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Fractalized magnon transport on a quasicrystal with enhanced stability
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Magnonics has been receiving significant attention in magnetism and spintronics because of its premise for
devices using spin current carried by magnons, the quanta of spin-wave excitations of macroscopically ordered
magnetic media. Although magnonics has a clear energywise advantage over conventional electronics due to the
absence of Joule heating, inherent magnon-magnon interactions give rise to a finite lifetime of magnons, which
has been hampering the efficient realization of magnonic devices. To promote magnonics, it is imperative to
identify the delocalized magnon modes that are minimally affected by magnon-magnon interactions and thus
possess a long lifetime and use them to achieve efficient magnon transport. Here, we suggest that quasicrystals
may offer the solution to this problem via critical magnon modes that are neither extended nor localized. We find
that a critical magnon exhibits fractal characteristics that are absent in conventional magnon modes in regular
solids such as a unique power-law scaling and a self-similar distribution of distances showing perfect magnon
transmission. Moreover, critical magnons have longer lifetimes compared to the extended ones in a periodic
system, by suppressing the magnon-magnon interaction decay rate. Such an enhancement of the magnon stability
originates from the presence of the quasiperiodicity and intermediate localization behavior of critical magnons.
Thus, we offer the utility of quasicrystals and their critical spin-wave functions in magnonics as unique fractal
transport characteristics and enhanced stability.

DOI: 10.1103/PhysRevB.106.134431

I. INTRODUCTION

Magnonics is an emerging field in magnetism that concerns
various applications of magnons, the quanta of spin-wave
excitations of ordered magnets, in storing, transporting, and
processing information [1–4]. Unlike traditional electronics
where the information is carried by electric charges and thus
the corresponding information transport generally gives rise to
a finite-energy dissipation through Joule heating, magnonics
are free from such Ohmic dissipation since the information is
carried by magnons that are electrically neutral [5,6]. Because
of this practical benefit, magnon transport has been gain-
ing extensive interest from researchers in magnetism [7,8].
Despite such advantages, however, it is still a challenge to
improve their lifetime and diffusion length scale [9–11]. Typ-
ically, magnons have a finite lifetime of about ns to μs,
which is mainly governed by magnon-magnon interactions,
magnon-phonon interactions, disorder effects, and, in itiner-
ant magnets, magnon-electron interactions [12–15]. A long
lifetime is generally required to achieve long-distance spin
transport, a high-quality factor of magnetic resonators, and
also to integrate magnons in quantum information technology
[16,17]. Hence, enhancing the lifetime of magnons is a crucial
step to advance magnonics with potential applications [17].

To enhance the lifetime of magnons, it is imperative to
establish new magnon characteristics distinct from conven-
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tional ones. Here, as a strategy, we suggest a unique solid-state
device made of magnetic quasicrystals and discuss their
magnonic behavior. Unlike ordinary periodic systems having
a unit length scale, quasicrystals refer to ordered but not peri-
odic systems [18,19]. Due to the absence of a periodic length
scale, the magnon exhibits distinct wave functions resulting in
anomalous transport [20–25]. More specifically, in a conven-
tional periodic system, there are two different types of wave
functions; extended and localized states. First, a localized
wave function would not decay in the presence of a pertur-
bative interaction. This is because it exponentially decays in
space, and hence the opportunity to interact with other states
becomes negligible [1–3,26]. However, a localized wave func-
tion cannot be used in transport [27]. On the other hand,
extended states contribute to transport but they could widely
experience a decay process by magnon-magnon interactions.
Hence, there is the dilemma of choosing an extended magnon
or localized magnon for efficient spin transport. To circumvent
this dilemma in conventional magnetic crystals, we suggest
magnetic quasicrystals and their unique quantum states orig-
inating from exotic quasiperiodic ordering, which are known
as critical states, as alternative spin carriers with an enhanced
lifetime. Importantly, unlike conventional crystals, quasicrys-
tals can admit a unique eigenstate, a so-called critical state
described as neither extended nor localized but power-law
decaying with a nontrivial fractal structure [28,29]. Thus, one
may expect that such a critical magnon state can be used to
transport with an enhanced lifetime as compared to ordinary
extended magnons.

In this paper, we provide unique fractal spin-wave
transport characteristics and lifetime enhancement under
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quasiperiodically arranged magnetic media. We employ a Fi-
bonacci quasicrystal as the magnetic media whose quasiperi-
odicity is encoded in the ratio of two different ferromagnetic
XY exchange interactions, which we denote by JA and JB

[30–34]. We analytically obtain spin-wave transmittance in
the quasicrystal and clarify its nontrivial fractal character-
istics. It turns out that critical spin transport exhibits a
power-law decaying behavior, whose power could be con-
trollable in terms of the strength of the quasiperiodicity.
Surprisingly, a perfect spin-wave transmittance occurs at a
certain set of length scales, which by themselves exhibit self-
similarity. Furthermore, we show that the decay rates of the
critical magnons are largely suppressed compared to the case
of extended magnons in a periodic limit and this results in an
enhancement of the magnon lifetime. Our work shows that the
critical magnons of the quasicrystals could be a candidate for
a stable magnetic information carrier in magnonics.

II. FRACTAL SPIN WAVE AND ANOMALOUS TRANSPORT

Let us consider the ferromagnetic XY spin chain of a qua-
sicrystal under a strong magnetic field along the z direction,
h. The Hamiltonian is given by

H = 1

2

N−1∑
i=1

Ji,i+1(S+
i S−

i+1 + S+
i+1S−

i ) + h
N∑

i=1

Sz
i , (1)

where Ji,i+1, the exchange interaction between spins at the ith
site and the (i + 1)th site, is arranged quasiperiodically (see
the green region in Fig. 1) [30–32]. The total number of sites
is N and S+/−

i is the spin raising/lowering operator at the ith
site.

Before discussing anomalous spin-wave transport in a fer-
romagnetic quasicrystalline magnet, we first characterize the
spectrum within the linearized spin-wave theory. Note that the
Holstein-Primakoff (HP) transformations map the spin opera-
tors to the bosonic operators b̂i, b̂†

i as S+
i = √

2S − mib̂i, S−
i =

b̂†
i

√
2S − mi, Sz

i = S − m̂i with the magnon number operator
mi = b̂†

i b̂i [35]. After the HP transformation, the leading term
of Eq. (1) is equivalent to the tight-binding model of bosons
with a uniform potential energy h(NS − 1) per site that has a
sublattice symmetry. In detail, the quadratic Hamiltonian H2

is given by

H2 = S

2

N−1∑
i=1

(b̂†
i Ji,i+1b̂i+1 + H.c.) + h

N∑
i=1

(S − mi ). (2)

Here, the sublattice symmetry is given by sets of even and odd
sites since we take into account the nearest-neighbor interac-
tion only. Thus, the magnon dispersion should be symmetric
in energy with respect to the uniform potential energy [27].
Throughout the paper, we consider odd N cases, where the
energy h(NS − 1) is exactly in the middle of the spectrum,
and thus we term it as the middle energy.

The middle-energy magnon mode could be more rele-
vant in magnon-based spin transport than low-energy magnon
modes for the following reason. Note that to implement
efficient spin-wave transport, we need a sufficiently large
group velocity of the magnon mode [36]. However, the low-
energy magnon modes generally have small group velocities

compared to the middle-energy magnon mode. Thus, in this
work, we consider the transport characteristics of middle-
energy magnons, which can be probed by nonlocal spin-wave
spectroscopy experiments as demonstrated in Refs. [37–39].
Nevertheless, in a Fibonacci quasicrystal [40], the low-energy
magnon modes, especially the ground state, have similar lo-
calization characteristics such as a self-similar structure and a
power-law decaying which we will discuss. Hence, our results
could be also applicable for low-energy magnon modes. See
Appendix C for detailed information about the lowest-energy
magnon mode.

The middle-energy magnon mode is exactly solvable
as follows [29]. For a magnon mode with the energy
given by h̄(NS − 1), the Schrödinger equation is written
as Ji+1,i+2ψ (i + 2) + Ji,i+1ψ (i) = 0, where ψ (x) = 〈�|b̂x|ψ〉
represents the middle-energy magnon mode |ψ〉 and |�〉 is the
magnon vacuum. Thus, the middle magnon state is generally
written as

ψ (2i + 1) = ψ (1)
i∏

k=1

(
−J2k−1,2k

J2k,2k+1

)
. (3)

For a periodic limit where Ji,i+1 = J , the state is uniform,
and hence represents an extended state. If two exchange co-
efficients JA and JB are periodically alternating such as in an
“ABABAB” manner, then the product in Eq. (3) blows up or
collapses as n increases for JA > JB or JA < JB, respectively.
Thus, the middle-energy magnon is localized at either i = 1
or i = N , respectively. Note that such a localization mode is
equivalent to the zero-energy mode of the Su-Shrieffer-Heeger
model [41].

On the other hand, in quasicrystals where JA and JB

are quasiperiodically arranged, the spatial distribution of the
middle-energy magnon mode exhibits a nontrivial fractal
structure [28,29]. In detail, let κ = log ρ with ρ = JA/JB be
the strength of the quasiperiodicity. For the pattern-dependent
function a defined by a(AB) = 1, a(BA) = −1, and a(AA) =
a(BB) = 0 for the local patterns AB, BA, AA, and BB, the wave
function on the (2n + 1)th site is given by

ψ (2n + 1) = (−1)nψ (1)eκH (n). (4)

Here, H (n) is known as the height field given by H (n) =∑2n−1
i=1 a(w[2i−1,2i+1]), where w[x,y] is the local pattern from

site x to site y [29]. H (n) is pattern dependent, thus, the
middle state given by Eq. (4) is also pattern dependent whose
dependency is controlled by the strength of the quasiperiod-
icity, κ . Moreover, the transmittance is invariant under the
exchange of A, B links which would be encoded by κ → −κ

and H (n) → −H (n). Thus, the spin-wave function and the
characteristics of magnon transport in a quasicrystal are solely
determined by the variation of the height field.

For a concrete example, let us consider a Fibonacci
quasicrystal where the quasiperiodic pattern resides in two
distinct links A, B. In particular, a Fibonacci quasicrystal is
generated by successive substitution maps A → AB and B →
A, thus giving rise to A → AB → ABA → ABAAB, and so
on [19,42]. The height field oscillates around zero in the
Fibonacci quasicrystal (see Appendix B), and hence its mean
value vanishes [24]. However, the variation of the height
field would be nontrivial due to the quasiperiodicity of the
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FIG. 1. The schematic experimental setup for spin-wave trans-
port [Eq. (1)]. The two blue regions represent identical semi-infinite
periodic leads with a uniform exchange magnitude J . The green re-
gion is the quasicrystal having quasiperiodically arranged exchanges
JA and JB. Each red circle represents an identical magnetic atom. The
direction and width of the blue arrows on the blue regions represent
the direction of spin-wave transport and the amplitudes of spin waves
at specific regions, respectively. For magnon transport, we generate
a plane spin wave on the left infinity at the specific energy mode.

Fibonacci tiling pattern. Figure 2(a) illustrates the variation
of the height field, Var(H )(n) = ∑

l�n |H (l )|2/n. This shows
that the variation of the height field Var(H )(n) has the scal-
ing behavior Var(H )(n) ∼ log(n) [24,29]. Such logarithmic
scaling behavior with self-similarity gives rise to the middle-
energy critical state as shown in Fig. 2(b). In addition, the
shape of the wave function is robust against small fluctuations
on the JA and JB values. Thus, our following discussions about
the unique spin-wave transport characteristics are applicable
even for the case in the presence of a disorder effect. See
Appendix D for detailed information.

A. Anomalous scaling of magnon transmittance

To discuss the unique spin-wave transport characteristics
in magnetic quasicrystals, let us consider a setup where a
quasicrystalline magnet is placed between two semi-infinite
periodic spin chains as shown in Fig. 1. We generate a spin
wave propagating from the left to the right as represented by
the blue arrows in Fig. 1. As passing through the quasicrystal
region (green region in Fig. 1), the amplitude of the spin wave
would be changed.

From the Pichard formula, the transmittance is given in
terms of the eigenvalues of the transfer matrix [43]. In par-

FIG. 2. (a) Logarithmic scaling behavior of the variation of a
height field Var(H )(n) given by

∑
l�n |H (l )|2/n, where the argument

n indicates the (2n + 1)th site. (b) The spatial profile of the middle-
energy state [Eq. (3)] which is the critical state having a power-law
scaling and self-similar structures. The inset shows the self-similar
structure of the spatial profile by zooming in from the 20 000th site
to the 32 000th site region. Here, ρ = JA/JB = 0.6 and the system
size N = 196 419.

ticular, if we generate a middle-energy magnon plane wave
from the left side, then the transmittance at the (2n + 1)th site
is given by [24,29]

T2n+1 = sech2[κH (n)]. (5)

If H (n) is a linear function, then the transmittance is ex-
ponentially decaying. For a zero height field in a periodic
system, the transmittance becomes uniformly perfect. How-
ever, a nontrivial height field in quasicrystals leads to the
unique characteristics of magnon transmittance.

First, since the typical H (n) behaves as
√

log(n) in a
Fibonacci quasicrystal, magnon transmittance decays much
slower than the exponential decays. One can estimate the local
dominant power α(n) ≡ − log(T2n+1)/ log(2n) of the trans-
mittance. It indicates the power-law decaying of the trans-
mittance for the length of the system 2n. By using Eq. (5),
we note that α(n) is a decreasing function bounded by 0 �
α(n) � κ2. Hence, the most dominant decaying power α(n)
is spatially dependent and upper bounded by the strength of
the quasiperiodicity. Specifically, for stronger quasiperiodic-
ity, the decaying power becomes larger and the transmittance
decreases faster. Thus, the strength of quasiperiodicity con-
trols the decay-rate power-law exponent of the transmittance.

B. Self-similar spin-wave transport signals

Now let us consider the case of a strong quasiperiodicity
limit given by κ → ∞. From Eq. (5), the transmittance van-
ishes except in the case of vanishing height field, H (n) = 0.
Hence, the spin-wave signals appear only for these special
sets of positions having a zero height field. The number of
sites having a perfect transmittance grows as the system size
increases (see Appendix B). Nevertheless, their distribution
would exhibit a nontrivial fractality as the self-similar distri-
bution of the height field. Figure 3 shows the transmittance
distributions for a strong quasiperiodic limit. Interestingly,
the positions showing perfect transmittance for any κ form
a self-similar structure themselves. Specifically, the yellow
regions in Fig. 3 exhibit a self-similar structure.

To quantify the fractality in the distribution of perfect
transmittance, we compute its Hausdorff dimension [44]. Let
q be the number of intervals whose length R is needed to
cover the region where perfect transmittance appears. Then,
the Hausdorff dimension is given by DF = − ∂ (log q)

∂ (log R) [45]. The
absence of fractality gives trivial Hausdorff dimensions, 0 or
1. On the other hand, the distribution of prefect transmittance
gives a nontrivial Hausdorff dimension, DF ≈ 0.9034. Fig-
ure 3(d) illustrates the nontrivial Hausdorff dimension of the
distribution of sites having perfect transmittance.

III. DECAY-RATE SUPPRESSION IN QUASICRYSTALS

For magnon applications, the stability of magnons with a
long lifetime is one of the most important issues [1–3,17].
Generally, the magnon modes have a finite lifetime originating
from various decaying process such as magnon-magnon or
magnon-phonon interactions [12–15]. Particularly, we focus
on how the magnon-magnon interaction affects the stability
of the critical magnon mode in a Fibonacci quasicrystal. To
explore the multimagnon interaction, the higher-order terms
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FIG. 3. Self-similar distribution of sites having perfect transmit-
tance [Eq. (5)] in a Fibonacci quasicrystal in the limit of strong
quasiperiodicity κ → ∞, where the transmittance at a specific site
has a value of either 0 or 1. Each panel shows n (a) from 0 to 10 000,
(b) from 4000 to 6000, and (c) from 4800 to 5200 by zooming in
five times. The yellow shaded regions exhibit a self-similar pattern
of the distribution of perfect transmittance. (d) The nontrivial Haus-
dorff dimension DF = 0.9034 indicates the presence of fractality of
the distribution of sites having perfect transmittance in a Fibonacci
quasicrystal. q is the number of intervals whose length R is needed
to cover the region where perfect transmittance appears.

of HP transformations are considered [3,35]. At fourth order,
the HP transformation of Eq. (1) gives rise to

H4 = S
N−1∑
i=1

Ji,i+1

(
1

4
b̂†

i (mi + mi+1)b̂i+1 + H.c.

)
. (6)

The Hamiltonian commutes with the total magnon num-
ber operator N̂ = ∑N

i=1 mi, i.e., [H, N̂ ] = 0. Therefore, H4

leads to the two-magnon interaction preserving the number of
magnons in a ferromagnetic system.

From the Fermi’s golden rule, the decay rate � originating
from H4 is given by

�i→{ f } = 2π

h̄

∑
f

|〈 f |H4|i〉|2ρ2(E f ). (7)

Here, ρ2(E f ) is the two-particle density of states (DOS) for
the total energy E f . |i〉 and | f 〉 are the initial and final states
and their energies are the same, E f = Ei. Such four-magnon
scattering is important to understand the intrinsic damping of
magnons for systems where the magnon number is conserved
and therefore three-magnon scattering is absent [11,46].

Because of the energy conservation during the decay, if
there is no | f 〉 
= |i〉 state such that E f = Ei, the decay rate
in Eq. (7) vanishes. To avoid such trivial cases, we consider
the case where the number of possible final states is max-
imized. Since a linearized bare Hamiltonian has sublattice
symmetry, there are (N + 1)/2 many particle-hole pairs of
magnon modes whose energies are E±(ε) = h(NS − 1) ± ε,
and hence the total energy is the middle energy. Thus, in
general, if we consider the two-particle sector of bosonic Fock

FIG. 4. Decay rate � as the function of the strength of the
quasiperiodicity, κ . The strength of the quasiperiodicity increases as
deviating from the periodic limit, κ = 0. As increasing the strength
of the quasiperiodicity, the decay rate is suppressed. The initial
and final states in the considered decaying processes are given by
|i〉 = 1√

2
(b̂†

E0
)2 |�〉 and | f 〉 = b̂†

E+ b̂†
E− |0〉 with E± 
= E0, where E0 is

the middle energy. The considered system size is N = 10 947.

space, the middle-energy subspace has a maximal degeneracy
with respect to the linearized bare Hamiltonian.

Let us consider the decay of two middle-energy magnon
modes. The initial and final states are given by |i〉 =

1√
2
(b̂†

E0
)2 |�〉 and | f 〉 = b̂†

E+ b̂†
E− |0〉 unless E± 
= E0, the mid-

dle energy. Here, b̂†
ε is the bosonic creation operator for an

energy eigenstate with energy ε of the bare Hamiltonian. To
capture the effect of the quasiperiodicity rather than the mere
magnification of the interaction strength, we keep the total
magnitude of the exchange interaction strength which appears
directly in the decaying rate in Eq. (7). In detail, we keep∑N−1

i=1 Ji,i+1 constant with N − 1 the number of the links so
that the average exchange interaction strength is J . When the
numbers of A and B types of links are NA and NB, respectively,
the proper JA and JB are JB = J (ρNA + NB)−1 and JA = ρJB

for a given strength of the quasiperiodicity, ρ [47].
On the other hand, the two-particle DOS at the total energy

window [E , E + dE ] is given by ρ2(E ) = ∫ Emax

Emin
ρ1(ε)ρ1(E −

ε)dε, where ρ1(ε) is the one-particle DOS at the energy
window [ε, ε + dε]. In our case, E = 2E0, where E0 is
the middle energy. For one-particle DOS, we use the local
density of states (LDOS) which is given by LDOS(i, ε) =
−∑

k Im( |V (i,k)|2
εk−ε+i0+ ). Here, the unitary matrix V is given by

H2 = V DV † with the diagonal matrix D, V (i, k) is the (i, k)
element of the unitary matrix V , and εk is the energy of the
kth energy level of H2. Then, the total single-particle DOS for
the energy window [ε, ε + dε] is given by the spatial trace of
LDOS.

Figure 4 shows how the decay rate changes in the presence
of quasiperiodicity. As a function of quasiperiodicity κ , the
decay rate � is suppressed. Here, the system size N = 10 947
for each ρ = JA/JB. The decay rate � is maximized for a
uniformly periodic limit where JA = JB. For the periodic limit,
the initial states are both extended states, while for all other
cases where ρ 
= 1, the initial states are both critical states.
Since the critical states have an intermediate spatial distri-
bution, neither extended nor localized, they also admit the
intermediate decay rate between the extended and localized
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states. Thus, the magnon decay rate of the critical state be-
comes smaller than the case of the extended state.

Note that the two-particle DOS, ρ2(E ), also contributes to
the decay rate. Since the quasiperiodicity makes the energy
spectrum flatten and creates many gaps known as a fractal
spectrum, the DOS would increase in quasicrystals [28]. Nev-
ertheless, the decay rate is suppressed. Hence, we conclude
that the magnons at the middle energy have a longer lifetime
due to their fractal spatial distribution as critical states.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have established self-similar spin-wave
transport with enhanced stability in quasicrystals. Focusing on
the critical magnon state at the middle of the spectrum, we
have demonstrated that spin-wave transport is neither uniform
nor exponentially decaying. Instead, it shows a power-law
decaying behavior. In addition, we have shown that a magnetic
quasicrystal can admit perfect transmittance at a special set of
lengths. The distribution of such sites for perfect transmittance
is independent on the strength of the quasiperiodicity, and
exhibits a self-similar structure with a nontrivial Hausdorff
dimension. Furthermore, we have shown that critical magnons
are more stable under a magnon-magnon interaction com-
pared to the conventional periodic case, resulting in a longer
lifetime. Our findings suggest that the critical magnon states
in magnetic quasicrystals may serve as long-lifetime spin car-
riers that are required to advance magnonics. The effects of
other factors on the magnon lifetime such as magnon-phonon
interactions and impurities in quasicrystals would be interest-
ing future work.

Our work shows that magnetic quasicrystals can offer
magnons with unusual characteristics that cannot be found in
traditional magnetic crystals. It leads us to speculate that they
might provide useful functionalities as well in current-driven
spintronics, exhibiting, e.g., certain special forms of spin-
transfer torque or spin-orbit torque that are hard to achieve
with periodic magnetic systems [17,48–50]. More generally,
we believe that magnetic quasicrystals would enrich the mate-
rial library of magnonics and spintronics and thereby facilitate
the advancement of both fields.
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APPENDIX A: HEIGHT FIELD AND ITS SIGNIFICANCE
IN A PARTICLE-HOLE SYMMETRIC SYSTEM

In this Appendix, we introduce how the height field sig-
nificantly characterizes the localization characteristics of the
middle-energy state in a particle-hole symmetric system. Al-
though we exemplify the two kinds of the links, say A and
B, it can be generalized to a system involving more various
types of links, say A, B, C, and so on. The height field

H (n) for a system whose length is 2n is defined by H (n) =∑2n−1
i=1 a(w[2i−1,2i+1]), where w[x,y] is the local pattern from

site x to site y. Here, a is the local pattern-dependent function
defined by a(AB) = 1, a(BA) = −1, and a(AA) = a(BB) = 0
for the local patterns AB, BA, AA, and BB. Importantly, the
height field is not a local quantity since it is summed over
the whole tiling. Thus, the local changes do not change the
characteristics of the height field. In terms of the tiling space
topology, the height field is indeed the cohomological quantity
of the pattern-equivariant topology. See Refs. [24,40] for de-
tailed information on the topological robustness of the height
field.

Let us consider a tight-binding model with nearest-
neighbor (nn) hoppings which has sublattice symmetry or
particle-hole symmetry. The sublattice is given by a set of odd
sites (say α) and even sites (say β). Then, the Hamiltonian
Hnn would be written as Hnn = ∑

i∈α, j∈β,〈i, j〉 ti j (c
†
i c j + H.c.)

and the sublattice symmetry operator � is given by � =∑
i∈α c†

i ci − ∑
j∈β c†

j c j , where ci is the creation and annihi-
lation operator at the ith site of either a fermionic or bosonic
one. Here, 〈i, j〉 is a pair of nearest-neighboring sites. Note
that �Hnn� = −Hnn, which indicates that if the energy E is
in the spectrum of Hnn, then −E is also in the spectrum.

Now let us consider the zero-energy or middle-energy
state. From the Schrödinger equation for this energy, Hnnψ =
0, we have the recursion relationship

ti+1,i+2ψ (i + 2) + ti,i+1ψ (i) = 0, (A1)

where ψ (i) = 〈�|ci|ψ〉 is the zero-energy wave function. We
solve the recursion relationship which results in a zero-energy
wave function in terms of the height field. Specifically,

ψ (2n + 1) = (−1)nψ (1)ρH (n), (A2)

where ρ = tA/tB. Here, tA and tB are the hopping magnitudes
for the A link and B link, respectively. Hence, the grow-
ing behavior of the height field determines the localization
characteristics of the middle-energy mode in the particle-hole
symmetric center. In the main text, we have already discussed
the trivial examples for a uniformly periodic limit [H (n) = 0
or ρ = 1] and alternating periodic limit where H (n) is linearly
growing, thus the state is localized. As a nontrivial example
where the height field grows logarithmically by oscillating
around the zero, we have introduced the Fibonacci quasicrys-
tal which is generated by the substitution maps A → AB and
B → A. In addition to these examples, we give two other
nonperiodic cases: Silver-mean and the Cantor-set tilings.
These tilings are generated by the substitution maps for two
links A and B that are given by (silver-mean) A → AAB and
B → A and (Cantor-set) A → ABA and B → BBB. Figure 5
demonstrates that the characteristics of the height field are
totally different in these two tilings. The silver-mean tiling
shows a similar height field in the sense of oscillating around
zero with a logarithmically growing variance, Var(H )(n) ≡∑

l<n |H (l )|2/n. On the other hand, the Cantor-set tiling ad-
mits a monotonically growing height field which results in a
localized state similar to the alternating periodic case. We also
illustrate the resulting middle-energy eigenfunctions that are
critical for silver-mean tiling and exponentially localized for
Cantor-set tiling, respectively.
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FIG. 5. The height field of (a) the silver-mean tiling and
(b) Cantor-set tiling. The resulting middle-energy eigenstates given
by Eq. (A2) are also illustrated in (c) the silver-mean tiling and
(d) Cantor-set tiling as critically localized and exponentially local-
ized, respectively. The strength of the quasiperiodicity, ρ = tA/tB =
0.7.

In such a way, the characteristics of the height field solely
originating from the tiling pattern significantly determine the
localization property of the middle-energy state.

APPENDIX B: OSCILLATING BEHAVIOR OF THE
HEIGHT FIELD IN A FIBONACCI QUASICRYSTAL

In this Appendix, we briefly show that the average value
of the height field in a Fibonacci quasicrystal vanishes. The
Fibonacci quasicrystal is comprised of two letters A, B with
the substitution maps A → AB, B → A. These substitution

maps can be written in a matrix form S = (
1 1
1 0). Since BB

is forbidden under these substitution maps, there are only
three types of length-2 supertiles in a Fibonacci quasicrystal,
explicitly, AA, AB, and BA. Let us denote them as X , Y ,
and Z , respectively. Now, let us renormalize the Fibonacci
quasicrystal with these length-2 supertiles. For example, un-
der this renormalization procedure, the first few parts of
the Fibonacci quasicrystal ABAABABA become Y XZZ . Note
that the pattern-dependent function a is given by a(X ) = 0,
a(Y ) = 1, and a(Z ) = −1. Thus, the height field at site n,
H (n), the cumulative sum of the function a up to the site n,
is given by NY − NZ . Here, NY , NZ are the number of Y and Z
length-2 supertiles up to site n.

We claim that NY − NZ vanishes on average in the thermo-
dynamic limit. To show this, we obtain the substitution maps
for X,Y, Z supertiles induced by the original substitution
maps for A, B tiles. By applying the original substitution maps
three times for X,Y, Z supertiles, respectively, one can easily
get the new substitution maps, X → Y XZZY , Y → Y XZZ ,
and Z → Y XZY . These substitution maps for the supertiles

FIG. 6. Critical characteristics of the lowest-energy magnon
mode. (a) The probability distribution of the lowest-energy magnon
mode in space. The inset shows the self-similar structure of the
critically localized lowest-energy magnon by zooming in from the
3600th site to the 3780th site. (b) Demonstration of the criticality of
the lowest-energy magnon using the scaling of the inverse participa-
tion ratio (IPR). The criticality of the lowest-energy magnon mode
is given by the fractal dimension D2 = 0.915. The system sizes are
tested up to N = 10 947, ρ = 0.7, and JA = 1.

would be given by the matrix S′ in Eq. (B1),

S′ =
⎛
⎝1 1 1

2 1 2
2 2 1

⎞
⎠. (B1)

Here, the basis is given by NX , NY , NZ , the numbers of X,Y, Z
supertiles in the tiling. The eigenvalues of the matrix S′ are
−1 and 2 ± √

5. Especially, the eigenvalue −1 corresponds to
the eigenvector (0, 1,−1)T . This eigenvector corresponds to
NY − NZ . The eigenvalue −1 indicates that the quantity NY −
NZ is oscillating, keeping its magnitude under the substitution
map. Thus, in the thermodynamic limit, the mean value of the
height field would be negligible on average as desired.

One of the interesting points is that there are infinitely
many n in a zero-valued height field. Because the height
field is oscillating around the zero on average, the pattern-
dependent function a increases or decreases the height field by
1. Thus, at least one site between the oscillation of the height
field takes a zero value. Hence, in the thermodynamic limit,
we have infinitely many sites of the sites having a zero-valued
height field which admit perfect transmittance regardless of
the strength of the quasiperiodicity. See the main text for the
unique self-similar distribution of these sites in a Fibonacci
quasicrystal.

APPENDIX C: CRITICAL CHARACTERISTICS
OF THE LOWEST-ENERGY MAGNON MODE

In this Appendix, we illustrate the critical characteristics
of the lowest-energy magnon mode of a quadratic Holstein-
Primakoff transformed Hamiltonian. Figure 6(a) shows the
probability distribution of the ground state in space. The
inset of Fig. 6(a) illustrates the self-similar structure of a
lowest-energy magnon. Figure 6(b) quantifies this nontrivial
criticality of the lowest-energy magnon in terms of the in-
verse participation ration (IPR). The IPR of the wave function
ψ (i) is given by

∑
i{|ψ (i)|4/[

∑
i |ψ (i)|2]2}, where i is the

site index. It is known that the IPR has scaling behavior as
IPR ∼ N−D2 for a sufficiently large system size N . The fractal
dimension D2 indicates the localization characteristics of the

134431-6
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FIG. 7. Comparison of the probability distribution of the middle-
energy state |ψ (i)|2 in between the presence (orange) and the absence
(blue) of the fluctuation on the interaction strengths JA and JB. Here,
i is the site index. The level of the random fluctuation is 1% from the
values of JA and JB in a pure Fibonacci chain without fluctuation. For
the case of the absence of fluctuations, the strength of the quasiperi-
odicity is ρ = 0.7 and JA = 1. Although a local wave function would
be deformed under local fluctuations, the self-similar structure and
the power-law behavior still appear.

wave function. In detail, D2 = 0 for the exponentially local-
ized state, D2 = 1 for the extended state. For 0 < D2 < 1, we

can conclude that the wave function is fractal and critically
localized with power-law behavior. Here, we find D2 = 0.915
for the lowest-energy magnon mode [see Fig. 6(b)]. Such
fractality originates from the structure of the Fibonacci chain.
Hence, there are many other critically localized states.

APPENDIX D: CRITICALITY UNDER THE PRESENCE
OF RANDOM FLUCTUATIONS ON INTERACTION

STRENGTHS

Here, we discuss the critical properties such as the fractal
structure and power-law behavior of the middle-energy state
with respect to small random fluctuations on the spin-spin
interaction strengths JA and JB. For given values of JA and
JB, we add the 1% uniform random disorder effect. In de-
tail, the spin-spin interaction magnitude of the A links and
B links are given by JA + ηA and JB + ηB, where ηA(B) ∈
JA(B)[−0.01, 0.01] is the uniform random disorder. Figure 7
compares the probability distribution of the middle-energy
magnon modes for the cases of a pure Fibonacci chain (blue)
and the presence of small fluctuations (orange). Even for a
logarithmic scale, small disorder does not drastically change
the wave function of the middle-energy magnon mode. Partic-
ularly, a self-similar structure and power-law behavior could
be observed in both cases. Thus, the fractality of the trans-
mittance and the power-law behavior of the magnon transport
also appear even for the case of the presence of small fluctua-
tions on the spin-spin interaction magnitude.
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