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Calculation of the magnon drag force induced by an electric current in ferromagnetic metals
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Magnon drag effect induced by an applied electric field in ferromagnetic metals is theoretically studied by a
microscopic calculation of the force on magnons arising from magnon emission and absorption and scattering
due to driven electrons. It is shown that magnon scattering contribution dominates over the emission and
absorption ones in a wide temperature regime in good metals with long elastic lifetime τ , as the latter has a
relative suppression factor of (�τ )−2 due to the electron spin flip by the magnon, where � is the sd exchange
interaction energy. Spin-transfer efficiency is discussed including the magnon drag effect.
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I. INTRODUCTION

Magnon or spin wave is an elementary excitation in mag-
netic systems, which is expected to be useful in spintronics
for information transport and processing different from the
conventional electronics [1]. An obvious advantage of using
magnons is the fact that they exist even in insulators, where
conduction electrons are absent. Spin-transfer effect due to
magnon current was theoretically argued in the context of
domain wall motion in Ref. [2]. Magnons are, however, not
easy to control and to detect, as they do not have direct
coupling to an electric field. Thermal driving by applying
a temperature gradient is therefore a common method for
inducing magnon flow like in the spin Seebeck effect [3].
Unlike conduction electrons, magnon effects are generally
temperature dependent owing to a Bose distribution function
for magnon excitation, but the effects are not easy to separate
from other bosonic origins such as phonons with similar char-
acter. Responses to an external magnetic field were used to
identify the magnon contribution [4]. Magnon drag effect was
experimentally identified by use of a thermopile structure to
cancel nonmagnetic origins in Ref. [5].

In ferromagnetic metals, conduction electron spin is
polarized due to strong sd exchange interaction to the magne-
tization, as suggested by large magnetoresistance in magnetic
multilayers and high efficiency of the spin-transfer effect
for domain walls. Strong sd exchange interaction indicates
that the system is a strongly correlated fluid of magnon and
electron with spin up and down, where a significant magnon
drag effect by the electron flow and vice versa is expected.
In 1976, magnon-drag Peltier effect, i.e., the energy current
due to magnon flow when an electric field is applied, was
phenomenologically argued and magnon drift velocity was
found from experimental data to be vm = μm/eve with a con-
stant μm/e = 2–3, where ve is the electron drift velocity [4]. It
is striking that the magnons are driven so efficiently by an

electric field even without a direct coupling. Magnon-drag
effect was studied by use of a microscopic diagrammatic
method in Ref. [6]. The magnon velocity was calculated tak-
ing account of the magnon emission and absorption due to the
sd exchange interaction and an applied electric field, and an
expression μm/e ∝ Pη/(αG�) was obtained for the velocity
ratio, where P denotes the spin polarization of conduction
electron, η ≡ τ−1 is the inverse electron elastic lifetime, � is
the electron spin-polarization energy, and αG is the (Gilbert)
damping constant for magnon. The electric current induced
by the magnon current driven by a temperature gradient was
calculated and argued in the context of magnonic spin-motive
force in Ref. [7].

The mechanism considered in Refs. [4,6], the magnon
emission and absorption, is the following process. When the
conduction electron has a drift velocity opposite to the applied
electric field, a forward emission of a magnon and an ab-
sorption of a backward-propagating magnon occurs (Fig. 1).
The transferred momentum from or to the magnon con-
tributes to a drag force. Magnon carries a spin of −1, and
thus an absorption and emission flips the electron spin. The
absorption-emission event therefore results in a high-energy
excitation of the order of 2� for the electron at the Fermi
energy, unless the magnon wave vector matches the difference
of the Fermi wave vectors kF+ − kF− for spin ±. The electron
amplitude for the force has therefore a suppression factor of
(�τ )−n (n � 1), where n turns out to be 1 [Eq. (24)], τ being
the electron elastic lifetime. Being a single magnon process,
the magnon amplitude for the emission and absorption turns
out to depend on the temperature T as T

5
2 . Aside from the

emission and absorption, electron drift causes a magnon scat-
tering. The scattering conserves the electron spin, and the
electron stays near the Fermi energy, and thus there is no
electron suppression factor for the scattering process. The
scattering is a two-magnon process, whose amplitude turns
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FIG. 1. Diagrammatic representation of the magnon emission,
absorption, and scattering. Solid line is the electron with spin labeled
by σ = ± and wavy line is the magnon.

out to be ∝T 4 and is weaker at low temperatures. The relative
strength of the emission and absorption and scattering contri-
bution to the force is given by �ea/sc ∝ S−1(�τ )−2(kBT/J̃ )−

3
2

[Eq. (40)], where J̃ is the ferromagnetic exchange energy, S
is the magnitude of localized spin, and kB is the Boltzmann
constant. The factor of S is due to the fact that emission and
absorption and scattering processes correspond to the first
and the second orders of the 1/S expansion for the magnons,
respectively. The emission-absorption process therefore dom-
inates for kBT � S− 2

3 (�τ )−
4
3 J̃ , which corresponds to a very

low temperature for good metals with a long elastic lifetime.
Aside from the Peltier effect, magnon drag effect con-

tributes to other transport effects. In fact, magnon velocity
contributes to a temperature-dependent spin-transfer effect,
and magnon drag force is directly detected as a contribution to
electric conductivity. Close analysis of experimental data on
various transport effects would make possible the separation
of the magnon drag effect from other effects. The aim of the
paper is to provide a comprehensive theory of magnon drag
effects on spin-transfer effect and resistivity by calculating the
drag force microscopically using the approach of Refs. [8,9]
taking account of the magnon scattering effect. It turns out
that the magnon scattering effect for the magnon drag force
and spin-transfer effect is larger than the emission-absorption
effect in the wide temperature range as we argued above.

Our result for the magnon emission-absorption contribu-
tion is μm/e ∝ η/(αGεF ) [the first term of Eq. (51)], and is
different from the result of Ref. [6], which is proportional to
P. Comparing the analyses of Ref. [6] and ours, the difference
appears to arise from perhaps an insufficient treatment in
Ref. [6] of electron (lesser) and hole (greater) contributions
of the vertex function 	 [Eq. (C12)]. Physically, the absence
of P in the magnon velocity appears natural as driven elec-
trons with both spins contribute to the forward motion of
magnons. In fact, the up-spin electron, which can only absorb
a magnon, transfers positive momentum to magnons by ab-
sorbing magnons moving backward relative to the electron,
while the down-spin electron pushes magnons forward by
emitting magnons forward. The transferred momentum and
force in both cases are positive and would not change sign by
a reversal of spin polarization of the electrons. (See the end of
Sec. III A for more details.)

II. MODEL

The system we study is the conduction electron coupling
to the localized spin (magnetization) by the sd exchange in-
teraction. The localized spin Hamiltonian we consider is the
one with an exchange interaction and an easy-axis anisotropy

energy, represented by the strength J and K , respectively:

HS = 1

2a3

∫
d3r

[
J (∇S)2 − KS2

z

]
, (1)

where a is the lattice constant. We consider the case where the
localized spin S is polarized along the z axis. The fluctuation
around the average, the magnon, is taken into account using
the Holstein-Primakov expansion as

S =
(√

S

2
(b + b†),

√
S

2
(−i)(b − b†), S − b†b

)
+ O(b, b†)3.

(2)

The magnon energy for a wave vector p reads as

ωp ≡ JSp2 + KS. (3)

The current density of magnon is

jm = −iJSb† ↔
∇ b (4)

and momentum density is pm = − i
2 b†

↔
∇ b.

The sd exchange interaction Hamiltonian is

Hsd = −�

S

∫
d3r S · (c†σc), (5)

where � is the sd coupling energy and S ≡ |S|. The inter-
action in terms of magnon field reads as Hsd = H (1)

sd + H (2)
sd ,

where

H (1)
sd = − �√

2S

∫
d3r[bc†σ−c + b†c†σ+c],

H (2)
sd = �

S

∫
d3r b†bc†σzc (6)

represent magnon emission and absorption and scattering,
respectively.

The force on magnon induced by the electron is calcu-
lated by evaluating ṗm taking account of Hsd . The force due
to the linear order of the sd exchange interaction F (1)

i ≡
1
2 [H (1)

sd , b†
↔
∇ i b] is

F (1)
i (r) = − �

2
√

2S
[(∇ib

†)(c†σ+c) − b†∇i(c
†σ+c)

+ (∇ib)(c†σ−c) − b∇i(c
†σ−c)]. (7)

Defining Fourier transform as c(r) = ∑
k eik·rck, b(r) =∑

p eip·rbp, F (1)
i (r) ≡ ∑

q eiq·rF (1)
i (q), the momentum repre-

sentation is

F (1)
i (q) = −i

�

2
√

2S

∑
kk′ p

(k′ − k + p)i[b
†
−p(c†

k′σ+ck)

+ bp(c†
k′σ−ck)]q=−k′+k+p. (8)

The uniform component of the force is

F (1)
i (0) = i

�√
2S

∑
kp

pi[b
†
p(c†

k−pσ+ck) + b−p(c†
k−pσ−ck)]

(9)

showing that the spin-down electron emitting a magnon
of momentum p and spin-up electron absorbing
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FIG. 2. Feynman diagrams for the force on magnon due to emission and absorption. The external wave vector, q, is zero for the uniform
component we consider.

magnon of −p result in a “positive” force on magnon
(Fig. 1).

The force due to the magnon scattering contribution is

F (2)
i (r) = −�

S
∇i(c

†σzc)b†b (10)

indicating that the force arises from the compression of the
electron spin density. The uniform component in the Fourier
representation is

F (2)
i (q = 0) = −iJsd

∑
kpp′

(p′ − p)ib
†
p′bp(c†

k′σzck)|k′=k+p−p′ .

(11)

III. LINEAR RESPONSE CALCULATION
OF MAGNON FORCE

We calculate the expectation value of magnon force as
a linear response to an applied electric field, represented
by use of a vector potential A, where E = −Ȧ. The cou-

pling to the electric current is represented by an interaction
Hamiltonian

Hem = −
∑

kq

e

m
(A(q, t ) · k)c†

k+ q
2
ck− q

2
, (12)

where e is the electron charge.

A. Magnon emission-absorption contribution

In this section, the magnon force due to emission and ab-
sorption is calculated to the lowest (the second) order in the sd
exchange interaction. We focus on the uniform component of
the force. Using the path-ordered (nonequilibrium or Keldysh)
Green’s function gk(t, t ′) (k is the electron wave vector), de-
fined for time on a path C = C→ + C← (see Appendix A), the
expectation value of the force is written in terms of the lesser
component for the electron contribution as (diagrams shown
in Fig. 2)

F (1)
i (t, q) = e�2

2Sm

∑
kk′ p

∫
d�

2π
Aj (�)pik j

∫
C

dt1

∫
C

dt2tr
[
e−i�t2σ−


(+),(k−p,p)
k (t, t1)σ+gk(t1, t2)gk(t2, t ′)

− e−i�t1σ+gk(t, t1)gk(t1, t2)σ−

(+),(k−p,p)
k (t2, t ′) + e−i�t1σ−gk(t, t1)gk(t1, t2)σ+


(−),(k+p,p)
k (t2, t ′)

− e−i�t2σ+

(−),(k+p,p)
k (t, t1)σ−gk(t1, t2)gk(t2, t ′)

]
. (13)

Here the time t is on the path C→ while t ′ is on the path C←,
and they correspond to the same real time t . We used the fact
that the magnon operator at the force vertex can be at either t
or t ′. The magnon-electron composite propagators are defined
as (Fig. 3)



(+),(k−p,p)
k (t, t ′) ≡ igk−p(t, t ′)dp(t, t ′),



(−),(k+p,p)
k (t, t ′) ≡ igk+p(t, t ′)dp(t ′, t ) (14)

corresponding to the propagation in the same (+) and opposite
(−) time direction, respectively, where dp(t, t ′) is the magnon
Green’s function. The imaginary factor i is for 


(±),(k−p,p)
k

to have the same behavior like a single Green’s function,
such as the lesser and greater components are pure imaginary.
Writing in terms of the real-time Green’s functions using
properties of the Green’s functions and composite propagators

FIG. 3. Diagrammatic representation of the two magnon-electron pair propagators. Electron spin is + for a magnon-electron pair and −
for a magnon hole-electron pair.
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described in Appendix A, the force reads as

F (1)
i = e�2

2Sm

∑
kk′ p

∫
d�

2π

∫
dω

2π
Aj (�)pik j tr

[[
σ−


(+),(k−p,p),r
k,ω

σ+gr
k,ωg<

k,ω−� + (r < a)+(< aa)
]

− [
σ+gr

k,ω+�gr
k,ωσ−


(+),(k−p,p),<
k,ω

+(r < a) + (< aa)
] − [

σ+

(−),(k+p,p),r
k,ω

σ−gr
k,ωg<

k,ω−�+(r < a) + (< aa)
]

+ [
σ−gr

k,ω+�gr
k,ωσ+


(−),(k+p,p),<
k,ω

+(r < a)+(< aa)
]]

. (15)

In the case of static electric field (� → 0), the Fermi-surface contribution, which is dominant, is obtained using the relation (A9)
as

F (1)
i = e�2

2Sm

∑
kk′ p

∫
d�

2π

∫
dω

2π
�Aj (�) f ′(ω)pik j tr

[[
σ−


(+),(k−p,p),r
k,ω

σ+gr
k,ωga

k,ω − σ+gr
k,ωga

k,ωσ−

(+),(k−p,p),a
k,ω

]

− [
σ+


(−),(k+p,p),r
k,ω

σ−gr
k,ωga

k,ω−σ−gr
k,ωga

k,ωσ+

(−),(k+p,p),a
k,ω

]]
, (16)

where f (ω) ≡ [eβω + 1]−1, β ≡ (kBT )−1, kB and T being the Boltzmann constant and temperature, respectively. At low
temperature, f ′(ω) 
 −δ(ω), and we obtain uniform component as F (1)

i = F (1)
i j eE j (E = ∫

d�
2π

e−i�t i�A�), where the coefficient
is (gk ≡ gk,ω=0)

F (1)
i j = − �2

4πSm

∑
kk′ p

pik jImtr
[
σ−|ga

k|2σ+

(−),(k+p,p),a
k,ω=0 − σ+|ga

k|2σ−

(+),(k−p,p),a
k,ω=0

]

= − �2

2πSm

∑
kk′ p

pik j

∑
±

(±)|ga
k,±|2Im

[



(∓),(k±p,p),a
k,∓

]
, (17)

where 
k,∓ denotes 
k,ω=0 with electron spin ∓. Writing the imaginary part of the pair propagator by use of magnon propagator
[Eq. (A12)], we obtain

F (1)
i j = 2�2

πSm

∑
kk′ p

pik j

∑
ν

nν (1 − fν )
∑
±

Im
[
da

p,∓ν

]|ga
k,±|2Im

[
ga

k±p,−ν,∓
]
, (18)

where ν is the magnon frequency,
∑

ν = ∫
dν
2π

, and nν ≡ [eβν − 1]−1 is the Bose distribution function. The magnon Green’s
function at weak damping is

Im
[
da

p,∓ν

] =Im
1

∓ν − ωp − iηm

 πδ(∓ν − ωp), (19)

where ηm represents damping of magnon, which is ηm = αGωp in terms of the Gilbert damping constant αG. To proceed,
we consider the case where magnon dynamics is slow compared to the electron one, namely, frequency ν in electron Green’s
functions is treated as zero. The approximation assumes therefore that ωmτ � 1, where ωm is typical magnon energy. In this case,
we obtain the sum of ν as

∑
ν nν (1 − fν )Im[da

p,∓ν] = ∓ 1
2 nωp (1 − fωp ), where we used n−ν + f−ν = −(nν + fν ) = −2nν (1 −

fν ). We thus have

F (1)
i j = − �2

πSm

∑
kk′ p

pik jnωp (1 − fωp )
∑
±

(±)|ga
k,±|2Im

[
ga

k±p,0,∓
]
. (20)

The wave vector for magnon is also assumed to be small, p � kF . The expression in this case becomes, using ga
k±p,−ν,∓ 


ga
k±p,∓ 
 ga

k,∓ ± k·p
m (ga

k,∓)2,

F (1)
i j = − �2

πSm2

∑
kp

pik j (k · p)nωp (1 − fωp )
∑
±

|ga
k,±|2Im

(
ga

k,∓
)2 = δi jF

(1)
,

F (1) = − �2

3πSm2

∑
p

p2nωp (1 − fωp )
∑

k

∑
±

k2|ga
k,±|2Im

(
ga

k,∓
)2

. (21)

The electron part is estimated by use of contour integration
with respect to electron energy as (derivation in Appendix B)

Im
∑
kσ

k2|ga
k,σ |2(ga

k,−σ

)2 = −9π

8

ma3ne

�2εF
, (22)

where ne = ∑
σ neσ and neσ ≡ 1

3ma3

∑
σ σνeσ k2

σ are the to-
tal and spin-resolved electron density, respectively, νeσ and
kσ being the electron density of states at the Fermi energy
and the Fermi wavelength for spin σ , respectively. The force
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FIG. 4. Diagrammatic representation of magnon emission (left)
and absorption (right) processes, which occur for electron with spin
+ and −, respectively. As the external electron lines are at the Fermi
energy, the frequency of electron after the emission (absorption) is
−ν (ν), where ν is magnon frequency. The factor due to occupation
number is (1 + nν )(1 − f−ν ) for the emission and nν (1 − fν ) for the
absorption, and the two are equal.

coefficient is

F (1) = 3

8Sma2

a3ne

εF
W (1)(T ), (23)

W (1)(T ) ≡ a2
∑

p

p2nωp (1 − fωp ). (24)

The coefficient F (1)
depends on the electron spin po-

larization P only weakly. In contrast, previous study [6]
obtained the force proportional to P, meaning that magnon
emission and absorption, which occur for electron with spin
+ and −, respectively, contribute oppositely to the force.
Naively, emission and absorption processes may lead to
different contributions, as the magnon occupation and nonoc-
cupation numbers are different. Our calculation, however,
indicates that the two processes contribute equally to the
force as the products of number density of electron hole and
magnon or magnon hole are equal. In fact, those processes
are proportional to (1 + nν )(1 − f−ν ) and nν (1 − fν ) (Fig. 4),
considering the fact that the total frequency of electron and
magnon is zero (i.e., the external electron lines are at the
Fermi level), where ν is the magnon frequency. Those factors
are equal due to the identity nν (1 − fν ) = −n−ν (1 − f−ν ) =
(1 + nν )(1 − f−ν ).

B. Magnon scattering contribution

The force due to the magnon scattering F (2)
i is similarly

calculated. The uniform component of the linear response at
the second order in the sd exchange interaction reads as

F (2a)
i (t )

=−e�2

S2m

∫
d�

2π
A j (q,�)

∑
kk′ p

(p−p′)ik j

∫
C

dt1

∫
C

dt2tr

× [
ei�t2σz


(2),k′,p,p′
k (t, t1)σzgk(t1, t2)gk(t2, t ′)

+ei�t2σzgk(t, t1)gk(t1, t2)σz

(2),k′,p′,p
k (t2, t ′)

]
k′=k+p−p′ ,

(25)

where a composite propagator of electron and two magnons is
defined as (Fig. 5)



(2),k,p,p′
k+p−p′ (t, t ′) = gk(t, t ′)dp(t, t ′)dp′ (t ′, t ). (26)

FIG. 5. Feynman diagrams for the two-magnon and electron
composite propagator.

The leading Fermi-surface term in the limit of � → 0 is

F (2a)
i = −e�2

S2m

∫
d�

2π

∫
dω

2π
�A j (�)

∑
kk′ p

(p − p′)ik j f ′(ω)

× tr
[
σz


(2),k′,p,p′,r
k (ω)σzg

r
k(ω)ga

k(ω)

+ σzg
r
k(ω)ga

k(ω)σz

(2),k′,p′,p,a
k (ω)

]
k′=k+p−p′ . (27)

As the Green’s functions are diagonal in spin, the two Pauli
matrices σz become irrelevant. Namely, the scattering force is
a response of electron charge sector. The effect is similar to
the z component of the electron magnetic susceptibility in the
presence of a magnetization along the z direction. We obtain
finally [see Eq. (A21)]

F (2a)
i = F (2a)

i j eE j,

F (2a)
i j = �2

πS2m

∑
pp′

∑
kσ

(p−p′)ik jIm
(



(2),k+p−p′,p,p′,a
k,σ,ω=0

)∣∣ga
k,σ

∣∣2

= −2
�2

πS2m

∑
pp′

∑
kσ

(p − p′)ik jIm
[
da

p,ν

]
Im

[
da

p′,ν ′
]

× nν (1 + nν ′ ) fν ′−νIm
[
ga

k+p−p′,σ
]∣∣ga

k,σ

∣∣2
. (28)

The scattering force has other contributions of higher order
in the sd exchange interaction, with the emission and absorp-
tion vertices at different time as in Fig. 6. This contribution is
characterized by the composite propagator



(2+),(k,p,p′ )
k+p−p′ (t, t ′)

= −i
�

2

∫
C

dt1

(+),(k,p)
k+p (t, t1)gk+p,−(t1, t ′)dp′ (t ′, t ),



(2−),(k,p,p′ )
k+p−p′ (t, t ′)

= −i
�

2

∫
C

dt1

(−),(k,p′ )
k−p′ (t, t1)gk−p′,+(t1, t ′)dp(t, t ′), (29)

where factors are included to have the same normalization as

(2). The electron spin (±) is fixed for the two propagators,
as the magnon absorption and emission causes lowering and
highering of electron spin, respectively. Considering a strong
sd splitting case, electron spin flip costs energy of 2�, and
thus contributions with more electron Green’s functions with
flipped spin are suppressed and neglected. The electron prop-
agators with flipped spin inside the composite propagator of
Eq. (29) is approximated as gk+p,±(t, t ′) ∼ ∓δ(t − t ′)(2�)−1,
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FIG. 6. Feynman diagrams for the two-magnon and electron composite propagator with magnon absorption and emission at different times.
Electron spin (denoted by ±) is fixed for emission and absorption processes.

resulting in



(2+),(k,p,p′ )
k+p−p′ (t, t ′) 
 −i

4



(+),(k,p)
k+p,+ (t, t ′)dp′ (t ′, t )

= 1

4



(2),k,p,p′
k+p−p′,+(t, t ′),



(2−),(k,p,p′ )
k+p−p′ (t, t ′) 
 i

4



(−),(k,p′ )
k−p′,− (t, t ′)dp(t, t ′)

= −1

4



(2),k,p,p′
k+p−p′,−(t, t ′). (30)

The contribution to the force coefficient from the propagators
of Fig. 6 is therefore

F (2b)
i j = i

�2

πS2m

∑
pp′

∑
kσ

(p − p′)ik j
σ

4

× [
Im(
(2),k+p−p′,p,p′,a

k,σ,ω=0 )|ga
k,σ |2]. (31)

Using Eq. (A21) and assuming p, p′ � k and low-
frequency magnons, we obtain the sum of the two contribu-
tions as

F (2)
i j ≡ F (2a)

i j + F (2b)
i j = δi jF

(2)
,

F (2) = − �2

3S2m2

∑
pp′

(p − p′)2nωp (1 + nωp′ ) fωp′−ωp

×
∑
kσ

k2

(
1 + σ

4

)∣∣ga
k,σ

∣∣2
Im

[(
ga

k,σ

)2]
. (32)

The summation over k and σ is [using ki(ga
kσ )3 = m

2 ∂ki (g
a
kσ )2

and integral by parts]

∑
kσ

k2
∣∣ga

k,σ

∣∣2
Im

[(
ga

k,σ

)2] = −πmτ 2
∑

σ

νeσ . (33)

We therefore obtain (νe ≡ ∑
σ νeσ and Pν ≡

∑
σ σνeσ∑
σ νeσ

)

F (2) = π

3S2ma2
(�τ )2νe

(
1 + Pν

4

)
W (2)(T ), (34)

W (2)(T ) ≡a2
∑
pp′

(p − p′)2nωp (1 + nωp′ ) fωp′−ωp . (35)

C. Force on electron

The recoil force on the electron with spin σ arising from
the magnon emission and absorption due to the sd exchange

interaction is (in the field operator form)

F (1)
e+,i(q = 0) = i

�√
2S

∑
kk′ p

pibp(c†
k′σ−ck)k′=k+p,

F (1)
e−,i(q = 0) = i

�√
2S

∑
kk′ p

pib
†
−p(c†

k′σ+ck)k′=k+p, (36)

whose sum is opposite to the force on magnons:
∑

σ F (1)
eσ,i =

−F (1)
m,i . It turns out that the force is spin independent, i.e.,

F (1)
e+i = F (1)

e−i = − 1

2
F (1)

i . (37)

This result indicates that magnon emission and absorption
induced by an electric field does not act as spin motive force
but drives only charge sector.

The force on electron spin arising from magnon scattering
is calculated using

F (2)
eσ,i = �

S
[∇(b†b)]σc†

σ cσ (38)

and its coefficient (F (2)
eσ ≡ eEF (2)

eσ ) is [from Eq. (32)]

F (2)
eσ = �2

6S2m2

∑
pp′

(p − p′)2nωp (1 + nωp′ ) fωp′−ωp

(
1 + σ

4

)

×
∑

k

k2
∣∣ga

k,σ

∣∣2
Im

[(
ga

k,σ

)2]
. (39)

This force is generally spin dependent.
Those forces on the electron are different from the driven-

magnon contribution to the motive force due to smooth
magnetization structures discussed in Refs. [7,10]. In fact, the
motive force in the adiabatic (slowly varying) limit is pro-
portional to the magnon energy current linear in the magnon
momentum, while the force argued in the present analysis is
the second order of p and p′, corresponding to nonadiabatic
contributions.

IV. TOTAL FORCE ON MAGNON

From Eqs. (23) and (35), the total force on magnon low-
est order in the sd exchange interaction, Fm ≡ F (1) + F (2) =
FmeE , where the coefficient Fm ≡ F (1) + F (2)

is

Fm =γ1W
(1)(T ) + γ2(�τ )2W (2)(T ), (40)

where

γ1 ≡ 3

8S
γ f nea3, γ2 ≡ π

3S2
γ f εF νe

(
1 + Pν

4

)
, γ f ≡ 1

ma2εF
,

(41)
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FIG. 7. The total force coefficient Fm as function of T̃ ≡ kBT/J̃
(denoted by T in the x axis) for �τ = 2, 10, 20 and γ1 = γ2 = 1. The
contribution F (1) is shown by a dashed line. The magnon number
per cite n, plotted on the right axis, indicates that the temperature
regime is dilute magnon regime. The present analysis neglecting the
backreaction from magnon flow applies to the regime with Fm � 1.

where the magnon weight factors are

W (1)(T ) = a5

2π2

∫ ∞

0
d p p4 1

e2βωp − 1
,

W (2)(T ) = a8

(2π2)2

∫ ∞

0
d p

∫ ∞

0
d p′ p2(p′)2(p2 + (p′)2)

× 1

eβωp − 1

1

1 − e−βωp′

1

eβ(ωp′−ωp) + 1
. (42)

Considering strong spin polarization in 3d ferromagnets, we
may approximate γ1 ∼ γ2, and then the magnon scattering
contribution has a larger coefficient by a factor of (�τ )2 com-
pared to the emission-absorption contribution. Considering
temperatures higher than the magnon gap (kBT � KS) the
weight factors in three dimensions are (x ≡ βωp)

W (1)(T ) = I (1)
f

(
kBT

J̃

) 5
2

,W (2)(T ) = I (2)
f

(
kBT

J̃

)4

, (43)

where J̃ ≡ JS/a2 and

I (1)
f ≡ 1

4π2

∫ ∞

0
dx

x
3
2

e2x − 1
= 7.985 × 10−3,

I (2)
f ≡ 1

(4π2)2

∫∫ ∞

0
dx dx′ x

1
2 (x′)

1
2 (x + x′)

(ex − 1)(1 − e−x′ )(ex′−x + 1)

= 1.069 × 10−2. (44)

The total force coefficient Fm is plotted as function of temper-
ature in Fig. 7. The temperature is normalized by J̃ , which is
related to the mean-field ferromagnetic transition temperature
in three dimensions as kBTc = 2(S + 1)J̃ [11]. The temper-
ature regime in Fig. 7 thus corresponds to low temperature
(T � Tc/4 for S = 1). This is confirmed from the plot of the
magnon number per cite (Fig. 7)

nm = a3
∫

p2d p

2π2

1

eβωp − 1
= In

(
kBT

J̃

) 3
2

, (45)

where

In ≡ 1

4π2

∫ ∞

0
dx

√
x

ex − 1
= 0.058 64. (46)

As is seen in Fig. 7, the scattering contribution (F (2)) domi-
nates in the wide temperature region, as a result of large factor
(�τ )2. The crossover temperature from emission and absorp-
tion to scattering regime is kBTea-sc = J̃ ( γ1I (1)

γ2I (2) )
2
3 (�τ )−

4
3 . The

crossover temperatures shall be discussed in Sec. IV C.
The force on magnon resulting in the sd exchange interac-

tion means that the opposite force acts on electrons. It reads
as

Fe ≡ −(F (1) + F (2) ) = −eFmE. (47)

The coefficient Fm thus corresponds to a reduction of the ap-
plied electric field as E → (1 − Fm )E. The effect represents a
resistance due to magnon scattering and emission. The electric
current taking into account magnons is j = σe(1 − Fm )E (σe

is the Boltzmann conductivity). The magnon contribution to
the resistivity in the case of Fm � 1 is therefore

δρm = ρ0Fm, (48)

where ρ0 = 1/σe. The force on magnon is therefore directly
accessible by the resistivity measurement.

Note that our results apply only to the regime of Fm � 1
as the average velocity of driven magnons is neglected. Tak-
ing account of finite magnon velocity would lead to a force
proportional to the relative velocity of electron and magnon.

A. Magnon velocity

When a force Fm acts on a magnon, the magnon is driven
at a velocity Fm

τm
mm

, where τm and mm are the magnon lifetime
and mass. The lifetime is written in terms of the Gilbert
damping parameter αG and the frequency of the magnon ω

as 1/τm = αGω and magnon mass in the present case is mm =
(2JS)−1. The correctness of the above argument is supported
by a direct linear response calculation of the magnon velocity
(Appendix C). From our results of the forces [Eq. (40)], the
magnon current induced by each force reads as j (1)

m = σ (1)
m eE

and j (2)
m = σ (2)

m eE, where

σ (1)
m = 2γ1

αGa

(
kBT

J̃

) 3
2

I (1)
v , σ (2)

m = 2γ2

αGa
(�τ )2

(
kBT

J̃

)3

I (2)
v

(49)

correspond to conductivity for magnons (without the factor of
e2), with magnon integrals

I (1)
v ≡ 1

4π2

∫ ∞

0
dx

x
1
2

e2x − 1
= 2.073 × 10−2,

I (2)
v ≡ 1

(4π2)2

∫ ∞

x0

dx
∫ ∞

0
dx′ x− 1

2 (x′)
1
2 (x + x′)

(ex − 1)(1 − e−x′ )(ex′−x + 1)
.

(50)

The expressions for I (2)
v diverge at low energy due to in-

sufficient phenomenological treatment of magnon lifetime in
terms of the Gilbert damping in the low-frequency limit. Here
we avoid the problem by introducing a low-energy cutoff ω0

[x0 = ω2
0/(kBT )]. I (2)

v is of the order of 0.01 for x0 � 0.02 and
logarithmically diverges as x0 → 0. The electric conductivity
in the same approximation [1/(2ma2) ∼ εF , kF a ∼ 1, νe ∼
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FIG. 8. The ratio σm
σe

of magnon and electron conductivity plotted

for T̃ = kBT/J̃ for �τ = 2, 10, 20. Solid and dashed lines corre-
spond to the total magnon conductivity and the contribution from
the emission and absorption (σ (1)

m ), respectively. Parameters used
are γ1 = γ2 = 1 and � = εF , I (2)

v = 0.01, and αG = 0.01. For good
metal (εF τ � 10), the magnon conductivity is larger than the electric
conductivity even at low temperature of T̃ � 0.5. The emission and
absorption contribution is smaller than the scattering contribution in
this temperature range as a result of a relative suppression factor of
(�τ )−2.

1/εF ] is σe/e2 
 1
aεF τ . The ratio of the magnon conductivity

to the electron one thus is

μm/e = σm

σe
∼ 2

αGεF τ

[
γ1I (1)

v T̃
3
2 + γ2I (2)

v (�τ )2T̃ 3
]
, (51)

where T̃ ≡ kBT
J̃

. As seen from Fig. 8, in good metals with
large �τ , magnon conductivity is larger than the electric
conductivity even for a low temperature (e.g., T̃ � 0.4 for
εF τ = 20). The result is qualitatively consistent with seminal
work of Grannemann and Berger [4], where it was argued that
average drift velocity of magnon is 2–3 times larger than that
of electron in Ni66Cu34 and Ni69Fe31. Our result for σ (1)

m is
consistent with previous analysis [6], where energy current
driven by an electric field was microscopically calculated
taking account of the magnon emission and absorption ( f (1)).
Our result, however, indicates that more efficient magnon-
drag effect occurs due to the magnon scattering ( f (2)) in
strongly spin-polarized good metals. The reason is that the
scattering contribution is a response of the electron charge
sector (spin summed), while the emission and absorption are
a spin response containing electron propagators with opposite
spins, resulting in a relative suppression factor of (�τ )−2.
As the electron elastic lifetime is long, εF τ � 1, except for
extremely dirty metals, the enhancement factor of (�τ )2 for
scattering contribution makes the contribution larger even for
temperatures of kBT � (�τ )−

4
3 J̃ (see Sec. IV C).

The expression for the emission and absorption, σ (1)
m , of

Eq. (49) is consistent with previous analysis indicating σ (1)
m ∝

1
αGτ

T
3
2 [4,6], although the result of Ref. [6] is proportional

to electron spin polarization, σ (1)
m ∝ P

αGτ
T

3
2 , probably due to

an insufficient treatment of magnon and hole contributions in
Ref. [6].

The result for σ (2)
m suggests that the magnon damping

effect for low-energy magnons is critical for estimation of
the magnon conductivity. Further theoretical and experimental
investigations are expected in this direction.

FIG. 9. The effective spin-transfer efficiency Peff plotted for T̃ =
kBT/J̃ for �τ = 2, 10, 20 and P = 1 (solid lines) and P = −1
(dashed lines). Parameters used are γ1 = γ2 = 1 and � = εF , I (2)

v =
0.01 and αG = 0.01.

B. Magnon spin-transfer effect

The magnon current can be estimated by observing magne-
tization dynamics induced by the magnon spin-transfer effect.
In the case of electron spin-transfer effect, the flow of magne-
tization structures is at the velocity of

vst,e = a3P

2eS
j (52)

in the direction of spin current P j (P = n↑−n↓
n↑+n↓

) in the adiabatic
limit [12]. The current is written in terms of the current in
the low-temperature limit (i.e., without magnons) j (0) as j =
j (0)(1 − Fm ), where Fm represents the resistivity effect due
to magnons. Assuming the adiabatic limit for magnons, the
magnon spin-transfer effect drives magnetization structures at
the velocity of

vst,m = −a3

S
jm (53)

in the opposite direction to the magnon current. Considering
the two mechanisms for magnon current, the velocity of the
magnetization structure for an applied electric current j is

vst = a3

2eS
Peff j (0), (54)

where

Peff ≡ P[1 − Fm] − 4

αGεF τ

[
γ1I (1)

v T̃
3
2 + γ2I (2)

v (�τ )2T̃ 3
]

(55)

represents the effective spin-transfer efficiency including the
magnon effects, plotted in Fig. 9. In the weak damping regime
αG � (εF τ )−1, the contribution of Fm (magnon resistivity) is
negligible compared to the conductivity correction (the last
square bracket) in the temperature regime in Fig. 9. Crossover
from electron-dominated to the magnon-dominated regime
occurs at kBT/J̃ � 0.2 in the present case, with a significant
negative enhancement in the high-temperature regime. The
magnon spin-transfer effect is correlated with the behavior
of magnon contribution to the resistance, that is proportional
to the force plotted in Fig. 7. Identification of magnon drag
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FIG. 10. Schematic figure showing the crossover temperatures.
In the magnon force Fm and magnon contribution to the electric resis-
tivity (�ρm), crossover from magnon emission and absorption (e/a)
to scattering is at Tea-sc. The effective spin polarization (spin-transfer
efficiency) Peff is dominated by the electron contribution at low
temperature while a crossover to magnon spin-transfer-dominated
regime driven by magnon scattering occurs at Te-sc. The order of
magnitude of Peff in terms of powers of �τ is shown. The magnon
emission-absorption process, relevant above Te-ea, would not be dom-
inant in Peff in the dilute magnon regime kBT/J̃ � 1 unless in very
dirty metal with �τ ∼ O(1).

effects would be carried out by careful analyses of tempera-
ture dependence of the experimental data.

C. Crossover temperatures

Let us look into the crossover temperatures based on the
results (40) and (55). We consider the case γ1 ∼ γ2 ∼ 1,
�/εF ∼ 1 and neglect the contribution from Fm in Peff for
simplicity. As for the magnons, the emission-absorption ef-
fect is dominant at low temperature, and the crossover to the
scattering-dominated temperature is read from Eq. (40) as

Tea-sc 
 (�τ )−
4
3 J̃/kB. (56)

The crossover would be seen in the magnon resistivity, assum-
ing that drag force is not directly observable.

FIG. 11. The time contour on the path-ordered Green’s functions
is defined. The upper (lower) path is C→ (C←).

The spin-transfer efficiency Peff at zero temperature
reduces to the electron origin P. The magnon emission-
absorption contribution becomes larger than the electron
contribution above

Te-ea 
 (12 × αG)
2
3 (�τ )

2
3 J̃/kB (57)

which corresponds to high temperature Te-ea � J̃/kB unless in
extremely low damping materials with αG � 0.08 × (�τ )−1.
In contrast, magnon scattering effect overcomes the electron
contribution at lower temperature of

Te-sc 
 (25 × αG)
1
3 (�τ )−

1
3 J̃/kB (58)

for I (2)
v = 0.01, meaning that the magnon emission-absorption

regime emerges only in very dirty metals with �τ ∼ O(1)
(Fig. 9). The crossover behavior is summarized in Fig. 10.

V. SUMMARY

We have calculated the force between the magnon and
conduction electron when an electric field is applied to a
ferromagnetic metal based on a microscopic approach. The
force due to magnon emission and absorption and scattering
were considered and the latter turned out to dominate in a
wide temperature regime in good metals with long elastic
mean-free path. The magnon contribution to the resistivity and
total spin-transfer efficiency was discussed.
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APPENDIX A: PROPERTIES OF MAGNON-ELECTRON COMPOSITE PROPAGATORS

The path-ordered Green’s functions, defined on a time contour C (Fig. 11), are written in terms of real-time Green’s functions
as

G−−(t, t ′) ≡ G(t ∈ C→, t ′ ∈ C→) = θ (t − t ′)G>(t, t ′) + θ (t ′ − t )G<(t, t ′) = Gt (t, t ′),

G−+(t, t ′) ≡ G(t ∈ C→, t ′ ∈ C←) = G<(t, t ′),

G+−(t, t ′) ≡ G(t ∈ C←, t ′ ∈ C→) = G>(t, t ′),

G++(t, t ′) ≡ G(t ∈ C←, t ′ ∈ C←) = θ (t − t ′)G<(t, t ′) + θ (t ′ − t )G>(t, t ′) = Gt̄ (t, t ′), (A1)

where the times on the path C→ and C← are denoted as − and +, respectively, and Gt and Gt̄ are the time-ordered and anti-time-
ordered Green’s functions. These expressions are direct consequence of the definition of path ordering on C. A straightforward
relation derived from Eq. (A1) is

G−−(t, t ′) + G++(t, t ′) = G−+(t, t ′) + G+−(t, t ′) = GK(t, t ′) ≡ [G< + G>](t, t ′). (A2)
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Noting the relations

Gt = G< + Gr = G> + Ga,

Gt̄ = G< − Ga = G> − Gr, (A3)

which read as Ga = G−− − G+− and Gr = G+− − G++, the definition (A1) is summarized as

Gαβ (t, t ′) = 1
2 [GK(t, t ′) − αGa(t, t ′) − βGr (t, t ′)], (A4)

where α, β = ± are labels representing the path for the time, Ga and Gr are the advanced and retarded Green’s functions.

1. Magnon electron pair propagator

An advantage to define the pair propagators defined in Eq. (14) is that the definition has the same structure with respect to
time as the single-particle case (A1) and thus the propagators satisfy the same relation as Eqs. (A2) and (A3). They therefore
satisfy in parallel to Eq. (A4)



(±),(k∓p,p),αβ

k = 1
2

(



(±),(k∓p,p),K
k − α


(±),(k∓p,p),a
k − β


(±),(k∓p,p),r
k

)
, (A5)

where



(+),(k−p,p),μ
k (t, t ′) = i

[
gμ

k−p(t, t ′)d>
p (t, t ′) + g<

k−p(t, t ′)dμ
p (t, t ′)

]
,



(+),(k−p,p),ν
k (t, t ′) = i

[
gν

k−p(t, t ′)dν
p (t, t ′)

]
(A6)

for μ = r, a and ν =>,< (with 
K ≡ 
< + 
>) and



(−),(k+p,p),a
k (t, t ′) = i

[
ga

k+p(t, t ′)d<
p (t ′, t ) + g<

k+p(t, t ′)d r
p(t ′, t )

]
,



(−),(k+p,p),r
k (t, t ′) = i

[
gr

k+p(t, t ′)d<
p (t ′, t ) + g<

k+p(t, t ′)da
p(t ′, t )

]
,



(−),(k+p,p),<
k (t, t ′) = i

[
g<

k+p(t, t ′)d>
p (t ′, t )

]
,



(−),(k+p,p),>
k (t, t ′) = i

[
g>

k+p(t, t ′)d<
p (t ′, t )

]
. (A7)

This fact indicates that the pair propagator indeed behaves as a propagator of a composite particle. In the frequency representa-
tion,



(+),(k+p,p),>
k (ω) ≡

∫
dt eiωt


(+),(k+p,p),>
k (t ) = 2π i

∑
ω1

g>
k+p(ω1)d>

p (−ω1 − ω),



(−),(k+p,p),>
k (ω) ≡

∫
dt eiωt


(−),(k+p,p),>
k (t ) = 2π i

∑
ω1

g>
k+p(ω1)d<

p (ω1 − ω). (A8)

Moreover, the pair propagator satisfies the the same relation as single-particle Green’s function without dynamic interaction, i.e.,



(±),(k∓p,p),<
k (ω) = f (ω)

[



(±),(k∓p,p),a
k (ω) − 


(±),(k∓p,p),r
k (ω)

]
(A9)

which is useful to extract the low-energy contributions.
For the ω = 0 component of the advanced pair propagator in Eq. (17), we have, using Eqs. (A6) and (A7),



(+),(k−p,p),a
k,σ

= i
∑

ν

[
ga

k−p,ν,σ d>
p,−ν + g<

k−p,ν,σ da
p,−ν

]
, (A10)

where ν is the frequency for electron Green’s function. The frequency of magnon is −ν as the total frequency of the pair
propagator π (+) is zero and



(−),(k+p,p),a
k,σ

= i
∑

ν

[
ga

k+p,ν,σ d<
p,ν + g<

k+p,ν,σ d r
p,ν

]
, (A11)

where magnon frequency is equal to the electron one for 
(−). We thus obtain

Im

(+),(k−p,p),a
k,σ

= 4
∑

ν

nν (1 − fν )Im
[
ga

k−p,ν,σ

]
Im

[
da

p,−ν

]
,

Im

(−),(k+p,p),a
k,σ

= −4
∑

ν

nν (1 − fν )Im
[
ga

k+p,ν,σ

]
Im

[
da

p,ν

]
, (A12)

where we used f−ν = 1 − fν and nν + fν = 2nν (1 − fν ) = 2(1 + nν ) fν .
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2. Two-magnon electron composite propagator

Two-magnon electron composite propagator defined by Eq. (26) has the same mathematical structure as the magnon-electron
pair propagator and single-particle Green’s functions. Namely, by definitions (± denotes the time contour C→ and C←)



(2),k′,p,p′
k,σ

(t, t ′) ≡ gk′,σ (t, t ′)dp(t, t ′)dp′ (t ′, t ),



(2),k′,p,p′(−−)
k,σ

(t, t ′) = θ (t ′ − t )g<
k′,σ (t, t ′)d<

p (t, t ′)d>
p′ (t ′, t ) + θ (t − t ′)g>

k′,σ (t, t ′)d>
p (t, t ′)d<

p′ (t ′, t ),



(2),k′,p,p′(++)
k,σ

(t, t ′) = θ (t − t ′)g<
k′,σ (t, t ′)d<

p (t, t ′)d>
p′ (t ′, t ) + θ (t ′ − t )g>

k′,σ (t, t ′)d>
p (t, t ′)d<

p′ (t ′, t ), (A13)

we have



(2),k′,p,p′(−−)
k,σ

(t, t ′) + 

(2),k′,p,p′(++)
k,σ

(t, t ′) = 

(2),k′,p,p′(−+)
k,σ

(t, t ′) + 

(2),k′,p,p′(+−)
k,σ

(t, t ′) (A14)

and this relation allows us to write (α, β = ±)



(2),k′,p,p′(αβ )
k,σ

(t, t ′) = 1
2

[



(2),k′,p,p′,K
k,σ

(t, t ′) − α

(2),k′,p,p′,a
k,σ

(t, t ′) − β

(2),k′,p,p′,r
k,σ

(t, t ′)
]
, (A15)

where



(2),k′,p,p′,K
k,σ

≡ (



(2),k′,p,p′(++)
k,σ

+ 

(2),k′,p,p′(−−)
k,σ

)
,



(2),k′,p,p′,a
k,σ

≡ (



(2),k′,p,p′(−+)
k,σ

− 

(2),k′,p,p′(++)
k,σ

) = (



(2),k′,p,p′(−−)
k,σ

− 

(2),k′,p,p′(+−)
k,σ

)
,



(2),k′,p,p′,r
k,σ

≡ (



(2),k′,p,p′(+−)
k,σ

− 

(2),k′,p,p′(++)
k,σ

) = (



(2),k′,p,p′(−−)
k,σ

− 

(2),k′,p,p′(−+)
k,σ

)
. (A16)

Note that here retarded, advanced components are not in the original sense for the single-particle Green’s functions, written in
terms of (anti)commutators of field operators. Nevertheless, the relation (A15) indicates that multiparticle propagators behave
mathematically the same as single-particle Green’s functions, and it simplifies the calculation greatly.

Using explicit expressions



(2),k′,p,p′(−−)
k,σ

(t, t ′) = g<
k′,σ (t, t ′)d<

p (t, t ′)d<
p′ (t ′, t ) + gr

k′,σ (t, t ′)d<
p (t, t ′)d<

p′ (t ′, t )

+ g<
k′,σ (t, t ′)d<

p (t, t ′)d r
p′ (t ′, t ) + g>

k′,σ (t, t ′)d r
p(t, t ′)d<

p′ (t ′, t ),



(2),k′,p,p′(−+)
k,σ

(t, t ′) = g<
k′,σ (t, t ′)d<

p (t, t ′)d>
p′ (t ′, t ),



(2),k′,p,p′(+−)
k,σ

(t, t ′) = g>
k′,σ (t, t ′)d>

p (t, t ′)d<
p′ (t ′, t ), (A17)

we obtain



(2),k′,p,p′,K
k,σ

(t, t ′) = [
g<

k′,σ (t, t ′)d<
p (t, t ′)d>

p′ (t ′, t ) + g>
k′,σ (t, t ′)d>

p (t, t ′)d<
p′ (t ′, t )

]
,



(2),k′,p,p′,a
k,σ

(t, t ′) = [
g<

k′,σ (t, t ′)d<
p (t, t ′)d r

p′ (t ′, t ) + g<
k′,σ (t, t ′)da

p(t, t ′)d<
p′ (t ′, t ) + ga

k′,σ (t, t ′)d>
p (t, t ′)d<

p′ (t ′, t )
]
,



(2),k′,p,p′,r
k,σ

(t, t ′) = [
g<

k′,σ (t, t ′)d r
p(t, t ′)d<

p′ (t ′, t ) + g<
k′,σ (t, t ′)d<

p (t, t ′)da
p′ (t ′, t ) + gr

k′,σ (t, t ′)d>
p (t, t ′)d<

p′ (t ′, t )
]
. (A18)

The advanced component can be derived also by use of decompose relation and Eq. (A6) as



(2),k′,p,p′,a
k,σ

(t, t ′) = −i
[



(+)(k,p)
k+p (t, t ′)dp′ (t ′, t )

]a

= −i
[



(+)(k,p),a
k+p (t, t ′)d<

p′ (t ′, t ) + 

(+)(k,p),<
k+p (t, t ′)d r

p′ (t ′, t )
]

= [
g<

k,σ (t, t ′)d<
p (t, t ′)d r

p′ (t ′, t ) + g<
k,σ (t, t ′)da

p(t, t ′)d<
p′ (t ′, t ) + ga

k,σ (t, t ′)d>
p (t, t ′)d<

p′ (t ′, t )
]

(A19)

indicating consistency of composite propagator representation. The advanced component of the composite propagator in the
Fourier representation is



(2),k′,p,p′,a
k,σ

=
∑
νν ′

[
ga

k′,ν ′−ν,σ
d<

p,νd>
p′,ν ′ + g>

k′,ν ′−ν,σ
da

p,νd<
p′,ν ′ + g>

k′,ν ′−ν,σ
d<

p,νd r
p′,ν ′

]
. (A20)

Using Im[da
p,ν] = πδ(ν − ωp), we have

Im
[



(2),k′,p,p′,a
k,σ

] = −[nωp (1 + nω′
p
) fωp′−ωp + nωp′ (1 + nωp ) fωp−ω′

p
]Im

[
ga

k′,ν ′−ν,σ

]
. (A21)
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FIG. 12. Energy contour CεF for calculating the k summation of
the electron Green’s function.

APPENDIX B: CALCULATION OF ELECTRON
CONTRIBUTION OF EQ. (22)

The electron contribution (22) to the emission-absorption
force F (1) is calculated here by use of a contour integration.
We first write Iσ ≡ ∑

k k2|ga
kσ |2(ga

k,−σ )2 by use of the energy
(ε ≡ εk) integral as

Iσ =
∫ ∞

−εF

dε
νe(ε)k2(ε)

(ε − σ�)2 + η2

1

(ε + σ� + iη)2
, (B1)

where νe(ε) = mk(ε)a3

2π2 is the electron density of states, k(ε) ≡√
2m(ε + εF ). The integration is written as an integration

over a contour CεF avoiding a cut along the real axis [due to
νe(ε)

√
ε + εF ] shown in Fig. 12 as

Iσ = 1

2

∫
CεF

dε
νe(ε)k2(ε)

(ε − σ�)2 + η2

1

(ε + σ� + iη)2
. (B2)

The residues at poles ε = σ� ± iη and ε = −σ� − iη are
calculated, paying attention to the fact that νe(ε − iη) =
−νe(ε + iη) due to the cut, to obtain

Iσ = π

2η
νeσ

1

4

[
1

�2
+ 1

(� + iση)2

]

+ iπ
d

dε

[
νe(ε)k2(ε)

ε − σ� + iη

1

ε − σ� − iη

]
ε=−σ�−iη

. (B3)

It turns out that the lowest-order contribution in the limit of
η/εF � 1 arises from the derivative of ν(ε)k2(ε), i.e.,

Iσ = −iπ
3

8εF
νe−σ k2

−σ

1

�(� + iση)
. (B4)

We therefore obtain

Im
∑

σ

Iσ = −3π

8

1

�2εF

∑
σ

σνeσ k2
σ = −9π

8

ma3ne

�2εF
, (B5)

where ne = 1
3ma3

∑
σ σνeσ k2

σ is the total electron density.

APPENDIX C: LINEAR RESPONSE CALCULATION
OF MAGNON CURRENT

Here we calculate the magnon current driven by an electric
field directly diagrammatically to show the correctness of the

FIG. 13. Feynman diagrams representing the magnon current
(left vertex) induced by an electric field (denoted by a dotted line) by
the magnon emission and absorption due to the sd exchange interac-
tion. Wavy and solid lines denote magnon and electron propagators,
respectively. The sign ± denotes electron spin.

argument in Sec. IV A of the velocity based on the calcula-
tion result of the force on magnon. The calculation of the
emission-absorption contribution is essentially the same as the
one for the magnon energy current in Ref. [6], while scattering
contribution was not argued there. Magnon current is

jm = −iJSb† ↔
∇ b

= JS(∇r − ∇r′ )D<(r, t, r′, t )|r=r′ , (C1)

where D<(r, t, r′, t ′) = −i〈b†(r′, t ′)b(r, t )〉 is the full Greens
function of magnon including interactions (the sign of − is
for boson lesser Green’s function). The full Green’s function
at the linear response is perturbatively expanded including the
sd exchange interaction to the second order and the electric
field.

1. Magnon emission-absorption contribution

Here magnon current j (1)
m due to the linear magnon cou-

pling to electrons arising from the sd exchange interaction
is calculated. The corresponding contribution to the Green’s
function defined on the time contour, D(1)(r, t, r′, t ′), is (dia-
grams shown in Fig. 13)

D(1)(r, t, r′, t ′)

= i
e

m

�2

2S

∫
C

dt1

∫
C

dt2

∫
C

dt3
∑
r1r2r3

d (r2, t2, r′, t ′)

× d (r, t, r1, t1)Aj (t3)tr[σ+g(r1, t1, r2, t2)

× σ−g(r2, t2, r3, t3) p̂ jg(r3, t3, r1, t1)

+ σ+g(r1, t1, r3, t3) p̂ jg(r3, t3, r2, t2)σ−g(r2, t2, r1, t1)].

(C2)

FIG. 14. Feynman diagrams representing the magnon current
(left vertex) induced by an electric field (denoted by a dotted line)
due to the magnon scattering by the sd exchange interaction. Wavy
and solid lines denote magnon and electron propagators, respectively.
σ denotes electron spin.
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Denoting (r, t ) by x, the Green’s function part is∫
C

dt3d (x, x1)tr[σ+g(x1, x2)σ−g(x2, x3)(A(t3) · p̂)g(x3, x1) + g(x1, x3)(A(t3) · p̂)g(x3, x2)σ−g(x2, x1)σ+]d (x2, x′)

= d (x, x1)[	̃−(x1, x2) + 	̃+(x2, x1)]d (x2, x′), (C3)

where (subscripts ± denote electron spin)

	̃−(x1, x2) ≡ g−(x1, x2)(gAg)+(x2, x1),

	̃+(x2, x1) ≡ g+(x2, x1)(gAg)−(x1, x2), (C4)

and gAg(x2, x1) ≡ ∫
C dt3g(x2, x3)(A(t3) · p̂)g(x3, x1) behave as composite propagators. The lesser component D(1)< for Eq. (C1)

is calculated using ∫
C

dt1

∫
C

dt2[d (x, x1)[	̃−(x1, x2) + 	̃+(x2, x1)]d (x2, x′)]<

=
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

∑
αβ

(−)2αβ[d−α (x, x1)[	̃αβ
− (x1, x2) + 	̃

βα
+ (x2, x1)]]dβ+(x2, x′). (C5)

Here superscripts such as in dαβ (α, β = ±) denote the time contour: d−−(t, t1) = d (t ∈ C→, t1 ∈ C→), d−+(t, t1) = d (t ∈
C→, t1 ∈ C←), etc. The result is (suppressing the time integration)[∫

C
dt1

∫
C

dt2d (x, x1)	̃−(x1, x2)d (x2, x′)
]<

= 1

2
(d r	̃K

−da + d r	̃r
−dK + dK	̃a

−da ),

[∫
C

dt1

∫
C

dt2d (x, x1)	̃+(x2, x1)d (x2, x′)
]<

= 1

2
(d r	̃K

+da + d r	̃a
+dK + dK	̃r

+da ). (C6)

Fourier representation of 	̃ is [using A(t ) ∝ e−i�t ]

	̃σ (x1, x2) =
∑
kk′

∑
�ωω′

e−i(ω−ω′ )(t1−t2 )e−i(k−k′ )·(r1−r2 )e−i�t2 (A(�) · k)	k′,ω′,σ
k,ω+�,ω,−σ

, (C7)

where

	k′,ω′,σ
k,ω+�,ω,−σ

≡ gk′,ω′,σ gk,ω+�,−σ gk,ω,−σ . (C8)

The magnon current therefore reads as

j (1)
m,i = − e

2m
J�2

∑
pν

∑
kω

∑
�

pik jA j (�)
[{

d r
p,νda

p,ν

[
	

k+p,ω+ν,−
k,ω+�,ω,+

]K + (rKr)+(Kaa)
}

+
{

d r
p,νda

p,ν

[
	

k−p,ω−ν,+
k,ω+�,ω,−

]K + (rKa)+(Kar)
}]

.

(C9)

Here the external frequency � is neglected in the magnon frequencies (ν + � ∼ ν) focusing the Fermi-surface (excitation)
contribution.

In Eq. (C9), (rKr)+(Kaa) terms are, using dK
p,ν = −(1 + 2nν )(da

p,ν − d r
p,ν ),

d r
p,νdK

p,ν

[
	

k+p,ω+ν,−
k,ω+�,ω,+

]r + dK
p,νda

p,ν

[
	

k+p,ω+ν,−
k,ω+�,ω,+

]a = −(1 + 2nν )
[
d r

p,ν

(
da

p,ν − d r
p,ν

)[
	

k+p,ω+ν,−
k,ω+�,ω,+

]r+(
da

p,ν − d r
p,ν

)
da

p,ν

[
	

k+p,ω+ν,−
k,ω+�,ω,+]a]


 (1 + 2nν )d r
p,νda

p,ν

[[
	

k+p,ω+ν,−
k,ω+�,ω,+

]a − [
	

k+p,ω+ν,−
k,ω+�,ω,+

]r]
, (C10)

where contributions (d r
p,ν )2 and (da

p,ν )2 are neglected as they are smaller compared to d r
p,νda

p,ν after ν summation. The magnon
current in this approximation reads as

j (1)
m,i = − e

2m
J�2

∑
pν

∑
kω

∑
�

pik jA j (�)d r
p,νda

p,ν

{[
	

k+p,ω+ν,−
k,ω+�,ω,+

]K + (1 + 2nν )
[[

	
k+p,ω+ν,−
k,ω+�,ω,+

]a − [
	

k+p,ω+ν,−
k,ω+�,ω,+

]r]

+ [
	

k−p,ω−ν,+
k,ω+�,ω,−

]K − (1 + 2nν )
[[

	
k−p,ω−ν,+
k,ω+�,ω,−

]a − [
	

k−p,ω−ν,+
k,ω+�,ω,−

]r]}
. (C11)

The Keldysh, advanced, and retarded components of 	 are (in the suppressed notation)

	K = g<(gg)> + g>(gg)<,

	a = ga(gg)< + g<(gg)r = ga(gg)> + g>(gg)r,

	r = gr (gg)< + g<(gg)a = gr (gg)> + g>(gg)a. (C12)
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Focusing on the Fermi-surface (excitation) contribution, we neglect terms containing only the retarded or the advanced Green’s
functions, to obtain

	K 
 ( fω − fω′ )(2 fω′′ − 1)(ga − gr )grga − [ fω′′ ( fω′ − 1) + fω′ ( fω′′ − 1)]gr (gg)a − [ fω′′ ( fω − 1) + fω( fω′′ − 1)]ga(gg)r,

	a 
 fω′′ga(gg)r + ga[( fω − fω′ )grga − fω(gg)r],

	r 
 − fω′′gr (gg)a + gr[( fω − fω′ )grga + fω′ (gg)a], (C13)

where 	 of Eq. (C8) is simply denoted by gω′′gω′gω (with ω′′ = ω ± ν, ω′ − ω + �). Using the Fermi-surface approximation
for the two Greens function, (gg)< 
 ( fω − fω′ )grga, we obtain

	K 
 (2 f±ν − 1)(	a − 	r ),

	a 
 −� f ′(ω)gagrga,

	r 
 −� f ′(ω)grgrga. (C14)

Considering low temperature f ′(ω) 
 −δ(ω), we obtain (using 2 f−ν − 1 = 1 − 2 fν)

j (1)
m,i 
 − e

2πm
J�2

∑
pν

∑
kω

∑
�

pik j�Aj (�)|da
p,ν |2

∑
±

(±)( fν + nν )
[
[	k±p,±ν,∓

k,±,0,0 ]a − [	k±p,±ν,∓
k,±,0,0 ]r

]
. (C15)

Using fν + nν = 2nν (1 − fν ), and i�A = E , we obtain the final result of

j (1)
m,i 
 − 2e

πm
J�2τm

∑
pν

∑
kω

∑
�

pik jE jIm
[
da

p,ν

]∑
±

(±)nν (1 − fν )Im[ga
k±p,±ν,∓]|ga

k,±|2

≡ σ
(1)
m,i, jE j . (C16)

We therefore confirm the correct relation between the force and velocity of magnon σ
(1)
m,i j = F (1)

i j
τm
mm

, where mm = (2JS)−1 is the
effective magnon mass.

2. Magnon scattering contribution

Here the second-order magnon coupling to electrons representing the magnon scattering arising from the sd exchange
interaction is studied. This contribution was not studied in Ref. [6]. The contribution to the magnon Green’s function defined on
the time contour, D(2)(r, t, r′, t ′), is (Fig. 14)

D(2)(r, t, r′, t ′) = i
e

m

�2

S2

∫
C

dt1

∫
C

dt2

∫
C

dt3
∑
r1r2r3

d (r2, t2, r′, t ′)d (r, t, r1, t1)Aj (t3)

× tr[σz

(+)(r1, t1, r2, t2)σzg(r2, t2, r3, t3) p̂ jg(r3, t3, r1, t1)

+ σzg(r1, t1, r3, t3) p̂ jg(r3, t3, r2, t2)σz

(−)(r2, t2, r1, t1)], (C17)

where 
(±) are magnon-electron pair propagators defined in Eq. (14) [suffixes are suppressed in Eq. (C17)]. As the expression
of Eq. (C17) has the same structure as Eq. (C2), we immediately obtain the magnon current as [see Eq. (C9)]

j (2)
m,i = − e

2mS
J�2

∑
pν

∑
kω�

pik jA j (�)
[{

d r
p,νda

p,ν

[
	

(2+),k+p,ω+ν

k,ω+�,ω

]K + (rKr)+(Kaa)
}

+
{

d r
p,νda

p,ν

[
	

(2−),k−p,ω−ν

k,ω+�,ω

]K + (rKa)+(Kar)
}]

,

(C18)

where (p′ is the wave vector of the magnon in the pair propagators)

	
(2+),k+p,ω+ν

k,ω+�,ω
=

∑
σ



(+),(k+p−p′,σ,p′ )
k+p,ω+ν

gk,ω+�,σ gk,ω,σ ,

	
(2−),k−p,ω−ν

k,ω+�,ω
=

∑
σ



(−),(k−p+p′,σ,p′ )
k−p,ω−ν

gk,ω+�,σ gk,ω,σ . (C19)

Using the Fermi-surface approximation as in Eq. (C14),

	(2)K 
 (2 f±ν − 1)(	(2)a − 	(2)r ),

	(2)a 
 ( fω − fω′ )
agrga 
 −� f ′(ω)
agrga,

	(2)r 
 −� f ′(ω)
rgrga, (C20)
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we obtain

j (2)
m,i 
 − 2e

πmS
J�2

∑
pp′k

∑
ν

pik jE j

∣∣da
p,ν

∣∣2 ∑
±

(±)
∑

σ

nν (1 − fν )Im
[



(±),(k±p−p′,σ,p′ )
k±p,±ν

a]∣∣ga
k,σ

∣∣2
. (C21)

Here the magnon-electron pair propagator has an external frequency of ±ν (external magnon frequency), and its imaginary part
reads as [see Eq. (A12) for the case of ν = 0]

Im

(±),(k±(p−p′ ),±(ν−ν ′ );p′,ν ′ ),a
k±p,σ,±ν

= 2
∑
ν ′

(nν ′ + fν ′−ν )Im
[
ga

k±(p−p′ ),±(ν−ν ′ ),σ
]
Im

[
da

p′,ν ′
]
. (C22)

Using (nν ′ + fν ′−ν ) = (1 + nν ′ ) fν ′−ν (1 − fν )−1 and Im[da
p′,ν ′ ] = 2ηm|da

p′,ν ′ |2 = (τm )−1|da
p′,ν ′ |2 (τm is the relaxation time for

magnon), we obtain

j (2)
m,i = − 2e

πmS

J�2

τm

∑
pp′k

pik jE jIm
[
da

p,ν

]
Im

[
da

p′,ν ′
]∑

±
(±)

∑
νν ′

∑
σ

nν (1 + nν ′ ) fν ′−νIm[ga
k±(p−p′ ),±(ν−ν ′ ),σ ]|ga

k,σ |2 (C23)

confirming the relation between the corresponding force density and current density j (2)
m,i = F (2) τm

mm
.
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