
PHYSICAL REVIEW B 106, 134434 (2022)

Reciprocal space study of Heisenberg exchange interactions in ferromagnetic metals
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The modern quantum theory of magnetism in solids is getting commonly derived using Green’s function
formalism. The popularity draws itself from remarkable opportunities to capture the microscopic landscape
of exchange interactions, starting from a tight-binding representation of the electronic structure. Indeed, the
conventional method of infinitesimal spin rotations, considered in terms of local force theorem, opens vast
prospects of investigations regarding the magnetic environment, as well as pairwise atomic couplings. However,
this theoretical concept practically is not devoid of intrinsic inconsistencies. In particular, naturally expected
correspondence between single and pairwise infinitesimal spin rotations is being numerically revealed to diverge.
In this work, we elaborate on this question on the model example and canonical case of body-centered-cubic (bcc)
iron bulk crystal. Our analytical derivations discovered the principal preference of onsite magnetic precursors
if the compositions of individual atomic interactions are in focus. The problem of extremely slow or even
absent spatial convergence while considering metallic compounds was solved by developed technique, based
on reciprocal space framework. Using fundamental Fourier-transform-inspired interconnection between this
technique and traditional spatial representation, we shed light on symmetry breaking in bcc Fe on the level
of orbitally decomposed total exchange surrounding.

DOI: 10.1103/PhysRevB.106.134434

I. INTRODUCTION

The interest of the world’s physical community in the
field of magnetic phenomena is gradually, but surely, shifting
towards the microscopic language of description. It appears
well reasoned in the context of modern technological trends
towards miniaturization and energy saving, where searching
of real substitution for traditional electronic semiconductor
components becomes a task to be treated now. Indeed, well-
known Moore’s law [1,2], being empirically associated with
retention of the growth rates of computing devices’ produc-
tivity, completely loses its relevance. Thus, further progress
in computing power demands a fundamentally new quantum
vision of unit components, their interconnection, and func-
tionality.

The quantum consideration allows one to employ any re-
fined microelements of matter or their individual degrees of
freedom as the prime driver of technologically useful effects.
The atomic option immediately actualizes the formalism of
spin models, designed to capture magnetic properties on the
level of distinguished regular particles. The conventional ob-
ject to be studied is known to be an insulator: its magnetic
atomic interplay could be well described by relatively short-
ranged couplings [3–8], which one could exhaustively take
into account in the frame of a technically implementable
numerical scheme. It results in a wide range of magnetic
phenomena [9–12], described on the basis of individual atoms
and molecular orbitals.
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Along with the methodological task to make the spin model
physically relevant and numerically solvable, its adjustment to
the real material is well known to be a strictly nonstraightfor-
ward procedure. Providing that investigation was started from
the first-principles calculation of electronic structure [13], the
typical scheme is to construct a minimal model of magnetoac-
tive electron shell by projecting onto Wannier functions [14].

Thus, a formulated tight-binding Hamiltonian allows one
to represent the problem in the framework of Green’s
functions. Liechtenstein, Katsnelson, and coauthors in their
pioneer works [15–19] demonstrated that application of lo-
cal force theorem [20,21] to the case of infinitesimal spin
rotations remarkably allows one to estimate the magnetic en-
vironment of a single atom Ji, as well as particular pairwise
exchange interaction Ji j , directly on the base of onsite and
intersite Green’s functions.

In this disposition, the relationship between these two ap-
proaches seems trivial:

Ji =
∑
j �=i

Ji j . (1)

However, numerical calculations of real insulators, con-
ducting systems, and model crystals [22–26] keep being
performed by both schemes. The preference is commonly
reasoned by the focus of the study: description of individual
Ji j favors the direct compositions, while total exchange con-
sideration is to be estimated in its entirety. From our point
of view, the question of their actual correspondence requires
a detailed examination and thus manifests the main aim of
this work.
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Using the apparatus of onsite and intersite Green’s func-
tions to estimate exchange interactions in simple model
crystals, we were able to show analytically that if one sets
the electron hopping integrals spin polarized, it inevitably
causes the breaking of Eq. (1) with nonlinear residuality.
Consequently, the application of models with strictly onsite
sources of magnetism (the Hartree-Fock method [27–30] and
the dynamic mean-field theory [31–34]) for the study of
conducting materials appear more accurate when spatially
wide compositions of individual pairwise exchange interac-
tions are engaged in estimation of experimentally observable
characteristics.

It is important to note that such deviations are often as-
sociated with the presence of conduction electrons, which
make the exchange interaction between atoms significant
even at hundreds of angstroms. Indeed, the characteristic si-
nusoidal behavior of Ji j with increasing distance indicates
the presence of the Ruderman-Kittel-Kasuya-Yosida (RKKY)
mechanism [24,35–37]. From a theoretical point of view, this
first of all means either very slow or totally absent con-
vergence of spatial sums of pairwise exchange interactions∑

j �=i Ji j . In order to circumvent this problem, researchers
often have to resort to artificial damping numerical tricks
that ensure the convergence of such sums [38]. In this case,
of course, additional methodological difficulties arise in the
physical validation of obtained estimates.

In this regard, we develop an analytical technique, designed
to find a Fourier image of pairwise exchange interactions
J (q) from corresponding Green’s functions. Being derived in
Ref. [22] in the frame of scattering path operator formalism,
this technique was practically employed to study the spin-
wave dispersion phenomena. Here we show that one can also
find it remarkably useful to make a numerically stable estima-
tion of the exchange environment in the conducting systems.
Along with physical equality to Ji j landscape, it is particularly
demonstrated that this technique could accurately produce the
expected value for

∑
j �=i Ji j actual convergence dynamics for

model crystals and body-centered-cubic (bcc) iron.
Authors of Ref. [39] used the J (q) formalism in order to

study the contribution of individual orbital couplings to par-
ticular Ji j . We also emphasize that the J (q = 0) point turned
out to be the only source of the convergence expectations
if one considers the orbitally decomposed exchange interac-
tions. This feature enables us to study a problem concerning
the net nonsuppression of cross-atomic t2g-eg interplay, which
is anticipated from the cubic point-group symmetry in d
magnetics. Employing Parseval’s equality grants a remarkable
possibility to practically examine its numerically inevitable
residuality.

II. METHOD

The modern common practice for the reconstruction of
equilibrium electronic, magnetic, and other characteristics of
solids almost invariably includes the first-principles modeling
of the electronic structure [13,40–42] as a primary stage.
Further, the obtained numerical results are used to construct
the so-called minimal model, the part of the system energy
spectrum, which is decisive for the appearance of the proper-
ties in focus. For these purposes, the most popular approach

is to utilize a basis of maximally localized Wannier func-
tions [14,43,44].

As a result, the minimal model is established by its
Hamiltonian. The most convenient frame is known to be the
tight-binding approximation [7]

Ĥ =
∑
i �= j

∑
αβ

∑
σ

tσ
i(α) j(β ) ĉ†

i(α)σ ĉ j(β )σ

+
∑

i

∑
α

∑
σ

εσ
i(α) ĉ†

i(α)σ ĉi(α)σ , (2)

where ĉ†
i(α)σ is the creation operator of the electron with the

spin σ on the orbital α of the atom i; ĉ j(β )σ is annihilation
operator of the electron with the spin σ on the orbital β of
the atom j; tσ

i(α) j(β ) is the corresponding hopping integral; and
εσ

i(α) is the onsite electron energy.
This Hamiltonian can be written as a matrix function. If

we express how atom i of the unit cell with translation T = 0
interacts with the atom j of the unit cell with translation T ,
we write

[Hσ (T )]i j = tσ
i j + εσ

i δi j δT0, (3)

where tσ
i j and εσ

i are matrices, capturing the orbital structure,
and δ is the Kronecker delta. Square brackets reflect the
important fact that in practical calculations the Hamiltonian
matrix describes the physics of the whole unit cell. Hence,
the interatomic level is included as the corresponding matrix
sectors i j.

Thus, Hamiltonian (3) in the reciprocal space reads as

Hσ (k) =
∑

T

Hσ (T ) · exp(ikT ). (4)

It allows one to construct k-dependent Green’s function

Gσ (E , k) = {E − Hσ (k)}−1, (5)

where E is the spectrum sweep energy in the diagonal matrix
form. Then we assemble its onsite and intersite versions:

Gσ
ii = 1

Nk

∑
k

[Gσ (E , k)]ii, (6)

Gσ
i j = 1

Nk

∑
k

[Gσ (E , k)]i j · exp(−ikT i j ), (7)

where T i j is the translation vector connecting the cells of
the i and j atoms, Nk is the number of Monkhorst-Pack grid
points [45], E is an argument is omitted for brevity.

A. Isotropic exchange interactions

To find the expressions for isotropic exchange interactions
we represent the electronic Hamiltonian (3) on the level of
effective spin model:

H = −
∑

i j

Ji j ei · e j, (8)

where ei is the unit vector of “classically” approximated spin
and each couple is taken twice.

Then, implementation of local force theorem [20,21,46]
allows one to consider the second energy variation, which
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occurs due to infinitesimal spin rotations near collinear fer-
romagnetic state, in terms of onsite and intersite Green’s
functions (see Appendix A for details). As the result we
establish the connection between parameters of the spin and
electron models:∑

j �=i

Ji j = 1

4π

∫ EF

−∞
Im TrL[�i(G

↑
ii − G↓

ii )] dE

− 1

8π

∫ EF

−∞
Im TrL

[∑
σ

�i Gσ
ii �i G−σ

ii

]
dE , (9)

Ji j = 1

8π

∫ EF

−∞
Im TrL

[∑
σ

�i Gσ
i j � j G−σ

ji

]
dE , (10)

where intra-atomic spin splitting �i is defined by

�i = [H↑(T = 0)]ii − [H↓(T = 0)]ii

= 1

Nk

∑
k

[H↑(k)]ii − [H↓(k)]ii. (11)

It is clearly seen that Ji [Eq. (1)] could be found both by
Eqs. (9) and (10), which thereafter present single and pairwise
infinitesimal spin rotations, correspondingly, as the source of
energy perturbations.

However, as we show below, one could expect the non-
negligible discrepancy between these two approaches. The
situation appears extremely serious if one deals with metallic
systems since, in that case, long-range exchange interactions
strongly hamper the convergence of the real-space Ji j com-
position. For instance, authors of Ref. [38] had to take into
account more than 45 coordination spheres (also referred
as neighboring shells in the literature) to study spin-wave
dispersion in bcc iron. Thus, in this work we elaborate the
technique for numerical reconstruction of the extremely delo-
calized picture of magnetic interactions, based on reciprocal
space framework.

B. J(q)

The mapping of all found Ji j values to the recipro-
cal space is a well-known tool that allows one to study
the spin-wave dispersion spectra, the Dzyaloshinskii-Moriya
interaction, spin-stiffness constants, and other magnetic phe-
nomena [22,26,47–54].

The valuable option is that it provides an additional
powerful indicator for the stability of the initial magnetic
configuration, which is set by means of tight-binding Hamil-
tonian. The sign of Ji reflects the type of total-energy
extremum, which appears as the prime factor of the configu-
ration to occur in the material or not. In its turn, the spin-wave
dispersion spectrum, obtained for all reciprocal space vectors
q of the first Brillouin zone on the base of exchange inter-
actions J (q), could highlight the areas of the zone, which
drive the configuration unstable [55]. Hence, we emphasize
that reciprocal space consideration should be of a particular
interest, especially for metallic systems.

Moving to q space implies a redefinition of the basic
structural units of the considered model. For this purpose
we should introduce the sublattice formalism. Each sublattice
comprises all crystal’s atoms with equal local positions in

FIG. 1. Illustration of sublattice concept. Here atoms with the
same local positions in the unit cells are highlighted by color. Each
sublattice has the form of crystal’s Bravais lattice.

the unit cells. Illustration of this concept is given in Fig. 1.
Hence, notation ĩ means the sublattice, formed by particular
atom i and other atoms, global positions of which differ from
i’s, position only by lattice translation. Thus, the elements of
[J (q)]ĩ j̃ matrix acquire the meaning of the sublattices’ inter-
action intensity:

[J (q)]ĩ j̃ =
∑
T i j

Ji j exp(iqT i j ). (12)

However, due to the fact that finding all Ji j’s, required to com-
pose the stable magnetic picture in metals, could be assumed
intractable, a new expression is required to reconstruct J (q)
directly from the electron Green’s functions.

By substituting Eq. (10) into (12), we derive

[J (q)]ĩ j̃ = 1

8π

∫ EF

−∞
Im TrL

(∑
σ

∑
kk′

Aσ
i j (k) · A−σ

ji (k′)

× Bi j (k
′ − k + q)

)
dE , (13)

where

Aσ
i j (k) = 1

Nk
�i

[
Gσ (E , k)

]
i j, (14)

Bi j (k
′ − k + q) =

∑
T i j

exp(i {k′ − k + q}T i j ). (15)

Taking into account that Bi j (k
′ − k + q) = Nk · δ(k′ − k +

q), we can state the final expression:

[J (q)]ĩ j̃ =
Nk

8π

∫ EF

−∞
Im TrL

(∑
σ

∑
k

Aσ
i j (k+q) · A−σ

ji (k)

)
dE .

(16)

The basic feature of this result is that derivation was
performed in the framework of the pairwise infinitesimal spin-
rotation technique. In this context we highlight the remarkable
usefulness of [J (q = 0)]ĩ j̃ . Indeed, Eq. (12) in this case illus-
trates the straightforward possibility to reproduce Ji as

Ji =
∑

j̃

[J (q = 0)]ĩ j̃ − 1

Nq

∑
q

∑
j̃

[J (q)]ĩ j̃ . (17)

It is extremely important to note that the Fourier-transform-
driven relation between Ji j and [J (q)]ĩ j̃ demands us to
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FIG. 2. (a) Schematic representation of the toy model. (b) Toy-model densities of states presented for both spin channels separately. Fermi
level is set at zero.

formally define onsite parameter Jii:

Jii = 1

Nq

∑
q

∑
j̃

[J (q)]ĩ j̃ . (18)

The valuable option is that Jii could be equally calculated by
Eq. (10). It reveals the lowest cost scheme of Ji estimation,
based only on two characteristics, being free of real spatial
convergence problem and q-grid density factor.

Thus, this theoretical approach actualizes itself in
prospects of making a direct comparison between single and
pairwise infinitesimal spin-rotation techniques on the level of
representative scalars. If we denote the first term of Eq. (9) as

Fi = 1

4π

∫ EF

−∞
Im TrL[�i(G

↑
ii − G↓

ii ) ] dE , (19)

the perfect correspondence of the techniques appeared to sat-
isfy the equation

Fi =
∑

j̃

[J (q = 0)]ĩ j̃ . (20)

For metallic systems, this way manifests itself as the only one
available, owing to the

∑
j �=i Ji j convergence problem.

We also note the self-sufficiency of reciprocal space con-
sideration. In addition to well-known application, intended to
reconstruct the spin-wave dispersion spectra [47,55–60], it is
worthy to state the natural ability to find any Ji j by inverse
Fourier transform of J (q), calculated on some q grid:

J (T i j ) = 1

Nq

∑
q

[J (q)]ĩ j̃ · exp(−iqT i j ), (21)

where J (T i j ) is the exchange interaction matrix for the corre-
sponding pair of crystal unit cells. Important to add that in this
expression k grid and q grid have absolutely no constraints
of being equal to each other. Further, we will practically
elaborate on this question.

III. EXCHANGE SURROUNDING PROBLEM

Let us recall that in numerical calculations there is a prob-
lem of inconsistency between approaches based on a single
and paired infinitesimal spin rotation. In the context of our
study it could be demonstrated by independent calculation
of Fi using Eq. (19) and

∑
j̃ [J (q = 0)]ĩ j̃ using Eq. (16).

Thus, obtained divergence could be readily enumerated as the
residuality of Eq. (20):

Di =
∑

j̃

[J (q = 0)]ĩ j̃ − Fi. (22)

A. Toy model

As the simplest theoretical object, we consider a toy model
of one-dimensional extended chain of identical single-orbital
atoms. This type of model could be applied to reconstruct the
gapped state of real materials if the basic structure appears
highly entangled [61]. It is assumed to have a period of a
and one atom per unit cell. The atom in the “central” cell
(T = 0) is denoted by i, while all other atoms are indexed by j
and form the exchange surrounding of i atom [Fig. 2(a)]. We
express the Hamiltonian of such a crystal as a combination
of onsite energy Hσ (T = 0) = εσ and the nearest-neighbor
hoppings Hσ (T = ±a) = tσ .

For the numerical investigation we set the parameters as
follows: a = 1 Å, ε↑ = −1 eV, ε↓ = 1 eV, EF = 0 eV.
At the first step we assume t↑ = t↓ = −0.5 eV. This con-
figuration corresponds to the simplest case of spin-polarized
electron structure, where two spin subsystems differ only by
a simple shift along the energy axis. Figure 2(b) demonstrates
that the model is designed to artificiality enhance the system’s
metallicity by boosting the density of states (DOS) near the
Fermi level.

It is important to note that the ground state of such sys-
tem is known to be antiferromagnetic. Despite our approach
being designed to provide the information about stability of
the crystal in its tight-binding representation (collinear spin
ordering), we assume our toy model relevant for fundamental
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FIG. 3. (Left chart) Convergence dynamics of distance-dependent cumulative exchange interaction
∑

j �=i Ji j as more distant neighbors are
taken into account. Toy-model Hamiltonian’s k-point mesh is Nk × 1 × 1. (Right chart) J (q = 0) (gold dotted) and Jii (turquoise dashed) as
the function of Nk.

analysis. It could be validated by the readily available option
to consider two atoms in the unit cell with opposite signs of
the intra-atomic spin splitting �, which readily states antifer-
romagnetism (AFM) to be energy-lowing configuration with
the picture of Ji j kept unmodified.

The main numerical result obtained for this configuration
is that D = 0. Moreover, it appeared valid for any particular
value of t↑ = t↓ and any settings of all other parameters.
Therefore, we state the exact correspondence of the consid-
ered approaches. Hereinafter for the crystals with one atom
per unit cell for the sake of brevity we omit the single-standing
index of the central atom and double indices of corresponding
sublattice.

In this framework we can clearly demonstrate the advan-
tages of J (q) formalism developed in our study. Figure 3
(left chart) shows the dynamics of the

∑
j �=i Ji j spatial sum

convergence as the contributions from more distant atoms
are included. It can be seen that an increase in k grid
density makes the dynamics more tolerant to destabilizing
high-frequency harmonics, which inevitably arise when the
Hamiltonian (3) is transformed to the reciprocal space. In the
case of one-dimensional k grid with Nk = 500 and higher,
the final value of the sum is expected to coincide with

J (q = 0) − Jii = F − Jii. (23)

It appears instructive to add that the value of J (q = 0) turns
out to be independent from the q-grid density, in accordance
with the specifics of Eq. (16).

Finding all J (q) along some q grid, we have an opportu-
nity to estimate the Ji j reconstruction accuracy, according to
Eq. (21). Our calculations show that if k and q grids are the
same, any Ji j can be represented by machine precision [Fig. 4
(left chart)].

It is also extremely important to consider the case of a
sparse k mesh with Nk = 50, where the estimates of exchange
interactions by Eq. (10) are confirmed unstable, as well as
Jii, breaking Eq. (18) by means of real- and reciprocal space
configurations. Computing J (q) on a dense q grid with Nq =
1000, we can observe a converging dynamics of the sum of all
reconstructed Ji j [see Fig. 4 (right chart)].

In this case, the approaching value can be estimated ex-
clusively by Eq. (17), but only if Jii is found as an extreme
point of the inverse Fourier transform. This assessment is fully
performed on the base of pairwise infinitesimal spin rotations,
providing guaranteed interconnection between individual Ji j’s
and extremely delocalized magnetic picture possessed by met-
als.

It is important to add that since increasing density of the
k grid is usually associated with a significant growth of the
technical requirements for computing systems, this distinct
approach has an another valuable advantage as it scales the
calculation time cost only, keeping random-access memory
demands constant.

However, the situation with the approach’s consistency
changes dramatically when we consider the spin-polarized
case with t↑ �= t↓. The complicated landscape of D(t↑, t↓),
shown in Fig. 5, clearly demonstrates that the divergence
turned out to be non-negligible and hard to predict.

We highly stress that Eq. (20) is restored exclusively in the
t↑ = t↓ regime. It makes us state the fundamental principality
of the magnetism model in use, strictly onsite magnetism
precursor (Hartree-Fock, LDA + DMFT), which naturally in-
herits this regime, or spin-polarized electron gas [local spin
density approximation (LSDA)], which naturally does not.

As a matter of fact, the general relevance of both
approaches is undoubtedly kept affirmed. Indeed, LSDA
essentially allows to capture the spin-polarized band struc-
ture from the mean-field point of view. This point makes
it reliably applicable to isotropic and homogeneous sys-
tems, or to subsystems of more complex materials, possessed
by similar properties. Thus, it accordingly gives a physi-
cally valid picture of ionization energies of atoms, binding
energies of solids, bulk lattice constants, anisotropic ef-
fects, etc. [59,62–65]. However, when one deals with highly
inhomogeneous structures, such as strongly correlated ma-
terials [55], polarized insulators [66], or the systems with
heavy fermions [67], where the electrons’ distribution poses
the heterogeneous nature within the unit cell, low resemblance
to a noninteracting electron gas produces quantitative and
qualitative discrepancies between theory and experiment. For
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FIG. 4. (Left chart) Reconstructed using Eq. (21) (green dashed) and obtained within Eq. (10) (purple dotted) values of JNN (exchange
interaction between the nearest neighbors) as the function of Nq. (Right chart) Reconstructed values of Ji j on the sparse k grid (Nk = 50) and
dense q grid (Nq = 1000) as the convergence dynamics of spatial sum

∑
j �=i Ji j . The expected value is estimated with Eq. (17) as −0.814 eV.

instance, we can mention systematical underestimation of the
band gap [62,68,69] or noncredible representation of metal-
insulator transition [70–72].

On the other hand, the LDA + DMFT approach manifests
itself as to rigorously capture electron-electron correlations
at the focused area of the band structure. Therefore, we
obtain a physically motivated access to both high- and
low-energy quasiparticle excitations and, as a consequence,
partly describe high-temperature properties [73–75] and para-
magnetism [73,75,76]. Being usually applied to strongly
correlated systems [77–79], this method turns significantly
valuable, if the magnetism precursor (or, generally, the source
of the investigating property) appeared isolated in the frame
of well-disentangled bands. Otherwise, we face both the val-
idation issues (double-counting problem [80]) and technical

FIG. 5. Absolute value of D (in eV) as a function of t↑ and t↓ (in
eV) for the considered toy model. Gold square in the middle indicates
the insulator regime tσ � �. Note that D is exactly zero only if
t↑ = t↓ (white color).

troubles (extra large Hamiltonian to be treated). Also im-
portant to note that this approach itself is being extended
methodologically, in order to capture nonlocal effects for
strongly correlated electrons [81–83].

Summing up, we highlight the additional fundamental fac-
tor, which should be taken into account carefully if one intends
to study collective magnetic characteristics, formed by indi-
vidual or pairwise atomic contributions.

B. Analytical explanation

For a rigorous analytical substantiation of this statement,
we consider a completely general case of the Hamiltonian (3),
which has spin polarized only onsite electron energies,
whereas all hoppings are kept non-spin polarized.

For our derivation it appears principal to keep the frame-
work of unit-cell-sized Hamiltonian (and Green’s function)
matrices, implying atomic detailization incorporated. Thus,
we write the Hamiltonian as a function of translation vector:

Hσ (T ) = t (T ) + εσ δ(T ). (24)

Hence, in reciprocal space we got

Hσ (k) = εσ + H(k). (25)

Then, if one combines the Green’s functions [Eq. (5)]

{G↓(E , k)}−1 − {G↑(E , k)}−1 = H↑(k) − H↓(k)

= ε↑ − ε↓ = �, (26)

the result essentially appears independent from k.
As the next step, we rewrite Eq. (20) at the level of onsite

and intersite Green’s functions [16], using Eqs. (19) and (16).
The same result could be obtained if we take the sum of all
Ji j’s, calculated using Eq. (10), and assume its correspondence
to Eq. (9). Here, the onsite variant is denoted by a tilde and the
intersite one is given as a function of T :

G̃↑ − G̃↓ =
∑

T

G↑(T ) · � · G↓(−T ). (27)
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Taking into account definitions

G↑(T ) = 1

Nk

∑
k

G↑(E , k) · exp(−ikT ),

(28)

G↓(−T ) = 1

Nk′

∑
k′

G↓(E , k′) · exp(ik′T )

leads us to

G̃↑ − G̃↓ = 1

Nk

∑
k

G↑(E , k) · � · G↓(E , k). (29)

Finally, if we write � for any k as

� = {G↓(E , k)}−1 − {G↑(E , k)}−1, (30)

then Eq. (29) turns to identity.
Therefore, dealing with spin-polarized electron gas and

then taking into account the definition of � [Eq. (11)], one
can state D [Eq. (22)] proportional to the absolute deviation
of H↑(k) − H↓(k) from �, averaged over the first Brillouin
zone. In particular, for our 1D toy model we get

H↑(k) − H↓(k) = � + 2 (t↑ − t↓) cos(ka) (31)

which clearly demonstrates that D ∼ t↑ − t↓.
As a consequence, we confirm a general preference for

onsite-based methods of describing magnetism if we are in-
tended to reproduce characteristics whose definitions include
the spatial sums of pairwise exchange interactions.

C. bcc Fe

To elaborate the question we consider the case of real
metallic material. As a bright representative in this paper
let us analyze the canonical case of bcc iron. The pioneer
works devoted to the first-principles study of the interatomic
magnetic couplings date back to the mid 1980s [16]. However,
scientific discussions do not subside until now [24,38,84–88].

In general, the reason could lie in the fact that the mag-
netic picture of bcc Fe cannot be exhaustively captured
in frame of the Heisenberg model. Indeed, authors of the
work [24] performed an orbitally resolved consideration of
the nearest-neighbor Fe-Fe coupling with the initial magnetic
configuration taken as one Fe moment, rotated on an arbitrary
angle with respect to a collinear FM background. The t2g-t2g

contribution appeared almost independent from this angle,
whereas the t2g-eg and eg-eg terms were essentially modified.
The former one is classified as Heisenberg interaction, driven
by RKKY long-ranged mechanism, while the latter ones were
described as a composition of short-ranged non-Heisenberg
double-exchange and superexchange mechanisms.

Therefore, in many respects, dealing with long-ranged in-
terplay, the controversy is supported precisely by the fact that
the rate of convergence of spatial sums of exchange inter-
actions is extremely low, which makes it difficult to make a
reliable estimate of both the magnetic transition temperature
and the spin-wave stiffness constants [38,88,90].

It is also noteworthy that the smallness of spin-orbital
coupling in bcc Fe favors its consideration in the frame of
perturbation theory. As a consequence, we do not expect Ji j

and other isotropic characteristics being influenced by these

FIG. 6. Intersite exchange parameters in bcc Fe, extracted from
the LDA + DMFT scheme in comparison with previous studies:
green line stands for LSDA results [18], yellow for LDA + 	 [18],
blue for LSDA + DMFT [89], and red line for obtained in this study
LDA + DMFT.

effects on the level of Green’s functions. Whereas if one
aims to study the onsite and intersite anisotropies, it appears
possible by adding the corresponding terms to the spin model,
which the tight-binding Hamiltonian is mapped onto.

Hence, in order to fulfill the comprehensive study of the
convergence problem, we consider bcc Fe magnetism from the
viewpoint of spin-polarized electron gas (LSDA) and dynami-
cal mean-field theory (LDA + DMFT). The additional details
of the calculations are given in the Appendixes B and C. Here
we only mention that one atom per unit cell allows keeping
the single-standing index i of the “center” atom (in the cell
with T = 0) and double index of only sublattice omitted.

In Fig. 6 one can find the comparison of the Ji j values,
obtained in this work, with those from previous studies. At
first we state a remarkable general accordance, being slightly
disturbed by a factor of a particular theoretical approach in
use. Apart from the first and the second nearest neighbors,
which contribute dominantly to the value of the total exchange
surrounding, there is a little discrepancy at the fifth coordina-
tion sphere. If the former is commonly attributed to the reason
of artificial Curie temperature dependency on the particular
theoretical method in use (we discuss it in Appendix D), the
latter could be confidently considered nonsignificant because
eight atoms on the concerning sphere are not able to influence
the entire magnetic picture. Here we only mention that authors
of the work [89] emphasized that such a “turbulence” at the
first and the second coordination sphere is mostly driven by
the qualitatively various mechanisms that t2g-t2g and eg-eg

interplays generate in bcc Fe. Its competing character makes
the net exchange couplings sensible to subtle aspects of theo-
retical approach that was employed. In Sec. IV we inspect the
orbital contributions in detail.

Figure 7 (left chart) and (right chart) show the dynam-
ics of the Ji j’s convergence with the background of F − Jii

and J (q = 0) − Jii, where Jii can be equivalently found both
using Eqs. (10) and (18) (assuming that the k and q grids
are the same). All results appear in a good consistence with
previous studies [18,22,25,89]. As expected, the intra-atomic
magnetism model, possessed by LDA + DMFT, leads the
approaches based on single and pairwise spin rotations to give
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FIG. 7. (Left chart) LSDA and (right chart) LDA + DMFT originated convergence dynamics of distance-dependent cumulative exchange
interaction

∑
j �=i Ji j in bcc Fe, as more distant neighbors are taken into account.

equal numerical results. The divergence is observed in the
LSDA case, where the value of J (q = 0) − Jii turns out to
be reflecting actual dynamics of the convergence trend much
more reliable. This confirms our basic thesis that this approach
inherits all the features of the pairwise spin-rotation technique
and does not lose methodological interconnection with it.

IV. ORBITAL DECOMPOSITION
AND SYMMETRY PROBLEM

In addition to the considered problem, there is also a
conjunction one, which the similar analysis tools appeared
applicable to. Its description we should initiate by the fact
that the values of exchange interactions Ji j [Eq. (10)] can
be decomposed into the orbital components. For this, it is
sufficient to turn to the mathematical property of the trace
operation, taken from the product of two arbitrary N × N
matrices:

Tr[XY ] =
N∑

m=1

N∑
l=1

Xml ∗ Ylm =
N∑

m, l=1

Zml . (32)

In our case, the contribution from the interaction of orbital α

(atom i) with orbital β (atom j) can be found as

{Ji j}αβ = 1

8π
Im

∫ EF

−∞
{[�iG

↑
i j]

αβ[� jG
↓
ji]

βα

+ [�iG
↓
i j]

αβ[� jG
↑
ji]

βα} dE . (33)

Thereafter, Ji j = ∑
αβ{Ji j}αβ . It is indicated in

works [24,84,91] that thus constructed decomposition should
have the symmetry properties of the crystal. In particular,
when considering the d magnetism of real materials, the cubic
point-group symmetry sets the expectation of the complete
suppression of the contributions from the cross interaction
of the t2g and eg orbitals upon the spatial summation of all
Ji j around a particular atom i. However, actual numerical
calculations of conducting materials do not justify such
expectations.

Let us practically study this question in the case of bcc Fe.
In Appendix D we give a full decomposition matrix {Ji j}αβ

for one atom couple as nearest and next-nearest neighbors,
being in good agreement with the work [84]. The results are
additionally summarized in Table I.

In order to inspect the long-ranged interactions, in Fig. 8
we show how contributions of different symmetry orbitals to
the total Ji j (t2g-t2g, eg-eg, and t2g-eg) individually approach
the expected values, in a full accordance with the descrip-
tion above. It is important to note that here assessment of
these expected values can be carried out only on the level of
corresponding J (q = 0) − Jii since it only inherits the orbital
structure of Ji j . It is seen that both LSDA and LDA + DMFT
do not solve the problem of nonzero

∑
j �=i{Ji j}t2g-eg , antici-

pated by bcc Fe symmetry.
To reveal the fundamental reasons for this discrepancy, let

us pay closer attention to the fact that J (q) and Ji j are related
by the Fourier transform. Hence, we can write Parseval’s
identity [92] as

∑
j

|Ji j |2 = 1

Nq

∑
q

|J (q)|2. (34)

By simple recombination of the terms one can obtain

∑
j �=i

|Ji j |2 − 1

Nq

∑
q �=0

|J (q)|2 = 1

Nq
|J (q = 0)|2 − |Jii|2. (35)

The symmetry of the Wannier functions of actual crystals
allows us to consider the decomposition matrix {Jii}αβ to be
diagonal. Thereafter, in Parseval’s equality, written for t2g-eg

contribution, we can replace {J (q = 0)}t2g-eg by
∑

j �=i{Ji j}t2g-eg

and finally obtain

P = √
Nq · R − Q, (36)

TABLE I. t2g-t2g, eg-eg, and t2g-eg contributions to Ji j values (in
meV), obtained for the nearest (1NN) and the next-nearest (2NN)
neighbors in bcc Fe.

LSDA LDA+DMFT Ref. [84]

{J1NN}t2g-t2g −10.12 −8.43 −13.95
{J1NN}eg-eg 6.66 6.49 7.67
{J1NN}t2g-eg 16.27 14.53 17.55
{J2NN}t2g-t2g 10.50 6.89 9.25
{J2NN}eg-eg −1.50 −1.60 −0.76
{J2NN}t2g-eg 0.00 0.00 0.00
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FIG. 8. LSDA originated convergence dynamics of orbital-resolved distance-dependent cumulative exchange interactions
(a)

∑
j �=i{Ji j}t2g-t2g , (b)

∑
j �=i{Ji j}eg-eg , and (c)

∑
j �=i{Ji j}t2g-eg in bcc Fe versus LDA + DMFT originated convergence dynamics of

orbital-resolved distance-dependent cumulative exchange interactions (d)
∑

j �=i{Ji j}t2g-t2g , (e)
∑

j �=i{Ji j}eg-eg , and (f)
∑

j �=i{Ji j}t2g-eg in
bcc Fe, as more distant neighbors are taken into account.

where

P =
∣∣∣∣∣
∑
j �=i

{Ji j}t2g-eg

∣∣∣∣∣, (37)

R =
∑
j �=i

|{Ji j}t2g-eg|2, (38)

Q =
∑
q �=0

|{J (q)}t2g-eg|2. (39)

Each of the thus introduced parts deserves specific atten-
tion. It appears that R has a remarkable feature: more than
98% of the net value (obtained as sum over 50 coordination

spheres) comes from the nearest neighbors, while 6 coordina-
tion spheres cover 99.8% [Fig. 9 (left chart)].

Thereafter, we can confidently state R as converged con-
stant. In view of this fact the next step can be checking P
for an ability to reproduce its expected value |{J (q = 0)}t2g-eg|
(130 meV), by separated means of q grid density. Figure 9
(right chart) shows that it actually takes place if the density is
25 × 25 × 25 or more. On one hand, it additionally confirms
the fundamental consistency of our theoretical approach. On
the other hand, it alone does not lift the veil from the problem
of P nonsuppression due to the crystal’s symmetry.

For the latter purpose we utilize the constancy of R as
the ground of the following analysis. Anticipation of P = 0
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FIG. 9. (Left chart) R [Eq. (38)] obtained for bcc Fe using LSDA, as more distant neighbors are taken into account. The expected value is
estimated as the combination of individual pairwise contributions up to 50th coordination sphere. (Right chart) P [Eq. (37)] obtained for bcc
Fe using LSDA, as a function of q-grid density 3

√
Nq × 3

√
Nq × 3

√
Nq.

in this disposition demands Q [Eq. (39)] to be linearly pro-
portional to Nq. To study the actual dependency we represent
Q as

Q = const × (Nq)γ , (40)

where constant is implied to be in meV2. Consequently, for γ

we get

γ = d{ln(Q)}
d{ln(Nq)} . (41)

Results are shown in Table II. Here we highlight that diver-
gence of γ from ideal value 1 is observed on the constant level
of ∼0.5% (excluding the topmost point). Taking to account
the coverage of both areas of consistent and nonconsistent
P , we can conclude this divergence to be possessed by our
theoretical formalism itself. Providing that Nq · R and Q are
naturally large, it finally causes throttling the symmetry driver
of P , at least on the computationally available grids. In order
to affirm this statement let us approximate numerically ob-
tained ln(Q)[ln(Nq)] curve by its perfect version with γ = 1:

ln(Q) ≈ ln(R′) + ln(Nq). (42)

Thus, R′ = 268.27 meV2 diverges from calculated R by less
than 1 meV2. It reveals the general tendency of P towards sup-
pression if we assume Nq → ∞ in an extrapolating manner.

TABLE II. Estimation of γ [Eq. (41)] using finite-difference
method.

q grid ln(Nq) ln(Q) γ

5 × 5 × 5 4.82831 10.33496
10 × 10 × 10 6.90776 12.49399 1.03827
15 × 15 × 15 8.12415 13.71624 1.00482
20 × 20 × 20 8.98720 14.58171 1.00281
25 × 25 × 25 9.65663 15.24779 0.99499
30 × 30 × 30 10.20359 15.79638 1.00297

V. CONCLUSIONS

In this work we elaborate on the question of self-
consistency and convergence, if one employs the local force
theorem to study real and model conducting materials at the
level of exchange landscape in the pairwise details, as well
as in its entirety. It was showed analytically and numerically
that the choice of magnetism’s precursor has a decisive in-
fluence on the validation and accuracy of the theoretically
reconstructed magnetic picture. It is important to supplement
the earlier remark about the preference of using onsite sources
(the Hartree-Fock method and DMFT) with a cautionary note
to use combined approaches in a manner of LSDA + DMFT
for a study of characteristics, which essentially are formed as
the sum of individual atomic contributions. In addition to the
naturally arising complexity due to the double-counting prob-
lem, the fundamental uncertainty of the source of magnetism
will not allow one to control the consistency of infinitesimal
spin-rotation-based approaches.

We were also able to shed light on the problem of sym-
metry breaking at the level of orbital decomposition while
accumulating the spatial sums of pairwise exchange interac-
tions in conducting systems. Consideration of the canonical
bcc Fe case in the frame of suggested reciprocal space ap-
proach showed the origins of the vanishingly low rates of
symmetry-reasoned suppression of contributions from the in-
teraction of t2g and eg orbitals, leading to nonzero values of
those in practical calculations.

The obtained theoretical results are believed to be of sig-
nificant usefulness while elaborating on the general question
of long-range magnetic ordering in real metallic compounds,
which stands in veil during numerical misconceptions of the
present approaches.
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APPENDIX A: EXCHANGE INTERACTION EXPRESSIONS

In order to estimate the picture of isotropic exchange
interactions, we should perform a mapping of the original
electronic model [tight-binding Hamiltonian (3) in the main
text] onto the effective spin model:

H = −
∑

i j

Ji j ei · e j . (A1)

For this purpose the initial configuration is assumed to be
purely ferromagnetic: ei = (0, 0, 1). Let us then consider an
infinitesimal spin rotation on an angle δφ = δφ · n, where
n = (nx, ny, 0) is the axis direction. The thus caused energy
perturbation one can describe by calculating the second vari-
ation of Eq. (A1):

δ2H = −
∑

i j

Ji j [δ2ei · e j + 2 δei · δe j + ei · δ2e j], (A2)

where

δei = [δφi × ei] = (
δφ

y
i , −δφx

i , 0
)
,

δ2ei = [δφi × δei] = −(
0, 0, δ2φx

i + δ2φ
y
i

)
. (A3)

Thereby, Eq. (A2) takes the final form

δ2H =
∑

i

{∑
j

Ji j
(
δ2φx

i + δ2φ
y
i

)}

+
∑

j

{∑
i

Ji j
(
δ2φx

j + δ2φ
y
j

)}

+
∑

i j

{−2 Ji j
(
δφx

i δφx
j + δφ

y
i δφ

y
j

)}
. (A4)

As the next step we should employ the local force theo-
rem [20,21,46] to the electronic Hamiltonian. According to
this theorem, the total-energy variation δE , caused by small
perturbation from the ground state of the system, could be
represented as the sum of one-particle energy changes of
the occupied states, with ground-state potential kept fixed. In
terms of first-order perturbations we write for charge and spin
densities [16]

δE =
∫ EF

−∞
E δñ(E ) dE

= EF δZ −
∫ EF

−∞
δÑ (E ) dE = −

∫ EF

−∞
δÑ (E ) dE , (A5)

where ñ(E ) = dÑ (E )/dE is the density of electron states,
Ñ (E ) its integrated version, EF is the Fermi energy, δZ is the
change of total number of electrons, being zero if we consider
magnetic excitation case.

Assuming H and G to be short spinor notations of the
electronic Hamiltonian and Green’s function [Eq. (5) in the

main text] for ñ(E ) one can write

ñ(E ) = − 1

π
Im TrL,σ [G], (A6)

which leads to the following expression for δÑ (E ):

δÑ (E ) = 1

π
Im TrL,σ [δH G], (A7)

where TrL, σ denotes the trace over orbital (L) and spin (σ )
indices.

Consequently, the second variation of total energy could be
expressed as

δ2E = − 1

π

∫ EF

−∞
Im TrL,σ [δ2H G + δH G δH G] dE . (A8)

In order to consider the spin rotation by δφ on the level of
electron model, we should introduce the corresponding oper-
ator

Û = exp
(
i 1

2 δφ · σ̂
)
, (A9)

where σ̂ = (σ̂x, σ̂y, σ̂z ) are Pauli matrices. Providing that δφ

is small, one can perform the expansion

Û ≈ 1 + i 1
2 δφ · σ̂ − 1

8 (δφ · σ̂)2. (A10)

Then, being applied to the electronic Hamiltonian, this opera-
tor generates the first and the second variations for atom i as
follows:

δHii = �i

2

{
i δφx

i

(
0 1

−1 0

)
+ δφ

y
i

(
0 1
1 0

)}
, (A11)

δ2Hii = �i

2

(−1 0
0 1

)(
δ2φx

i + δ2φ
y
i

)
. (A12)

Thereby, the second variation of electron system reads as

δ2E = − 1

π

∫ EF

−∞
Im TrL

{
1

2

[∑
i

Trσ (δ2Hii Gii )

]

+ 1

2

[∑
j

Trσ (δ2Hj j Gj j )

]

+ 1

2

[∑
i

Trσ (δHii Gii δHii Gii )

]

+ 1

2

[∑
j

Trσ (δHj j Gj j δHj j Gj j )

]

+
[ ∑

i j, i �= j

Trσ (δHii Gi j δHj j Gji )

]}
dE , (A13)
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FIG. 10. Comparison of magnetic band structures of bcc iron calculated using the full-potential linearized augmented plane waves in LSDA
approach (black lines) and low-energy model in Wannier functions basis of spd character (green dotted lines). (Left) Spin-down states. (Right)
Spin-up states. The Fermi level corresponds to the zero energy.

where

Trσ (δ2Hii Gii )

= −1

2
�i(G

↑
ii − G↓

ii )
(
δ2φx

i + δ2φ
y
i

)
,

Trσ (δHii Gi j δHj j Gji )

= 1

4

{∑
σ

�i Gσ
i j � j G−σ

ji

}(
δφx

i δφx
j + δφ

y
i δφ

y
j

)
, (A14)

and −σ implies opposite spin direction to σ .
Finally, by matching Eq. (A13) with (A4), we come to the

following regular expressions for particular atom i and couple
i j:

δ2φx
i + δ2φ

y
i :

∑
j �=i

Ji j = 1

4π

∫ EF

−∞
Im TrL[�i(G

↑
ii − G↓

ii )] dE

− 1

8π

∫ EF

−∞
Im TrL

[∑
σ

�i Gσ
ii �i G−σ

ii

]
dE ,

(A15)

δφx
i δφx

j + δφ
y
i δφ

y
j :

Ji j = 1

8π

∫ EF

−∞
Im TrL

[∑
σ

�i Gσ
i j � j G−σ

ji

]
dE . (A16)

It is worth mentioning that there are other techniques
designed to make a correspondence between Heisenberg
Hamiltonian and the DFT calculations by means of energy
fitting [93,94] and also MFT-based one [39,54].

APPENDIX B: DFT CALCULATIONS, WANNIER
FUNCTIONS, AND TIGHT-BINDING HAMILTONIANS

Electronic properties of bcc crystal structure of iron
were simulated using an ab initio approach, where authors
first performed LSDA calculations with exchange-correlation

functional in the Perdew-Wang and Ceperley-Alder form [95]
as implemented in the ELK code [96,97]. The calculation
parameters are as follows. We used aFe = 2.71 Å lattice pa-
rameter and (20 × 20 × 20) Monkhorst-Pack k-point grid for
the integration in reciprocal space over the Brillouin zone.

Figure 10 shows the calculated spin-polarized electronic
energy spectrum of the bcc Fe. Afterwards, the “Wannier-
ization” procedure was applied to construct an effective
Hamiltonian in the basis of the maximally localized Wan-
nier functions [44] for both spin states separately, where we
projected the bands on the orbitals of s, p, and d characters
using a WANNIER90 code [98,99] and the ELK to WANNIER90
programming interface [75]. Calculated magnetic moment per
iron atom was found to be equal to 2.20 μB, which is about
experimental value [100].

FIG. 11. Comparison of nonmagnetic band structures of bcc Fe
calculated using the full-potential linearized augmented plane waves
within LDA approximation (black lines) and low-energy model in
Wannier functions basis of spd character (green dotted lines). The
Fermi level corresponds to the zero energy.
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TABLE III. Orbital-decomposed J1NN (in meV) in bcc Fe ob-
tained with LSDA, corresponding to the vector Ri j = ( 1

2 , 1
2 , 1

2 ) a.

dxy dyz dxz dx2−y2 d3z2−r2

dxy −0.371 −1.500 −1.510 0.000 2.721
dyz −1.495 −0.370 −1.499 2.031 0.675
dxz −1.503 −1.503 −0.367 2.031 0.672
dx2−y2 0.000 2.037 2.025 3.327 0.000
d3z2−r2 2.710 0.684 0.681 0.000 3.329

Since bcc Fe with partially filled d shell is a typical repre-
sentative of intermediate correlated materials [101,102], one
of the most accurate approaches to describe properties of such
a system is the combination of DFT and DMFT, where the
electronic structure information is described by DFT while the
local correlation effects are handled by DMFT [31–34].

In the DFT + DMFT scheme, we used DFT within
the local density approximation (LDA) with non-spin-
polarized [95] functional, as implemented in the ELK

code [96,97]. Here we used an experimental lattice pa-
rameter for bcc Fe of aFe = 2.86 Å and a (20 × 20 × 20)
Monkhorst-Pack k-point mesh. To perform DMFT calcula-
tions, tight-binding Hamiltonian in the basis of maximally
localized Wannier functions of spd character on a coarser
(15 × 15 × 15) k-point grid was obtained with an ELK to
WANNIER90 programming interface [75].

Figure 11 shows the LDA-derived band structure of the
nonmagnetic bcc Fe. To parametrize the LDA Hamiltonian,
we have constructed the low-energy model in the Wannier
functions basis. Using the constructed low-energy model we
have performed ferromagnetic LDA + DMFT calculations for
bcc Fe.

APPENDIX C: DMFT CALCULATIONS

DMFT equations were solved by AMULET [103] toolbox.
The segment version of hybridization expansion continuous-
time quantum Monte Carlo (CT-QMC-HYB) solver [104] was
used at T = 300 K, where we set the Coulomb interaction
parameter U equal to 2.6 eV while the Hund’s J was set as
0.9 eV [105], and appropriate double-counting (DC) correc-
tion, based on Friedel sum rule [106], was applied.

We found that the magnetic moment was stabilized at
2.20 μB per iron atom. The obtained value agrees well with
previous theoretical and experimental studies [24,100] as well

TABLE IV. Orbital-decomposed J1NN (in meV) in bcc Fe ob-
tained with LDA+DMFT, corresponding to the vector Ri j =
( 1

2 , 1
2 , 1

2 ) a.

dxy dyz dxz dx2−y2 d3z2−r2

dxy −0.752 −1.030 −1.031 0.000 2.436
dyz −1.026 −0.751 −1.027 1.815 0.598
dxz −1.027 −1.028 −0.753 1.820 0.598
dx2−y2 0.000 1.817 1.811 3.244 0.000
d3z2−r2 2.407 0.612 0.612 0.000 3.244

TABLE V. Orbital-decomposed J1NN (in meV) in bcc Fe obtained
in [84], corresponding to the vector Ri j = ( 1

2 , 1
2 , 1

2 ) a.

dxy dyz dxz dx2−y2 d3z2−r2

dxy −1.333 −1.659 −1.659 0.000 2.925
dyz −1.659 −1.333 −1.659 2.190 0.734
dxz −1.659 −1.659 −1.333 2.190 0.734
dx2−y2 0.000 2.190 2.190 3.836 0.000
d3z2−r2 2.925 0.734 0.734 0.000 3.836

as with the results of LSDA calculations, presented earlier in
this work.

The main result of the CT-QMC-HYB DMFT solver is
local self-energy 	(iωn) on the Matsubara frequencies, i.e.,
on imaginary energy grid. 	(iωn) can be interpreted as an
additional term to the LDA originated non-spin-polarized
tight-binding Hamiltonian HLDA(k) in the Wannier functions
basis (LDA + DMFT scheme) and allows to take into account
electron-electron correlations effect of an investigated system.
Hence, 	(iωn) directly defines intra-atomic spin-splitting and
Green’s functions. In this sense an additional approximation
of analytic continuation to Green’s functions and self-energies
is required if one would like to use Ji j , F , and J (q) ex-
pressions that employ real-energy axis and were previously
formulated under Eqs. (10), (16), (19), and (33). The most
celebrated approaches for such kind of continuation are Padé
approximants [107], maximum entropy method [108], and
others [109]. These approaches provide basic insight of stud-
ied quantities on real axis, but demonstrate such a drawback
as smearing some of the states [109]. The other solution is to
give an expression of formulas on the fermionic iωn energy
points. Such an approach was previously applied to Ji j [89].
Following the idea of Kvashnin et al., we can adopt our
formulas to use it on the imaginary energy axis:

Ji j = T

2

∑
n

Re TrL

[ ∑
σ

�i(iωn) Gσ
i j (iωn)

× � j (iωn) G−σ
ji (iωn)

]
, (C1)

{Ji j}αβ = T

2
Re

∑
n

{[�i(iωn) G↑
i j (iωn)]αβ

× [� j (iωn) G↓
ji(iωn)]βα

+ [�i(iωn) G↓
i j (iωn)]αβ

× [� j (iωn) G↑
ji(iωn)]βα}, (C2)

TABLE VI. Orbital-decomposed J2NN (in meV) in bcc Fe ob-
tained with LSDA, corresponding to the vector Ri j = (0, 0, 1) a.

dxy dyz dxz dx2−y2 d3z2−r2

dxy 0.555 0.000 0.000 0.000 0.000
dyz 0.000 4.982 0.000 0.000 0.000
dxz 0.000 0.000 4.960 0.000 0.000
dx2−y2 0.000 0.000 0.000 0.340 0.000
d3z2−r2 0.000 0.000 0.000 0.000 −1.835

134434-13



KASHIN, GERASIMOV, AND MAZURENKO PHYSICAL REVIEW B 106, 134434 (2022)

TABLE VII. Orbital-decomposed J2NN (in meV) in bcc Fe
obtained with LDA+DMFT, corresponding to the vector Ri j =
(0, 0, 1) a.

dxy dyz dxz dx2−y2 d3z2−r2

dxy −0.064 0.000 0.000 0.000 0.000
dyz 0.000 3.475 0.000 0.000 0.000
dxz 0.000 0.000 3.476 0.000 0.000
dx2−y2 0.000 0.000 0.000 0.436 0.000
d3z2−r2 0.000 0.000 0.000 0.000 −2.031

Fi = T
∑

n

Re TrL[�i(iωn)(G↑
ii (iωn) − G↓

ii (iωn)) ], (C3)

[J (q)]ĩ j̃ = T Nk

2

∑
n

Re TrL

( ∑
σ

∑
k

Aσ
i j (iωn, k + q)

× A−σ
ji (iωn, k)

)
, (C4)

where T is the temperature. Intra-atomic spin splitting at a
given site i then reads like

�i(iωn) = 	
↑
i (iωn) − 	

↓
i (iωn); (C5)

the intersite Green’s function between sites i and j at a given
spin σ reads like

Gσ (iωn, k) = {iωn − HLDA(k) − 	σ (iωn)}−1, (C6)

Gσ
i j (iωn) = 1

Nk

∑
k

[Gσ (iωn, k)]i j exp(−ikT i j ); (C7)

and Aσ
i j (iωn, k) in (C4) reads like

Aσ
i j (iωn, k) = 1

Nk
�i(iωn) [Gσ (iωn, k)]i j . (C8)

We should note that in the fermionic Matsubara frequencies,

TABLE VIII. Orbital-decomposed J2NN (in meV) in bcc Fe ob-
tained in [84], corresponding to the vector Ri j = (0, 0, 1) a.

dxy dyz dxz dx2−y2 d3z2−r2

dxy 0.217 0.000 0.000 0.000 0.000
dyz 0.000 4.517 0.000 0.000 0.000
dxz 0.000 0.000 4.517 0.000 0.000
dx2−y2 0.000 0.000 0.000 0.244 0.000
d3z2−r2 0.000 0.000 0.000 0.000 −1.006

where ωn = 2πT (2n + 1), the actual number of n depends on
the T used in the DMFT calculations.

APPENDIX D: CURIE TEMPERATURE AND THE
ORBITAL DECOMPOSITION OF Ji j FOR NN

AND NEXT-NN IN bcc Fe

As long as Ji [Eq. (1)] is calculated, it appears straight-
forward to perform the estimation of the Curie temperature
(TC) in bcc Fe. Indeed, in terms of mean-field approximation
(MFA) [110] one can write the simple expression for TC [38]:

kB TC = 2
3 Ji, (D1)

where kB is the Boltzmann constant. In the case of LSDA
it yields 1132 and 870 K using single [Eqs. (9) and (19)]
and pairwise [Eq. (17)] infinitesimal spin rotations technique,
correspondingly. As expected, both techniques give the same
result using LDA + DMFT scheme: TC = 895 K. Although
the numerical accordance with the experimental value of
1043 K [111] is generally debatable due to the complicated
character of magnetic picture in bcc Fe [89], the thus obtained
estimations emphasize the entire consistency of our theoreti-
cal approach, supported by the previous studies.

Investigating J1NN from Tables III, IV, and V as well as
J2NN from Tables VI, VII, and VIII, we found a good agree-
ment of obtained results with previous studies of decomposed
Ji j values of bcc Fe.

[1] G. E. Moore, Electronics 38, 114 (1965).
[2] G. E. Moore, IEEE International Electronic Devices Meeting,

1975 (IEEE, New York, 1975), p. 11.
[3] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[4] E. Pavarini (unpublished).
[5] E. Pavarini, E. Koch, F. Anders, and M. Jarrell, Correlated

Electrons: From Models to Materials (Forschungszentrum
Julich, Verlag, 2012).

[6] E. Pavarini, E. Koch, D. Vollhardt, and A. Lichtenstein,
The LDA+DMFT Approach to Strongly Correlated Materi-
als (Forschungszentrum Juülich GmbH Institute for Advanced
Simulations, Jülich, Germany, 2011).

[7] C. M. Goringe, D. R. Bowler, and E. Hernández, Rep. Prog.
Phys. 60, 1447 (1997).

[8] P. YU and M. Cardona, Fundamentals of Semiconductors:
Physics and Materials Properties, Advanced Texts in Physics,
No. 3 (Springer, Berlin, 2005).

[9] A. N. Bogdanov and U. K. Rößler, Phys. Rev. Lett. 87, 037203
(2001).

[10] P. Anderson, Mater. Res. Bull. 8, 153 (1973).
[11] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[12] E. A. Stepanov, A. Huber, E. G. C. P. van Loon, A. I.

Lichtenstein, and M. I. Katsnelson, Phys. Rev. B 94, 205110
(2016).

[13] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[14] G. H. Wannier, Phys. Rev. 52, 191 (1937).
[15] A. I. Liechtenstein, M. I. Katsnelson, and V. A. Gubanov, J.

Phys. F: Met. Phys. 14, L125 (1984).
[16] A. Liechtenstein, M. Katsnelson, V. Antropov, and V.

Gubanov, J. Magn. Magn. Mater. 67, 65 (1987).
[17] V. Antropov, M. Katsnelson, and A. Liechtenstein, Phys. B:

Condens. Matter 237-238, 336 (1997), Proceedings of the
Yamada Conference XLV, the International Conference on the
Physics of Transition Metals.

134434-14

https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1088/0034-4885/60/12/001
https://doi.org/10.1103/PhysRevLett.87.037203
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevB.94.205110
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.52.191
https://doi.org/10.1088/0305-4608/14/7/007
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1016/S0921-4526(97)00203-2


RECIPROCAL SPACE STUDY OF HEISENBERG EXCHANGE … PHYSICAL REVIEW B 106, 134434 (2022)

[18] M. I. Katsnelson and A. I. Lichtenstein, Phys. Rev. B 61, 8906
(2000).

[19] M. Katsnelson and A. Lichtenstein, J. Phys.: Condens. Matter
16, 7439 (2004).

[20] A. Machintosh and O. Andersen, Electrons at the Fermi Sur-
face (Cambridge University Press, Cambridge, 1980), p. 149.

[21] M. Methfessel and J. Kubler, J. Phys. F: Met. Phys. 12, 141
(1982).

[22] V. Antropov, B. Harmon, and A. Smirnov, J. Magn. Magn.
Mater. 200, 148 (1999).

[23] P. A. Igoshev, A. V. Efremov, and A. A. Katanin, Phys. Rev. B
91, 195123 (2015).

[24] Y. O. Kvashnin, R. Cardias, A. Szilva, I. Di Marco, M. I.
Katsnelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau,
and O. Eriksson, Phys. Rev. Lett. 116, 217202 (2016).

[25] A. S. Belozerov, A. A. Katanin, and V. I. Anisimov, Phys. Rev.
B 96, 075108 (2017).

[26] I. V. Kashin, S. N. Andreev, and V. V. Mazurenko, J. Magn.
Magn. Mater. 467, 58 (2018).

[27] D. R. Hartree, Math. Proc. Cambridge Philos. Soc. 24, 111
(1928).

[28] V. Fock, Z. Phys. 61, 126 (1930).
[29] V. Fock, Eur. Phys. J. A 62, 795 (1930).
[30] A. Alavi, H. Alloul, R. Eder, M. Foulkes, C. Hess, E. Koch,

A. Läuchli, F. Manghi, E. Pavarini, L. Reining, R. Scalettar,
G. Sawatzky, J. van den Brink, and D. van der Marel, Quan-
tum Materials: Experiments and Theory (Forschungszentrum
Juülich GmbH Institute for Advanced Simulations, Jülich,
Germany, 2016).

[31] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[32] A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
[33] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[34] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.

Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865
(2006).

[35] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[36] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[37] K. Yosida, Phys. Rev. 106, 893 (1957).
[38] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno,

Phys. Rev. B 64, 174402 (2001).
[39] H. Yoon, T. J. Kim, J.-H. Sim, S. W. Jang, T. Ozaki, and M. J.

Han, Phys. Rev. B 97, 125132 (2018).
[40] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[41] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

[42] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B
44, 943 (1991).

[43] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[44] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.

Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012).
[45] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[46] A. Lichtenstein, Magnetism: From Stoner to Hubbard

(Forschungszentrum Juülich GmbH Institute for Advanced
Simulations, Jülich, Germany, 2013).

[47] I. Kashin, V. Mazurenko, M. Katsnelson, and A. Rudenko, 2D
Mater. 7, 025036 (2020).

[48] V. V. Mazurenko, Y. O. Kvashnin, A. I. Lichtenstein, and M. I.
Katsnelson, J. Exp. Theor. Phys. 132, 506 (2021).

[49] M. I. Katsnelson, Y. O. Kvashnin, V. V. Mazurenko, and A. I.
Lichtenstein, Phys. Rev. B 82, 100403(R) (2010).

[50] V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, G.
Nisbet, G. Beutier, Y. O. Kvashnin, V. V. Mazurenko, A. I.
Lichtenstein, and M. I. Katsnelson, Nat. Phys. 10, 202 (2014).

[51] S.-T. Pi, S. Y. Savrasov, and W. E. Pickett, Phys. Rev. Lett.
122, 057201 (2019).

[52] X. Wan, T. A. Maier, and S. Y. Savrasov, Phys. Rev. B 79,
155114 (2009).

[53] M. J. Han, Q. Yin, W. E. Pickett, and S. Y. Savrasov, Phys.
Rev. Lett. 102, 107003 (2009).

[54] X. He, N. Helbig, M. J. Verstraete, and E. Bousquet, Comput.
Phys. Commun. 264, 107938 (2021).

[55] I. V. Solovyev, I. V. Kashin, and V. V. Mazurenko, Phys. Rev.
B 92, 144407 (2015).

[56] H. Okumura, K. Sato, and T. Kotani, Phys. Rev. B 100, 054419
(2019).

[57] T. Fukazawa, H. Akai, Y. Harashima, and T. Miyake, J. Magn.
Magn. Mater. 469, 296 (2019).

[58] I. V. Solovyev and K. Terakura, Phys. Rev. Lett. 82, 2959
(1999).

[59] I. V. Solovyev and K. Terakura, Phys. Rev. B 58, 15496
(1998).

[60] M. Modarresi, A. Mogulkoc, Y. Mogulkoc, and A. N.
Rudenko, Phys. Rev. Appl. 11, 064015 (2019).

[61] V. V. Mazurenko, A. O. Shorikov, A. V. Lukoyanov, K.
Kharlov, E. Gorelov, A. I. Lichtenstein, and V. I. Anisimov,
Phys. Rev. B 81, 125131 (2010).

[62] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).

[63] R. Logemann, A. N. Rudenko, M. I. Katsnelson, and A.
Kirilyuk, J. Phys.: Condens. Matter 29, 335801 (2017).

[64] I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. Lett. 76,
4825 (1996).

[65] I. Solovyev, N. Hamada, and K. Terakura, Phys. Rev. B 53,
7158 (1996).

[66] P. Werner and A. J. Millis, Phys. Rev. Lett. 99, 126405 (2007).
[67] C. S. Wang, B. M. Klein, and H. Krakauer, Phys. Rev. Lett.

54, 1852 (1985).
[68] K. Terakura, A. R. Williams, T. Oguchi, and J. Kübler, Phys.

Rev. Lett. 52, 1830 (1984).
[69] K. Terakura, T. Oguchi, A. R. Williams, and J. Kübler, Phys.

Rev. B 30, 4734 (1984).
[70] A. A. Dyachenko, A. O. Shorikov, A. V. Lukoyanov, and V. I.

Anisimov, JETP Lett. 96, 56 (2012).
[71] A. Droghetti, C. D. Pemmaraju, and S. Sanvito, Phys. Rev. B

78, 140404(R) (2008).
[72] J. M. Rondinelli, N. M. Caffrey, S. Sanvito, and N. A. Spaldin,

Phys. Rev. B 78, 155107 (2008).
[73] S. K. Panda, P. Thunström, I. D. Marco, J. Schött, A. Delin,

I. Dasgupta, O. Eriksson, and D. D. Sarma, New J. Phys. 16,
093049 (2014).

[74] A. O. Shorikov, S. V. Streltsov, and M. A. Korotin, JETP Lett.
102, 616 (2015).

[75] A. Gerasimov, L. Nordström, S. Khmelevskyi, V. Mazurenko,
and Y. Kvashnin, J. Phys.: Condens. Matter 33, 165801 (2021).

[76] A. S. Belozerov and V. I. Anisimov, J. Phys.: Condens. Matter
28, 345601 (2016).

[77] S. Y. Savrasov and G. Kotliar, Phys. Rev. Lett. 90, 056401
(2003).

134434-15

https://doi.org/10.1103/PhysRevB.61.8906
https://doi.org/10.1088/0953-8984/16/41/023
https://doi.org/10.1088/0305-4608/12/1/013
https://doi.org/10.1016/S0304-8853(99)00425-4
https://doi.org/10.1103/PhysRevB.91.195123
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevB.96.075108
https://doi.org/10.1016/j.jmmm.2018.07.032
https://doi.org/10.1017/S0305004100011920
https://doi.org/10.1007/BF01340294
https://doi.org/10.1007/BF01330439
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.45.6479
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.97.125132
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1088/2053-1583/ab72d8
https://doi.org/10.1134/S1063776121040178
https://doi.org/10.1103/PhysRevB.82.100403
https://doi.org/10.1038/nphys2859
https://doi.org/10.1103/PhysRevLett.122.057201
https://doi.org/10.1103/PhysRevB.79.155114
https://doi.org/10.1103/PhysRevLett.102.107003
https://doi.org/10.1016/j.cpc.2021.107938
https://doi.org/10.1103/PhysRevB.92.144407
https://doi.org/10.1103/PhysRevB.100.054419
https://doi.org/10.1016/j.jmmm.2018.08.071
https://doi.org/10.1103/PhysRevLett.82.2959
https://doi.org/10.1103/PhysRevB.58.15496
https://doi.org/10.1103/PhysRevApplied.11.064015
https://doi.org/10.1103/PhysRevB.81.125131
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1088/1361-648X/aa7b00
https://doi.org/10.1103/PhysRevLett.76.4825
https://doi.org/10.1103/PhysRevB.53.7158
https://doi.org/10.1103/PhysRevLett.99.126405
https://doi.org/10.1103/PhysRevLett.54.1852
https://doi.org/10.1103/PhysRevLett.52.1830
https://doi.org/10.1103/PhysRevB.30.4734
https://doi.org/10.1134/S002136401213005X
https://doi.org/10.1103/PhysRevB.78.140404
https://doi.org/10.1103/PhysRevB.78.155107
https://doi.org/10.1088/1367-2630/16/9/093049
https://doi.org/10.1134/S0021364015210110
https://doi.org/10.1088/1361-648X/abdfff
https://doi.org/10.1088/0953-8984/28/34/345601
https://doi.org/10.1103/PhysRevLett.90.056401


KASHIN, GERASIMOV, AND MAZURENKO PHYSICAL REVIEW B 106, 134434 (2022)

[78] S. N. Iskakov, V. V. Mazurenko, M. V. Valentyuk, and A. I.
Lichtenstein, Phys. Rev. B 92, 245135 (2015).

[79] V. V. Mazurenko, S. N. Iskakov, A. N. Rudenko, I. V. Kashin,
O. M. Sotnikov, M. V. Valentyuk, and A. I. Lichtenstein, Phys.
Rev. B 88, 085112 (2013).

[80] K. Haule, Phys. Rev. Lett. 115, 196403 (2015).
[81] E. A. Stepanov, S. Brener, F. Krien, M. Harland, A. I.

Lichtenstein, and M. I. Katsnelson, Phys. Rev. Lett. 121,
037204 (2018).

[82] E. A. Stepanov, A. Huber, A. I. Lichtenstein, and M. I.
Katsnelson, Phys. Rev. B 99, 115124 (2019).

[83] E. A. Stepanov, S. Brener, V. Harkov, M. I. Katsnelson,
and A. I. Lichtenstein, Phys. Rev. B 105, 155151
(2022).

[84] R. Cardias, A. Szilva, A. Bergman, I. Marco, M. Katsnelson,
A. Lichtenstein, L. Nordström, A. Klautau, O. Eriksson, and
Y. Kvashnin, Sci. Rep. 7, 4058 (2017).

[85] H. Wang, P.-W. Ma, and C. H. Woo, Phys. Rev. B 82, 144304
(2010).

[86] A. Jacobsson, B. Sanyal, M. Ležaić, and S. Blügel, Phys. Rev.
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[110] E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, Phys. Rev. B 70,

024427 (2004).
[111] Y. Touloukian, R. Kirby, R. Taylor, and P. Desai, Thermal

Expansion: Thermophysical Properties of Matter (Plenum,
New York, 1975), Vol. 12.

134434-16

https://doi.org/10.1103/PhysRevB.92.245135
https://doi.org/10.1103/PhysRevB.88.085112
https://doi.org/10.1103/PhysRevLett.115.196403
https://doi.org/10.1103/PhysRevLett.121.037204
https://doi.org/10.1103/PhysRevB.99.115124
https://doi.org/10.1103/PhysRevB.105.155151
https://doi.org/10.1038/s41598-017-04427-9
https://doi.org/10.1103/PhysRevB.82.144304
https://doi.org/10.1103/PhysRevB.88.134427
http://arxiv.org/abs/arXiv:1702.00599
https://doi.org/10.1080/14786430500504048
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1038/s41524-020-00458-5
https://doi.org/10.1103/PhysRevB.96.144413
https://doi.org/10.1103/PhysRevB.103.014432
https://doi.org/10.1038/s41699-021-00233-0
https://doi.org/10.1103/PhysRevB.45.13244
http://elk.sourceforge.net
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1103/PhysRevLett.71.4067
https://doi.org/10.1088/0953-8984/11/4/011
http://amulet-code.org
https://doi.org/10.1103/RevModPhys.83.349
https://doi.org/10.1103/PhysRevB.15.2974
https://doi.org/10.1103/PhysRevB.77.205112
https://doi.org/10.1007/BF00655090
https://doi.org/10.1103/PhysRevB.57.10287
https://doi.org/10.1103/PhysRevB.93.075104
https://doi.org/10.1103/PhysRevB.70.024427

