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Tuning the topological state of a helical atom chain via a Josephson phase
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By solving the Bogoliubov-de Gennes equations, we study the quasiparticle spectrum of a magnetic atom
chain placed inside a short constriction-type Josephson junction. A helical magnetic order of the atomic spins is
assumed, so that a topologically nontrivial state with Majorana edge modes at the ends of the chain can appear.
It is found that in the presence of a nonzero Josephson phase the subgap spectrum of an infinite chain consists of
four branches (Shiba bands). This spectrum is almost certainly gapped if the atomic spins form a coplanar spiral.
The Majorana number of the given system is calculated analytically. It is demonstrated that a Josephson phase
shift can be used to drive the system into a topologically nontrivial state and to tune the size of the topological
gap. The spatial structure of Majorana edge modes is studied as well. We generalize the effective model based
on discrete Bogoliubov-de Gennes equations developed by Pientka et al. for a bulk superconductor to the case of
a Josephson junction. Using these discrete equations, the wave functions of Majorana zero modes are calculated
analytically for a coplanar atomic spin spiral with arbitrary pitch. The wave functions exhibit an intermediate
asymptotic behavior with a nonexponential fall-off with distance from the edge of the atomic chain.
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I. INTRODUCTION

The concept of topological quantum computation is based
on performing operations with qubits via braiding of non-
Abelian anyons—quasiparticles whose physical permutations
are noncommutative [1,2]. In condensed matter physics, one
of the simplest examples of such anyon is the so-called Majo-
rana zero mode (MZM). As demonstrated by Alexei Kitaev,
MZMs appear at the ends of 1D and quasi-1D topological
superconductors [3]. In a sufficiently long, but finite 1D wire,
two such modes can be combined into an ordinary Bogoliubov
quasiparticle state with near-zero energy localized at both
ends of the wire.

Topological superconductivity appears to be not easy to
obtain. One of the first and most promising practical pro-
posals to construct a 1D topological superconductor was
based on using semiconducting wires with spin-orbit in-
teraction, proximity-induced superconductivity and a strong
Zeeman field (obtained either by applying a magnetic field or
from intrinsic exchange interaction) [4,5]. There is mounting
experimental evidence for the presence of MZMs in such
systems—see Ref. [6] for a review. Later it was found that
the spin-orbit interaction can be excluded, if the Zeeman field
is noncollinear, e.g. a spiral magnetic order is present [7,8]. In
fact, even proximitized wires are not necessary: it was demon-
strated that topological superconductivity may occur in the
vicinity of magnetic atom chains with noncollinear magnetic
order, and the phase diagram of superconducting systems with
such chains has been studied in a number of papers [9–21]. It
was argued that helical magnetic order should appear sponta-
neously in magnetic chains coupled to a superconductor due
to different mechanisms [11–13,16,22–27], which may result
in a topologically nontrivial phase.

Technically, atomic chains on metallic surfaces can be
created by means of single-atom manipulation using the tip
of a scanning tunneling microscope. Generally, the artificially
created magnetic chains exhibit collinear magnetic order,
however, in some cases a spiral order occurs [28–31] (presum-
ably, due to the Dzyaloshinskii-Moriya interaction between
atomic spins). In Ref. [31], signatures of MZMs were found
at the ends of a Fe chain deposited on superconducting Re.

In 1D topological superconductor networks, braiding can
be performed by locally changing the topological state of the
system [32]. In nanowire-based systems [4,5], this can be
accomplished by tuning the chemical potential (via gate elec-
trodes) or the magnetic field. These mechanisms are not that
efficient in systems based on helical magnetic chains (though
a magnetic field can induce a phase bias, whose impact
is discussed below), so that alternative experimental knobs
are necessary. It has been demonstrated for various systems
that a superconducting phase bias, which is usually related
with a supercurrent flow, can act as such a knob [15,33–46].
The influence of a uniform supercurrent on the quasiparticle
spectrum of a helical atom chain placed inside a bulk super-
conductor has been studied by Röntynen and Ojanen [15]. The
authors considered the dilute limit, kF a � 1, where kF is the
Fermi wave number and a is the distance between magnetic
atoms, and the limit of deep Yu-Shiba-Rusinov (YSR) states
[47–49], so that the energies of quasiparticles hosted by each
atom are much smaller than the bulk superconducting gap �0.
It was found that the supercurrent allows to tune the topolog-
ical state of the system, e.g. to switch from a topologically
trivial to a nontrivial state.

An important limitation of the mentioned approach [15] to
tune the properties of a helical atom chain is that the gradient
of the phase θS of the superconducting order parameter can
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FIG. 1. Josephson junction of the constriction type with a chain
of point impurities. On the left and right, the order parameter in
the superconducting banks is shown (� = �0e±iθ/2). (Inset) Scheme
explaining the meaning of the angles ϕ and χ .

be only of the order of or smaller than ξ−1, where ξ is the
coherence length—for |∇θS| ∼ ξ−1, the supercurrent is of the
order of the depairing current. For this reason, in Ref. [15],
the limit |∇θS| � ξ−1 was analyzed, so that the suppression
of the superconducting gap could be neglected. To consider
the effect of larger phase gradients, in the present paper we
study a somewhat different setup, namely, a magnetic atom
chain placed inside a short weak link of the constriction type,
as shown in Fig. 1. The idea behind this setup is as follows.
The YSR states induced by each atom (impurity) in a bulk
superconductor are generally not deep (the energy may be of
the order of �0). In the magnetic chain, these states hybridize
to form Shiba bands. In the dilute limit (kF a � 1), these bands
are typically narrow, and the helical chain is in a topologically
trivial state: the atoms can be moved infinitely far apart with-
out closing the spectral gap. In the constriction geometry, the
Josephson phase difference θ can be used to significantly tune
the energy of the YSR states: the energy may be shifted by
a value of the order of �0 [50]. Hence, by applying a phase
bias it may be possible to close the spectral gap and to drive
the system into a topologically nontrivial state (when the gap
reopens). Our calculations prove that this is indeed possible in
a wide range of parameters.

Within the Bogoliubov-de Gennes equations formalism,
we analyze the spectral properties of quasiparticle states lo-
calized at the helical chain in our system. We consider chains
with arbitrary pitch and tilt angles, as well as arbitrary ener-
gies of YSR states. The magnetic atoms are described as point
scatterers with scattering phases α↑ and α↓ for “spin-up” and
“spin-down” electrons, respectively. In preceding papers, for
simplicity the case α↑ = −α↓ was considered. Here, we study
the more general case when α↑ and α↓ are independent. For
some simplifications, we consider the limit a � ξ .

We start by calculating the spectrum of impurity-induced
states in an infinite helical chain. We find that in our system in
the presence of a Josephson phase difference four Shiba bands
appear, as opposed to two bands found in preceding papers
for a uniform superconductor [14,15,18]. For a nonplanar spin
helix, a gapless phase exists for some range of phases θ , while
for a planar helix the gapless phase is absent, similarly to
Refs. [14,18] (the same situation takes place in the case of

a bulk supercurrent flowing perpendicular to the atom chain
[15]). Next, we study the phase diagram of the chain. The
Majorana number is calculated, and it is found that it does not
depend on the tilt angle χ of the spin helix. It is demonstrated
that the topological state of the system and the size of the
topological gap can be tuned by varying the phase θ .

Finally, we study the structure of the MZMs. Previously,
for a uniform bulk superconductor, it was found using numer-
ical calculations that in a long chain with a planar helix and
in the limit kF a � 1 and ξ → ∞ the wave function � of a
MZM falls off with distance s from the edge of the chain as

� ∼ 1

s lnμ(s/a)
(1)

with μ = 2 [14]. Later [51], for a limited range of parameters
this result was confirmed analytically using an approximate
solution of the two-band model derived in Ref. [14]. Here,
we derive a generalization of the mentioned model for our
system, which includes a Josephson phase difference θ . We
find an analytical solution for the wave function of the MZM
in the case of a planar helix for an arbitrary pitch of the helix
and arbitrary θ . We demonstrate that for θ 
= 0 Eq. (1) is still
applicable, but the exponent μ depends on θ .

The paper is organized as follows. In Sec. II, the physical
model is described in detail, and the problem of calculating
the quasiparticle spectrum is cast in the form of a system
of discrete linear equations. In Sec. III, the spectrum of an
infinite atomic chain is calculated. In Sec. IV A the phase dia-
gram of the chain is studied. In Sec. IV B, the wave functions
of low-energy quasiparticle states are analyzed numerically
and analytically. In Sec. V, possible experimental implemen-
tations are discussed. The main results are summarized in the
conclusion. Most analytical calculations can be found in the
appendices.

II. PHYSICAL MODEL AND BASIC EQUATIONS

We will consider a three-dimensional Josephson junction
with a smooth constriction as a weak link, as shown in Fig. 1.
For our analysis, it does not matter whether superconductivity
is suppressed in the region of the weak link or not. The key
assumptions that we will use are that the width h of the
constriction and its characteristic length in the x direction are
much smaller than the bulk coherence length ξ = h̄vF /(π�0),
where vF is the Fermi velocity of the superconducting mate-
rial. The condition h � ξ allows for significant variations of
the order parameter’s phase in the weak-link region on a scale
that is much smaller than ξ in the clean limit (we use such a
gauge that the vector potential can be neglected in the vicinity
of the junction)—see Sec. III D 2 in Ref. [52]. Thus we are
dealing with a short weak link. The order parameter’s phase
in the left and right superconducting banks is θ/2 and −θ/2,
respectively.

Inside the junction, there is a chain of magnetic atoms
oriented along the z axis. The atoms are identical, and their
spins exhibit a spiral order. We assume that apart from the
magnetic atoms, the superconductor contains no defects in
the region of the junction with a spatial extent of several
coherence lengths.
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We will calculate the energies and spatial structures of
impurity-induced states in our system within the formalism
of the Bogoliubov-de Gennes (BdG) equations:{

τ̌z[H0(r)+U (r)]+J(r)σ̌ +
(

0 �(r)
�∗(r) 0

)
N

}
� = E�,

(2)

where the star * denotes complex conjugation,

�(r) =

⎛
⎜⎝

u↑(r)
u↓(r)
v↑(r)
v↓(r)

⎞
⎟⎠ (3)

is a vector in the space that is the tensor product of spin
and Nambu spaces, ↑ and ↓ are spin projection indices, τ̌z is
a Pauli matrix in Nambu space, σ̌ = (σ̌x, σ̌y, σ̌z ) is a vector
composed of Pauli matrices, U (r) is the electric potential,
J(r) is the exchange field, �(r) is the superconducting order
parameter, E is the quasiparticle energy, (. . . )N denotes a
matrix in Nambu space,

H0(r) = − h̄2∇2

2m
− h̄2k2

F

2m
, (4)

and m is the electron mass. For brevity, unit matrices in spin
and Nambu spaces are omitted in Eq. (2). The electric poten-
tial consists of two components:

U (r) = V (r) +
∑

l

Ul (r), (5)

where V (r) is the “external” potential: in our case, V (r) = 0
in the superconductor and V (r) = ∞ in vacuum. Each term
Ul (r) represents the electric potential of the lth magnetic
impurity. The exchange field consists of the exchange fields
Jl of all impurities:

J(r) =
∑

l

Jl (r). (6)

In the following, we will consider the magnetic atoms as
point impurities. Formally, this means that the potentials Ul (r)
and Jl (r) of the lth atom are localized in a region with a size
much smaller than k−1

F in the vicinity of the point rl . Then,
the atoms are predominantly isotropic scatterers, i.e., effec-
tive sources of spherical waves. Let us assume that Jl (r) =
Jl (r)nl , where nl are unit vectors. Then, electrons with spins
directed along nl are scattered with a scattering phase α↑ and
without spin rotation. The same holds for electrons with spins
directed against nl , but they generally have a different scatter-
ing phase—α↓.1 In the case of a nonmagnetic impurity, both
scattering phases coincide. Generally, the scattering phases
are energy-dependent, however, in the narrow energy range
−�0 < E < �0 that we will consider, they are approximately
constant.

1When the vector field Jl (r) has a noncollinear structure and even is
nonlocal, within the isotropic scattering approximation still a vector
nl can be found such that electrons with spins directed along nl or
against it are scattered without spin rotation. This follows from the
conservation of probability in scattering processes.

Let us put the origin at the position of one of the atoms.
Then we can number the impurities in such a way that rl = la,
where a = (0, 0, a). Correspondingly, the vectors nl are given
by

nl = n0 cos(lϕ) − n0 × n sin(lϕ) + (1 − cos(lϕ))(n0n)n,

(7)
where n is the vector relative to which the impurity spins
rotate, n0 is nl with l = 0, ϕ is the relative rotation angle of
the spins (and of the vectors nl ) of two adjacent impurities,
n0n = cos χ , and χ is the tilt angle of the spin helix—see
inset in Fig. 1.

The ideology behind the method of solving Eq. (2) is
based on the observation that the terms containing Ul (r) and
Jl (r) can be formally considered as point sources in the BdG
equations. Since the solutions of BdG equations with point
sources are the real-time Green functions, we can write �(r)
in the form

� = τ̌z

∑
l

ǦE (r, rl )�̃l , (8)

�̃l = exp(−iϕσ̌nl/2)�l , (9)

where �l are some constant vectors, ǦE (r, r′) is the retarded
Green function of the clean Josephson junction, and the ex-
ponential factor in Eq. (9) is added to simplify subsequent
equations. The Green function satisfies the Gor’kov equa-
tion [53]

[H0(r) + V (r) − τ̌z(E + iη+)

+
(

0 −�(r)
�∗(r) 0

)
N

]
ǦE (r, r′) = δ(r − r′), (10)

where η+ is an infinitely small positive quantity. It can be seen
that the function given by Eq. (8) satisfies Eq. (2) everywhere,
except the close vicinity of impurities, where Ul (r) 
= 0 or
Jl (r) 
= 0.

Since the BdG Hamiltonian without magnetic atoms con-
tains no exchange terms, the matrix ǦE (r, r′) is diagonal with
respect to spin indices and has the form

ǦE (r, r′) =
(

GE (r, r′) FE (r, r′)
−F †

E (r, r′) ḠE (r, r′)

)
N

. (11)

The components of the matrix ǦE (r, r′) satisfy the following
relations:

ḠE (r, r′) = G∗
−E (r, r′), FE (r, r′) = F †∗

−E (r, r′). (12)

We will consider only energies lying within a spectral gap of
the clean superconductor, so the term iη+ can be dropped in
Eq. (10). Then, the following additional symmetries arise:

GE (r, r′) = G∗
E (r′, r), F †

E (r, r′) = F †
−E (r′, r). (13)

By considering the behavior of the wave function �(r) in
the vicinity of the impurities it can be demonstrated that the
vectors �l satisfy the following equations (see Appendix A
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for a derivation):

mkF

2π h̄2

(
1 + τ̌zn0σ̌

2
cot α↑ + 1 − τ̌zn0σ̌

2
cot α↓

)
�l − ǦER(0, 0)�l −

∑
n 
=l

ǦE (a(l − n), 0) exp(iϕσ̌n(l − n)/2)�n = 0, (14)

where

ǦER(r, r′) = ǦE (r, r′) − m

2π h̄2|r − r′| (15)

is finite for r = r′. Equation (14) represents a generalization
of the linear system derived in Ref. [18] to the case of nonuni-
form superconductivity and independent scattering phases α↑
and α↓.

III. SHIBA BANDS

In this section, we will study impurity states localized at an
infinite chain, so that l = −∞· · · + ∞. Due to translational
invariance, the solutions of Eq. (14) should be sought in the

form

�l = eiql�0, (16)

where q is a dimensionless quasi-momentum. Then, the
energy versus q dependence can be determined from the equa-
tion

det

{
mkF

2π h̄2

(
1 + τ̌zn0σ̌

2
cot α↑ + 1 − τ̌zn0σ̌

2
cot α↓

)

− ǦER(0, 0) −
∑
n 
=0

ǦE (−na, 0)eiqn−inϕσ̌n/2

}
= 0. (17)

For our particular geometry and for la � h, ξ the Green
functions have been calculated in Ref. [50] (there, the
Green function in the absence of impurities was denoted
as Ĝ(0)

E ):

2π h̄2

mkF
ǦE (la, 0) = cos(kF al )

kF a|l| + sin(kF al )

2kF al

(
cot

(
γ + θ

2

)+ cot
(
γ − θ

2

)
sin−1

(
γ + θ

2

)+ sin−1
(
γ − θ

2

)
− sin−1

(
γ + θ

2

)− sin−1
(
γ − θ

2

) − cot
(
γ + θ

2

)− cot
(
γ − θ

2

) )
N

, (18)

2π h̄2

mkF
ǦER(0, 0) = 1

2

(
cot

(
γ + θ

2

)+ cot
(
γ − θ

2

)
sin−1

(
γ + θ

2

)+ sin−1
(
γ − θ

2

)
− sin−1

(
γ + θ

2

)− sin−1
(
γ − θ

2

) − cot
(
γ + θ

2

)− cot
(
γ − θ

2

) )
N

, (19)

where γ = arccos(E/�0). The quasiclassical approximation
was used to derive Eqs. (18) and (19), which is applicable
when kF ξ � 1. For la � h, one may expect that the Green
functions will depend on the shape of the constriction.

Formally putting a = ∞, we can determine the energies of
YSR states modified by the Josephson phase difference [50]:

E = ±�0 cos
(
� ± α↑ − α↓

2

)
, (20)

where

� = arcsin

√
cos α↑ cos α↓ sin2 θ

2
+ sin2

(α↑ − α↓
2

)
. (21)

For θ = 0, we obtain a pair of ordinary YSR states. However,
when a phase bias is applied (θ 
= 0), two additional impurity
states appear. Then, when the YSR states hybridize, we should
expect four bands to form.

Next, one can prove that there are two YSR states at the
Fermi level (E = 0), if

cos
θ

2
= √− tan α↑ tan α↓. (22)

Thus we can obtain a zero-energy YSR state by applying a
phase bias when

√− tan α↑ tan α↓ � 1.

For a finite distance a, the determinant in Eq. (17) is
calculated and analyzed in Appendix B. It is shown that for
θ 
= 0 and a > λF /2, where λF = 2π/kF is the Fermi wave-
length, the spectrum of the impurity states consists of four
E (q) branches, two of which merge with the gap edge when
θ = 0. When a < λF /2, for some values of q there may be
less than four branches of impurity states—see discussion in
Appendix B.

Some spectra of impurity states are shown in Fig. 2. One
can see that the spectral branches exhibit singular behavior.
This is connected with the slow ∝ |n|−1 decay of the terms in
the series in Eq. (17), which results in logarithmic singularities
of this series for certain values of q. As it was said above,
for sufficiently large l one should expect a faster than ∝ |l|−1

decay (presumably, exponential) of the Green function, given
by Eq. (18). This will result in better convergence of the series
in Eq. (17), so that the spectral branches E (q) may become
analytical.

Apart from the impurity states, the subgap spectrum con-
tains degenerate Andreev states that do not interact with the
impurities (not shown in Fig. 2). These states are essen-
tially the same as in a clean junction and have energies E =
±�0 cos(θ/2). Depending on the parameters of our system,
the quasiparticle spectrum may be gapped or gapless. It is
found (see Appendix B) that for χ = π/2 and for arbitrarily
chosen values of all other parameters the spectrum almost
certainly has a gap. This indicates that χ = π/2 is most
favorable for the observation of MZMs at the ends of the
impurity chain (similarly to the case of a helical chain in a
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FIG. 2. Spectra of impurity-induced quasiparticle states in the
presence of an infinite chain of magnetic point impurities. In all
graphs kF a = 3π/2, ϕ = π/2, α↑ = −α↓ = π/4. The parameters
θ and χ are different for (a)–(c). (a)χ = π/4, θ = 0—example of
a gapless spectrum. (b)χ = π/2, θ = 0—a gapped spectrum in a
topologically nontrivial phase. (c): χ = π/2, θ = 1.677—spectrum
at a transition from a topologically nontrivial to a trivial state with a
gap closure at q = 0. In graphs (a) and (b), corresponding to θ = 0,
two of the four YSR bands have merged with the gap edge.

uniform superconductor [14]), the existence of which requires
a gapped spectrum.

IV. MAJORANA EDGE MODES

A. Phase diagram

Now we will determine the conditions under which the
system is in a topologically nontrivial state, such that MZMs
appear at the ends of a finite impurity chain. In the case
of discrete translationally invariant BdG Hamiltonians, the
general conditions for this have been derived by Kitaev [3].
His results are not directly applicable to our system, because
Eq. (14) does not have the form of an eigenvalue problem for
some Hamiltonian. However, in the limit |E | � �0 cos(θ/2),
by linearizing the Green functions with respect to E [using
Eqs. (18) and (19)], we can cast Eq. (14) in the form

(Ȟ − EČ)�̄ = 0, (23)

where Ȟ is a Hermitian operator acting on a vector �̄ com-
posed of vectors �l with all valid numbers l , and Č is a
positive definite operator. If we are only interested in MZMs,

we may consider a semi-infinite chain, so that l = 0, 1, 2 . . . ,
and put E = 0 in Eq. (23). Then, if the number of solutions
of the equationȞ�̄ = 0 is odd, there is a robust Majorana
mode at the end of the chain, and there is no robust Majorana
mode otherwise (multiple MZMs are not robust with respect
to perturbations). It can be demonstrated that the operator Ȟ
is formally equivalent to a discrete BdG Hamiltonian, and
hence we can use Kitaev’s results to calculate the Z2 index of
the Altland-Zirnbauer class D [54–56]—the Majorana number
M. For some values of the parameters the system may belong
to a different symmetry class than D (e.g., BDI), however,
the additional symmetries are not robust with respect to small
perturbations of �(r), V (r), and J(r), and for this reason we
will not consider the corresponding topological indices.

It is proven in Appendix C that the Majorana number for
our system is given by

M = sgn
[
L
(ϕ

2

)
L
(ϕ

2
+ π

)]
, (24)

where

L(α) = l̃2(α) + 2

1 + cos θ
h̃2(α) −

(cot α↑ − cot α↓
2

)2

,

(25)
and the functions h̃(α) and l̃ (α) are given by Eqs. (B2) and
(B3), respectively. The system is in a topologically trivial state
when M = 1, and it is in a topologically nontrivial one when
M = −1. For the existence of MZMs, M = −1 is required,
and in addition the bulk spectrum of the atomic chain must be
gapped. It can be seen that Eqs. (24) and (25) do not depend on
χ , which may give the impression that a helical spin structure
is not necessary for the observation of MZMs. However, it
turns out that for a ferromagnetic spin order (χ = 0) the bulk
spectrum of the chain is gapped only in the topologically
trivial state, as demonstrated in Appendix B. On the other
hand, for an antiferromagnetic order (ϕ = π ), M = −1 is
impossible, because L(π/2) = L(3π/2). This means that a
helical spin structure is crucial for the observation of MZMs.

In the dilute limit—kF a � 1—we have l̃ (α) ≈
−(cot α↑ + cot α↓)/2 (except for some special combinations
of parameters) and h̃(α) ≈ 1. Then, L(α) is approximately
constant, and a topologically nontrivial state may exist only
for L(α) ≈ 0, when Eq. (22) is approximately satisfied.
This restriction can be explained as follows. To obtain a
topologically nontrivial state, roughly speaking, two YSR
bands have to overlap at q = 0 or q = π . In the dilute limit,
the YSR bands become narrow, and an overlap is possible
only when the energies of isolated YSR states are close to
zero, i.e., Eq. (22) is satisfied. This consideration also implies
that the size of the topological gap is roughly bounded from
above by the width of the YSR bands, which is much smaller
than �0 in the dilute limit. For a more dense atom chain, the
topological gap may be of the order of �0, which is more
favorable for manipulations with MZMs.

In the dense limit, which is characterized by the inequality
kF a � π , it turns out that h̃(α) [Eq. (B2)] vanishes for almost
all α. As a result, the Majorana number does not depend on θ

(except for some very specific values of ϕ). This means that
the topological state of the atom chain can not be manipulated
by applying a phase bias. Thus, in the context of the constric-
tion geometry, the most interesting case is kF a ∼ π . In the
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present paper, in numerical calculations the value kF a = 1.5π

is used.
Now we will discuss the dependence of the topological

state on the phase θ . Let us consider θ in the range [0, π ]—
the spectrum is invariant under the replacement of θ by −θ .
Depending on the parameters a, χ and ϕ, the quasiparticle
spectrum is affected by variations of θ in different ways.
First, assume that for θ = 0 the system is in a topologically
nontrivial state. We may note that L(α) is a monotonically
increasing function of θ (provided that a > λF /2, so that
h̃(α) 
= 0). Then, as θ is increased, both L(ϕ/2) and L(ϕ/2 +
π ) become positive, which means that the system switches
to a topologically trivial state. At intermediate values of θ ,
a gapless state exists, such that two of the E (q) branches
touch the zero-energy level either at q = 0 or at q = π . A
typical spectrum of an infinite chain at the topological phase
transition point is shown in Fig. 2(c), where the spectral gap
closes at q = 0. Next, consider the case when the system is
in a topologically trivial state when θ = 0. If both L(ϕ/2)
and L(ϕ/2 + π ) are positive for θ = 0, then no topological
phase transitions happen as θ is increased. On the other hand,
if both L(ϕ/2) and L(ϕ/2 + π ) are negative for θ = 0, two
topological phase transitions may take place as θ is increased
from 0 to π .

In Fig. 3, two characteristic phase diagrams of the system
are shown. In the gapped phases, the color shows the gap in
the bulk spectrum of the chain—this quantity is the topologi-
cal gap in the regime where isolated Majorana fermions exist.
It should be borne in mind that the gap is limited from above
by �0 cos(θ/2), which is the energy of Andreev states that do
not interact with the impurities. Hence, at θ = π the spectrum
is gapless. Figure 3(a) corresponds to the case where the
system is in a topologically nontrivial state even when θ = 0.
Still, the Josephson phase difference can be used to enhance
the topological gap: the gap is the largest for θ ≈ 1.29 when
χ = π/2.

B. Wave functions of Majorana edge states

In this section, we will briefly discuss the structure of
the low-energy [E � �0 cos(θ/2)] quasiparticle excitations
localized at a finite impurity chain, and, in particular, the
structure of Majorana modes. The energies and wave func-
tions of low-energy excitations are determined from Eq. (23),
which constitutes a generalized eigenvalue problem that can
be solved using standard numerical routines. The numerical
solution of Eq. (23) has been performed for a chain with 400
atoms (l = 1, . . . , 400). The obtained quantities ‖�l‖2 with
appropriate normalization can be roughly interpreted as the
probabilities to find a quasiparticle in the vicinity of the lth
atom, where ‖ . . . ‖ denotes the �2-norm of a vector.2 Some
characteristic spatial profiles of the four impurity-induces

2Strictly speaking, this is not correct: the vectors �l influence the
probability to find a quasiparticle not only close to the lth impurity,
but also far from it due to the slow decay of the Green function
ǦE (r, r′) with the distance between r and r′. Still, the quantities
||�l ||2 allow to clearly visualize the difference between MZMs and
the bulk modes of the chain.

FIG. 3. The spectral gap and the phase diagram of the impurity
chain in the χ − θ plane. The parameters used are (a) kF a = 3π/2,
α↑ = −α↓ = π/4, ϕ = π/2 and (b) kF a = 3π/2, α↑ = π/4, α↓ =
−π/8, ϕ = π/3.

states with lowest energies are shown in Fig. 4. The Majorana
edge modes in the topologically nontrivial state can be clearly
seen, and in the topologically trivial state, no low-energy edge
modes can be observed.

It should be noted that the coefficients in Eq. (14) decay
with |l − n| in a power-law manner. This indicates that the
wave functions of edge states might exhibit a nonexponential
decay with increasing distance from the edge of the chain
[57–59]. For a helical atom chain in a bulk superconductor,
this issue was studied by Pientka et al. [14,51], who developed
a two-band approximation for Eq. (14) in the dilute limit—
kF a � 1—and for α↑ = −α↓. In this limit, for low energies,
Eq. (14) can be reduced to a system of ordinary discrete BdG
equations:

∑
m

(
t (l − m) �(l − m)

�∗(m − l ) −t (m − l )

)(
um

vm

)
= ε

(
ul

vl

)
, (26)

where l and m are indices numbering the impurities, um

and vm are the expansion coefficients of the quasiparticle
wave function in terms of the wave functions of YSR states
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FIG. 4. Profiles of the four quasiparticle excitations with the
lowest energies in the presence of a chain with 400 impurities: the
probability to find a quasiparticle in the vicinity of each impurity
is plotted. The energies of quasiparticles are shown in each panel.
The following parameters are used: kF a = 1.5π , χ = π/2, α↑ =
−α↓ = π/4. (a) θ = 1.65: topologically nontrivial state. The Majo-
rana edge state can be clearly seen. (b) θ = 1.7: topologically trivial
state. (c) θ = 1.67727: gapless state at the topological phase transi-
tion. (d) θ = 0.67: topologically nontrivial state close to the gapless
phase.

localized at the mth atom (there are two such states with
energies ±�0 cos(2α↑)), t (l ) and �(l ) are hopping and pair-
ing amplitudes, respectively [see Eqs. (D1) and (D2) for
explicit formulas], and ε = E/�0. By analyzing the numer-
ical solutions of Eq. (26), it was found that the envelope
for the amplitudes �l for large l in a very long chain with
l = 0, 1, 2 . . . is proportional to 1/(l ln2 l ) [14]. This was then

confirmed analytically for a planar helix (χ = π/2) and for
ϕ/2 ≈ kF a [51].

In Appendix D, using Eq. (14), we generalize the two-band
approximation of Pientka et al. to the case of a short Josephson
junctions and for arbitrary phases α↑ and α↓ (not limited to
α↑ = −α↓). The generalization amounts to a modification of
the coefficients t (l ) and �(l )—see Eqs. (D4) and (D5). We
find that in the topologically nontrivial state Eq. (26) admits an
exact analytical solution for a MZM (ε = 0) on a semi-infinite
atom chain in the case of a planar spin helix: χ = π/2. The
explicit solution is somewhat cumbersome (see Appendix D),
however, its asymptotic behavior for large l is relatively
simple. We find that the amplitudes �l are approximately
given by

�l ≈ � (1)

[
1

l (ln l )μ1
cos

(
l
(

kF a ± ϕ

2

)
+ β1

)

+ C

l (ln l )μ2
cos

(
l
(

kF a ∓ ϕ

2

)
+ β2

)]
, (27)

where � (1) is a vector and C, β1, β2 are numbers that do not
depend on l , and

μ1,2 = 3

2
± 1

2 cos θ
2

. (28)

The ± and ∓ symbols in Eq. (27) should be replaced by either
a plus or a minus depending on the sign of a winding num-
ber [Eq. (D18)]. For θ = 0, which formally corresponds to a
uniform superconductor, it turns out that C = 0. Additionally,
in this case μ1 = 2, and we simply obtain an extension of the
results from Ref. [51] to a wider range of the parameters ϕ, α↑
and α↓. However, C 
= 0 for θ 
= 0, and then for sufficiently
large l the term in the second line of Eq. (27) dominates. Thus,
in the presence of a Josephson phase bias and for sufficiently
large distances from the edge of the atom chain one should put
μ = μ2 in Eq. (1).

To finish the discussion of MZM wave functions, we note
that Eq. (18) for the Green functions is applicable for |l|a �
h. For |l|a � ξ we may expect that the Green functions will
exhibit exponential decay with increasing |l| due to the pres-
ence of the superconducting gap (details of the behavior of
the Green functions depend on the shape of the constriction).
Thus Eq. (27) describes intermediate asymptotic behavior of
a MZM wave function for 1 � l � ξ/a. For l � ξ/a, the
MZM will be exponentially localized.

V. POSSIBLE EXPERIMENTAL IMPLEMENTATIONS

The physical model that we have considered illustrates a
key concept: if we can manipulate the energies of YSR states
via a Josephson phase, then we can tune the topological state
of the helical atom chain. In this context, to construct a system
with a tunable topological state, we need the following three
components: (i) a short, but relatively wide Josephson junction
with a gapped quasiparticle spectrum and transparent trans-
port channels, (ii) a helical atom chain, and (iii) low disorder
in the vicinity of the chain. A short junction is preferable
to a long one because of larger phase gradients and a larger
spectral gap, which can be of the order of the bulk gap. In
a junction with low transparency, the energies of YSR states
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weakly depend on the Josephson phase θ , and hence we need
highly transparent channels. Finally, nonmagnetic disorder af-
fects the energies of YSR states as well as hopping amplitudes
between magnetic atoms, making these quantities random. For
this reason, a clean system is preferable.

A possible real physical system that is relatively close to
the studied idealized model would be a Re-based junction
with an iron atom chain on top of it. A Fe spin helix forms
spontaneously in the presence of Re [31]. Moreover, in Re the
product of the superconducting gap and of the normal density
of states per atom is very small [60], so that the quasiclassical
approximation is applicable.

An alternative structure satisfying the requirements (i)–
(iii) could be a superconductor-2D electron gas (2DEG)-
superconductor junction. To minimize effects of disorder, it
would be optimal to use an epitaxial structure with a high-
mobility 2DEG, like in Refs. [61,62]. The atomic chain can
be placed on the semiconductor or on a superconducting elec-
trode close to the junction. The geometries of such structures
are clearly very different from the one shown in Fig. 1, so that
the quantitative results from Secs. III and IV are not directly
applicable.

For any experimental prototype, the key point is the depen-
dence of the energies of isolated YSR on the phase difference
θ . Therefore it is reasonable to detect this dependence (us-
ing, e.g., scanning tunneling microscopy) before studying the
properties of atomic chains.

VI. CONCLUSION

To sum up, we have studied the subgap quasiparticle spec-
trum and topological phase diagram of a helical magnetic
atom chain located inside a weak link of the constriction type.
We found that an infinite chain supports four Shiba bands if
the Josephson phase difference θ is nonzero (otherwise, there
are two bands). For a nonplanar spin helix, a gapless phase ex-
ists, and for a planar helix the quasiparticle spectrum is almost
certainly gapped, which makes the planar configuration most
favorable for the observation of MZM localized at the ends of
the atom chain.

The Majorana number for our system has been calculated,
and it has been found that it does not depend on the tilt angle χ

of the spin helix. It has been demonstrated that the Josephson
phase difference can be used to switch the system between
the topologically trivial and nontrivial states even if the YSR
states induced by isolated magnetic atoms are initially (for
θ = 0) not deep. By applying a phase difference θ , one can
also enhance the topological gap. However, for collinear spin
structures the system is always in a topologically trivial or
gapless state.

The structure of Majorana edge modes has been analyzed.
The approximate two-band system of discrete BdG equa-
tions derived by Pientka et al. [14] has been generalized to
include a Josephson phase difference. For a planar spin helix,
an exact analytical solution for the wave function of a MZM
localized at the end of a semi-infinite chain has been obtained.
For θ = 0 this solution constitutes an extension of the solution
obtained by Pientka et al. for a bulk superconductor [51] to the
whole topological phase: the wave function of a MZM falls
off with distance from the end of the chain in accordance with

Eq. (1) with μ = 2. However, when a Josephson phase bias is
applied, one obtains an asymptotic behavior of the MZM wave
function with the exponent μ depending on θ : in particular, for
sufficiently large distances s we have μ = μ2 [see Eq. (28)].
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APPENDIX A: BOGOLIUBOV-DE GENNES EQUATIONS
WITH POINT IMPURITIES

In this Appendix, it will be demonstrated how to properly
take into account point impurities in the BdG equations in the
case of an inhomogeneous superconductor, and Eq. (14) will
be derived.

For simplicity, we put Jl (r) = Jl (r)nl . The considerations
given below can be generalized for the case when the vectors
Jl (r) for different r are not collinear.

Let us introduce the following vectors:

�l±(r) = 1 ± τ̌znl σ̌

2
�(r). (A1)

Since (1 ± τ̌znl σ̌)/2 are projection matrices, the following
relations hold:

1 ± τ̌znl σ̌

2
�l±(r) = �l±(r),

1 ∓ τ̌znl σ̌

2
�l±(r) = 0.

(A2)
If we multiply Eq. (2) by (τ̌z ± nl σ̌ )/2, we obtain in the
vicinity of the lth impurity

[H0(r) + Ul (r) ± Jl (r)]�l±(r) = 0. (A3)

Here, we neglected the terms containing �(r) and E , which
have a negligibly small effect on the wave function on spa-
tial scales that are much smaller than ξ . It can be seen that
in the vicinity of the impurity �l±(r) satisfies an ordinary
Schrödinger equation. Then, it follows from general scattering
theory that in the vicinity of the lth impurity �l±(r) can be
written in the form (see Appendix B in Ref. [50] for a detailed
derivation)

�l±(r) ≈ Al± + Al± tan αl±
kF |r − rl | , (A4)

where Al± are constant vectors, and αl± are scattering
phases corresponding to the potentials Ul (r) ± Jl (r). Note
that Eq. (A4) is valid for r lying outside the range of the poten-
tials Ul (r) and Jl (r), and the condition kF |r − rl | � 1 should
be satisfied. Let us introduce the vector Al = Al+ + Al−. It
follows from Eq. (A2) that

1 ± τ̌znl σ̌

2
Al± = Al±,

1 ∓ τ̌znl σ̌

2
Al± = 0, (A5)

and hence

1 ± τ̌znl σ̌

2
Al = Al±. (A6)
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Now we sum Eq. (A4) with the plus and minus subscript and eliminate Al± from the equations using Eq. (A6) to obtain

�(r) ≈ Al +
(

1 + τ̌znl σ̌

2
tan αl+ + 1 − τ̌znl σ̌

2
tan αl−

)
Al

kF |r − rl | . (A7)

On the other hand, to satisfy the BdG equations far from the impurities �(r) should have the form (8). Using Eq. (15), in the
vicinity of the lth impurity we find that

�(r) ≈ τ̌z

∑
n 
=l

ǦE (rl , rn)�̃n + τ̌zǦER(rl , rl )�̃l + m

2π h̄2|r − rl |
τ̌z�̃l . (A8)

Comparing the right-hand sides of Eqs. (A7) and (A8), we obtain

Al = τ̌z

∑
n 
=l

ǦE (rl , rn)�̃n + τ̌zǦER(rl , rl )�̃l , (A9)

(
1 + τ̌znl σ̌

2
tan αl+ + 1 − τ̌znl σ̌

2
tan αl−

)
Al

kF
= m

2π h̄2 τ̌z�̃l . (A10)

Next, we eliminate Al from Eq. (A10) using Eq. (A9):(
1 + τ̌znl σ̌

2
tan αl+ + 1 − τ̌znl σ̌

2
tan αl−

)[∑
n 
=l

ǦE (rl , rn)�̃n + ǦER(rl , rl )�̃l

]
= mkF

2π h̄2 �̃l . (A11)

Now we invert the matrix in the parentheses and put αl+ = α↑, αl− = α↓:

mkF

2π h̄2

(
1 + τ̌znl σ̌

2
cot α↑ + 1 − τ̌znl σ̌

2
cot α↓

)
�̃l − ǦER(rl , rl )�̃l −

∑
n 
=l

ǦE (rl , rn)�̃n = 0. (A12)

Finally, we substitute here Eq. (9). Using translational
invariance in the z direction and the relation

nl σ̌ = exp(−iϕσ̌nl/2)n0σ̌ exp(iϕσ̌nl/2), (A13)

we obtain Eq. (14).

APPENDIX B: ANALYSIS OF THE SPECTRUM OF AN
INFINITE CHAIN

Here we will analyze the continuous spectrum of quasi-
particle states localized in the vicinity of an infinite chain of
impurities. For a start, we substitute Eqs. (18) and (19) into
Eq. (17). Evaluation of the determinant yields (after cumber-
some, but standard calculations)

[
(cos θ − cos(2γ ))l̃2

(
q − ϕ

2

)
+ (1 − cos(2γ ))h̃2

(
q − ϕ

2

)][
(cos θ − cos(2γ ))l̃2

(
q + ϕ

2

)
+ (1 − cos(2γ ))h̃2

(
q + ϕ

2

)]

− 2
(cot α↑ − cot α↓

2

)2{
(1 − cos(2γ ))(2 + cos(2γ ) + cos θ )h̃

(
q − ϕ

2

)
h̃
(

q + ϕ

2

)
+ (cos θ − cos(2γ ))2

× l̃
(

q − ϕ

2

)
l̃
(

q + ϕ

2

)}
+
(cot α↑ − cot α↓

2

)4

(cos θ − cos(2γ ))2 + cos χ sin(2γ )(cot α↑ − cot α↓)

×
{

h̃
(

q + ϕ

2

)[
(cos θ − cos(2γ ))

[
l̃2
(

q − ϕ

2

)
−
(cot α↑ − cot α↓

2

)2]
+ (1 − cos(2γ ))h̃2

(
q − ϕ

2

)]

−h̃
(

q − ϕ

2

)[
(cos θ − cos(2γ ))

[
l̃2
(

q + ϕ

2

)
−
(cot α↑ − cot α↓

2

)2]
+ (1 − cos(2γ ))h̃2

(
q + ϕ

2

)]}

− cos2 χ
(cot α↑ − cot α↓

2

)2

(cos θ − cos(2γ ))

{
(1 − cos(2γ ))

[
h̃
(

q − ϕ

2

)
− h̃

(
q + ϕ

2

)]2

+ (cos θ − cos(2γ ))
[
l̃
(

q − ϕ

2

)
− l̃
(

q + ϕ

2

)]2
}

= 0, (B1)

where

h̃(α) = 1 + 2
∞∑

l=1

sin(kF al )

kF al
cos(lα) = π

kF a

(⌊
α + kF a

2π

⌋
−
⌊

α − kF a

2π

⌋)
, (B2)
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l̃ (α) = 2
∞∑

l=1

cos(kF al )

kF al
cos(lα) − cot α↑ + cot α↓

2

= − 1

2kF a
[ln (2 − 2 cos (α + kF a)) + ln (2 − 2 cos (α − kF a))] − cot α↑ + cot α↓

2
, (B3)

and �α� denotes the floor function. Equation (B1) can be
reduced to a quartic equation with respect to e2iγ , which can
be solved using Ferrari’s method [63]. This method has been
used to obtain Fig. 2. I was unable to prove that the four
roots of the quartic equation always have unit absolute values,
however, numerical analysis indicates that this seems to be the
case.

It can be seen from Eq. (B2) that when a < λF /2 the func-
tion h̃(α) goes to zero when kF a < |α| < π . This means that
such range of values of q exists that either h̃(q − ϕ/2) = 0
or h̃(q + ϕ/2) = 0. For such q Eq. (B1) has solutions given
by E = ±�0 cos θ . These energies do not depend on any
characteristics of impurities and correspond to Andreev states
of the clean junction that do not interact with impurities:
�(rl ) = 0 for all impurity sites. A characteristic spectrum
obtained from Eq. (B1) in this situation is shown in Fig. 5. The
above considerations suggest that there can be no more than
8/λF impurity-induced states per unit length of the impurity
chain.

Let us derive the conditions for the spectrum given by
Eq. (B1) to have a gap. If we put E = 0 in Eq. (B1), for θ 
= π ,
we obtain

L
(

q + ϕ

2

)
L
(

q − ϕ

2

)
+ sin2 χ

(cot α↑ − cot α↓
2

)2

×
{

2

1 + cos θ

[
h̃
(

q − ϕ

2

)
− h̃

(
q + ϕ

2

)]2
+
[

l̃
(

q − ϕ

2

)

− l̃
(

q + ϕ

2

)]2}
= 0, (B4)

where L(α) is given by Eq. (25). If Eq. (B4) is satisfied for
some q, then the spectrum is gapless. We may note that for
q = 0 the left-hand side of Eq. (B4) is non-negative. Then,
assuming that it is a continuous function of q,3 we find that
the necessary and sufficient condition for the spectrum to be
gapped is

L
(

q + ϕ

2

)
L
(

q − ϕ

2

)
+ sin2 χ

(cot α↑ − cot α↓
2

)2

×
{

2

1 + cos θ

[
h̃
(

q − ϕ

2

)
− h̃

(
q + ϕ

2

)]2
+
[

l̃
(

q − ϕ

2

)

− l̃
(

q + ϕ

2

)]2}
> 0

(B5)

3Strictly speaking, this is not true in our case, because h̃(α) and
l̃ (α) are discontinuous, which is connected with the slow decay with
|r − r′| of the Green functions that we use [Eq. (18)]. If we use more
realistic expressions for the Green functions in the limit |r − r′| � ξ ,
the discontinuities disappear.

for all q. Now we note that the second term in the left-hand
side of Eq. (B5) is a nondecreasing function of χ for χ ∈
[0, π/2]. This means that with increasing χ the range of val-
ues of other parameters (e.g., θ , a and others) corresponding
to a gapped spectrum becomes broader.

If we put χ = 0 in Eq. (B5), we obtain

L
(

q + ϕ

2

)
L
(

q − ϕ

2

)
> 0. (B6)

The function L(q) is positive for some values of q because of
the logarithmic singularities in Eq. (B3). Hence, the condition
(B6) is equivalent to L(q) > 0 for all q. The latter condition is
incompatible with the relation M = −1 [see Eq. (24)], which
provides a necessary condition for the topologically nontrivial
regime. This means that a gapped topologically nontrivial
phase does not exist when χ = 0.

Equation (B5) with χ = π/2 yields

2

1 + cos θ

[
l̃
(

q − ϕ

2

)
h̃
(

q + ϕ

2

)
− l̃
(

q + ϕ

2

)
h̃
(

q − ϕ

2

)]2

+
[

l̃
(

q + ϕ

2

)
l̃
(

q − ϕ

2

)
−
(cot α↑ − cot α↓

2

)2

+ 2

1 + cos θ
h̃
(

q + ϕ

2

)
h̃
(

q − ϕ

2

)]2

> 0. (B7)

The left-hand side of this inequality is a sum of two squares,
hence, Eq. (B7) is satisfied when one of the following two
inequalities holds:

l̃
(

q − ϕ

2

)
h̃
(

q + ϕ

2

)
− l̃
(

q + ϕ

2

)
h̃
(

q − ϕ

2

)

= 0, (B8)

l̃
(

q + ϕ

2

)
l̃
(

q − ϕ

2

)
−
(cot α↑ − cot α↓

2

)2

+ 2

cos θ + 1
h̃
(

q + ϕ

2

)
h̃
(

q − ϕ

2

)

= 0. (B9)

FIG. 5. A typical spectrum (E vs q dependence) obtained from
Eq. (B1) when the distance between impurities is smaller than λF /2.
The parameters are kF a = χ = θ = ϕ = π/2 and α↑ = −α↓ =
π/4. The flat bands with E = ±�0 cos(θ/2) correspond to Andreev
states that do not interact with impurities.
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For arbitrarily chosen parameters of our system, both these
inequalities can be simultaneously violated with zero prob-
ability. This means that the quasiparticle spectrum is almost
certainly gapped when χ = π/2.

APPENDIX C: CALCULATION OF THE
MAJORANA NUMBER

In this Appendix, we will calculate the Majorana number
M for our impurity chain. To use the results of Kitaev [3], we
first need to map Eq. (14) to an eigenvalue problem for a BdG
Hamiltonian. For a start, let us put E = 0 in Eq. (14):

(
1 + τ̌zn0σ̌

2
cot α↑ + 1 − τ̌zn0σ̌

2
cot α↓

)
�l

−
∑

n

(
g(l − n) f †∗(l − n)

− f †(l − n) g∗(l − n)

)
N

eiϕσ̌n(l−n)/2�n = 0,

(C1)

where the following functions of a discrete argument are
introduced:

g(l ) =
{

2π h̄2

mkF
G0(al, 0) for l 
= 0,

2π h̄2

mkF
G0R(0, 0) for l = 0,

(C2)

f †(l ) = 2π h̄2

mkF
F †

0 (al, 0). (C3)

From Eq. (13), we can derive the relations

g(−l ) = g∗(l ), f †(−l ) = f †(l ). (C4)

Let us direct the z spin quantization axis along the vector n,
and let us direct the x axis so that the vector n0 lies in the xz
plane:

n0 = (sin χ, 0, cos χ ). (C5)

Now we introduce new unknown vectors Yl via Yl = Ď�l ,
where

Ď = 1 + τ̌z

2
− iσ̌y

1 − τ̌z

2
. (C6)

Multiplying Eq. (C1) from the left by Ďτ̌z, we obtain

τ̌z

[
cot α↑ + cot α↓

2
+ cot α↑ − cot α↓

2
(σ̌z cos χ + σ̌x sin χ )

]
Yl

−
∑

n

[(
g(l − n) 0

0 −g∗(l − n)

)
N

+ iσ̌y

(
0 f †∗(l − n)

− f †(l − n) 0

)
N

]

×
[

cos

(
ϕ

l − n

2

)
+ iτ̌zσ̌z sin

(
ϕ

l − n

2

)]
Yn = εYl , (C7)

where ε is an effective energy, which we have to set equal to zero in accordance with Eq. (C1). Now one can check that the
set of equations (C7) with different l define the coefficients of the Bogoliubov transformation that diagonalizes the effective
Hamiltonian

Ĥeff =
∑

l,n,α,β

â†
lαtαβ (l − n)ânβ + 1

2

∑
l,n,α,β

[â†
lα�αβ (l − n)â†

nβ + ânβ�∗
αβ (l − n)âlα], (C8)

with the 2 × 2 matrices ť (l ) and �̌(l ) given by

ť (l ) =
{ cot α↑+cot α↓

2 − g(0) + cot α↑−cot α↓
2 (σ̌z cos χ + σ̌x sin χ ) for l = 0,

−g(l )eiϕlσ̂z/2 for l 
= 0,
(C9)

�̌(l ) = f †∗(l )

(
0 −e−iϕl/2

eiϕl/2 0

)
. (C10)

Here, â†
lα and âlα are fermionic creation and annihilation

operators, respectively, and α is a spin index. The fermionic
operators satisfy standard commutation relations:

âlα ânβ + ânβ âlα = 0, (C11)

â†
lα ânβ + ânβ â†

lα = δlnδαβ. (C12)

The fermionic annihilation operators b̂ that diagonalize the
Hamiltonian (C8) have the form

b̂ =
∑

l

(
âl↑, âl↓, â†

l↑, â†
l↓
)
Y ∗

l , (C13)

where the vectors Yl satisfy Eq. (C7) with some real energy
ε. It should be noted that the Hamiltonian Ĥeff formally cor-
responds to a Kitaev chain with two fermionic sites per unit
cell.

Next, acting along the lines of Kitaev, the effective Hamil-
tonian should be written in terms of the Majorana operators

ĉ(1)
lα = âlα + â†

lα, ĉ(2)
lα = âlα − â†

lα

i
. (C14)

The result is

Ĥeff = i

4

∑
l,n

∑
α,β=↑,↓

2∑
i, j=1

B(i j)
αβ (n − l )ĉ(i)

lα ĉ( j)
nβ + const, (C15)
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The coefficients here satisfy the relations

B(i j)
αβ (l ) = B(i j)∗

αβ (l ), B(i j)
αβ (l ) = −B( ji)

βα (−l ), (C16)

and they are explicitly given by the formulas

B(11)
↑↑ (l ) = B(22)

↑↑ (l ) = − i
2 [g(l )eilϕ/2 − g∗(l )e−ilϕ/2], (C17)

B(11)
↓↓ (l ) = B(22)

↓↓ (l ) = − i
2 [g(l )e−ilϕ/2 − g∗(l )eilϕ/2], (C18)

B(12)
↑↑ (l ) = −B(21)

↑↑ (l ) =
(

cot α↑ + cot α↓
2

+ cos χ
cot α↑ − cot α↓

2

)
δl0 − 1

2
[g(l )eilϕ/2 + g∗(l )e−ilϕ/2], (C19)

B(12)
↓↓ (l ) = −B(21)

↓↓ (l ) =
(

cot α↑ + cot α↓
2

− cos χ
cot α↑ − cot α↓

2

)
δl0 − 1

2
[g(l )e−ilϕ/2 + g∗(l )eilϕ/2], (C20)

B(11)
↑↓ (l ) = −B(22)

↑↓ (l ) = − i
2 [ f †(l )e−ilϕ/2 − f †∗(l )eilϕ/2], (C21)

B(11)
↓↑ (l ) = −B(22)

↓↑ (l ) = i
2 [ f †(l )eilϕ/2 − f †∗(l )e−ilϕ/2], (C22)

B(12)
↑↓ (l ) = δl0

cot α↑ − cot α↓
2

sin χ − 1

2
[ f †∗(l )eilϕ/2 + f †(l )e−ilϕ/2], (C23)

B(12)
↓↑ (l ) = δl0

cot α↑ − cot α↓
2

sin χ + 1

2
[ f †∗(l )e−ilϕ/2 + f †(l )eilϕ/2], (C24)

B(21)
↑↓ (l ) = −δl0

cot α↑ − cot α↓
2

sin χ − 1

2
[ f †∗(l )eilϕ/2 + f †(l )e−ilϕ/2], (C25)

B(21)
↓↑ (l ) = −δl0

cot α↑ − cot α↓
2

sin χ + 1

2
[ f †∗(l )e−ilϕ/2 + f †(l )eilϕ/2]. (C26)

The Majorana number M of a Kitaev chain is connected with the parity of the ground state of a closed chain with an even
number of unit cells. An even ground state corresponds to a topologically trivial phase with M = 1, and an odd ground state
corresponds to a topologically nontrivial phase with M = −1. One of the main findings of Kitaev [3] is the connection between
the parity of the ground state and the Pfaffian of the Fourier-transformed matrix B(i j)

αβ (l ). The Fourier transform is defined as
follows:

B̃(i j)
αβ (q) =

+∞∑
l=−∞

eiql B(i j)
αβ (l ). (C27)

Due to the properties (C16), the matrices B̃(0) and B̃(π ) are skew-symmetric: B̃(i j)
αβ (q) = −B̃( ji)

βα (q), q = 0, π . The Majorana
number equals

M = sgn[PfB̃(0)PfB̃(π )], (C28)

where the Pfaffian is defined as follows:

PfB̃(q) = B̃(12)
↑↑ (q)B̃(12)

↓↓ (q) + B̃(12)
↑↓ (q)B̃(21)

↑↓ (q)

− B̃(11)
↑↓ (q)B̃(22)

↑↓ (q), q = 0, π. (C29)

The results obtained so far in this Appendix are applicable to any translationally invariant nonmagnetic superconducting
system with a helical chain of magnetic atoms lined up along the direction of translational invariance. Now we will specify the
results for the case of our Josephson junction. Using Eqs. (18) and (19), we obtain

B̃(11)
↑↑ (0) = B̃(22)

↑↑ (0) = B̃(11)
↓↓ (0) = B̃(22)

↓↓ (0) = B̃(11)
↑↓ (0) = B̃(11)

↓↑ (0) = B̃(22)
↑↓ (0) = B̃(22)

↓↑ (0) = 0, (C30)

B̃(12)
↑↑ (0) = −B̃(21)

↑↑ (0) = cos χ
cot α↑−cot α↓

2 − l̃
(

ϕ

2

)
, (C31)

B̃(12)
↓↓ (0) = −B̃(21)

↓↓ (0) = − cos χ
cot α↑−cot α↓

2 − l̃
(

ϕ

2

)
, (C32)

B̃(12)
↑↓ (0) = −B̃(21)

↓↑ (0) = sin χ
cot α↑−cot α↓

2 − cos−1
(

θ
2

)
h̃
(

ϕ

2

)
, (C33)

B̃(21)
↑↓ (0) = −B̃(12)

↓↑ (0) = − sin χ
cot α↑−cot α↓

2 − cos−1
(

θ
2

)
h̃
(

ϕ

2

)
, (C34)
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To obtain B̃(π ), one should simply add 2π to ϕ in Eqs. (C30)–(C34). Finally, using Eqs. (C28) and (C29), we find that the
Majorana number is given by Eq. (24).

APPENDIX D: EXPLICIT SOLUTION FOR A SIMPLIFIED TWO-BAND MODEL

In this Appendix, we will consider an approximate description of our system in terms of discrete BdG equations (26)—see
Sec. IV B for details. These equations were initially derived by Pientka et al. [14] in the case of a bulk uniform superconductor,
when the hopping and pairing amplitudes are given by

t (l ) =
{
ε0 for l = 0
− sin(al )

al

(
eilϕ/2 cos2 χ

2 + e−ilϕ/2 sin2 χ

2

)
for l 
= 0

, (D1)

�(l ) =
{

0 for l = 0
i cos(al )

a|l| sin χ sin
(
l ϕ

2

)
for l 
= 0 , (D2)

where ε0 = cos(2α↑) (for α↑ ≈ π/4). In Eqs. (D1) and (D2) and further in this Appendix, the distance a between impurities is
measured in units of k−1

F . The model of Pientka et al. can be generalized for the case of a short Josephson junction considered
in this paper, and for independent phases α↑ and α↓. Then, the quasiparticle wave function should be expanded in terms of the
wave functions of generalized YSR states existing in short Josephson junctions [50]: we assume that Eq. (22) is approximately
satisfied and seek the solution of Eq. (14) in the form

�l ≈ 1√
tan α↑ − tan α↓

⎛
⎜⎜⎝

√
tan α↑ cos χ

2√
tan α↑ sin χ

2√− tan α↓ cos χ

2√− tan α↓ sin χ

2

⎞
⎟⎟⎠ul + 1√

tan α↑ − tan α↓

⎛
⎜⎜⎝

−√− tan α↓ sin χ

2√− tan α↓ cos χ

2√
tan α↑ sin χ

2−√
tan α↑ cos χ

2

⎞
⎟⎟⎠vl . (D3)

The coefficients in Eq. (26) then take the form

t (l ) =
{
ε0 for l = 0[ cos(al )

a|l| (tan α↑ + tan α↓) + 2 sin(al )
al

] tan α↑ tan α↓
tan α↑−tan α↓

(
eilϕ/2 cos2 χ

2 + e−ilϕ/2 sin2 χ

2

)
for l 
= 0 , (D4)

�(l ) =
{

0 for l = 0

−i sin χ sin
(
l ϕ

2

)√− tan α↑ tan α↓
tan α↑−tan α↓

[
2 cos(al )

a|l| tan α↑ tan α↓ + sin(al )
al (tan α↑ + tan α↓)

]
for l 
= 0

, (D5)

ε0 = cos2 θ
2 + tan α↑ tan α↓

tan α↑ − tan α↓
. (D6)

The described above models are applicable when |ε0| �
cos(θ/2).

If we are dealing with a semi-infinite impurity chain, such
that l = 0, 1 . . . , Eq. (26) becomes a discrete vector Wiener-
Hopf equation [64]. The general solution of such equations is
not known, however, for χ = π/2 our equation can be solved
analytically. This case is somewhat special: if we introduce
a set of unknown coefficients u′

l = e−iπ/4ul and v′
l = eiπ/4vl ,

we obtain Eq. (26) with real coefficients t (l ) and �(l ). This
results in an effective time-reversal symmetry, so that our
system falls into the BDI symmetry class [65].

To find the wave function of the MZM, we put ε = 0 and
introduce a new set of unknown coefficients sm and wm:

(
um

vm

)
=
(

1 1
i −i

)(
sm

wm

)
. (D7)

The equations for sm and wm decouple:

∞∑
m=0

Ql−msm = 0, l = 0, 1 . . . , (D8)

∞∑
m=0

Q̃l−mwm = 0, l = 0, 1 . . . , (D9)

where

Ql = 1
2 [t (l ) + t (−l ) + i�(l ) + i�∗(−l )] = t (l ) + i�(l ),

(D10)

Q̃l = 1
2 [t (l ) + t (−l ) − i�(l ) − i�∗(−l )] = t (l ) − i�(l ).

(D11)

Equations (D8) and (D9) are scalar Wiener-Hopf equations,
which can be solved analytically in the general case. To solve
Eq. (D8), we first extend it to negative l:

∞∑
m=0

Ql−msm = pl , l = −1,−2 . . . , (D12)

where pl are unknown coefficients. Next, we apply a Z trans-
form: we multiply Eqs. (D8) and (D12) by ζ l , where ζ is a
complex variable, and sum over l to obtain

Q(ζ )s(ζ ) = p(ζ ), (D13)

where

Q(ζ ) =
+∞∑

l=−∞
Qlζ

l , (D14)

s(ζ ) =
+∞∑
l=0

slζ
l , (D15)
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p(ζ ) =
−1∑

l=−∞
plζ

l . (D16)

If we are seeking a physical solution of our equations corre-
sponding to a boundary state, then sl → 0 when l → ∞. This
means that s(ζ ) is regular for |ζ | < 1. If we additionally as-
sume that it is regular for |ζ | � 1, p(ζ ) is regular for |ζ | � 1,
and Q(ζ ) together with Q−1(ζ ) are regular in the vicinity of
the circle |ζ | = 1, Eq. (D13) becomes a Riemann boundary
value problem with unknown functions s(ζ ) and p(ζ ). The
solution of this problem has been obtained by Gakhov [64,66].
As a first step of this solution, the function Q(ζ ) should be
factorized:

Q(ζ ) = Q−(ζ )ζ κQ+(ζ ), (D17)

where Q+(ζ ) and Q−1
+ (ζ ) are regular for |ζ | � 1, Q−(ζ ) and

Q−1
− (ζ ) are regular for |ζ | � 1, and κ is an integer, which is

called the Cauchy index (winding number) of Q(ζ ). It is given
by

κ = 1

2π

∮
|ζ |=1

d (arg Q(ζ )). (D18)

The function ln(Q(ζ )ζ−κ ) is regular in the vicinity of the
circle |ζ | = 1. Then, we may put

Q+(ζ ) = exp

(
1

2π i

∮
|t |=1

ln(Q(t )t−κ )

t − ζ
dt

)
(D19)

for |ζ | < 1, and

Q−(ζ ) = exp

(
− 1

2π i

∮
|t |=1

ln(Q(t )t−κ )

t − ζ
dt

)
(D20)

for |ζ | > 1. Here, the choice of the branch of the logarithms
does not matter. Two cases are possible. If κ � 0, we rewrite

Eq. (D13) in the form

ζ κQ+(ζ )s(ζ ) = Q−1
− (ζ )p(ζ ). (D21)

The Laurent series of the right-hand side of Eq. (D21) contains
only negative powers of ζ , while the Laurent series of the
left-hand side contains only non-negative powers of ζ , which
means that both sides must be equal to zero. We find then
that s(ζ ) = 0, sl = 0 for all l , and Eq. (D8) has no physical
solutions. The situation is different for κ < 0. In our particular
case, if we use Eqs. (D1) and (D2), we may obtain κ = −1.
Equation (D13) then can be rewritten in the form

Q+(ζ )s(ζ ) = ζQ−1
− (ζ )p(ζ ). (D22)

The Laurent series of the right-hand side now contains only
nonpositive powers of ζ , while the Laurent series of the
left-hand side contains only non-negative powers of ζ , which
means that both sides must be constant:

Q+(ζ )s(ζ ) = ζQ−1
− (ζ )p(ζ ) = const. (D23)

To obtain a particular solution of Eq. (D13) we put const = 1,
so that

s(ζ ) = Q−1
+ (ζ ). (D24)

Finally, the solution of Eq. (D24) is given by

sl = 1

2π i

∮
|ζ |=1

dζ

ζ l+1Q+(ζ )
= 1

2π

∫ 2π

0

e−ilβdβ

Q+(eiβ )
. (D25)

To solve Eq. (D9), we have to factorize the function

Q̃(ζ ) =
+∞∑

l=−∞
Q̃lζ

l . (D26)

It follows form the relations t (−l ) = t (l ) and �(−l ) =
−�(l ) that on the unit circle Q̃(eiβ ) = Q∗(eiβ ), which means
that the sum of Cauchy indices of Q(ζ ) and Q̃(ζ ) equals zero.

Now we have to determine κ and Q+(ζ ) in our particular
case. First, we perform the calculations using Eqs. (D1) and
(D2) for the coefficients t (l ) and �(l ). From Eq. (D14), we
obtain

Q(ζ ) = ε0 + i

2a

[
ln
(

1 − exp
(
−i
(ϕ

2
+ a

)
− η+

)
ζ
)

− ln
(

1 − exp
(

i
(ϕ

2
+ a

)
− η+

)
ζ
)

+ ln
(

1 − exp
(

i
(ϕ

2
− a

)
− η+

)
ζ−1

)
− ln

(
1 − exp

(
i
(

a − ϕ

2

)
− η+

)
ζ−1

)]
. (D27)

Here, the function ln(1 − ζ ) is assumed regular for |ζ | < 1, and ln(1) = 0. On the unit circle

Q(eiβ ) = ε0 + i

2a

[
1

2
ln
(

2 − 2 cos
(
β − ϕ

2
− a

))
+ 1

2
ln
(

2 − 2 cos
(ϕ

2
− a − β

))

− 1

2
ln
(

2 − 2 cos
(
β + ϕ

2
+ a

))
− 1

2
ln
(

2 − 2 cos
(

a − ϕ

2
− β

))
− 2ia

+π i

(⌊
a + ϕ

2 + β

2π

⌋
+
⌊

a − ϕ

2 − β

2π

⌋
−
⌊

β − ϕ

2 − a

2π

⌋
−
⌊ ϕ

2 − a − β

2π

⌋)]
, (D28)

It follows from Eqs. (D27) and (D28) that Q(1) and
Q(−1) are real. One can also derive from Eq. (D28) that for
Q(1)Q(−1) > 1 the Cauchy index equals either equals zero
or is undefined, because Q(ζ ) vanishes somewhere on the unit

circle. When

Q(1)Q(−1) < 0, (D29)
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FIG. 6. Deformed integration contour for the calculation of κ ,
Q+(ζ ) and Q−(ζ ).

we obtain either κ = 1 or κ = −1, which means that either
Eq. (D8) or Eq. (D9) has a nontrivial solution, indicating
that our system is in a topologically nontrivial state. The

only exception is the case Q(1) + Q(−1) = 0 when Q(ζ ) = 0
somewhere on the unit circle. This corresponds to a switching
point, where the bulk spectrum of the chain is gapless, and κ

changes its sign.
When factorizing the function Q(ζ ), we may put η+ =

0, and integrate along the deformed contour � in Fig. 6
instead of the unit circle in Eqs. (D18)–(D20). Then, the
singularities of Q(ζ ) are logarithmic branch points located
at ζ = exp(±i(a + ϕ/2)), and the singularities of Q−(ζ ) are
logarithmic branch points located at ζ = exp(±i(a − ϕ/2)).
We assume here that the singularities do not merge. The case
exp(±i(a − ϕ/2)) = 1 has been studied in Ref. [51].

Consider a set of parameters such that κ = −1. An exem-
plary set is ε0 = 0, ϕ = π/2, and a = 2πn − π/3, where n
is a large positive integer (a � 1 is an applicability condition
for Eq. (26)). The explicit solution for the coefficients sl is
given by Eq. (D25). Now we will be mainly interested in the
asymptotic behavior of sl in the limit of large l . It follows from
Eq. (D25) that sl can be written in the form of a Fourier inte-
gral, whose behavior in the limit l → ∞ is determined by the
singularities of Q−1

+ (eiβ ) [67]. These singularities were found
above. Then, since Q+(ζ ) = Q(ζ )Q−1

− (ζ )ζ , using Eq. (D27)
we obtain from Eq. (D25) that

sl ≈ 1

2π i

∮
|ζ |=1

2ai

[
exp

(
i
(

ϕ

2 + a
))

Q−
(
exp

(−i
(

ϕ

2 + a
)))

ln
(
1 − exp

(
i
(

ϕ

2 + a
))

ζ
) − exp

(−i
(

ϕ

2 + a
))

Q−
(
exp

(
i
(

ϕ

2 + a
)))

ln
(
1 − exp

(−i
(

ϕ

2 + a
))

ζ
) ]

dζ

ζ l+1

= a

π

[
exp

(
i(l + 1)

(ϕ

2
+ a

))
Q−
(

exp
(
−i
(ϕ

2
+ a

)))
− exp

(
−i(l + 1)

(ϕ

2
+ a

))
Q−
(

exp
(

i
(ϕ

2
+ a

)))]
Il , (D30)

where

Il =
∮

|ζ |=1

dζ

ln(1 − ζ )ζ l+1
. (D31)

The integration contour here can be deformed, so that

Il =
∫ 1+i∞

1−i∞

dζ

ln(1 − ζ )ζ l+1
−
∫ −d+i∞

−d−i∞

dζ

ln(1 − ζ )ζ l+1
, (D32)

where d is an arbitrary positive number. Since d can be taken arbitrary large, the second integral in the right-hand side of
Eq. (D32) vanishes. The contour in the first integral in the right-hand side can be deformed in such a way that it will go around
the branch cut of the logarithm:

Il =
∫ ∞

1

[
1

ln(ζ − 1) − iπ
− 1

ln(ζ − 1) + iπ

]
dζ

ζ l+1

= 2π i
∫ ∞

1

dζ

ζ l+1[ln2(ζ − 1) + π2]
, (D33)

where the logarithm is real-valued. Next, we introduce the integration variable t = l ln ζ :

Il = 2π i

l

∫ ∞

0

e−t dt

ln2 (et/l − 1) + π2
. (D34)

In the limit of large l , in the denominator we can put et/l − 1 ≈ t/l . The final transformations look as follows:

Il ≈ 2π i

l

∫ ∞

0

e−t dt

ln2 t
l + π2

= 2π i

l ln2 l

∫ ∞

0

e−t dt(
1 − ln t

ln l

)2 + π2

ln2 l

≈ 2π i

l ln2 l

∫ ∞

0
e−t dt = 2π i

l ln2 l
. (D35)
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Combining Eqs. (D7), (D30), and (D35), we obtain(
ul

vl

)
= 2ai

l ln2 l

[
exp

(
i(l + 1)

(ϕ

2
+ a

))
Q−
(

exp
(
−i
(ϕ

2
+ a

)))

− exp
(
−i(l + 1)

(ϕ

2
+ a

))
Q−
(

exp
(

i
(ϕ

2
+ a

)))](1
i

)
. (D36)

In the case κ = 1, Eq. (D9) has a nontrivial solution, which can be found in a similar way.
Finally, we analyze the more general situation, when the hopping and pairing amplitudes are given by Eqs. (D4) and (D5).

The function Q(ζ ) takes the form

Q(ζ ) = ε0 − ρ

4a(tan α↑ − tan α ↓)

{
(ρ + 1)(2iρ − τ )

[
ln

(
1 − exp

(
i

(
a + ϕ

2

))
ζ

)
+ ln

(
1 − exp

(
i

(
a − ϕ

2

))
ζ−1

)]

+ (1 − ρ)(2iρ + τ )

[
ln

(
1 − exp

(
i

(
a − ϕ

2

))
ζ

)
+ ln

(
1 − exp

(
i

(
a + ϕ

2

))
ζ−1

)]

+ (1 − ρ)(τ − 2iρ)

[
ln

(
1 − exp

(
i

(
ϕ

2
− a

))
ζ

)
+ ln

(
1 − exp

(
− i

(
a + ϕ

2

))
ζ−1

)]

− (1 + ρ)(τ + 2iρ)

[
ln

(
1 − exp

(
− i

(
ϕ

2
+ a

))
ζ

)
+ ln

(
1 − exp

(
i

(
ϕ

2
− a

))
ζ−1

)]}
, (D37)

where

ρ = √− tan α↑ tan α↓ = cos
θ

2
, (D38)

τ = tan α↑ + tan α↓. (D39)

The factors e±η+ in Eq. (D37) were omitted for brevity. We
will not calculate the index κ here, assuming κ = −1. For
ρ = 1 (θ = 0) and arbitrary τ , the singularities of Q+(ζ )
are located at the same points as before, and the asymptotic
behavior sl ∼ 1/(l ln2 l ) can be obtained in the same way
as above. However, for ρ 
= 1 the situation is qualitatively
different: the function Q(ζ ) has 8 logarithmic singularities
instead of 4, and in the limit η+ → 0 the singularities merge
in pairs on the unit circle. To calculate sl in this case, we use
a deformed integration contour �̃ shown in Fig. 7 instead of
the unit circle in Eq. (D25). This contour consists of four
segments—�1, �2, �3, and �4—enclosing the branch cuts
of Q(ζ ), and of four segments denoted as �out lying on the
circle |ζ | = R. Here, R − 1 � 1, and Q(ζ ) must have no zeros
between the contours |ζ | = 1 and �̃. We can break sl down
into five terms:

sl =
4∑

i=1

s(i)
l + s(out)

l , (D40)

where

s(i)
l = 1

2π i

∫
�i

dζ

ζ l+1Q+(ζ )
, (D41)

s(out)
l = 1

2π i

∫
�out

dζ

ζ l+1Q+(ζ )
= 1

2πRl

∫ 2π

0

e−ilβdβ

Q+(Reiβ )
.

(D42)

The integrand in the right-hand side of Eq. (D42) is discon-
tinuous due to the presence of branch cuts. The corresponding
integral tends to zero when l → ∞ by virtue of the Riemann-
Lebesgue lemma. Hence, s(out)

l is exponentially small in

the limit l → ∞ due to the presence of the factor R−l in
Eq. (D42).

Let us consider the term s(1)
l . Introducing the integration

variable ζ1 = exp(−i(a + ϕ/2))ζ , we obtain

s(1)
l = e−il (a+ϕ/2)

2π i

∫ R

1

dζ1

ζ l+1
1

[
1

Q̄+(ζ1+i0)
− 1

Q̄+(ζ1−i0)

]
,

(D43)
where

Q̄+(ζ1) = Q+(ζ1ei(a+ϕ/2)). (D44)

FIG. 7. Integration contour �̃ used to calculate Q+(ζ ) and sl

when Q(ζ ) is given by Eq. (D37).
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Now we need to determine the behavior of Q̄+(ζ1) for ζ1 close to 1. To do this, first, in Eq. (D19) we integrate along the
deformed contour �̃ (Fig. 7) instead of the unit circle, and we write Q+(ζ ) in the form

Q+(ζ ) = Q(R)
+ (ζ )Q(1)

+ (ζ ), (D45)

where

Q(R)
+ (ζ ) = exp

(
1

2π i

∫
�̃\�1

ln(Q(t )t )

t − ζ
dt

)
, (D46)

Q(1)
+ (ζ ) = exp

(
1

2π i

∫
�1

ln(Q(t )t )

t − ζ
dt

)
. (D47)

The function Q(R)
+ (ζ ) is regular for ζ = exp(−i(a + ϕ/2)), and hence Q̄+(ζ1) for ζ1 ≈ 1 takes the form

Q̄+(ζ1) ≈ Q(R)
+ (ei(a+ϕ/2)) exp

(
1

2π i

∫ R

1

ln
( Q̄(t1+i0)

Q̄(t1−i0)

)
t1 − ζ1

dt1

)
, (D48)

where we use the integration variable t1 = exp(−i(a + ϕ/2))t , and

Q̄(t1) = Q(t1ei(a+ϕ/2)). (D49)

Next, for t1 ∈ (1, R) we obtain using Eq. (D37)

ln

(
Q̄(t1 + i0)

Q̄(t1 − i0)

)
= ln

(
1 + Q̄(t1 + i0) − Q̄(t1 − i0)

Q̄(t1 − i0)

)
≈ Q̄(t1 + i0) − Q̄(t1 − i0)

Q̄(t1 − i0)

≈ −2π i(1 + ρ)

ln(1 − t1 − i0)(1 + ρ) − (1 − ρ) ln(1 − t−1
1 )

≈ −2π i(1 + ρ)

2ρ ln(t1 − 1)
. (D50)

Then, Eq. (D48) yields

Q̄+(ζ1) ≈ Q(R)
+ (ei(a+ϕ/2))

[
exp

(
−
∫ R

1

dt1
(t1 − ζ1) ln(t1 − 1)

)] 1+ρ

2ρ

. (D51)

It follows from the considerations of the simplified model with Q(ζ ) given by Eq. (D27) that for ρ = 1 we have Q̄(ζ1) ∝
ln(1 − ζ1) for ζ1 ≈ 1. Hence, for an arbitrary value of ρ we have

Q̄+(ζ1) ≈ C1[ln(1 − ζ1)]
1+ρ

2ρ , (D52)

where C1 is some constant. To transform Eq. (D43), we note that in the limit of large l the main contribution to the integral in
the right-hand side comes from ζ1 very close to 1. We have then

s(1)
l ≈ e−il (a+ϕ/2)

2π iC1

∫ ∞

1

dζ1

ζ l+1
1

{
1

[ln(ζ1 − 1) − iπ ]
1+ρ

2ρ

− 1

[ln(ζ1 − 1) + iπ ]
1+ρ

2ρ

}

= e−il (a+ϕ/2)

2π iC1

∫ ∞

1

dζ1

ζ l+1
1 [ln(ζ1 − 1)]

1+ρ

2ρ

⎧⎨
⎩ 1[

1 − iπ
ln(ζ1−1)

] 1+ρ

2ρ

− 1[
1 + iπ

ln(ζ1−1)

] 1+ρ

2ρ

⎫⎬
⎭

≈ e−il (a+ϕ/2)(1 + ρ)

2ρC1

∫ ∞

1

dζ1

ζ l+1
1 [ln(ζ1 − 1)]

1+3ρ

2ρ

. (D53)

Further transformations are similar to those used in
Eqs. (D33)–(D35). We obtain

s(1)
l = C̃1e−il (a+ϕ/2)

l (ln l )
1+3ρ

2ρ

, (D54)

where C̃1 is a constant. If we calculate s(2)
l , we may find that

s(2)
l = s(1)∗

l , which is related to the fact that sl is real. For s(3)
l

and s(4)
l , we obtain

s(3)
l = C̃3e−il (ϕ/2−a)

l (ln l )
3ρ−1

2ρ

, s(4)
l = s(3)∗

l , (D55)

where C̃3 is one more constant. For ρ = 1 C̃3 = 0, but other-
wise for sufficiently large l the contributions s(3)

l and s(4)
l to sl

dominate. Thus, for θ 
= 0 in the limit l → ∞, we have(
ul

vl

)
= 2Re(C̃3e−il (ϕ/2−a) )

l (ln l )
3ρ−1

2ρ

(
1
i

)
. (D56)
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