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Finite-temperature properties of extended Nagaoka ferromagnetism:
Ordering processes and precursor of a quantum phase transition

between itinerant ferromagnetic and Mott antiferromagnetic states
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We study finite-temperature properties of a Hubbard model including sites of a particle bath, which was
proposed as a microscopic model to show itinerant ferromagnetism at finite electron density. We use direct
numerical methods, such as exact diagonalization and random vector methods. The temperature dependence
of quantities is surveyed in the full range of the temperature. We find that the specific heat has several peaks,
which correspond to ordering processes in different energy scales. In particular, magnetic correlations develop
at very low temperature. The system exhibits an itinerant ferromagnetic state or an antiferromagnetic state of
the Mott insulator depending on the chemical potential of the particle bath and the Coulomb interaction. From
a microscopic viewpoint, the competition between these two types of magnetic states causes a peculiar ordering
process of local spin correlations. Some local ferromagnetic correlations are found to be robust, which indicates
that the ferromagnetic correlation originates from the motion of itinerant electrons in a short-range cluster.
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I. INTRODUCTION

It is a longstanding subject to understand magnetic prop-
erties and their origins in solids [1–4]. Since Heisenberg
pointed out that the exchange energy of electrons is a key
ingredient to give magnetic interactions [1], various studies
have been done for the mechanism of magnetic orderings. In
particular, mechanisms to produce a ferromagnetic (FM) state
have been studied extensively. For localized spin systems,
magnetic properties are modeled by the Heisenberg model
with the exchange coupling of spins on different sites. The
exchange coupling is FM in some situations [5–9]. Based on
the Heisenberg model, detailed magnetic properties including
phase transitions and critical phenomena have been clarified.

On the other hand, for itinerant electron systems, the
motion of electrons plays an important role in magnetic prop-
erties. Stoner gave an essential idea known as the Stoner
criterion for the FM ordering using a mean-field analysis [3].
In this direction, first-principles methods based on the density
functional theory have been widely used to study the elec-
tronic band structure and magnetic properties [10,11]. This
type of calculations enables us to explain the ground-state
property such as magnetizations of prototypical FM metals
Fe, Co, and Ni [12,13]. However, by this approach, it is
difficult to properly explain the temperature dependence of
thermodynamic quantities, and to take account of correlations
among electrons. A systematic treatment of collective electron
correlations has been developed as the self-consistent renor-
malization (SCR) theory of spin fluctuations [14–16], and it
has succeeded in reproducing the Curie-Weiss law.
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Focusing on the many-body effects of electrons, the Hub-
bard model [17–19] was introduced, and properties of the
so-called strongly correlated materials have been studied from
a microscopic viewpoint. To date, several itinerant electron
models, which exhibit FM order in the ground state, have
been proposed. In the Hubbard model, no explicit depen-
dence on spin states exists and the FM order comes out due
to the electron motion under the Pauli exclusion principle.
The Nagaoka ferromagnetism is an example in which the
emergence of the FM ground state is rigorously proven in
the Hubbard model [20–22]. The flat-band ferromagnetism is
another example [23–29]. In multiorbital systems, the FM or-
der is induced by the Hund’s rule coupling [30–34]. Coupled
systems of itinerant electrons and localized spins show the FM
spin alignment by the double exchange mechanism [35–37],
described by the Kondo lattice model [38–42]. However, the
temperature dependence of magnetic properties of itinerant
magnets is still far from being understood due to the difficulty
in accurately calculating properties at finite temperatures.

In this paper, we study a kind of Nagaoka FM model.
The Nagaoka ferromagnetism takes place in systems with one
hole added to the half-filling and infinitely large Coulomb
interaction on lattices satisfying the so-called connectivity
condition. It indicates that the motion of a hole causes a node-
less wave function that corresponds to a saturated FM state.
In contrast, it is known that when the system is at half-filling
the ground state is a Mott state with a charge gap and an anti-
ferromagnetic (AFM) correlation between neighboring spins.
Thus, the change by one electron gives the striking difference.
It is, however, impossible to control one electron in a bulk
system, and the Nagaoka ferromagnetism is ill defined in the
thermodynamic limit. Then, effects of more than one hole and
finite Coulomb interaction have been examined [43–59]. It has
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been shown that in some cases the Nagaoka ferromagnetism
is destroyed with more than one hole, and properties in the
thermodynamic limit has not been clear.

To clarify the relation of the Nagaoka ferromagnetism to
a macroscopic FM state, it is important to establish concrete
models, which show the itinerant ferromagnetism in a finite
range of hole density (not a number) in the thermodynamic
limit. In this context, we have proposed a model in which
the electron density can be controlled continuously and a FM
state is realized in the thermodynamic limit [60,61]. We study
a system on a lattice, which consists of two parts: A part
regarded as a main frame and a part that works as a particle
bath. The electron density in the main frame is controlled by
the chemical potential of the particle bath. We have reported
that a transition between Mott AFM and itinerant FM states
really occurs at zero temperature when varying the difference
of the chemical potentials between the main frame and the
particle bath. We call this type of FM state “extended Nagaoka
FM state.”

Here we note that the mechanism of ferromagnetism in the
itinerant electron system is different from that in the localized
spin system. That is, in the localized spin system, the FM
ordering is caused by local FM exchange interactions. In
contrast, in the itinerant electron system, there is no explicit
FM interaction between spins, but mobile electrons or holes
traveling in the whole system causes the ferromagnetism.
Therefore, we naively expect some difference in ordering
properties between itinerant electrons and localized spins at
finite temperatures.

In this paper, we study finite-temperature properties of a
model for the extended Nagaoka ferromagnetism by numeri-
cal methods, such as exact diagonalization (ED) and random
vector methods [62–64]. We survey ordering processes in the
full range of the temperature. We find that the specific heat
has several peaks, which correspond to ordering processes in
different energy scales. At a high temperature of the order
of the Coulomb interaction U , a peak appears due to the
suppression of double occupancy. At a temperature of the
order of the electron hopping t and the chemical potential of
the particle bath μ, we find another peak due to the settlement
of optimal electron distribution. At much lower temperature,
we find peak(s) due to the development of relevant magnetic
correlations. In the vicinity of a quantum phase transition
between FM and AFM states, we find another peak, which re-
sembles the quasigap behavior in the high-Tc superconducting
systems.

To clarify the temperature dependence of the magnetic
state from a microscopic viewpoint, we investigate spin cor-
relation functions. We show that competition between FM
and AFM states causes a peculiar ordering process. Local FM
correlations in a cluster are found to be robust, which indicates
that the FM correlation originates from the motion of itinerant
electrons in the cluster.

The rest of the paper consists of the following sections.
In Sec. II, we explain a model for an extended Nagaoka
ferromagnetism. In Sec. III and also in the Appendix, we
describe numerical methods. In Sec. IV, we mention the
extended Nagaoka ferromagnetism at zero temperature. In
Sec. V, we survey ordering processes in the overall tempera-
ture range by analyzing various quantities, such as energy and

(a) (b)

FIG. 1. (a) Lattice unit structure to build an extended lattice. A
four-site plaquette (open circles) is called subsystem, which repre-
sents a main frame. A center site (solid circle) is regarded as a particle
bath. Solid lines denote the hopping connection between two sites.
(b) Extended lattice built by arranging the units in one direction.

specific heat. In Sec. VI, we focus on the magnetic property at
low temperature. In Sec. VII, we investigate the dependence
of spin correlation functions on temperature and distance.
Section VIII is devoted to summary and discussion.

II. MODEL FOR FERROMAGNETISM

We have studied a Hubbard model including sites that
work as the particle bath [60,61]. Let us briefly explain how
the ground state changes between Mott AFM and Nagaoka
FM states. As a unit, we take a five-site system depicted in
Fig. 1(a). The system consists of two parts: We call sites
denoted by open circles subsystem, which represent a main
frame, and a shaded circle center site, which works as a
particle bath. We consider a concept of the Nagaoka ferromag-
netism in the subsystem. For this purpose, we set the number
of electrons to that of sites in the subsystem, and control the
distribution of electrons by the chemical potential at the center
site. For instance, we consider the case with four electrons in
the five-site system depicted in Fig. 1(a). The subsystem is
half-filled if no electron is at the center site, so that the system
is in the Mott AFM state. When the center site captures an
electron, i.e., the subsystem has one hole, the subsystem is in
the Nagaoka FM state where the total spin is 3/2. A saturated
FM state is realized when the total spin of the system Stot is
given by Stot = 3/2 + 1/2 = 2. We note that the total spin
of the subsystem Ssub and that of the center site Sc are not
considered separately, but they are approximately given by
Ssub = 3/2 and Sc = 1/2.

Extended lattices are built by arranging the units, as shown
in Fig. 1(b). The Hamiltonian is explicitly given by

H = − t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

ni↑ni↓

+ μ
∑

i∈center

(ni↑ + ni↓), (1)

where ciσ and c†
iσ are annihilation and creation operators,

respectively, of an electron with spin σ (=↑,↓) at the site
i, niσ = c†

iσ ciσ is an electron number operator, t is the elec-
tron hopping, U is the on-site Coulomb interaction at all the
sites, and μ is the on-site energy only at the center sites,
which serves as the chemical potential of the particle bath.
Throughout the paper we take t = 1 as the energy unit. We use
both open and periodic boundary conditions (OBC and PBC,
respectively). As mentioned above, the total number of sites
N is the sum of the number of sites in the subsystem N sub and
that in the center sites Nc, i.e., N = N sub + Nc. The number of
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electrons Ne is set equal to N sub to have the half-filled situation
in the subsystem when μ is large.

We make a brief comment about the dependence on the
bond connection of the center sites to the subsystem. As
shown in Fig. 1, we adopt the lattice structure where a center
site connects to a pair of diagonal sites of the plaquette to have
a bipartite lattice. If we include all four bonds from the center
to the corners of the plaquette, triangular loops composed
of the center and two corners appear, so that geometrical
frustration occurs. In such a case, a saturated FM state is not
realized. On the other hand, the hopping amplitude between
the subsystem and the center sites would be set to a different
value t ′ from that within the subsystem t . We have reported
that the range of μ for the saturated FM state becomes narrow
with decreasing t ′ [61]. Here we simply set t ′ = t , since qual-
itative properties of the model do not change if we vary t ′. As
for the property of the coupling between the subsystem and
the center sites, we have also examined an entanglement en-
tropy [61]. It becomes maximum near μ = 0 where electrons
can move around the whole system without the disturbance of
the chemical potential. This enhancement of the entanglement
is due to the electron motion, i.e., quantum motion among the
subsystem and the center sites.

In the previous paper [61], we have confirmed that this
mechanism for the itinerant ferromagnetism is realized in the
extended lattice in one dimension, depicted in Fig. 1(b), in the
thermodynamic limit. We call this type of FM state extended
Nagaoka FM state. In Sec. IV, we give a brief explanation
about the extended Nagaoka ferromagnetism at zero tempera-
ture as a reference for the present paper. After that, we focus
on the temperature dependence of the model in Secs. V–VII.

III. METHOD

To study the ground state we use the Lanczos method.
In the present model (1), the number of electrons of up
spin N↑ and that of electrons of down spin N↓ conserve,
so that the ground state is obtained as the lowest-energy
state with specified (N↑, N↓). The number of basis states,
i.e., the dimension of the Hamiltonian matrix, is given by
M = NCN↑ · NCN↓ , which becomes huge as the system size
increases. Concretely, M = 3, 136 for the system with N =
8 and N↑ = N↓ = 3, M = 213, 444 for N = 11 and N↑ =
N↓ = 4, M = 4, 008, 004 for N = 14 and N↑ = N↓ = 5, and
M = 153, 165, 376 for N = 17 and N↑ = N↓ = 6.

In the present work, our main focus is on properties at finite
temperatures. For this purpose, we use an exact diagonaliza-
tion (ED) method to obtain all eigenvalues and eigenvectors
of the Hamiltonian and calculate the thermal average. This
is a straightforward method to calculate the thermal average
of any physical quantities at any temperatures numerically
exactly. However, the computation is limited to small size
systems because the matrix dimension grows exponentially
with the system size, even when we block diagonalize the
Hamiltonian in terms of (N↑, N↓) to reduce the matrix di-
mension for efficient calculations. We use the ED method to
analyze systems with N = 8 and Ne = 6, and with N = 11 and
Ne = 8. In order to investigate finite-temperature properties
for larger systems beyond those handled by the ED method,
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FIG. 2. The total spin Stot and the number of electrons in the
center sites N c

e as a function of μ at U = 500 for (a) the OBC lattice
with N = 17 and Ne = 12, and for (b) the PBC lattice with N = 18
and Ne = 12. Both lattices consist of five units.

we apply a random vector method [62–64], which will be
explained in the Appendix.

IV. EXTENDED NAGAOKA FERROMAGNETISM
AT ZERO TEMPERATURE

In the previous paper [61], we reported the realization of
the extended Nagaoka FM state at zero temperature in lattices
composed of units connected linearly [Fig. 1(b)]. Analyzing
the ground state with up to N = 110 sites by the Lanczos and
density-matrix renormalization group methods, we found that
the extended Nagaoka FM state appears in a certain range of
the electron density in the subsystem. We confirmed that the
phase diagram little depends on the number of units, which
suggests that the mechanism holds in the thermodynamic
limit.

In Fig. 2(a), we present typical results for N = 17 and Ne =
12 as a reference for the present paper. Here we plot the total
spin Stot , evaluated by

Stot (Stot + 1) = 〈
S2

tot

〉
, (2)

where Stot = ∑
i Si and 〈· · · 〉 denotes the expectation value in

the ground state. We numerically obtain the value of 〈S2
tot〉 and

estimate Stot via

Stot = (−1 +
√

1 + 4
〈
S2

tot

〉)
/2. (3)

We also plot the number of electrons in the center sites,

Nc
e =

∑
i∈center,σ

〈niσ 〉. (4)

There appears a saturated FM state when electrons are ac-
commodated in the center sites, i.e., holes are doped into
the subsystem. We stress again that we do not need to add
or remove electrons one by one, but we control the electron
density by the chemical potential at the center site, which
remains well defined in the thermodynamic limit.

We note that an intermediate state of Stot = Ne/2 − 2
appears in a narrow region between the Mott state of Stot = 0
and the extended Nagaoka FM state of Stot = Ne/2, as shown
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FIG. 3. The ground-state phase diagram for 1D lattices. The
phase boundary to the saturated FM state is presented for various
system sizes in the OBC and PBC.

in Fig. 2(a). This state is found to be a bound state formed at
corner sites that are not connected to the center sites in the
OBC. This boundary effect is removed by taking the PBC,
where Stot changes from 0 to Ne/2 directly without passing
through intermediate Ne/2 − 2, as shown in Fig. 2(b).

Figure 3 shows the ground-state phase diagram for the
one-dimensional (1D) lattice. We plot the region where the
saturated FM state of Stot = Ne/2 appears for various system
sizes in the OBC and PBC. To avoid making the phase dia-
gram complicated, we do not show phase boundaries for other
values of Stot , such as above-mentioned Stot = Ne/2 − 2 in
the OBC and medium values for small μ. We find that the
phase boundaries of the systems of N = 8 and 9 deviate from
others, while the system size dependence is small for larger
systems. Indeed, the phase boundary of the FM state does
not depend much on the system size, which supports that the
phase diagram includes the region of the saturated FM state
in the thermodynamic limit, as we proposed in the previous
paper [61].

Regarding the property below the lower boundary, our
previous Lanczos calculations have shown that the total spin
changes unsystematically depending on the system size [61].
We have not obtained conclusive results about how the total
spin behaves below the lower boundary in the thermodynamic
limit. It is an interesting future issue to clarify detailed proper-
ties in a broader parameter space including how the FM state
is destroyed for small U and μ. In the present paper, we focus
our discussion on a typical situation where the ground state
changes between the Mott state and the FM state around the
upper boundary.

V. FINITE-TEMPERATURE PROPERTIES: ENERGY
SCALES OF CHARGE AND SPIN DEGREES OF FREEDOM

To have an insight into finite-temperature properties of
the extended Nagaoka ferromagnetism, we investigate various
physical quantities in 1D lattices, such as energy, specific heat,
and spin correlation function, as a function of the temperature.
We mainly use the data for N = 8 with the OBC, obtained by
the ED method, and also study larger lattices by the random
vector method. We note that the overall trend does not change
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FIG. 4. The temperature dependences of (a) the energy, where
the ground-state energy is subtracted, (b) the specific heat, (c) the
double occupancy, (d) the number of electrons in the center sites,
and (e) the total spin for typical U at μ = 5. N = 8 and Ne = 6.

much with the system size, as will be seen in Figs. 9 and 13.
This suggests that we can capture the general tendency by
analyzing small systems of N = 8.

First, we study three steps of ordering processes caused
by U , t , and magnetic states, producing characteristic peaks
of the specific heat. In Fig. 4(a), we present the temperature
dependence of the energy,

E = 〈H〉T , (5)

for typical values of U at μ = 5, where 〈· · · 〉T denotes the
thermal average at the temperature T . We observe three
marked changes in different temperature ranges where the
energy decreases significantly as the temperature goes down.
Note that the temperature axis is in the log scale, and the
different temperature ranges represent different scales of the
temperature by several orders of magnitude. The energy axis
is also in the log scale. The characteristic temperatures where
the energy decreases are clearly seen as the peaks of the
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specific heat,

C = dE/dT = (〈H2〉T − 〈H〉2
T

)
/T 2, (6)

as shown in Fig. 4(b).
In the high-temperature limit, which is higher than U ,

electrons are randomly distributed in the system, where elec-
trons with different spins freely come to the same site, while
electrons with the same spin cannot occupy the site due to
the Pauli exclusion principle. With lowering the temperature,
a change of the electron state is caused by the Coulomb
interaction U , which gives the largest energy scale in the
present model. Because of U , electrons with different spins
avoid coming to the same site to lower the energy, so that
the energy drops at a temperature of the order of U . Indeed,
the characteristic temperature in this high-temperature regime
increases with increasing U monotonously. This change of the
electron state is actually confirmed by measuring the double
occupancy,

d =
∑

i

〈ni↑ni↓〉T , (7)

as shown in Fig. 4(c). We find that the double occupancy
changes at the temperature corresponding to the peak of the
specific heat seen in Fig. 4(b).

With further decreasing the temperature, we observe a peak
of the specific heat at an intermediate temperature, as shown
in Fig. 4(b). The position of this second peak is independent of
U , located at around T � 1.5 × 100, since curves of different
U coincide with each other. This indicates that the relevant
energy scale is of the order of t and μ. With positive μ, elec-
trons avoid occupying the center sites to decrease the on-site
energy, while the electron hopping brings an electron to the
center sites to gain the kinetic energy. By the balance of them,
an optimal spatial electron distribution is formed, where the
number of electrons in the center sites has an optimal value.
This optimization does not strongly depend on U , as shown in
Fig. 4(d).

Below this temperature, charge degrees of freedom are
effectively frozen. However, there still exist spin degrees of
freedom. Its contribution to the energy is much smaller than
those of charge degrees of freedom. Thus, changes of mag-
netic properties occur at low temperatures, as is generally
known.

Now we study the magnetic property of the present model,
although the low temperature causes difficulties in the nu-
merical calculation. To characterize the magnetic property, we
investigate the temperature dependence of the total spin Stot,
as shown in Fig. 4(e). In the high-temperature limit, Stot takes
a constant value around 1.30 regardless of U . This value is
explained as follows. In general,

〈
S2

tot

〉
T = 3

〈(∑
i

Sz
i

)2〉
T

, (8)

since the spin space is isotropic in the present model. In the
high-temperature limit, electrons freely move with keeping
the Pauli exclusion principle, so that the value in the high-
temperature limit 〈S2

tot〉∞ is evaluated by counting the number

of combinations,

〈
S2

tot

〉
∞ = 3

Ne∑
N↑=0

N2
↑ · NCN↑ · NCNe−N↑

− 3Ne

Ne∑
N↑=0

N↑ · NCN↑ · NCNe−N↑ + 3

4
N2

e , (9)

where Sz
tot = (N↑ − N↓)/2 and Ne = N↑ + N↓ are used. The

total spin in the high-temperature limit S∞
tot is given by substi-

tuting 〈S2
tot〉∞ to Eq. (3). For the case of N = 8 and Ne = 6, we

obtain 〈S2
tot〉∞ = 3 and S∞

tot = 1.30, which agrees with results
in Fig. 4(e).

At the intermediate temperature of the order of t and μ,
Stot takes a constant value around 1.68. Considering that the
double occupancy is prohibited and spins freely fluctuate,
the total spin in the intermediate-temperature regime SIT

tot is
evaluated as

SIT
tot = (−1 +

√
1 + 3Ne )/2, (10)

which is obtained by assuming 〈Si · S j〉T = 0 (i 
= j) in
Eq. (3). For N = 8 and Ne = 6, we obtain SIT

tot = 1.68, which
agrees with results in Fig. 4(e).

As the temperature decreases in the low-temperature
regime, Stot exhibits distinct changes depending on U , and
eventually converges to the value of the ground state. We note
that when the ground state has Stot = 0 for U = 100 and 200,
the temperature exhibiting the change of Stot decreases with
U . In contrast, it increases with U when the ground state
has Stot = Ne/2 = 3 for U = 500 and 1000. This difference
depends on how the magnetic correlation develops, which we
will discuss in the next section.

Thus far we have focused on the U dependence. Here, we
complementarily study the μ dependence to obtain a deeper
understanding of three steps of ordering processes that oc-
cur in different temperature ranges. In Figs. 5(a) and 5(b),
we show the temperature dependences of the energy and the
specific heat, respectively, for typical μ at U = 500. We ob-
serve again that the energy decreases significantly in different
temperature ranges, causing the peaks of the specific heat. The
high-temperature peak of the specific heat is located at around
T � 1.9 × 102 independently of μ. The double occupancy
drops there, as shown in Fig. 5(c). This fact clearly indicates
that the change of the electron state in this high-temperature
regime is governed by U .

As seen in Fig. 5(b), the other two peaks of the spe-
cific heat at intermediate and low temperatures move with
μ. We find that the intermediate-temperature peak shifts to
the high-temperature side monotonously with increasing μ.
This behavior is natural because the optimal spatial electron
distribution is caused by μ. There, we observe that the number
of electrons in the center sites becomes large with decreasing
μ, as shown in Fig. 5(d), as it should be. On the other hand, the
low-temperature peak is of magnetic origin. In fact, we find
distinctive behavior of the total spin, as shown in Fig. 5(e).
With decreasing μ, the temperature exhibiting the change of
Stot decreases when the ground state has Stot = 0 for μ = 15
and 10, while it turns to increase when the ground state has
Stot = Ne/2 = 3 for μ = 4 and 2. This opposite change across
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FIG. 5. The temperature dependences of (a) the energy, where
the ground-state energy is subtracted, (b) the specific heat, (c) the
double occupancy, (d) the number of electrons in the center sites,
and (e) the total spin for typical μ at U = 500. N = 8 and Ne = 6.

the quantum phase transition is similar to what we observed
with varying U in Fig. 4.

VI. MAGNETIC PHASE DIAGRAM

As observed in Fig. 4(e), and also in the ground-state phase
diagram in Fig. 3, with varying U at μ = 5, the ground state
is the Mott state of Stot = 0 for small U and the saturated
FM state of Stot = Ne/2 for large U , and there is a quantum
phase transition in between them. The transition point is at
Uc = 264.3 for N = 8 and Ne = 6. In the following, we in-
vestigate properties at low temperatures in three ranges of U
at μ = 5: The Mott ground-state regime, the FM ground-state
regime, and a region near the quantum phase transition.

A. Mott ground-state regime

As is well known, assuming that each site is occupied by
one electron, the coupling between spins in neighboring sites
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FIG. 6. Low-temperature properties for typical U at μ = 5
where the ground state is the Mott state of Stot = 0. (a) The energy,
(b) the specific heat, (c) the number of electrons in the center sites
N c

e , (d) the temperature derivative of N c
e , (e) the total spin Stot , and

(f) the temperature derivative of Stot as a function of the temperature.
Vertical dotted lines in (b), (d), and (f) denote the peak positions.
N = 8 and Ne = 6.

is described by the AFM exchange interaction,

JAFM(Si · S j − 1/4), JAFM = 4t2

U
, (11)

which is derived by the second-order perturbation with respect
to the electron hopping t in the strong-coupling limit. Thus
we expect that AFM correlations grow at the temperature
corresponding to JAFM, being proportional to 1/U .

In Figs. 6(a) and 6(b), we present the energy and the spe-
cific heat, respectively, for typical values of U at μ = 5 where
the ground state is the Mott state of Stot = 0. Here we plot
the energy itself without subtracting the ground-state energy
in the linear scale. According to the U dependence of JAFM

in Eq. (11), as U increases, the energy reduction of magnetic
origin at low temperature becomes small, and the peak of the
specific heat shifts toward the low-temperature side. That is,
the magnetic energy scale becomes small with increasing U
in the Mott ground-state regime.

Figures 6(c) and 6(d) show, respectively, the number of
electrons in the center sites Nc

e and its temperature deriva-
tive. As we discussed in Sec. V, an optimal spatial electron
distribution is mostly formed at the intermediate temperature
of the order of 10−1. However, Nc

e is further reduced at low
temperature. This indicates that charge degrees of freedom
are not completely frozen yet, but a fine adjustment occurs
due to magnetic properties. Note that the reduction of Nc

e
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FIG. 7. Low-temperature properties for typical U at μ = 5
where the ground state is the FM state of Stot = Ne/2. (a) The energy,
(b) the specific heat, (c) the number of electrons in the center sites
N c

e , (d) the temperature derivative of N c
e , (e) the total spin Stot , and

(f) the temperature derivative of Stot as a function of the temperature.
Vertical dotted lines in (b), (d), and (f) denote the peak positions.
N = 8 and Ne = 6.

indicates that the electron filling in the subsystem increases
to approach the half-filling situation of the subsystem, which
is favorable to gain the magnetic energy through the AFM
exchange interaction in the subsystem. This is a kind of spin-
charge coupling. Comparing with Figs. 6(b) and 6(d), the peak
positions of the specific heat and dNc

e /dT agree with each
other, as denoted by vertical dotted lines.

As shown in Fig. 6(e), Stot changes correspondingly with
Nc

e in Fig. 6(c), indicating a spin-charge coupling. We find
in Fig. 6(f) that the peak of dStot/dT locates at a slightly
lower temperature comparing with those of the specific heat
and dNc

e /dT . This indicates that the charge state changes at
a higher temperature to realize a fine-adjusted electron distri-
bution, and the spin state goes to the ground state at a lower
temperature. The spin contribution to the specific heat at the
lower temperature is not identified as a separate peak, since it
is close to the peak due to the charge contribution at the higher
temperature.

B. FM ground-state regime

We move on to the regime where the ground state is the
saturated FM state of Stot = Ne/2. In Fig. 7(a), we present the
energy. It appears that the ground-state energy is independent
of U . This is because electrons with parallel spin alignment do
not occupy the same site due to the Pauli exclusion principle,

so that the Coulomb interaction does not affect the ground-
state energy.

Figure 7(b) shows the specific heat. We find that the peak
of the specific heat shifts to the high-temperature side with
increasing U , indicating that the FM state is stabilized by
U . The U dependence of the peak shift seems rather gentle
in comparison with that in the Mott ground-state regime in
Fig. 6(b). The insensitivity to U suggests that the mechanism
of the extended Nagaoka ferromagnetism is robustly realized
and its stability does not depend strongly on U .

As shown in Fig. 7(c), Nc
e increases at low temperature.

Following the increase of Nc
e , Stot also increases, as seen in

Fig. 7(e). This is again a spin-charge coupling, but the changes
of Nc

e and Stot are opposite to those in the Mott ground-state
regime where Nc

e and Stot decrease with decreasing the temper-
ature. That is, more holes are introduced into the subsystem,
so that the hole motion in the subsystem is enhanced, which
works positively for the realization of the extended Nagaoka
ferromagnetism. The peak positions of dNc

e /dT are close to
those of the specific heat [Figs. 7(b) and 7(d)], and those
of dStot/dT move to the low-temperature side [Figs. 7(b)
and 7(f)], similarly to what we observed in Fig. 6.

C. Quantum phase transition

Now we discuss finite-temperature properties near the
quantum phase transition. Figures 8(a) and 8(b) present
the energy and the specific heat, respectively. The peak of the
specific heat moves to the low-temperature side as U increases
below Uc, and it turns to move to the high-temperature side
above Uc, as already seen in Figs. 6(b) and 7(b). Moreover,
we find an additional peak at around T � 0.01, denoted by a
gray thick arrow, when U is close to Uc. This peak should be
attributed to the competition of different magnetic states near
the quantum phase transition. We will discuss this competition
by investigating the spin correlation in Sec. VII.

We find an additional peak in the low-temperature side
of the main peak for U = 240, which comes from discrete
energy levels due to the finite-size effect, the analysis of which
strays from the main subject in the present paper and we do
not discuss them.

As seen in Figs. 8(c) and 8(e), respectively, Nc
e and Stot

simply increase with decreasing the temperature for U = 300
and 280, where the system has the FM ground state. Below Uc,
for U = 240 and 220, where the system still remains near the
transition point, we find that Nc

e and Stot first increase, while
they turn to decrease. The increase of Stot in the early stage,
i.e., the enhancement of the FM correlation, is a reminiscent
of the FM ground state above Uc. The AFM correlation turns
to be large, and eventually the system reaches the Mott ground
state. This type of inversion of AFM and FM correlations
is a characteristic property of itinerant electrons. In order to
see this nonmonotonic behavior, we plot the derivatives in a
magnified scale in Figs. 8(d) and 8(f). Here we clearly see the
sign change of the derivatives.

The ground state has Stot = 1 for U = 260, as we see
in Fig. 8(e). As mentioned in Sec. III, between the phases
of Stot = 0 and Stot = Ne/2, there is a short interval of an
intermediate state with Stot = Ne/2 − 2 in the OBC. We do
not look into this fact in detail in the present analysis. The
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FIG. 8. Low-temperature properties for typical U at μ = 5 near
the transition between the Mott and FM ground states at Uc = 264.3
for N = 8 and Ne = 6. (a) The energy, (b) the specific heat, (c) the
number of electrons in the center sites N c

e , (d) the temperature deriva-
tive of N c

e , (e) the total spin Stot , and (f) the temperature derivative of
Stot as a function of the temperature. In (b), positions of main peaks
are denoted by thin arrows, while a gray thick arrow is to mark an
additional peak around T � 0.01.

presence of this intermediate state does not affect the global
structure of a phase diagram discussed below.

D. Phase diagram

In Fig. 9, we present a kind of phase diagram, where we
plot the peak temperatures of the specific heat as a function
of U at μ = 5. We show the results of the OBC and PBC
separately in Figs. 9(a) and 9(b), respectively, since there is
a relatively large size dependence of the transition point in the
PBC, as shown in Fig. 3.

Let us first focus on the results of the OBC in Fig. 9(a).
Here we plot results of exact diagonalization for N = 8 and
11, together with those for N = 14 obtained by the ran-
dom vector method. As U approaches the quantum phase
transition point Uc � 264, the peak temperatures in both the
Mott and FM ground-state regimes decrease, and eventually
merge at zero temperature, leading to a V-shape structure as
usual quantum phase transitions. Moreover, we find additional
peaks at around T � 0.01 in the vicinity of the quantum
phase transition. There develops a different kind of magnetic
fluctuation reflecting the competition of AFM and FM states.
The peaks around T � 0.01 form a dome structure above the
V-shape structure in the phase diagram. We note that this
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FIG. 9. The peak temperatures of the specific heat as a function
of U at μ = 5 for 1D lattices in the (a) OBC and (b) PBC.

dome structure resembles the quasigap behavior of high-Tc

superconductors.
Regarding multiple peak structures of the specific heat,

when U is very close to Uc, the main peak at very low tem-
perature and the additional peak around T � 0.01 are well
separated, and we can easily distinguish them, as seen in
Fig. 8(b) except for U = 200 and U = 220. However, as U
goes away from Uc, they approach each other and eventually
overlap, so that we observe a broad single peak [U = 200 and
U = 220 in Fig. 8(b)]. We do not analyze data to resolve such
overlapping peaks, and we plot well-identified peaks in Fig. 9.
Thus, the dome structure seems to disappear before touching
the V-shape structure.

As shown in Fig. 9(b), we also observe the V-shape and
dome structures in the PBC. Thus, the microscopic origin
of these peaks is not the boundary effect but attributed to
magnetic correlations.

Above we have focused on the phase diagram in the (U, T )
plane. Instead, we may study the phase diagram in the (μ, T )
plane. In this case, we observe similar behavior such as V-
shape and dome structures near the quantum phase transition
between the Mott and FM ground states (not shown).

VII. TEMPERATURE DEPENDENCE
OF SPIN CORRELATION

As mentioned in the introductory part, how magnetic order
develops in itinerant ferromagnets as a function of the temper-
ature is an interesting problem. To clarify the ordering process
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FIG. 10. The spin correlation function C(i, j) as a function of the temperature for the 1D lattice in the PBC with 12 sites. (a) The site
numbering of the 12-site lattice. C(i, j) for (b) U = 100 well below Uc � 225, (c) U = 220 just below Uc, (d) U = 230 just above Uc, and (e)
U = 300 well above Uc at μ = 5. The spin correlation is measured from the site i = 1, and the site pair (i, j) is given in each panel. The error
bars denote the standard deviation of the sampling data in the random vector method. The data of T = 0 are obtained by the Lanczos method.

of itinerant electron spins from a microscopic viewpoint,
we measure the position dependence of the spin correlation
function,

C(i, j) = 〈Si · S j〉T . (12)

For the analysis of C(i, j), we use the PBC to avoid the
boundary effect. Here we take four values of U near and away
from the quantum phase transition point Uc � 225 at μ = 5
for a periodic lattice with 12 sites, depicted in Fig. 10(a). In
the following we show C(i, j) measured from the site i = 1.

First, we focus on the spin correlation functions in the
subsystem, which are presented in Fig. 10. If U is well
separated from Uc � 225, the system shows a well-defined
temperature dependence. For instance, at U = 100 well be-
low Uc [Fig. 10(b)], the system has an AFM order, which
is short ranged even at zero temperature in the same way
as the two-leg ladder AFM Heisenberg model of localized
spins. At U = 300 well above Uc [Fig. 10(e)], the system
has a FM order in the ground state. In both cases, the spin
orders at T = 0 are reduced by the finite-temperature effect

in a standard way, where spin correlations at long distances
decay quickly as the temperature increases with keeping its
AFM or FM pattern.

Between them, a quantum phase transition occurs as found
in the previous section, around which relevant magnetic cor-
relations develop at much low temperatures. In Fig. 10(c),
we present C(i, j) at U = 220, which is close to Uc and the
ground state is the Mott state. The system shows a crossover
to the AFM ground state at very low temperature T < 0.001.
However, we find some peculiar behavior. The spin correla-
tion for a nearest-neighbor site of j = 5 shows nonmonotonic
temperature dependence and changes the sign at around T �
0.001. That is, with decreasing the temperature, the spin
correlation is FM above T > 0.001, changes its sign around
T � 0.001, and becomes AFM below T < 0.001, which is
consistent with the corresponding AFM Heisenberg model of
localized spins. Moreover, although most of spin correlations
are much reduced and quickly decay with the temperature
in comparison with those in Fig. 10(b), the FM correlation
of next-nearest-neighbor j = 6 is robust and persists up to a
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sites. (a) U = 100, (b) U = 220, (c) U = 230, and (d) U = 300 at μ = 5, of which the setting are the same as those of Figs. 10(b), 10(c), 10(d),
and 10(e), respectively.

relatively high temperature T � 0.05, as shown in Fig. 10(c)
(shown up to T = 0.02).

Figure 10(d) shows C(i, j) at U = 230, which is close to
Uc and the ground state is the FM state. The system shows a
crossover to the FM ground state at very low temperature T <

0.003. We observe similar behavior to the case of the Mott
ground state at U = 220 for j = 5 and 6 at T > 0.003, i.e.,
FM correlations remain up to a relatively high temperature
T � 0.05.

The above observations suggest that the formation of a
short-range FM cluster (1-5-6-9) of itinerant electrons takes
place. That is, the FM spin alignment occurs via the hole
motion in this cluster. The growth of short-range FM order
gives the peak of the specific heat, causing the dome structure
in Fig. 9. To clarify the spin state in this cluster, we also
measure the spin correlation function for j = 9, which is a
center site, as shown in Fig. 11. The spin correlation should
be AFM for U = 100 and 220 if we simply assume the AFM
exchange interaction on the bond (1,9), but we find similar
FM correlations whether the ground state is FM or AFM. This
indicates that the FM correlation originates from the motion of
itinerant electrons in a short-range cluster (1-5-6-9), which is a
special property of the present itinerant FM system in contrast
to localized spin systems.

We consider that competition between this kind of growth
of FM correlations and AFM correlations due to the Mott
mechanism near Uc causes the nonmonotonic dependence of
the spin correlation for j = 5 and also the peak of the specific
heat at around T � 0.01, leading to the dome structure in
Fig. 9.

We further investigate a larger system with 18 sites to
clarify the position dependence of the spin correlation at long
distances. In Fig. 12, we show C(i, j) at U = 500 and μ = 5,
where the ground state is the FM state of Stot = Ne/2. As the
temperature increases, the spin correlations at long distances
decay fast. On the other hand, FM correlations in a short-range
cluster persist up to relatively high temperature T � 0.05.
Thus the formation of the FM cluster is not due to the finite-
size effect but inherent in the system of itinerant electrons.

VIII. SUMMARY AND DISCUSSION

In this paper, we studied finite-temperature properties of
the model for the extended Nagaoka ferromagnetism by using
numerical methods. In contrast to the original Nagaoka model,
we can deal with finite electron density by making use of the
sites of the particle bath, and thus, the thermodynamic limit is
well defined.

The mechanism of the alignment of spins in the present
itinerant electron model is very different from that in the
localized spin Heisenberg model with local FM exchange
interactions. Since the present model exhibits FM and AFM
ground states depending on the parameter U , the tempera-
ture dependence of magnetic ordering is a matter of interest.
We surveyed ordering processes in the full range of the
temperature.

The present model has three parameters U , t , and μ. Here
we took U � t and t and μ in the same order, since the FM
state appears for sufficiently large U . We found prominent
peaks of the specific heat in three temperature regions due to
changes between characteristic electron states (Figs. 4 and 5).
The changes of the electron state are clearly identified by
corresponding quantities, such as the double occupancy, the
electron density at the center site, and the total spin. At high
temperature T � U , electrons distribute randomly (complete
random state), where the restriction on the electron state is
only the Pauli exclusion principle, i.e., the double occupancy
at the same site with the same spin. At around T ∼ U , the
double occupancy at the same site with the opposite spins be-
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FIG. 12. The spin correlation function C(i, j) as a function of the
site position for the 1D lattice in the PBC with 18 sites. (a) The site
numbering of the 18-site lattice. (b) C(i, j) at several temperatures at
U = 500 and μ = 5. The spin correlation is measured from the site
i = 1. The data of T = 0 are obtained by the Lanczos method.
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comes suppressed (random state without double occupancy).
When T decreases to the order of t and μ, the electron distri-
bution is affected by the lattice form, i.e., the electron density
at the particle bath in which μ is large is suppressed and the
subsystem becomes nearly half-filled (itinerant paramagnetic
state). At much lower temperature, depending on the value of
U for a given μ, the system shows the FM state (U > Uc) and
the AFM state (U < Uc), (extended Nagaoka FM state and
Mott AFM state, respectively).

Regarding magnetic properties, we studied the details of
the temperature dependence at low temperature where rele-
vant magnetic correlations develop (Figs. 6–8). In the present
setup, U is the order of a few hundred and magnetic correla-
tions grow at around T ∼ 10−2, i.e., T/U ∼ 10−5. This large
difference of energy scales for charge and spin degrees of
freedom is a general feature in the Hubbard model treatment,
and it causes difficulty in multi-scale numerical calculations.
We used the random vector method (Appendix) to handle with
large lattices that are not available by the ED method. If the
dimension of Hilbert space is large enough, single sample can
produce the thermal average. Indeed, to study electron prop-
erties around T > 10−2, single sample is enough to obtain the
quantities precisely. We confirmed this fact by checking the
case with five samples. However, since the temperature is so
low in the present case, we needed sample average with a large
number of samples, e.g., 1000 samples.

The peak temperatures of the specific heat were given in
Fig. 9. We found a V-shape structure as typically seen in
the quantum phase transition. Moreover, we found a dome
structure around the critical U , which resembles the quasigap
behavior in the high-Tc superconductors.

To characterize magnetic orderings from a microscopic
viewpoint, we studied how the spin correlation develops with
temperature (Figs. 10–12). We found that some local FM
correlations are robust. Even when the system is in the Mott
AFM ground-state regime below Uc, some neighboring spins
that have AFM correlations in the ground state show FM
correlations in a certain temperature range, which should
be originated in the electron motion in a cluster. This kind
of competition occurs around the temperatures of the dome
structure, so that we attribute the peaks to this competition.

To study finite-temperature properties of the Hubbard
model requires large computational resources. Thus, in the
present study, we only grasped the characteristics in small
systems where the finite-size scaling of quantities could not
be examined sufficiently. We expect that some more sophis-
ticated methods, e.g., DMRG, tensor network method, etc.,
would extend the study in future. It is also an interesting future
problem to study finite-temperature properties of other models
for itinerant ferromagnetism, such as a flat-band model and a
Kondo-lattice model with double exchange mechanism.

In the present study, we considered the lattice build by
one-dimensional arrangements of the unit structures. How-
ever, it is preliminarily found that the same kind of behavior
has been found in two- and three-dimensional arrangements
and the results of the present study are expected to take place
regardless of dimensions.

Finally, we refer to related experimental systems for the re-
alization of the extended Nagaoka FM state. Recently, thanks
to the development of experimental techniques using cold

atoms in optical lattices [65–67], and also, the chemical syn-
thesis of molecular magnets [68–70] and the fabrication of
quantum dots [71], quantum simulations of quantum lattice
models have been made with high controllability. In this con-
text, the Hubbard model is the simplest model of interacting
fermions because it consists of only transfer and on-site re-
pulsion terms. Thus, it is a good chance to realize the itinerant
ferromagnetism in such systems. If we prepare structures con-
sisting of the main frame and the particle bath, by controlling
model parameters, we can switch between FM and AFM
states and observe peculiar ordering processes in the vicinity
of the quantum phase transition.
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APPENDIX

In this Appendix, we briefly explain the random vector
method [62–64], and present some numerical results to illus-
trate how we obtain results shown in the main text. We first
prepare an initial random vector |�〉 of which each element
is given by a Gaussian distribution. Then, we calculate a
wave function for finite temperature T by the imaginary-time
evolution of the wave function,

|�β〉 = e−βH/2|�〉, (A1)

where β = 1/kBT is the inverse temperature and kB is the
Boltzmann constant. We use the Chebyshev polynomial rep-
resentation of e−βH/2 to calculate e−βH/2|�〉 [63]. The thermal
average of a physical quantity A is approximately obtained as

〈A〉T = TrAe−βH

Tre−βH
� 〈�β |A|�β〉

〈�β |�β〉 . (A2)

Basically the random vector method is efficient at high
temperatures, since a random vector equally includes all
eigenvectors and it represents a thermal equilibrium state in
the high-temperature limit. Regarding the accuracy at finite
temperatures, the difference between the last two terms in
Eq. (A2) is proven to become exponentially small with in-
creasing the dimension of the Hamiltonian matrix. However,
at low temperatures, the difference becomes large and thus we
need to take the ensemble average of the last term by using
different initial random vectors |�〉 to reduce the difference.

As mentioned above, this method is efficient down to a
certain temperature even if we have only a few samples (even
single sample) to give a good estimation of physical quanti-
ties. In Figs. 13(a)–13(c), we show the specific heat in a wide
range of the temperature at U = 500 and μ = 5, obtained
with five samples. Data of five samples have a very small
distribution among them, and they agree well with the exact
ones obtained by the ED method for N = 8 and 11 down to
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FIG. 13. The specific heat as a function of the temperature for the 1D lattice in the OBC at U = 500 and μ = 5, obtained by the random
vector method. Top: (a) N = 8, (b) N = 11, and (c) N = 14 in a wide range of the temperature, obtained with five samples. Bottom: (d) N = 8,
(e) N = 11, and (f) N = 14 at low temperatures where we study magnetic properties, obtained with 100 samples. The error bars denote the
standard deviation of the sampling data. The solid curves denote the exact results by the ED method.

T ∼ 0.1 (in units of t). It is noted that the largest energy scale
is given by U , which is 500 in the present calculations. We
find that the method is efficient even when the temperature is
rather small comparing with the largest energy scale U , i.e.,
T/U ∼ 10−4.

However, at much lower temperatures below T ∼ 0.01,
i.e., T/U � 10−5, where we study magnetic properties, the
self-averaging property due to the large Hilbert space is not
enough to shape data. In fact, the result of N = 8 at T = 0.01
with five samples does not agree with the exact one, as seen
in Fig. 13(a). Thus we need sample average by using a num-
ber of different initial random vectors. In Figs. 13(d)–13(f),

we present the specific heat at low temperatures at U = 500
and μ = 5, obtained with 100 samples. Although results of
N = 8 deviate from the ED results to some extent, they are
consistent within the error bars. The agreement with the ED
results becomes better for N = 11. We also point out that
the distribution of the data of samples becomes small as the
system size increases. These tendencies come from the fact
that the difference between the last two terms in Eq. (A2)
becomes small as the size of the Hilbert space increases.
Therefore, we need fewer samples for larger systems to obtain
converged distributions to estimate the average and error bar
of quantities.
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