
destabilize the dx2−y2 -wave phase. However, it favors helical
pairing in the weak-U regime, and dxy-wave at intermediate
values of U . As a result, s′ + idxy, dx2−y2 + idxy, or a mixed
helical state can be obtained (at phase boundaries) in different
regimes of the interaction parameter space (see Fig. 7 in
Appendix B).

Our results for intermediate-U are in rough agreement with
Ref. [27], except for the absence of the dxy phase there. We
find the dxy state may be overtaken by s′ if we increase T or
decrease NFS, the number of patching points used to solve
the linearized gap equation. The sensitivity to temperature,
even at relatively low temperatures, has been noted previously
in the context of similar RPA calculations [42]. In all our
calculations, we choose a sufficiently low temperature for the
susceptibility calculations so that the results no longer change
with decreasing temperature.

In this section, we focus on the superconducting instabili-
ties in the presence of both V NN and V NNN. We first ignore the
effects of orbital anisotropies of V NN and V NNN. The ratio of
V NNN/V NN can be roughly estimated through integrals over
Ru 4d orbitals, as discussed above for V NN/U , which gives
V NNN/V NN ∼ 0.7. This neglects hybridization and screening,
the combined effect of which likely reduces V NNN/V NN. Our
calculations will focus on the range of V NNN/V NN ∈ (0, 0.7).

Nonzero V NN and V NNN produce a correction, δ
(k, k′),
to the effective pairing interaction. For weak V NN and V NNN,
δ
(k, k′) is dominated by the bare-V NN and V NNN contribu-
tions, which can be schematically written as

δ
(1)(k, k′) ∼ V NN[cos (kx − k′
x ) + cos (ky − k′

y)]Fo→b(k, k′) + 2V NNN cos (kx − k′
x ) cos (ky − k′

y)Fo→b(k, k′) (20a)

=
∑
�,i

(
gNN

�,i + gNNN
�,i

)
[φ�,i(k)]∗φ�,i(k′), (20b)

where φ�,i denotes the ith lattice harmonic of irrep. � in the D4h group and gNN(NNN)
�,i is the corresponding pairing interaction

strength. In the presence of SOC, Fo→b, the form factor associated with orbital-to-band transformation, carries nontrivial
pseudospin structures [see Eq. (15)], which are omitted here for a qualitative discussion.

In the single-band case, Fo→b(k, k′) = 1 and δ
(1)(k, k′)
can be greatly simplified. gNNN

�, j is nonzero and repul-
sive only for NNN harmonics in the � = {A1g, B2g, Eu} =
{s′, dxy, p} irrep. with eigenfunctions φs′,2 = cos kx cos ky,
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FIG. 1. Superconducting instabilities as a function of V NNN/V NN

for (a) U/t = 10−4 and (b) U/t = 0.8, where helical and s′-wave is
favored at V NNN = 0, respectively. Only the largest eigenvalue (in
magnitude) of each irrep. is shown. η/t = 0.2, ηB2g = 0, J/U = 0.2,
and V NN/U = 0.25.

φdxy,2 = sin kx sin ky, and φpx(y),2 = cos ky(x) sin kx(y) [28]. Sim-
ilarly, as discussed in Appendix B and in Ref. [28], gNN

�,i

is repulsive for φs′,1 = cos kx + cos ky, φdx2−y2 ,1 = cos kx −
cos ky, and φpx/y,1 = sin kx/y. In summary, δ
(1) has repul-
sive components in all the pairing channels except for
g-wave. In the multiband model with SOC, our numeri-
cal results show that δ
(1) remains repulsive as long as
J/U � 1/3 and also has small components in the g-wave
channel.

For sizable V NN and V NNN, the second-order correction,
δ
(2), becomes important. δ
(2) usually involves higher an-
gular harmonics and can be attractive due to fluctuations.
For example, V NN(k, k′)χ̃ (k − k′)V NNN(k, k′) is one of the
second-order correction terms from the bubble diagram in
Fig. 6(b), where χ̃ represents the bubble; the expansion of this
term into angular harmonics contains the g-wave component
with basis functions such as φg,4(k) = φdxy,2(k)φdx2−y2 ,1(k) =
sin kx sin ky(cos kx − cos ky) for the single band case. This ar-
gument applies even in the presence of multiorbitals and SOC.
Thus, g-wave can be promoted by the combined effects of V NN

and V NNN.
Figure 1 shows the effects of V NNN on the leading super-

conducting instability in each irrep. in the case of V NN/U =
0.25 for (a) U/t = 10−4 and (b) U/t = 0.8, where helical and
s′-wave is favored without V NNN/V NN, respectively. One sees
that g-wave pairing is enhanced by V NNN. In the weak-U case,

FIG. 2. (a) Effects of ηB2g/η on the superconducting instabilities
in different channels for U/t = 0.8,V NN/U = 0.25,V NNN/V NN =
0.65. (b) Evolutions of the leading superconducting instabilities as a
function of anisotropy parameter α33 for ηB2g/η = 0.2, where α33 =
0 represents the isotropic longer-range interaction case in (a). Other
anisotropy parameters are chosen as (α23,±x̂, α12, β33, β13, β12) =
(1, 0.4, 0.33, 0.17, 0)α33.

the g-wave state becomes the leading order at V NNN/V NN �
0.2, as other pairing channels are largely suppressed by the
bare and repulsive V NN and V NNN. An s′ + ig pairing can be
obtained close to the multicritical point (i.e., V NNN/V NN ≈
0.2), where the s′- and g-wave channels are near-degenerate.
For intermediate U , g-wave order becomes the first subleading
pairing for a substantial range of V NNN/V NN, V NNN/V NN �
0.3, whereas dxy-wave pairing is dominant. We also find that
s′-wave pairing is significantly suppressed by V NNN-induced
corrections at the RPA level, in contrast to the case studied
in Ref. [13], where the suppression effect is moderate. In
summary, g-wave is the leading or the first subleading pairing
for a broad range of U , V NN, and V NNN (not shown), while
dx2−y2 -wave is not favored.

ηB2g can strongly impact the higher angular momentum
pairings as it involves NNN Ru sites. Figure 2(a) shows the
superconducting instabilities as a function of ηB2g/η in the in-
termediate U case (V NN/U = 0.25 and V NNN/V NN = 0.65),
where g-wave is the first subleading order at ηB2g = 0. ηB2g/η

is increased by decreasing η linearly while increasing ηB2g ,
so that the sum of η and ηB2g is constant [15]. The chemical
potential for the dxy orbitals is adjusted, μ̃c = μc + δμc, to fit
the ARPES data [43]. In Fig. 2(a), we find that both dx2−y2 -
and g-wave pairings are dominant and near/accidentally de-
generate at ηB2g/η � 0.3. The very close overlap of these
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two states for ηB2g/η � 0.3 is accidental. In general, we find
dx2−y2 - and g-wave states are the first two leading pairings in
the range of V NN/U ∈ (0.2, 0.3) and V NNN/V NN > 0.5 (in
Fig. 11 of Appendix C). Also, for the weak-U case, dx2−y2 and
g-wave are found to be the first two leading channels at a much
smaller ηB2g/η, ηB2g/η > 0.15 (see Fig. 13 in Appendix C).

We note that the required ηB2g/η for the presence of both
dx2−y2 and g-wave phase is much larger than the density
functional theory (DFT) estimate ∼0.02 [15]. However, it
has been pointed out that SOC is underestimated in the DFT
calculations and can be further enhanced by correlation effects
[35,43–46]. In addition, in the following, we will show that
this value can be reduced by including longer-range interac-
tion anisotropies.

The dx2−y2 + ig pairing stabilized by ηB2g is also observed
in a recent study using a mean-field approach, although a
much larger ηB2g/η � 0.45 is required there [15]. In addi-
tion, our RPA calculations find that nonzero V NN and V NNN

are necessary to obtain the dx2−y2 + ig-wave phase, unlike in
Ref. [15].

We further consider the effects of the longer-range interac-
tion anisotropies. The magnitudes of the orbital-anisotropies,
defined in Eqs. (5) and (6), largely depend on the spread of the
d-orbitals. We can roughly estimate the anisotropy parameters
through integrals over Ru 4d Slater-type orbitals, where we
find that the largest orbital anisotropy parameter, α33, is about
0.12. As discussed above, such estimations do not include
the hybridization and screening effects. These effects substan-
tially enhance the interaction anisotropies in HgBa2CuO4. For
example, the NN interaction for Cu dx2−y2 -orbitals is about
25% larger than that for d3z2−r2 -orbitals according to Ref. [47],
while a direct Slater integral gives only 3%. Similarly, the
hybridization and screening effects may also enhance the esti-
mates in SRO. In comparison to HgBa2CuO4, the orbitals are
larger (which should increase the hybridization) but the Ru-O
bonds are substantially less anisotropic in different crystal
directions (which decreases the enhancement). Consequently,
in the absence of a detailed calculation, we treat the anisotropy
as a variable parameter. Figure 2(b) shows the superconduct-
ing instabilities as a function of α33 in the case of ηB2g/η =
0.2. The relative magnitudes of other parameters are cho-
sen as (α23,±x̂, α12, β33, β13, β12) = (1, 0.4, 0.33, 0.17, 0)α33,
based on rough estimates through Ru t2g Slater-type orbitals
integrals. (Details can be found in Appendix D.) The t2g

orbital-anisotropy increases the stability of the g-wave so that
it becomes the leading order for α33 � 0.36. We note that the
required α33 to stabilize the g-wave is much larger than its
Slater orbital estimate, 0.12. However, this does not need to
be an obstruction since we also found that the required α33

can be much smaller in some parts of the parameter space, for
example, with larger V NN and V NNN and/or in the weak-U
regime (not shown). Furthermore, as discussed above, the
actual α33 is expected to be larger than our simple estimate.
Although dx2−y2 -wave pairing is not favored, it is promoted
relative to the dxy-channel, suggesting that the dx2−y2 phase
can be enlarged by orbital anisotropies. More discussion on
the anisotropy effects are shown in Appendix D, where, in
particular, we find that α33 helps to stabilize g-wave pairing,
and β33 favors dx2−y2 -wave for finite-U .

IV. PROPERTIES OF THE STABLE PAIRING STATES

In Sec. III, we show that dx2−y2 - and g-wave pairing can
be favored in SRO by the effects of longer-range interac-
tions and ηB2g . Consequently, at certain parameters, dx2−y2 + ig
pairing can be realized. In this section, we explore the gap
structure, spin susceptibility, and spontaneous edge current of
dx2−y2 + ig pairing using the stable OP configurations found
at the phase boundary: (ηB2g/η,U/t,V NN/U,V NNN/V NN) =
(0.3, 0.8, 0.25, 0.65), to see if it can be compatible with
experiments on SRO. In addition, we also compare these
properties of dx2−y2 + ig pairing to those of two other re-
cently proposed pairings, s′ + idxy and mixed helical pairing,
which are obtained at (ηB2g/η,U/t,V NN/U,V NNN/V NN) =
(0, 0.8, 0.05, 0) and (0,0.0001,0.15,0), respectively. The sta-
bility of the latter two TRSB pairing candidates is discussed in
Appendix B with nonzero V NN. The s′ + idxy can be obtained
for a finite-U , as in Ref. [27], while the mixed helical pairings
are realized in the weak-U limit. We also find that the splitting
between helical pairings in B1u and B2u (or A1u and A2u) is
rather small throughout V NN ∈ (0, 0.3) in the weak-U limit
as shown in Fig. 8 (in Appendix B). The result at V NN = 0,
i.e., with only on-site interactions, is consistent with previous
studies both in 2D [26] and in 3D [12].

A. Gap structure

The gaps are of similar size on all bands and exhibit
strong gap anisotropy with multiple nodes or near-nodes on
the FS for all three pairings (shown in Fig. 3). We find
|�|min/|�|max ∼ 10% [48] in the realized s′ + idxy and mixed
helical states. Since the experiment estimate of |�|min/|�|max

is � 3% [10,49], further fine-tuning of the interaction param-
eters is needed to make the s′ + idxy and the mixed helical
states compatible with the experiments. In agreement with the
previous studies [21,22,24,27], the locations of the minima
are slightly off the kx = ±ky diagonal lines and are robust
against the change of interaction parameters. Thus, future
experiments on the precise location of the nodes or near-nodes
can help in identifying the pairing symmetry.

B. Spin susceptibility and Knight shift

Recent NMR measurements reveal a substantial in-plane
Knight shift drop below Tc [8,9], which is most straightfor-
wardly explained by spin-singlet pairings. It has been argued
that spin-triplet helical pairings could also be consistent with
the susceptibility drop [32].

Figure 4 shows the calculated spin susceptibility as a
function of temperature for the three pairings. The residual
χ (T = 0) is roughly similar for all three pairings due to SOC,
which mixes spin-singlet and -triplet states. χ (T = 0)/χn is
about 28%, 23%, and 50% for the dx2−y2 + ig, s′ + idxy, and
mixed helical pairing, respectively. Taking into account ex-
perimental precision along with vortex and disorder effects,
the s′ + idxy and dx2−y2 + ig pairings are in better agreement
with the experiments. It might be difficult to clearly dis-
tinguish these two pairings in Knight shift measurements,
especially if the s′ + idxy had extremely deep gap minima, i.e.,
|�|min/|�|max < 3%, which is expected to increase the resid-
ual spin susceptibility. Nevertheless, the calculated χ (T =
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FIG. 3. Gap function profiles of three TRSB solutions (a) dx2−y2 + ig, (b) s′ + idxy, and (c) mixed-helical, along the three FS contours in
one quadrant of the first BZ. The FS contour of each band is parametrized by the angle of the vector kF = kF (θ )(cos θ, sin θ ). Angle θ is
measured from (π, π ) for the α band, and from (0, 0) for β and γ bands. The three states are obtained at phase boundaries where their two
respective components are degenerate. The band/interaction parameters for the phase boundaries are (ηB2g/η,U/t,V NN/U,V NNN/V NN ) =
(a) (0.3, 0.8, 0.25, 0.65), (b) (0, 0.8, 0.05, 0), and (c) (0, 0.0001, 0.15, 0). Note, for the nonunitary mixed-helical pairing, because
|�↓↓| � |�↑↑|, only the latter is shown.

0)/χn is much higher than the upper bound of 10% suggested
by the experiments [51]. We note that the experimental inter-
pretations are complicated by the difficulties in disentangling
the orbital and spin contributions. Our results for the s′ + idxy

pairing are consistent with Ref. [27].

C. Spontaneous edge current

A TRSB superconducting state may support finite spon-
taneous edge currents, which are expected to be detected by
high sensitivity magnetic scanning microscopy. Experiments
on SRO show no evidence for such edge currents, suggesting
that the current is either absent or too tiny to be resolved
[53–55]. It has been pointed out that the spontaneous edge cur-
rent can be dramatically reduced by gap anisotropies [52,56],
indicating that the three pairings may be reconciled with the
null results in experiments, although often fine-tuning is re-
quired.

The spontaneous edge current for the dx2−y2 + ig and s′ +
idxy pairings is sensitive to the edge orientation: the current

FIG. 4. The temperature dependence of the spin susceptibility
(normalized by the normal state value χn) for the three OP pairings,
calculated in the presence of a small Zeeman field in the x-direction
and with Fermi-liquid corrections [9,50] included. We set kBTc =
0.005t , and the maximum magnitude of the gap is |�|max = 0.015t .
These calculations follow those in Ref. [12].

is generally finite at (1, 0, 0) surfaces and vanishes at (1,
1, 0) surfaces. For the mixed helical pairing, the current is
independent of the edge orientation. As shown in Fig. 5, the
predicted edge currents at the (1, 0, 0) surfaces, Jy(x), for
the three pairings are much smaller than the simple chiral
p-wave case. In addition, there is a sign change in Jy(x)
for the dx2−y2 + ig pairing, which significantly reduces the
total integrated edge current, Iy = ∫

dxJy(x). In particular,
this current is compatible with the experiments [53], since

I
dx2−y2 +ig
y /Ichiral−p

y ≈ 0.6%, where Ichiral−p
y is the simple chiral

p-wave result [57]. This current ratio is 19% and 36% for the
s′ + idxy and mixed helical pairings, respectively. The larger
current reduction in the dx2−y2 + ig state is a result of the
higher angular harmonics in the gap functions and should be
robust since it comes from an intrinsic property of the bulk
superconducting state. We note that the s′ + idxy and mixed
helical pairings may also support edge currents smaller than
the measurable limit, however this would need fine-tuning.

FIG. 5. Distribution of zero-temperature spontaneous edge cur-
rent for the three pairings compared with simple chiral p-wave.
A superconducting region of width LS = 800 sites was taken with
surface along (1,0,0). We set kBTc = 0.005t , and the maximum mag-
nitude of the gap is |�|max = 0.015t . These calculations follow those
in Ref. [52], and lattice constant is defined to be unity.
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Our results for the mixed helical pairing are in rough agree-
ment with Ref. [32].

V. CONCLUSIONS

Within the RPA, we find that both dx2−y2 - and g-wave can
be stabilized by the effects of longer-range interactions and
ηB2g , and that accidentally/near-degenerate dx2−y2 + ig can be
stable for a specific range of parameters. We also calculate
the physical properties of the realized dx2−y2 + ig state and
compare it with the realized s′ + idxy [27] and mixed helical
pairings [32]. We find that, although the s′ + idxy pairing is
as competitive as the dx2−y2 + ig, and is better than the mixed
helical pairing, in explaining the spin susceptibility data [8,9],
the dx2−y2 + ig state is more compatible with experimental
evidence of the existence of nodes/near-nodes [10,11] and the
absence of spontaneous edge current [53–55] than the other
two proposals.

Since Tc ∼ e−1/|λ|, the TRSB phase would occur only
when the interaction parameters are tuned essentially right at

the phase boundaries, where T
dx2−y2

c ≈ T g
c . As pointed out in

Refs. [16,17], the relative stability of the dx2−y2 - and g-wave
states can be sensitive to local strains, so that in the presence of
such strains, one may have coexisting domains of g-wave and
dx2−y2 -wave order. In this case, time-reversal symmetry can
be broken at domain walls between different strain regions
[16]. Reference [17] shows that strain-inhomogeneities can
couple a single-component primary OP, e.g., dx2−y2 (g)-wave,
to a subleading pairing state, e.g., g (dx2−y2 )-wave, and break
time-reversal symmetry. As perfect degeneracy of the dx2−y2

and g-wave is not required, the dx2−y2 + ig state is expected
to be stabilized in a broader parameter regime compared to a
homogeneous dx2−y2 + ig state. Recent studies show that the
inhomogeneous TRSB domain walls may provide a route to
explaining the observation of half-quantum vortices [16], heat
capacity [58], and ultrasound attenuation measurements [7]
on SRO. Our calculations suggest that even modest strains
may be sufficient for such a scenario since we find dx2−y2

and g-wave to be the first two leading orders over a range of
parameters.

The RPA formalism we employed here is limited to small
values of the Coulomb interaction, U � O(t ), it neglects
correlation effects away from the FS, and it neglects many
diagrams in calculating the effective interaction. Thus, the
RPA approach may not adequately capture the physics of SRO
with typical estimates of U ∼ O(eV ) ∼ 10t [35,36,59,60]. A
recent study [31] compares the weak-coupling RG, RPA, and
dynamical cluster approximation (DCA) approaches within
the single-band Hubbard model, and it finds good agreement
among these approaches, in the region where they can be com-
pared, suggesting a smooth crossover in pairing states within
the Hubbard model from weak to strong coupling. While such
an analysis has not been done for the multiband case, it sug-
gests that the RPA approach can provide valuable insight into
superconducting pairings in SRO. We believe that some of the
observations about the effects of interaction-anisotropy and
ηB2g in our RPA calculations will survive at strong coupling
since they are independent of the strength of U . Also, beyond
the weak-U limit, correlation effects away from the FS can be
important to the superconducting instabilities. For example,

the RPA approach may underestimate the stability of dx2−y2

pairing by not adequately accounting for the effect of the van
Hove singularity away from, but near, the FS of the γ band.
Thus, the functional RG approach [20,61] with longer-range
interactions would be of interest since it can be employed in
the sizable U -regime and it treats states away from the FS
more accurately.

The superconducting pairings discussed above are classi-
fied according to the irrep. of the point group of the lattice in
the band basis. Recently, it was argued that the above analysis
of the pairing function is insufficient [62–64]. Instead, some
recent studies of SRO focus on the orbital basis approach and
propose specific interorbital pairings [15,33]. Reference [33]
finds an odd frequency interorbital singlet pairing is favored
by solving the linearized Eliashberg equation. Using a mean-
field approach, Ref. [15] finds stable interorbital dx2−y2 + ig
pairing at J/U > 1/3. Transforming these interorbital pair-
ings into the band basis, one finds that they both support
substantial interband pairing away from the FS. By contrast,
the approach we take ignores interband pairing.

The relative size of intraband and interband pairing in SRO
is an open question. However, since the minimum energy
difference between electron states on different bands and with
opposite momentum is much larger than the superconducting
pairing energy in SRO, one might expect interband pairing
to be small. For example, interband pairing might be re-
duced by finite frequency effects that are usually ignored in
weak-coupling formalisms. In any case, one does not expect
interband pairing to significantly impact the relative stability
of different pairing states close to Tc, since interband pairing
does not open up a gap anywhere on the FS. In particular,
interband pairing only contributes in order �2/EF to the
pairing gap at the FSs. Nevertheless, interband pairing can
be important for some properties, including the polar Kerr
effect [3], which has been measured at high frequencies where
all superconducting contributions are of order (�/EF )2 or
smaller. While the approach of Ref. [33] could, in principle,
address the size of interband pairing, the calculations are
restricted to temperatures �300 K, not only well above Tc, but
also above the temperature where a well-defined FS emerges.
One would likely need to go to much lower temperatures to
reliably capture the relative size of intraband and interband
pairing. Since the presence of substantial interband pairing
could impact the interpretation of some experiments, this is
an interesting avenue for future studies.

Lastly, we comment on the effects of dxy/z anisotropy we
have neglected throughout this paper. In the crystal field with
D4h symmetry, the Ru t2g states split into an eg doublet (dxz,
dyz) and a b2g singlet (dxy). As the RuO bond in the c-direction
is elongated, dxy orbitals are more spread out than (dxz, dyz )
orbitals, suggesting stronger interactions for dxy orbitals. This
anisotropy would slightly suppress g-wave pairing. However,
it will not significantly affect our key results, as it is very
small in SRO, i.e., the spread of the dxy orbital is larger than
(dxz, dyz ) by about 7% [35,36].
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APPENDIX A: SUSCEPTIBILITY AND EFFECTIVE INTERACTION

In this Appendix, we show the derivation of the effective interaction in the Cooper pair channel that takes into account on-site,
NN, and NNN interactions. The bare interaction Hamiltonian is defined in Eq. (4), and it can be rewritten in a more compact
form as

Hint = 1

4

∑
i,δ,ãi

(
[W1(δ)]ã1ã2

ã3ã4
c†

i,ã1
c†

i+δ,ã3
ci+δ,ã4 ci,ã2 + [W2(δ)]ã1ã2

ã3ã4
c†

i,ã1
c†

i+δ,ã3
ci,ã4 ci+δ,ã2

)
. (A1)

ã j = {a j, s j} is a composite index that labels both orbital (a j) and spin (s j). [W1(δ)]ã1,ã2
ã3,ã4

has the following nonzero elements:

[W1(0)]as,as
as̄,as̄ = U, [W1(0)]as,as

bs̄,bs̄ = U ′, [W1(0)]as,bs
as̄,bs̄ = J ′, [W1(0)]as,bs

bs̄,as̄ = J, [W1(0)]as,as
bs,bs = U ′ − J, (A2a)

[W1(δ �= 0)]as,as
as̄,as̄ = [W1(δ �= 0)]as,as

as,as = Vaa,δ, [W1(δ �= 0)]as,as
bs̄,bs̄ = [W1(δ �= 0)]as,as

bs,bs = Vab,δ, (A2b)

where a �= b and s̄ = −s. W2(δ) is related to W1(δ) such that the whole interaction matrix coefficient is antisymmetric with
respect to exchanges of indices of two creation or annihilation operators in Hint:

[W2(δ)]ã1,ã4
ã3,ã2

= [W2(δ)]ã3,ã2
ã1,ã4

= −[W1(δ)]ã1,ã2
ã3,ã4

= −[W1(δ)]ã3,ã4
ã1,ã2

. (A3)

[W1(δ)]ã1,ã2
ã3,ã4

(and, similarly, [W2(δ)]ã1,ã2
ã3,ã4

) is a 36 × 36 matrix, for each value of δ, with (ã1, ã2) its row index and (ã3, ã4) the
column index.

By Fourier transformation of the interaction, we obtain

Hint (k) = 1

4

∑
ki,ãi

∑
δ

[W (k1, k2; k3, k4, δ)]ã1ã2
ã3ã4

c†
k1,ã1

c†
k3,ã3

ck4,ã4 ck2,ã2 , (A4)

where

[W (k1, k2; k3, k4, δ)]ã1ã2
ã3ã4

=
∑

i, j={1,2}

⎡⎢⎢⎢⎢⎢⎢⎣
(

eik1·δ 0

0 eik1·δ

)([
W1(δ)

]ã1ã2

ã3ã4
0

0
[
W2(δ)

]ã1ã2

ã3ã4

)
︸ ︷︷ ︸

[W̃ (δ)]
ã1 ã2
ã3 ã4

(
e−ik2·δ 0

0 e−ik4·δ

)
⎤⎥⎥⎥⎥⎥⎥⎦

i j

. (A5)

Here, we introduce an additional but redundant 2 × 2 subspace, and the sum is taken over all the matrix elements in this subspace.
In the form of Eq. (A5), the momenta dependence of the bare interaction is factored out, which can facilitate our derivation of
the RPA effective interactions, as will become clear in the following.

In the presence of longer-range interactions, the bare interaction depends on the momentum transfer, k1 − k2 and k1 − k4.
As a result, in deriving the effective interaction, the interaction vertex in the higher-order diagrams involves the internal loop
momentum p, unlike the on-site interaction case where the bare interaction is momentum-independent [21,22,24]. The additional
p-dependence poses a challenge for writing diagrammatic contributions to the RPA effective interaction as a simple geometric
and algebraic sum. This computational complexity can be reduced by factoring out the p-dependence in the interaction vertex
and absorbing it into the definition of particle-hole susceptibility as in Ref. [27]. We follow a similar approach to that in Ref. [27]
except that we start with the antisymmetrized bare interaction. This parametrization of the interaction will prove convenient in
the following derivation of the RPA effective interaction.

The exchange of the spin and orbital fluctuations can induce attractions responsible for superconductivity, even if the bare
interaction is repulsive. To take into account this effect, one calculates the effective electron-electron interaction, [
(k, k′)]ã1ã2

ã3ã4

in Eq. (9), by summing up one-particle irreducible diagrams of different orders in the bare interaction, Eq. (A4). The first-order
contribution [shown in Fig. 6(a)] is

[
(k, k′)(1)]ã1ã2
ã3ã4

=
∑

δ

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)
[W̃ (δ)]ã1ã2

ã3ã4

(
e−ik′ ·δ 0

0 eik′ ·δ

)]
i j

. (A6)

The two second-order diagrams are shown in Figs. 6(b) and 6(c). The contribution of the bubble diagram is expressed as

[
(k, k′)(2,bubble)]ã1ã2
ã3ã4

= −
∑
δ,δ′

∑
b̃i

∑
p

[W (k, k′; p − (k − k′), p, δ)]ã1ã2

b̃1b̃2

∑
α,β

nF
(
ξα

p

)− nF
(
ξ

β

p−(k−k′ )

)
ξ

β

p−(k−k′ ) − ξα
p

×F b̃1b̃2

b̃3b̃4
(α, β; p, k − k′)[W (p, p − (k − k′); −k,−k′, δ′)]b̃3b̃4

ã3ã4
(A7)
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FIG. 6. The first- and second-order diagrams which contribute to the effective interaction in the Cooper pair channel. Note that each
interaction line carries four joint composite indices ãi = (ai, si ). The internal momentum label, p, is a short-hand notation for frequency and
momentum, both of which need to be summed over; on the other hand, for the external momenta, k and k′, we only consider zero frequency,
i.e., the retardation effect in the effective pairing interaction is neglected.

= −
∑
δ,δ′

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)
[W̃ (δ)χ (k, k′; δ, δ′)W̃ (δ′)]ã1ã2

ã3ã4

(
e−ik′ ·δ′

0

0 eik′ ·δ′

)]
i j

. (A8)

[χ (k, k′; δ, δ′)]b̃1b̃2

b̃3b̃4
is the bare susceptibility defined in Eq. (12). ξ

α(β )
k is the α(β )-band dispersion, nF is the Fermi-Dirac

distribution function, and F b̃1b̃2

b̃3b̃4
(α, β; p, q) is the form factor associated with the band-to-orbital transformations given in

Eq. (13). From Eqs. (A7) and (A8), the p dependence in the interaction vertices, [W (k, k′; p − (k − k′), p, δ)] and [W (p, p −
(k − k′); −k,−k′, δ′)], is factorized and absorbed into the integrand of [χ (k, k′; δ, δ′)].

Similarly, the ladder diagram contribution is

[
(k, k′)(2,ladder)]ã1ã2
ã3ã4

=
∑
δ,δ′

∑
i, j={1,2}

[(
eik·δ 0

0 eik·δ

)[
W̃ (δ)χ (k,−k′; δ, δ′)W̃ (δ′)

]ã1ã4

ã3ã2

(
eik′ ·δ′

0

0 e−ik′ ·δ′

)]
i j

. (A9)

Notice that [
(k, k′)(2,ladder)]ã1ã2
ã3ã4

= −[
(k,−k′)(2,bubble)]ã1ã4
ã3ã2

. As a result, the effective interaction at the order of (U/t )2 satisfies
the same antisymmetric property as the bare interaction in Eq. (A4). The effective interaction vertex at the RPA level [in Eq. (10)]
is obtained by summing up the bare interaction in Eq. (A6), and a geometric series of the bubble and ladder diagrams. The latter
contribution takes a form similar to Eqs. (A8) and (A9), except that the susceptibility χ is replaced by χRPA, given in Eq. (11).
Note that, not only the usual particle-hole bubble and ladder contributions but the vertex corrections consisting of admixtures
of the bubble and ladder vertices [66], all of which are summed to infinite order, are included, since the bare interaction is
antisymmetrized.

APPENDIX B: SUPERCONDUCTING INSTABILITIES
IN THE PRESENCE OF NN COULOMB REPULSION

In this Appendix, we explore the superconducting insta-
bilities in the presence of the on-site Kanamori-Hubbard
interaction, U , and NN Coulomb repulsion, V NN. To deduce
the general behavior, we perform calculations from weak to
intermediate strength of U . The effects of ηB2g and longer-
range anisotropies are neglected here.

For comparison, we first briefly summarize the results with
U only [22,24,26,67]. It has been pointed out that the interplay
of the bare-U interaction and fluctuations mediated interac-
tions is nontrivial in determining the leading superconducting
pairing within the RPA [22,67]. In a multiorbital model with
SOC, the bare-U interaction is repulsive in the even-parity s′-,
dx2−y2 -, and dxy-wave channels, but it does not affect g-wave
or odd-parity pairings. On the other hand, fluctuation-induced
interactions favor s′- and dx2−y2 -wave pairings [22]. Thus, as
U crosses from the weak- to the intermediate-coupling regime
and the bare U becomes relatively less important, the domi-
nant pairing changes from a helical to an s′- or dx2−y2 -wave
[22,26].

When V NN is taken into account, it produces a correction,
δ
(k, k′), to the effective pairing interaction. At the bare-V NN

level, δ
(1)(k, k′) has the following schematic form:

δ
(1) ∼ V NN[cos (kx − k′
x ) + cos (ky − k′

y)]Fo→b(k, k′)

=
∑
�

∑
i

gNN
�,i [φ�,i(k)]∗φ�,i(k′), (B1)

where φ�,i is the ith lattice harmonic of irrep. � in the
D4h group, with gNN

�,i the corresponding pairing interaction
strength. Note that, in the presence of SOC, Fo→b(k, k′),
the form factor associated with the orbital-to-band transfor-
mation, is in general a complex matrix in the pseudospin
subspace (whose dependence is omitted here for a qualitative
discussion). In the single-band Hubbard model, as discussed
in Refs. [28,29], Fo→b(k, k′) = 1; gNN

�,i is repulsive in the s-,
dx2−y2 -, and p-wave channels, while it is zero for both the
dxy- and g-wave channels. In the multiorbital case with a
finite SOC, our numerical results show that δ
(1) also contains
small repulsive components in the dxy- and g-wave channels,
induced by the nontrivial form factor Fo→b(k, k′).
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FIG. 7. Leading superconducting instability phase diagram as a
function of log10(U/t ) and orbital-isotropic V NN. “NA” corresponds
to the regime where the RPA susceptibility diverges and where RPA
breaks down. η/t = 0.2, ηB2g/η = 0, and J/U = 0.2.

Higher-order contributions to δ
(k, k′) due to V NN

are again induced by particle-hole fluctuations in spin,
charge, and orbitals, and they can be either attractive
or repulsive. They can make significant contributions to
certain otherwise suppressed channels. For example, ex-
panding the second-order correction term in the form of
V NN(k, k′)χ̃ (k, k′)V NN(k, k′), where χ̃ represents the bub-
ble in Fig. 6(b), into different harmonic channels shows
that this term has a substantial weight in the dxy-wave
channel.

Figure 7 shows the phase diagram for the leading su-
perconducting instability as a function of the dimensionless
interaction parameters U/t and V NN/U . V NN stabilizes the
helical state in the weak-U regime and dxy-wave pairing at
intermediate U . As a result, TRSB s′ + idx2−y2 , s′ + idxy,
dx2−y2 + idxy, mixed helical, or mixed parity s′ + ip pairing
can be obtained at the phase boundaries. However, g-wave
pairing is not favored. The phase diagram is roughly robust
against the change of η and J/U . In the following, we discuss
two limiting U cases in detail.

We first consider the weak-U limit and take U/t = 10−4,
where s′-wave is leading for V NN = 0. The evolutions of the
superconducting instabilities as a function of V NN are shown
in Fig. 8. The leading eigenvalue in all the pairing channels

FIG. 8. Evolution of the largest eigenvalue (in magnitude) of
the linearized gap equation, Eq. (16), in selected leading irrep. as
a function of V NN/U for (a) U/t = 10−4 and (b) U/t = 0.8. (Some
subleading irreps. are not shown.)

FIG. 9. Fermi surfaces for the tight-binding model given in
Eq. (3) with SOC parameters: (η, ηB2g ) = (a) (0.2, 0)t and
(b) (0.154, 0.046)t . μ̃c is adjusted to 1.14t for (b).

shown is slightly suppressed at small V NN; helical pairings
are promoted when V NN/U � 0.05. In the latter case, the
corresponding helical gap functions we obtained are similar to
those obtained in the absence of V NN in the previous studies
[21,22,61].

A noticeable feature in Fig. 8(a) is that, independent of
V NN/U , the splitting between helical pairings in the B1u and
B2u (or A1u and A2u) irrep. is rather small, making it reasonable
to consider accidentally degenerate helical pairings B1u + iB2u

(or A1u + iA2u). These pairings are proposed in Ref. [32] to
explain some observations in SRO, including the intrinsic Hall
and Kerr effects, the absence of observable spontaneous edge
current, and the substantial Knight shift drop using simple
gap functions without any microscopic details. We revisit the
B1u + iB2u state obtained at V NN/U = 0.15 in Sec. IV to see
if it can reconcile with the experiments.

Figure 8(b) shows an intermediate U case, U/t = 0.8,
where dx2−y2 is slightly leading without V NN. The leading
superconducting instabilities in most of the pairing channels,
including g-wave, are enhanced, due to the enhancement of
χRPA. Either the s′- or dxy-solution dominates over other chan-
nels depending on the value of V NN. Similar results were
recently reported in Ref. [27], where s′ + idxy pairing is pro-
posed. We discuss the properties of the s′ + idxy pairing at
V NN/U = 0.05 in Sec. IV.

FIG. 10. Leading superconducting instabilities as a function of
log(U/t ) for (a) V NN/U = 0.1 and (b) V NN/U = 0.25. V NNN/V NN =
0.65.
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FIG. 11. Leading superconducting instabilities as (a) V NN/U
and (b) V NNN/V NN is varied. ηB2g/η = 0.3. The case at V NN/U =
0.25,V NNN/V NN = 0.65 is shown in Fig. 2(a).

APPENDIX C: STABILITY OF dx2−y2 AND g-WAVE
PAIRING IN THE PRESENCE OF LONGER-RANGE

INTERACTIONS AND ηB2g

In Sec. III, we show that both dx2−y2 - and g-wave pair-
ing can be stabilized at ηB2g/η � 0.3 in the intermediate
U case (U = 0.8,V NN/U = 0.25,V NNN/V NN = 0.65). [See
Fig. 2(a).] In this Appendix, we show that this is a robust result
relevant for a large region of parameter space. The resulting
FSs for two distinct SOC parameter values are shown in Fig. 9.
The orbital anisotropies, which can further promote the dx2−y2 -
and g-wave phase, are neglected here.

Before we focus on a detailed case, we first give a gen-
eral picture of the evolutions of the g-wave superconducting
instability for a wide range of U in the presence of sizable
V NNN (in Fig. 10). We find that g-wave pairing becomes
dominant in the weak-U limit when longer-range interactions
are included and is less favored for finite U , as observed in
Fig. 1. However, the dependence of the leading pairing and
of the g-wave state on U is nonmonotonic. Another important
piece of information we can get from Fig. 10 is that, for a
given U , the g-wave can always become the leading or the first
subleading pairing in the parameter space of V NN and V NNN.
For the latter case, it can be further promoted by the effects
of ηB2g and interaction-anisotropies, as discussed in the main
text.

We then consider the case at ηB2g/η = 0.3 where the dx2−y2

state is slightly dominant and the g-wave is the first subleading
channel. As shown in Figs. 11 and 12, dx2−y2 - and g-wave

FIG. 12. Superconducting instabilities vs J/U in the ηB2g/η =
0.3 case (U/t = 0.8, V NN/U = 0.25, V NNN/V NN = 0.65).

FIG. 13. Effects of ηB2g/η on the superconducting instabilities
in different channels for U/t = 0.0001, V NN/U = 0.25, V NNN/

V NN = 0.2.

are the first two leading pairings in the range of V NN/U ∈
(0.2, 0.3), V NNN/V NN > 0.5, and J/U ∈ (0.16, 0.24). The
dx2−y2 and g-wave phase can be larger by increasing ηB2g or
including longer-range interaction anisotropies.

Figure 13 shows the effects of ηB2g/η in the weak-U case
(U/t = 10−4,V NN/U = 0.25,V NNN/V NN = 0.2), where the
g-wave is slightly dominant at ηB2g/η = 0. We find that dx2−y2 -
and g-wave become the first two leading pairings at ηB2g/η �
0.15.

APPENDIX D: EFFECTS OF ORBITAL ANISOTROPIES
OF THE LONGER-RANGE INTERACTIONS

Orbital anisotropies of the longer-range interactions can
significantly impact the leading superconducting instabilities.
In particular, they help to stabilize the g- and dx2−y2 -wave
state [in Fig. 2(b)]. In this Appendix, we show that anisotropy
parameters α33 and β33 [defined in Eqs. (5) and (6)] are crucial
to stabilizing the g- and dx2−y2 -wave state, respectively. The
effects of ηB2g are not included.

Rough estimates of the orbital-anisotropy parameters
through integrals over Ru 4d-t2g Slater-type orbitals are
shown in Table I. The largest anisotropy parameter α33,

TABLE I. Effects of orbital-anisotropy parameters on different
pairing channels (last six columns) for finite-U . ↑ ( ↓ or −) means
that the eigenvalue (magnitude) of that pairing channel is enhanced
(suppressed or barely changed). ↑↑ indicates that the eigenvalue of
that channel is more enhanced than those with ↑. The second column
gives the estimates of the parameters through integrals over Ru 4d-t2g

Slater-type orbitals.

Effects

Parameter Estimate s′ dx2−y2 dxy g helical chiral

α33 0.12 ↑↑ ↑↑ ↑ ↑↑ ↑↑ ↑↑
α23,x 0.11 ↑ ↑ ↑ ↑ ↑ ↑
α12 0.05 − − ↓ − ↑ ↑
β33 0.04 ↑↑ ↑↑ − − ↑ ↑
β13 0.02 − − ↑ ↑ ↑↑ ↑↑
β12 0.002 − − ↑ ↑ ↑ ↑
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which quantifies the NN interactions for dxy-orbitals (or
dxz-orbitals along the x-direction) relative to that for dxz-
orbitals along the y-direction, is about 0.12. As discussed in
Sec. III, this value is underestimated because the hybridiza-
tion effects are neglected. However, Table I can still indicate
how those parameters compare with each other. For ex-
ample, (α23,x, α12, β33, β13, β12) ≈ (1, 0.4, 0.33, 0.17, 0)α33,
and this is the ratio used in the main text.

Table I shows the effects of the anisotropy parameters on
different pairing channels for finite-U . See the caption for
explanations of notation (arrows and dash). For example, α33

tends to significantly enhance all the pairing channels except
dxy. As a consequence, dxy is surpassed by g-wave or helical
at large α33 [shown in Fig. 14(a)]. In addition, β33 is critical
to stabilizing dx2−y2 -pairing. As shown in Fig. 14(b), dx2−y2 -
wave pairing is favored at β33 > 0.7. In the weak-U limit,
the anisotropies tend to favor the g-wave state (not shown),
because the enhancement effects on other pairing channels,

FIG. 14. Evolutions of the superconducting instability as a func-
tion of (a) α33 and (b) β33. U/t = 0.8,V NN/U = 0.25,V NNN/V NN =
0.65. Other anisotropy parameters are set to zero. α33(β33) = 0 de-
scribes the orbital-isotropic case in Fig. 1.

as discussed above, are generally canceled out by the bare
interactions.
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