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Quantum phase transition of a two-dimensional Rydberg atom array in an optical cavity
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We study the two-dimensional Rydberg atom array in an optical cavity with the help of a variational method
and large-scale quantum Monte Carlo simulations. The strong dipole-dipole interactions between Rydberg
atoms can make the system exhibit a crystal structure, and the coupling between a two-level atom and a
cavity photon mode can result in the formation of a polariton. The interplay between them provides a rich
quantum phase diagram including the Mott, solid-1/2, superradiant, and superradiant solid (SRS) phases. As a
two-order coexisted phase, the superradiant solid breaks both translational and U(1) symmetries. Different from
the fragile SRS phase in a one-dimensional system [Zhang et al., Phys. Rev. Lett. 110, 090402 (2013)], the
SRS phase stays in a larger parameter region. Thus, it is more feasible to detect a SRS phase and corresponding
quantum criticality in the real system involving dissipations. Our work not only extends the understanding of the
light-atom interacting system, but also provides the guidelines and benchmark for the future experiments.
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I. INTRODUCTION

Bringing a strong long-range interaction into a quantum
simulator is a key topic, because it is important for studying
the quantum phase transition (QPT) in a strongly correlated
system [1]. As one of the most possible candidates, the Ry-
dberg atoms stay at a high level state with large principal
quantum number n, so that they possess two main advantages:
a long lifetime (≈100 μs at n ≈ 50) and a strong long-range
dipole-dipole interaction [2]. In order to simulate the quantum
many-spin system, the Rydberg atoms are first loaded into
the optical lattice [3,4]. However, in contrast to the small
lattice length (<1 μm), the blockade radius of a Rydberg
atom is so large (typically R6 > 5 μm) that few atoms can be
excited to the Rydberg state [5,6]. Recently, due to the rapid
development of optical tweezer arrays, a Rydberg atom can be
trapped in each tweezer site with arbitrary geometry [7,8]. The
programmable Rydberg atom array boosts the whole field,
such as the gauge theory [9,10], quantum topological phase
[11,12], the nonequilibrium quantum many-body system [13],
and so on [14]. However, here the laser lights are taken as a
classical light field, so the corresponding Hamiltonian is more
like “classic.”

On the other hand, a quantized light field can be introduced
by loading the ultracold atoms into an optical high-finesse
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cavity [15]. Then, the interactions between atoms and pho-
tons are strongly amplified [16,17], and some exotic quantum
phases emerge, such as a “supersolid” phase [18] and a
superradiant phase [19]. Although some of them belong to
quantum few-body systems, the theory and numerical simu-
lation demonstrate that the generalized scaling relation of a
QPT can still be detected [20–24].

Inspired by the recent experimental progress in both Ry-
dberg atom arrays and cavity QED, it is valuable to discuss
the QPT of a Rydberg atom array in an optical cavity. In
our previous study [25], because of the interplay between a
photon-mediated interaction and a dipole-dipole interaction,
the superradiant solid (SRS) phase is found via large-scale
numerical simulation. This quantum phase breaks both trans-
lational symmetry and U(1) symmetry, which is reminiscent
of a “supersolid” phase. However, possibly due to the strong
fluctuation in low dimension, the parameter region of the SRS
phase is so narrow that it is hardly experimentally detected.
Meanwhile, the fragility of the SRS phase also hinders the
analysis of the associated quantum criticality in both theory
and experiment.

In this paper, we study the QPT of a two-dimensional Ryd-
berg atom array in a cavity shown in Fig. 1(a). By using both
analytic approaches and large-scale quantum Monte Carlo
(QMC) simulation, we determine the phase diagram com-
prised of the Mott insulator, solid-1/2, superradiant (SR), and
SRS phases. The configuration of these phases is illustrated in
Figs. 1(b)–1(e). In comparison with a one-dimensional case
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FIG. 1. (a) A schematic of a two-dimensional Rydberg atom array in a cavity. (b)–(e) Demonstrations of in situ Rydberg probability at
different quantum phases in 4 × 4 arrays.

[25], the region of the SRS phase becomes broad, which
is extremely important for the experimental measurement.
Meanwhile, the type of phase transition is analyzed in detail,
especially the triple points.

The paper is organized as follows. In Sec. II, we discuss
the model and its relation to both the Dicke model and the
Ising model. In Sec. III, the variational method is borrowed to
obtain the phase diagrams. In Sec. IV, we implement the QMC
method and compare the numerical results with the analytic
results. In Sec. V, we discuss the difference between one-
dimensional (1D) and two-dimensional (2D) systems. Finally,
in Sec. VI, we make the conclusion and discuss the relevance
to the experiment.

II. MODEL

In the experiment [2], the ultracold atom can be loaded into
the defect-free tweezer arrays, and the Rydberg state can be
excited via a two-photon transition. If the transition between
the intermediate state |m〉 and the ground state |g〉 couples
to a single quantized cavity mode, the whole system can be
described by the following Hamiltonian [25,26]:

H = g√
N

N∑
i=1

(b†
i ψ + H.c.) + V

∑
〈i, j〉

nin j

−�

N∑
i=1

ni − μNt , (1)

where ψ† (ψ) is the creation (annihilation) operator of pho-
tons; b†

i (bi) is the creation (annihilation) operator of the
Rydberg atom at site i; ni = b†

i bi is the local Rydberg density
operator; � � 0 is the energy gap, which can be changed by
adjusting the laser detuning; μ is the chemical potential in
the grand canonical ensemble; g is the effective atom-photon
coupling strength, which is related to the cavity parameter and
the Rabi frequency of transition between the Rydberg state

|e〉 and the intermediate state |m〉; V denotes the strength of
the dipole-dipole interactions between Rydberg atoms [27];
and 〈i, j〉 represents that only a nearest-neighbor interaction
is considered. The maximum occupation number at Rydberg
state in each tweezer site should be 1, so b should be treated
as a hard-core boson operator, and Eq. (1) is equivalent to the
Hamiltonian in Ref. [25] (see Appendix A). It is obvious that
the total density Nt ≡ ψ†ψ + ∑N

i=1 ni is a conserved quantity.
Meanwhile, the model preserves the U(1) symmetry, which
is ψ† → ψ†eiθ and b† → b†e−iθ . Notice that the chemical
potential μ should be �0, otherwise the number of photons
will diverge.

In the weak interaction limit V → 0, the model changes
into the Dicke model within rotating wave approximation
[28,29]. To avoid the divergence of total density, the chemical
potential is set to be negative. Then, if the magnitude of the
atom-photon coupling g is small, the system is in the normal
phase or Mott-0 phase in which all the atoms stay in the
ground state. On the other hand, when g is large, the atom and
photon can form the polariton, so that the system enters into
the SR phase which breaks the U(1) symmetry [Fig. 1(d)].
At critical point gc = √|μ(μ + �)|, a second-order QPT
occurs.

In the strong interaction limit g → 0, the photon mode
is decoupled with the Rydberg atoms. Then, the Hamilto-
nian can be reduced to the Ising model by implementing the
conventional mapping between hard-core boson and spin-1/2
operators b†

i → S+
i , bi → S−

i , and ni → Sz
i + 1/2. Then, the

quantum phase diagram at zero temperature can be exactly
obtained by calculating the energy of different configura-
tions. When μ < −�, all atoms are at the ground state, i.e.,
the Mott-0 phase. After increasing μ to be larger but less
than 4V − �, the atoms on one sublattice are excited to the
Rydberg state [Fig. 1(c)], so the translation symmetry is spon-
taneously broken and the solid-1/2 phase (antiferromagnetic
phase in spin language) is constructed. Then, continuously
increasing μ to >4V − � results in the atoms being excited
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to the Rydberg state, and the system enters into the Mott-1
phase [Fig. 1(b)].

In the intermediate region, the atom-photon coupling can
provide a photon-mediated long-range interaction, so that the
SRS phase emerges accompanied with both U(1) and trans-
lational symmetry spontaneously broken. In comparison with
previous work [25], the Hamiltonian (1) is a hybrid 0D-2D
quantum system, so the effect of the quantum fluctuation
should be strongly different. The effect of dimension should
strongly change the whole quantum phase diagram including
the QPT. Thus first, we prefer to study the model with the help
of the variational method.

III. VARIATIONAL METHOD

The simplest variational wave function of ground state
is taking the quantum spin as the classical one, and then
finding the orientation of spins with the lowest energy. Such
variational method is also suitable for our model, because
the Rydberg atom is kind of quantum spin-1/2 as mentioned
before. Meanwhile, since the coherent state is the “most clas-
sical” quantum state, we introduce following ansatz of wave
function [25]:

|λ, θ〉 = eλ
√

Nψ†/2
∏

i

[
cos

(
θi

2

)
b†

i + sin

(
θi

2

)]
|0〉, (2)

in which |0〉 represents the vacuum state, and λ and θi are
the variational parameters of the photon and Rydberg atoms.
Because only the nearest-neighbor repulsive interaction is
kept, the translational symmetry breaking can only result in
the Néel order or the (π, π ) order. Thus, we set the vari-
ables θi to be the same in the same sublattice C or D, then
the only variational parameters remaining are only left with
(λ, θC, θD). The energy per site of the ansatz Eq. (2) can be
calculated as E = 〈λ, θ |H |λ, θ〉/N and

4E = gλ(sin θC + sin θD) + 2V cos θC cos θD − μλ2

−(μ + � − 2V )(cos θC + cos θD) + E0, (3)

where E0 = −2(μ + � − V ) is energy constant.
The ground state can be calculated by minimizing the en-

ergy per site E with respect to the variational parameters λ,
θC , and θD. The system has the sublattice symmetry C ↔ D.
Considering that the ground states of the solid-1/2 and SRS
phases have twofold degeneracy, we can set 0 � θD � θC <

2π without loss of generality. The population of atoms at
the Rydberg state or Rydberg probability can be evaluated
by ρi = [cos(θi ) + 1]/2. When the density ρC is not equal
to ρD, it means that the translational symmetry is sponta-
neously broken. In addition, the energy is unchanged under
the transformation λ → −λ and (θC, θD) → −(θC, θD), so the
photon parameter is set to λ � 0. Because the ansatz is the
coherent state, the expectation of photon density is |λ|2. Then,
the nonzero λ indicates the U(1) symmetry is spontaneously
broken. Without loss of generality, we take V as the unit of
energy and set it to 1.

In Fig. 2, we show the Rydberg probabilities in different
sublattices and photon parameter λ at different �. When
μ is much smaller, all the atoms stay at the ground state
without photons in the cavity, and it is the Mott-0 phase.

(a)

(c)

(b)

(d)

FIG. 2. Rydberg probabilities in different sublattices and the
variational parameter of photon λ are calculated at different chemical
potentials μ with the help of the variational method. The atom-
photon coupling strength is chosen g = 0.5 with (a),(b) � = 2 and
(c),(d) � = 5. The regions of the SR and SRS phases are highlighted
with different colors.

After increasing the chemical potential μ to a certain critical
value, the photon number starts increasing and the Rydberg
probabilities in both sublattices turn out to be finite and equal.
These phenomena demonstrate that the quasiparticle polari-
tons are excited and break the U(1) symmetry, so that the
SR phase emerges. Then, similar to the one-dimensional case
[25], the larger μ cannot immediately drive the system into
the solid-1/2 phase. Instead of this, the exotic SRS phase
can be found between the SR and solid-1/2 phases. From the
order parameters in the SRS phase shown in Figs. 2(a) and
2(c), we can find both the photon numbers and the Rydberg
probabilities are finite, but different from the SR phase, the
Rydberg probabilities in both sublattices are different. This
means that, as the two-order coexisted phase, the SRS phase
breaks both U(1) and translational symmetries. In the strong-
coupling limit g 	 �, the SRS phase can be understood as
follows: the atoms in one sublattice couple the photons and
construct the polaritons [30]. While approaching the solid-1/2
phase, the photon density is dropping down to zero. In the
solid-1/2 phase, only the atoms in one sublattice are excited
to the Rydberg state, and no photons exist in the cavity at the
same time.

However, when continuously increasing the chemical po-
tential μ, the existence of the SRS phase is related to the
magnitude of the energy gap �. When the gap is small, such as
� = 2 in Fig. 2(b), the SRS phase is unstable, so that the QPT
between the SR and the solid-1/2 phase is first order. It can be
obviously reflected by the jump of the Rydberg probabilities
and the photon density. In comparison, the large energy gap
[see Fig. 2(d)] can stabilize the SRS phase, in which the atoms
of one sublattice are almost fully polarized and the other
sublattice is occupied with the polaritons. Furthermore, the
QPTs among the SR, SRS, and solid-1/2 phases are all second
order, which is the same as the situation at lower chemical
potentials.
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FIG. 3. Quantum phase diagram calculated from the variational
method at different gap energy (a) � = 2, (b) � = 3, (c) � = 5, and
(d) � = 6. The region of the SRS phase is marked with in red, and
the red dot points out the triple point. Inset: the phase diagram at
� = 3 after zooming in.

The whole quantum phase diagram in the μ-g panel with
different gap energy � is drawn in Fig. 3. In both strong- and
weak-coupling regions, the solid-1/2, Mott, and SR phases
follow the analysis mentioned before. In the intermediate re-
gion, the quantum phase diagram becomes rich. Apparently,
the gap energy can stabilize the solid-1/2 and Mott phase,
so that their regions are enlarged while increasing �. When
the gap energy is small [Fig. 3(a) at � = 2], the solid-1/2
phase has two selections for entering the SR phase: (i) a direct
first-order phase transition through the upper phase bound-
ary; and (ii) two successive second-order phase transitions
through the lower intermediate SRS phase. Meanwhile, there
is a triple point among these phases [red dot in Fig. 3(a)].
Then, while increasing �, the upper SRS phase emerges
and its region is expanding. However, the upper and lower
regions of the SRS phase are not connected, and it hints
that there are two triple points jointed with first-order phase
transition or one quadruple point. To address these questions
and to quantitatively study this system, we require a more
accurate method, like the quantum Monte Carlo simulation
method.

IV. QUANTUM MONTE CARLO SIMULATION

The numerical method we adopted is the stochastic series
expansion method [31,32]. Different from the conventional
algorithm, here the operator vertex includes three Rydberg
sites and one photonic mode site. Meanwhile, the maximum
occupation number of photons is adjusted to always be much
higher than the possible photon number during the simulation,
so there is no system error caused by the truncation, and the
algorithm in details can be found in the Supplemental Material
of Ref. [25]. The inverse temperature is set to β = 1/T =
100, so that it is much lower than the other energy scales
(kB = 1). The system size simulated is up to 20 × 20 = 400
sites, which is much larger than the real system (≈250 [8]).

Usually, the distance between nearest-neighbor sites in the
experiment is around 5 μm, so the system size 20 × 20 im-
plies the size of the cavity has to be larger than 100 μm at
least. However, it is not an easy task even with state-of-the-
art techniques. In addition, we choose the periodic boundary
condition. The possible quantum phases can be divided into
two categories: (1) the solid-1/2 and Mott phases are in-
compressible; (2) the SRS and SR phases are compressible.
Thus, we introduce the compressibility κ = Nβ(〈ρ2〉 − 〈ρ〉2)
to distinguish them, in which ρ = ∑N

l=1 nl/N is the average
Rydberg probability. For the incompressible phases, the Mott
phases keep the integer filling and the solid-1/2 phase corre-
sponds to half-filling. Now let us consider the compressible
phase; the SRS phase further breaks the translational symme-
try while the SR phase does not. Thus, the structure factor
S(Q)/N = 〈|∑N

l=1 nleiQ·Rl |2〉/N2 is taken as the order param-
eter to characterize the translational symmetry breaking. In the
solid-1/2 phase, the same as the Néel phase in the magnetic
materials, the corresponding Q is equal to (π, π ). Then, the
value of S(Q)/N of solid-1/2 is exactly 1/4 at g = 0, because
the Rydberg probability is equal to 1 in one sublattice and zero
in the other. Meanwhile, it should be a finite value in the SRS
phase and zero in the other phases.

The QPT between the solid-1/2 and the SRS phase can
be clearly identified in Fig. 4 at large chemical potential
μ = −2.5 with small gap energy � = 3. When the coupling g
is small, the compressibility κ is zero and the structure factor
S(Q)/N is almost 0.25, so the system is in the solid-1/2 phase.
Meanwhile, the zero photon density ρa = ψ†ψ in Fig. 4(b)
demonstrates that no photon exists in the optical cavity. Then,
the same as the prediction of the variational method, numerous
polaritons are excited and prefer one sublattice, so we can
observe that both S(Q)/N and κ are finite in the SRS phase
which breaks two symmetries. The photon density with dif-
ferent system sizes can be scaled to one line by dividing the
number of Rydberg sites N [see Fig. 4(b)], and it hints that
the polariton density is nearly unchanged while enlarging the
system size. In other words, the average photon numbers for
constructing the polariton is almost the same at different sizes.
Furthermore, all the smooth curves of different observables
demonstrate that the QPT is second order.

Although the variational method supports that the QPT
between the SRS and SR phases is continuous, the numerical
results in other similar systems are different [25,30]. In Fig. 4,
we can find the QPT looks continuous at a small system size,
such as L = 10, but the structure factor suddenly jumps to �0
at the critical point gc = 1.76 for larger sizes. At the same
time, such small discontinuity can also be observed from the
photon density ρa. Most importantly, as shown in Fig. 4(a),
the values of κ at the peak increase along with the system size
and tend to diverge. In contrast, it is decreasing at g slightly
larger than gc (black arrow highlights). To further verify the
type of QPT, we calculate the Binder cumulant defined as
Sb = 1 − 〈S(Q)2〉

3〈S(Q)〉2 and plot it in Fig. 4(b). It is zero in the SR
phase, and about 2/3 in the ordered phase (both the solid-1/2
and SRS phases break the translational symmetry). When g is
close to the critical point gc, the Binder cumulant also presents
a clear jump at a larger size, and it indicates the QPT is first
order.
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(a)

(b)

FIG. 4. (a) The structure factor S(Q)/N and the compressibility
κ . (b) The Binder cumulant Sb and the photon density ρa at � = 3
and μ = −2.5 with different system sizes obtained by QMC simu-
lation. The region of the SRS phase is marked with red. The black
arrow highlights the decrease of κ near the critical point.

When the chemical potential μ becomes smaller, as shown
in Fig. 5(a), the region of the SRS phase shrinks. Meanwhile,
the first-order phase transition between the SRS and the SR
phase turns out to be more apparent, and we can observe
obvious jumps of all the observables. However, different from
the predication of the variational method at � = 3, the QPT
between the solid-1/2 and the SR phase turns out to be direct
first order in Fig. 5(b). Indeed, such phenomenon also exists
for the results of the variational method at small �, and it re-
flects that the variational method underestimates the quantum
fluctuations as usual. In the real system, the largest number
of tweezer sites is around ≈200. Thus, instead of tediously
achieving the phase diagram in the thermodynamic limit, it is
more practical to obtain the “finite-size phase diagram.” Here,
the system size of the phase diagram is N = 100. The phase
boundary of the incompressible phase is set to the value at
which the compressibility κ is just larger than 10−3. Mean-
while, the finite-size phase boundary between the SRS and the

FIG. 5. The structure factor S(Q)/N , its Binder cumulant Sb,
and the photon density ρa at � = 3 with system size equal to L =
20 obtained by QMC simulation. The chemical potential is set to
(a) μ = −2.1 and (b) μ = −1.2. The region of the SRS phase is
marked with red.

SR phase is found by the singularity of κ . From the quantum
phase diagram at � = 3 in Fig. 6, we can find the region of
the SRS phase is slightly smaller than the variational method
phase diagram. This indicates that the system behaves more
“classically.” In comparison with the one-dimensional case,
the SRS phase is more stable, so that it will be more accessible
in the real experiment. Meanwhile, it should be also possible
to detect the triple point among the SRS, SR, and solid-1/2
phases.

On the other hand, the critical lines of the second-order
QPT of the incompressible phases can also be calculated via
the perturbation theory, which is also known as the strong-
coupling expansion (SCE) method [33,34]. Several works
have demonstrated that it can provide very accurate results
comparable to the numerical results. The phase boundary of
the Mott-0 phase can be calculated by comparing the vacuum
energy with the perturbative energy of one polariton excited
state, and the second-order result is μ = −� − g2/�. The
QPT from the solid-1/2 to the SRS phase is second order,
but the upper and lower critical lines should be discussed sep-
arately. The lower one is caused by the “holelike” excitations.
When the chemical potential is smaller than the critical line,
one atom at the Rydberg state can go back to the ground state
and form a “hole.” Then, as the quasiparticle, the polariton can

FIG. 6. The phase diagram at � = 3 and L = 10. The blue dot-
ted lines are the phase boundaries obtained with QMC simulations,
and the dashed lines are the analytic results of the strong-coupling
expansion method. The region of the SRS phase is shaded with red,
and the red dot marks the triple point.
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FIG. 7. The phase diagram at � = 6 and L = 10. The blue dot-
ted lines are the phase boundaries obtained with QMC simulations,
and the dashed lines are the analytic results of the strong-coupling
expansion method. The region of the SRS phase is shaded with red,
and the red dots mark the triple points. Inset: the structure factor and
photon density for different μ at g = 2.6.

also be composed of the hole and photon. Thus, the energy
difference between a single “hole-polariton” excited state and
a solid-1/2 phase can give the second-order lower critical line
μ = −� + g2/2�. For the upper boundary at � < 4, the first
excited state is with an additional photon, so the critical line
is μ = −g2/2�.

We compare the SCE results with the numerical result in
Fig. 6, and the critical lines of the Mott-0 phase quantitatively
match well, and so do the lower boundaries of QPT between
the SRS and solid-1/2 phases. However, the upper boundary
shows a large discrepancy, because the melting of the solid-
1/2 phase becomes first order. Inspired by both numerical
and analytical results, we find it is hard to produce the upper
SRS phase when � < 4V . One possible mechanism may be
understood as follows: it is hard to excite the atom to the
Rydberg state in the solid-1/2 phase when � < 4V , so it is
also difficult to construct the polaritons even with photons in
the optical cavity.

At last, we simulate the QPT at large gap energy � = 6,
and the quantum phase diagram is shown in Fig. 7. The
Mott-1 phase appears at high chemical potential. In the Mott-1
phase, all the atoms stay at the Rydberg state, and the up-
per and lower boundaries can be obtained by calculating the
perturbative energies of the single “particle-polariton” or the
“hole-polariton” excited state. Then, the SCE method gives
the second-order upper critical line μ = −g2/(� − 4V ) and
the lower one μ = −(� − 4V ) + g2/(� − 4V ). In Fig. 7, we
can find that the critical lines of the Mott-1 phase from both
QMC and SCE methods match well at small g, and seem
to be symmetric along μ = −1, which may correspond to
the hidden particle-hole symmetry. Furthermore, because the
gap energy � is larger than 4V , the SRS phase reappears
with particle-polariton excitation. Then, the second-order up-
per critical line of the QPT between the solid-1/2 and the
SRS phase changes to μ = −(� − 4V ) − g2/2(� − 4V ). In
Fig. 7, all the critical lines from the SCE method are very close
to the numerical results at small g, and it demonstrates that the
physical mechanism of polariton excitation driving the QPT
is appropriate. Finally, between the SRS phases, there are two
triple points linked with first-order phase transition (see the

FIG. 8. The quantum phase diagrams of Rydberg atom array in
square lattice (blue dot line) and 1-d chain (black line) with same
detuning � = 3 and number of sites N = 100. The region of SRS
phase in 1-d chain is pointed out by the black arrows. All the data are
obtained by QMC simulations

inset of Fig. 7), which is also found in the one-dimensional
system [25].

V. COMPARISON OF 1D AND 2D SYSTEMS

In the strongly correlated system, the dimension plays a
critical role in the quantum phase transition [35]. Therefore,
it is worth comparing the two-dimensional system with the
one-dimensional chain [25]. Here, we choose the same de-
tuning � = 3 and number of sites N = 100. In Fig. 8, the
discrepancy of the quantum phase diagram between different
dimensions can be clearly exhibited.

The major difference between the 1D and 2D systems is the
region of the SRS phase. In previous work [25], the numerical
simulation demonstrates that the SRS phase in 1D will always
exist in an extremely tiny region, no matter how the sys-
tem parameter changes. Nevertheless, in a real system, such
fragile SRS phase may be destroyed by the photon leaking,
the noise of lasers, the spontaneous emission of the Rydberg
state, and the loss caused by the intermediate state during the
two-photon transitions. In contrast, the SRS phase in 2D is
stable in a large parameter region, so it can be easily detected
in the real system and so is the triple point.

On the other hand, the upper SRS phase disappears in
2D at the same system parameters, but it can also be stable
in a large parameter region at large detuning as shown in
Fig. 7. This means that the SRS phases with different types
of excitations can be observed in the realistic system, but also
the corresponding triple point and even the more complicated
quantum criticality.

Furthermore, it is technically hard to manufacture a larger
cavity with high finesse, so the cavity can couple to more array
sites in a two-dimensional system. Accordingly, since more
array sites have less finite-size effect, it is more feasible to
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identify the SRS phase and quantum phase transition in the
2D system.

VI. CONCLUSION AND OUTLOOK

In conclusion, using the variational method, strong-
coupling expansion method, and larger scale quantum Monte
Carlo simulation, we obtain the quantum phase diagram of
Rydberg atoms trapped in square tweezer arrays inside an op-
tical cavity. Not only the Mott phase, solid-1/2, and SR phases
are observed, most importantly, the SRS phase which breaks
both symmetries is well analyzed. The transition between the
SR and solid-1/2 phases can be the direct first-order, or the
two successive second-order QPTs through the intermediate
SRS phase. The existence of the upper SRS phase is clearly
related to the gap energy, and so are the triple points among
the SRS, SR, and solid-1/2 phases. The phase transition be-
tween the SRS and the SR phase is found to be first order, but
we still cannot rule out the continuous one in the real system
due to the size or edge effect.

Furthermore, the preparation of the quantum state is not
a simple task. In Appendix B, we discuss it with the help of
numerical simulation in a small system size. Considering the
rapid progress that has been made in the fields of cavity and
tweezers [7,8,16,17], our work will pave a way for experi-
ments in the near future and certainly provide a benchmark
for it at the same time.
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APPENDIX A: HAMILTONIAN WITH A
SINGLE-OCCUPANCY CONSTRAINT

In the previous paper [25], the original model describing
the system can be presented as

H = ωcψ
†ψ +

N∑
i=1

ε

2
(e†

i ei − g†
i gi ) + g√

N

N∑
i=1

(e†
i giψ + H.c.)

+V
∑
〈i, j〉

P(i)
ee P( j)

ee − μt Nt , (A1)

where ωc and ε are the cavity and atom transition frequencies
with the detuning defined by � = ωc − ε. ψ is the single-
mode creation operator of the cavity field; gi and ei are the
boson operators representing the ground state and Rydberg
state of each atom and satisfy the single-occupancy constraint
e†

i ei + g†
i gi = 1 and g is the effective two-photon coupling.

P(i)
ee = e†

i ei are the projectors onto the Rydberg state with
V being the strong dipole-dipole interactions between two
nearest-neighbor sites. The last term is the chemical potential,

where Nt = ψ†ψ + ∑N
i=1 e†

i ei denotes the total excitations of
the systems. Some notations are changed to avoid ambiguity,
such as b† → e† and a† → g†.

In the defect-free Rydberg atom array, each tweezer site is
occupied by one atom which is called the single-occupancy
constraint. With such constraint, the Rydberg atom can be
described by the Pauli operators σ+

i = e†
i gi, σ−

i = eig
†
i , σ z

i =
e†

i ei − g†
i gi, and P(i)

ee = (1 + σ z
i )/2. Then, the Hamiltonian,

Eq. (A1), can be rewritten as

H = ωcψ
†ψ +

N∑
i=1

ε

2
σ z

i + g√
N

N∑
i=1

(σ+
i ψ + H.c.)

+V
∑
〈i, j〉

(
1 + σ z

i

)(
1 + σ z

j

)
/4 − μt Nt . (A2)

Hereafter, we can implement the conventional mapping be-
tween hard-core boson operators and Pauli operators σ+

i →
b†

i , σi → bi, and σ z
i → 2b†

i bi − 1 = 2ni − 1. Finally, Eq. (A2)
changes into the Hamiltonian, Eq. (1), with � = ωc − ε and
μ = μt − ωc.

APPENDIX B: PREPARATION OF THE QUANTUM STATES

In the quantum simulation platform, the system is usually
prepared in some trivial state, such as the ferromagnetic phase.
In the Rydberg atom array, it is easy to prepare all the atoms in
the ground state, which is the Mott-0 phase. However, prepa-
ration of other symmetry breaking phases, especially the SRS
phase, is not a straightforward task. In particular, the timescale
should be so short that the dissipative factors such as the
photon leaking and spontaneous emission of Rydberg states
can be neglected. In this section, we use the Runge-Kutta
method to study the time evolution of our system and try to
find acceptable procedures of state preparation.

1. Adiabatic evolution from Mott-0 to solid-1/2

The solid-1/2 phase or the Néel phase can be prepared with
the help of adiabatic evolution of the Mott-0 phase, and it has
been achieved in two-dimensional Rydberg optical tweezer
arrays with more than 250 sites [8]. Differently, the laser
fields of the two-photon transition are classical, so that the
Hamiltonian is changed into

H (t ) = (t )

2

∑
i

(b†
i + bi ) − �(t )

∑
i

ni + V
∑
〈i, j〉

nin j, (B1)

where  and � are the two-photon Rabi frequency and detun-
ing, respectively. In order to get a high fidelity of target state
by evolving the solid-1/2 state, as shown in the inset of Fig. 9,
we adopt the similar setting [8] of (t ) and �(t ) as

(t ) =
⎧⎨
⎩

6V t/t0 t/t0 < 1/3
2V 1/3 � t/t0 < 2/3
6V (1 − t/t0) 2/3 � t/t0 < 1,

�(t ) =
⎧⎨
⎩

−2V t/t0 < 1/3
−6V (1 − 2t/t0) 1/3 � t/t0 < 2/3
2V 2/3 � t/t0 < 1.
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FIG. 9. The maximum of fidelity Fmax(t0) as a function of t0,
while the Mott-0 state evolves into the target solid-1/2 state. The red
dashed line marks the fidelity equal to 95%. Inset: the modulation
function of detuning and Rabi frequency.

The system size of the Runge-Kutta time-dependent sim-
ulation is limited to 4 × 4, because the Hilbert space will
exponentially explode while increasing the system size. The
wave function of the target state |φt 〉 can be obtained by
solving the instant Hamiltonian H (t0), so that we can calculate
the fidelity F (t ) = 〈φ(t )|φt 〉 at different time t ∈ [0, t0]. By
varying the evolution time t0, we can get the maximum of
fidelity Fmax(t0). As shown in Fig. 9, the fidelity Fmax is larger
than 95% while t0 is longer than ≈30V −1.

2. Adiabatic evolution from solid-1/2 to SRS

Considering the quantum phase transition from the solid-
1/2 and SRS states is continuous, it should be faster to prepare
the SRS state by evolving the solid-1/2 state. The simulation
is in the canonical ensemble, so the time-dependent Hamilto-
nian is without the chemical potential part:

H = g(t )√
N

N∑
i=1

(b†
i ψ + H.c.) + V

∑
〈i, j〉

nin j − �

N∑
i=1

ni. (B2)

Here, we set � = 3V and g(t ) = 1.8V t/t0 (0 � t/t0 � 1), be-
cause the parameters correspond to the SRS phase according
to the quantum phase diagram in Fig. 6. Meanwhile, the trun-
cation of the photon numbers is set to be Nt , so no truncation
error is introduced. In Fig. 10, we find the fidelity between
the SRS and solid-1/2 phases is over 50% at starting time
(t0 = 0). Meanwhile, similar to the evolution from Mott-0 to

FIG. 10. The maximum of fidelity Fmax(t0) as a function of t0,
while the solid-1/2 state evolves into the target SRS state. The red
dashed line marks the fidelity equal to 95%. Inset: the modulation
function of atom-photon coupling g.

solid-1/2, the maximum of fidelity Fmax is over 95% when the
duration time t0 is longer than 30V −1.

3. Timescale of state preparation

In a real experiment, photon leaking will play an important
role during the above processes of state preparation. In order
to avoid the photon leaking, we could improve the quality of
our cavity or shorten the time duration of state preparation.
Taking the parameters of experiment [8] as the references,
the principal number of the Rydberg state is set to be 70, the
lattice spacing is a = 6.7 nm, and the interaction V is around
10 MHz. Therefore, the timescale of preparing a state with
more than 95% fidelity is around several microseconds. Con-
sidering the leaking rate of the cavity with ultrahigh finesse
is less than megahertz [18,19], the corresponding influence
should not be serious during the adiabatic preparation. How-
ever, it is still extremely hard for a larger system, because
the quality of the cavity drops down fast while increasing its
length.

As for the spontaneous emission of the Rydberg state,
the lifetime is generally around 100 μs. Therefore, a several
microseconds state preparation is short enough to avoid the
effect of spontaneous emission.

The atom losses from the intermediate state could be
avoided by using the so-called adiabatic emission technique in
the two-photon transition process. This method requires that
the laser which couples the ground state and the intermediate
state is far-detuned with the energy gap between the ground
state and the intermediate state. As for the result, only a very
small fraction of atoms are excited to intermediate energy
levels and the losses from the intermediate state could be
suppressed.
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