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Tunable range of terahertz oscillations triggered by the spin Hall effect in a biaxial antiferromagnet
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We present a theoretical study on the current and frequency windows of self-oscillations induced by the damp-
inglike spin-orbit torque in a biaxial antiferromagnet. By the linear stability analysis and averaging technique,
we analytically formulate the lower and upper thresholds and the frequency of self-oscillations. We find that
the self-oscillation range is highly sensitive to the damping and magnetic anisotropies, which have a variety of
options in abundant antiferromagnets. Beyond a critical damping, the self-oscillation can arise after the instability
of an antiferromagnetic state, with its range widening for a heavier damping. Below it, a spin-flip transition
occurs when increasing the current, similar to the spin flip under an increasing magnetic field. Meanwhile, we
examine the role of anisotropies. With the spin polarization along the easy axis, the weak easy- and hard-axis
anisotropies allow self-oscillations, the range of which is broadened for weaker anisotropies. At the same time,
the spin-flip transition is permitted for strong anisotropies. If the spin polarization coincides with the hard axis,
the transition types are mainly determined by the easy-axis anisotropy. For a weak easy-axis anisotropy, the
self-oscillation can develop with its range expanding for a stronger hard-axis anisotropy. Finally, we envision
that (tunneling) anisotropic magnetoresistance may act as an effective means to probe the oscillations.
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I. INTRODUCTION

Self-oscillation is a ubiquitous nonlinear phenomenon [1],
where a periodic motion is self-sustained under a nonperiodic
driving force. For a magnetic system, this driving force can be
spin torques, including spin-transfer torques [2] and spin-orbit
torques (SOTs) [3]. This magnetic self-oscillation produces
sustainable ac signals from dc inputs, acting as spin-torque
oscillators. For the past two decades, with the aim of de-
veloping microwave emitters [4,5], intensive research efforts
[6–17] have been deployed to understand the properties of fer-
romagnetic self-oscillations, such as the phase diagram [6–8],
the thermal effects [6,12], the threshold currents [9,10,15,16],
the stability [11,13,14,16], and the relaxation [17]. In a
single-domain ferromagnet (FM), when the dampinglike spin
torque balances the damping on average, the magnetization
precession is propelled by the anisotropy fields or the exter-
nal magnetic fields, with frequencies of the order of a few
gigahertz.

Terahertz (THz) waves, because their frequency range has
not been technologically exploited and has fascinating poten-
tials for many applications, are attracting increasing attention
from the spintronics community. Obviously, it is impractical
to generate THz oscillation in FMs. So, the focus in recent
years has been shifting towards the films and multilayers
with antiferromagnetic (AFM) coupling. Considerable efforts
have been made on the self-oscillation or linear oscillation in
synthetic [18–22], collinear [23–37], and noncollinear AFMs
[38–42], as well as ferrimagnets [43–45]. In these devices,
when the adjacent magnetic moments are inclined relative
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to one another, the strong exchange torques drive their pre-
cession. Furthermore, when the damping is compensated for
by the dampinglike spin torque, a self-oscillation arises, the
frequency of which is in the THz region in view of the strong
exchange.

In particular, some interesting results have been achieved
for collinear AFMs. For example, in the strong exchange limit,
the oscillation frequency is proportional to the spin-torque
strength, while it is inversely proportional to the damping con-
stant [23,25,27,33,37]. It can be concluded that the exchange
interaction mainly propels the precession in the promise of
an average balance between the spin torque and the damping.
The oscillations can be adjusted by the spin-polarization di-
rections [33] and a weak Dzyaloshinskii-Moriya interaction
[27,30,31]. The lower and upper thresholds of self-oscillation
have been derived analytically for uniaxial AFM [37]. In
addition, given the abundance of AFM materials, these
works investigate AFMs with different types of magnetic
anisotropy, including the uniaxial [30,31,33,36,37] and biaxial
[23–25,27,34] AFMs, the AFM with a perpendicular uniax-
ial anisotropy and an in-plane fourfold symmetric anisotropy
[32], as well as the AFM with biaxial and cubic anisotropies
[35].

While extensive work has already been performed on the
self-oscillation of collinear AFMs, the influences of damping
and anisotropies on the range of self-oscillation remain poorly
understood. Considering the diversity of AFM materials [46],
different anisotropies and damping can be chosen, which can
be used to adjust the current to excite a self-oscillation and
its frequency. These properties are essential for successful
application of spin-torque nano-oscillators in THz signal gen-
eration. Therefore, in this paper, for two cases with spin
polarization along the easy or the hard axis, the thresholds
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FIG. 1. Sketch of HM/AFM bilayer with the spin polarization
(up) along the easy axis (uea) or the hard axis (uha). je and js are the
electric and spin currents.

are calculated analytically by the linear stability analysis
and averaging technique (Melnikov’s method) [47,48]. The
latter is fit for analyzing the self-oscillation of a weakly
perturbed system with periodic orbits. For the ferromagnetic
self-oscillations, the good agreement between the analytical
and numerical results substantiates the validity of this aver-
aging technique [7–17]. Moreover, apart from the thresholds,
the frequencies are also derived by the averaging technique.
Based on these analytical expressions, we will investigate
the effects of damping and anisotropies on the current and
frequency windows of self-oscillations.

The paper is organized as follows. After the introduction
Sec. I and a model description Sec. II, we formulate the
thresholds and frequency of self-oscillations for the case with
the spin polarization along the easy axis, and we analyze its
current and frequency ranges; see Sec. III supplemented with
Appendixes A and C. Then, similar derivations and analyses
are performed for the case with the spin polarization along the
hard axis; see Sec. IV supplemented with Appendixes B, D,
and E. In Sec. V, we calculate the self-oscillation thresholds
and the corresponding frequencies for several typical AFMs,
and we discuss the possible detecting approaches. Section VI
is devoted to conclusions.

II. MODEL

We consider a bilayer consisting of a heavy metal (HM)
layer acting as a spin-current source and a layer of an AFM
with biaxial anisotropy; see Fig. 1. According to the mech-
anism of the spin Hall effect [3], when the electric current
flows through the HM layer, the spin-orbit interaction causes
a deflection of electrons according to their spin orientations
into opposite directions. This transverse spin current exerts
a spin-orbit torque (SOT) on the AFM layer. Magnetization
dynamics in this AFM layer is ruled by a pair of Landau-
Lifshitz-Gilbert-Slonczewski (LLGS) equations,

dmi

dt
= mi × dE

dmi
+ αmi × dmi

dt
+ τ i, (1)

where two unit vectors mi (i = 1, 2) represent the directions
of the sublattice magnetic moments, and α is the Gilbert
damping constant.

The magnetic energy includes the contributions from the
antiparallel exchange coupling and the biaxial anisotropy,

E = ωexm1 · m2 − ωea

∑
i

(mi · uea)2 + ωha

∑
i

(mi · uha)2,

(2)
where the exchange, easy-, and hard-axis anisotropic energies
are scaled in units of the frequency. Expressed by correspond-
ing effective fields, they are ωex = γ Hex, ωea = γ Hea, and
ωha = γ Hha, with γ being the magnitude of the gyromagnetic
ratio. The unit vectors uea and uha denote the directions of easy
and hard axes. Here, the shape anisotropy (demagnetization
effect) is not considered, because the normal component of
the total magnetization (m = m1 + m2) is zero, as derived in
the following sections.

The dampinglike SOT is written as

τ i = −ωSOTmi × (mi × up). (3)

Here, the strength of SOT is also scaled by the frequency,
which is

ωSOT = μB

eMsd
ξ je, (4)

with d being the thickness of the AFM layer, μB the Bohr
magneton, e the element charge, Ms the sublattice saturation
magnetization, and je the electric current density. ξ is the SOT
efficiency, which is equal to Tintθsh [49,50], with θsh being the
spin Hall angle, and Tint the spin transparency of the interface
[51]. up is the unit vector of the spin polarization, which is
perpendicular to both directions of the spin current and the
charge current.

III. CASE I: up ‖ uea

For this case, we choose a coordinate system in which the
easy axis (uea) and the spin polarization (up) are along the z
direction, and the hard axis (uha) is along the x direction, as
shown in Fig. 1.

A. Lower and upper thresholds of the self-oscillation

Now, we define the stability regions of all the stable equi-
libria, which can be confirmed from numerical integration of
the coupled LLGS equations [Eq. (1)] for case I. As detailedly
derived in Appendix A, solving the equilibrium equation de-
fined by dmi/dt = 0 yields two kinds of stable equilibria.

One is two equivalent AFM states with m1 along the z
(−z) direction and m2 along the −z (z) direction. Utilizing the
linear stability analysis (see Appendix A 1 for detailed deriva-
tions), this equilibrium is stable if |ωSOT| < ωl

SOT, where

ωl
SOT = 1√

2

√√
4ω2

haω
2
ex + A2+ − A−, (5)

with

A± = (ωex + 2ωea)(ωex + 2ωea + 2ωha)

±α2(2ωea + ωha)(2ωex + 2ωea + ωha). (6)

In the absence of the hard-axis anisotropy, Eq. (5) is reduced
as ωl

SOT = 2α
√

ωea(ωex + ωea), which coincides with the re-
sult of the uniaxial AFM in Ref. [37].
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FIG. 2. Evolutions of x-components (upper panel), y-components (middle panel), and z-components (lower panel) of m1,2 for the AFM
state (the first column), the precession (the second column), and the FM state (the third column) of case I. The parameters of NiO [52,53] are
adopted: ωex = 27.4 THz, ωea = 1 GHz, ωha = 23 GHz, and α = 0.001. Putting these parameters into Eqs. (5) and (7), the lower and upper
thresholds of precession are ωl

SOT = 0.0230 THz and ωu
SOT = 0.0548 THz, which are in good agreement with the numeric results. The insets

show the evolutions in the time interval between 1000 and 1001 ps. Here, m1 (m2) coincides with up (−up) initially.

The others are two FM states with m1,2 along the z or
−z direction. Using the same method (see Appendix A 2 for
detailed derivations), the stability condition of these equilibria
is derived as |ωSOT| > ωu

SOT, where

ωu
SOT = α(2ωex − 2ωea − ωha). (7)

In the above derivations, the exchange interaction is assumed
to be much stronger than the easy- and hard-axis anisotropies.

The other two kinds of equilibria are unstable for all values
of ωSOT (see Appendixes A 3 and A 4 for details) and are not
considered in the main text.

If ωl
SOT < ωu

SOT, in the interval that ωl
SOT < |ωSOT| <

ωu
SOT, there is no stable equilibrium. So, in this region, a

precessional state may emerge. This can be justified by inte-
grating Eq. (1) numerically, as exemplified in Figs. 2(b), 2(e),
and 2(h).

Below ωl
SOT, the system remains in the stationary AFM

state, as shown in Figs. 2(a), 2(d), and 2(g). Inevitably, m1

(m2) oscillates slightly around ez (−ez), generating a linear
mode.

Across the lower threshold, there is a discontinuous change
of the magnetization direction, similar to the spin-flop transi-
tion [54,55] of AFMs under an applied magnetic field parallel
to the sublattice magnetization. This transition comes from
the instability of the linear mode [24], which breaks the static
equilibrium among the SOT, the exchange torque, and the
anisotropic ones. Then, for a positive (negative) ωSOT, the SOT

slants m2 (m1) to ez (−ez). Correspondingly, the emerging
exchange torque between m1 and m2 propels their precession
around ez or −ez, producing a self-oscillation.

If ωSOT > ωu
SOT (ωSOT < −ωu

SOT), m2 (m1) flips to ez

(−ez), as shown by Figs. 2(c), 2(f), and 2(i).

B. Frequency of the self-oscillation

One interesting observation is that, during the self-
oscillation, m1 and m2 remain antiphase. Namely, m2x =
−m1x, m2y = −m1y, and m2z = m1z. This can be seen by
comparing the insets of Figs. 2(b) and 2(e). On the other
hand, when taking a substitution m2x → −m1x, m2y → −m1y,
and m2z → m1z, we find that the equation for sublattice
1 is equivalent to that for sublattice 2. Therefore, by
setting

m1x = −m2x = nx, m1y = −m2y = ny,

m1z = m2z = nz, (8)

we can transform the coupled LLGS equation [Eq. (1)] into
a single-vector one, which makes it easy to analytically deal
with the self-oscillations. Then, taking up = ez, uea = ez, and
uha = ex (see Fig. 1), Eq. (1) is reduced as

dn
dt

= n × dEn

dn
+ αn × dn

dt
+ τn. (9)
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Dropping an inessential constant, the reduced magnetic en-
ergy reads

En = (ωex − ωea)(n · ez )2 + ωha(n · ex )2. (10)

In addition, the reduced SOT is

τn = −ωSOTn × (n × ez ). (11)

To calculate the frequency of a self-oscillation, an
averaging technique (referred to as Melnikov’s method)
[7–17,47,48] is applied to solve Eqs. (9)–(11). This method
is suitable for treating the self-oscillation in weakly perturbed
conservative systems. Here, in view of the strong AFM ex-
change, it is reasonable to assume the damping and the SOT as
perturbations (ωSOT/ωex � 10−2 and α � 10−2 in our consid-
eration). Then, when the energy supplied by the SOT balances
with the dissipation due to the damping during a precession, a
self-oscillation can be maintained. n approximately precesses
along the orbits given by Eq. (10), which conserves the mag-
netic energy.

When n settles into a constant-energy orbit, an average
balance between the energy gain and dissipation results in∮

�

dEn

dt
dt = −Wdamp + WSOT = 0, (12)

where � denotes the precessional orbit. Omitting the high-
order terms of α and ωSOT, the energy dissipation Wdamp and
supply WSOT read

Wdamp = α

∮
�

(
n × dEn

dn

)2

dt, (13)

WSOT = ωSOT

∮
�

(n × ez ) ·
(

n × dEn

dn

)
dt . (14)

Completing these two loop integrals (see Appendix C), the
balance equation (12) gives the SOT strength ωSOT to excite a
self-oscillation on the En orbit,

ωSOT(En) = 4α
√
En(ωex − ωea)

π (ωex − ωea − En)
[(ωex − ωea − ωha)E(k)

−(En − ωha)K(k)], (15)

where E(k) and K(k) are the complete elliptic integrals of the
second and first kinds, with the modulus

k =
√

ωha(ωex − ωea − En)

En(ωex − ωea − ωha)
. (16)

When En approaches its maximum ωex − ωea, the limit of
ωSOT [Eq. (15)] coincides with the threshold ωu

SOT [Eq. (7)].
Due to the balance between the SOT and the damping,

the self-oscillation is driven by the exchange torque and the
anisotropy ones. So, the precession period can be derived from
the conservative parts of Eq. (9). As calculated in Appendix C,
the frequency is

f (En) =
√
En

√
ωex − ωea − ωha

2K(k)
. (17)

At the upper threshold, En = ωex − ωea, and the correspond-
ing frequency

f u = 1

π

√
(ωex − ωea)(ωex − ωea − ωha). (18)

Equations (15) and (17) give the dependence of f on ωSOT

by eliminating En. Due to the elliptic integrals in Eqs. (15)
and (17), an explicit analytic relation between f and ωSOT is
untractable for a general case. In the absence of the hard-axis
anisotropy, f = ωSOT/(2πα), which coincides with the result
of Ref. [37].

C. Range of the self-oscillation

Here, based on Eqs. (5) and (7), we will discuss the influ-
ences of the damping and anisotropies on the range of ωSOT in
which a self-oscillation exists. The corresponding range of the
frequency can be analyzed by Eqs. (15) and (17). In view of
the abundance of AFM materials [46] and in order to analyze
the general features, the parameters used in the following
discussion do not correspond to a specific substance, but they
are estimated moderately in an experimentally feasible range.

First, let us talk about the effect of the damping on the
range of self-oscillations. In Figs. 3(a)–3(c), we plot the
surfaces of ωl

SOT and ωu
SOT on top of the ωea-ωha plane for

different α. In the spaces in which ωl
SOT < ωSOT < ωu

SOT,
there exist self-oscillations. Otherwise, the stationary states,
such as AFM or FM states, exist. Additionally, as plotted
in Fig. 3(g), the isosurface in α-ωea-ωha parametric space,
derived from ωl

SOT = ωu
SOT, separates the regions where the

self-oscillations are allowed (above the surface) and cannot
exist (below the surface). For certain α, this boundary de-
generates to a curve in ωea-ωha plane, corresponding to the
contours in Figs. 3(a)–3(c). Comparing Figs. 3(a), 3(b), and
3(c), it can be observed that the self-oscillation range expands
for stronger damping, as also shown by contour curves of
ωl

SOT = ωu
SOT. This can be attributed to the balance between

the SOT and the damping, which is necessary for a stable
self-oscillation. For fixed anisotropies, if strengthening the
damping, a much stronger SOT is needed to offset it. So, the
range of ωSOT for self-oscillations is enlarged.

To illustrate the effect of the damping more clearly, we
also show in Fig. 4(a) the dependence of the lower and upper
thresholds on α while keeping the anisotropies unchanged.
For small α, when increasing ωSOT, the AFM state becomes
unstable at the lower threshold ωl

SOT. Then, one sublattice
magnetization reverses, like the spin-flip transition [54] of
an AFM induced by a magnetic field in the presence of a
strong anisotropy. Namely, the system switches directly from
an AFM state to a FM one. For a relatively large α, with ωSOT

increasing, the two sublattice magnetizations (m1 and m2)
start to precess at ωl

SOT, as shown in Figs. 2(b), 2(e), and 2(h).
There is a jump from the AFM state to a precession, where m1

and m2 form a cone around the spin polarization up. This jump
is similar to the spin-flop transition [54,55] of AFM induced
by a magnetic field in the presence of a weak anisotropy. The
difference is that the magnetic field-induced spin-flop state is
static and nonprecessional. Because no external torques can
offset the damping one, the precession cannot sustain. So,
after reaching a balance between the exchange torque and the
magnetic-field one, a static spin-flop state is arrived. Under the
SOT, if increasing ωSOT further, the cone angle of precession
decreases. Finally, the system enters the FM state at the upper
threshold ωu

SOT, as shown in Figs. 2(c), 2(f), and 2(i), just like
the saturation of an AFM by further increasing the magnetic
field beyond the spin-flop transition.
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FIG. 3. Range of the self-oscillation for case I. (a), (b), and (c) The lower (ωl
SOT) and upper (ωu

SOT) thresholds of self-oscillations as functions
of the easy-axis anisotropy (ωea) and the hard-axis one (ωha) for α = 0.01, 0.02, and 0.04, respectively. (d), (e), and (f) The frequencies ( f l

and f u) at the lower and upper thresholds for α = 0.01, 0.02, and 0.04, respectively. (g) The isosurface of ωl
SOT = ωu

SOT. The curves in the
ωea-ωha plane of (a)–(g) are contours of ωl

SOT = ωu
SOT. In (g), along the ωha-axis, the contours correspond to α varying from 0.01 to 0.05 with

an increment 0.01.

Second, the easy- and hard-axis anisotropies considerably
affect the self-oscillation range. As indicated in Fig. 3, the
self-oscillation may appear only in a corner of small ωea and
ωha. This range can be extended by a heavier damping. As
examples, Fig. 4(b) [(c)] shows the dependence of the lower
and upper thresholds on ωea (ωha), while maintaining ωha (ωea)
and α unchanged. It can be observed that, for a small ωea or
ωha, the AFM state is switched to the self-oscillation when
increasing ωSOT. With ωea or ωha increasing, the adjustable
range of ωSOT for the self-oscillation is shrunk. For a large ωea

or ωha above the critical value determined by ωl
SOT = ωu

SOT,
the SOT flips one sublattice magnetization and compels the

system into a FM state, just like magnetic field-driven spin-flip
transition [54] in the AFM with a strong anisotropy.

From the condition that ωl
SOT < ωu

SOT, we can derive that
there exists a critical damping constant, only above which the
self-oscillation can develop. Namely, α > αc, where

αc = 1√
2

1

2ωex − 2ωea − ωha

×

√√√√√
2ω2

haωex(2ωex − 2ωea − ωha)2

2ωex − 3(2ωea + ωha)
+ B2 − B, (19)

FIG. 4. Phase diagram of case I in the parametric plane spanned by ωSOT and α (a), ωSOT and ωea (b), as well as ωSOT and ωha (c). In (a),
ωea = 0.1ωex and ωha = 0.01ωex. In (b), α = 0.01 and ωha = 0.01ωex. In (c), α = 0.01 and ωea = 0.1ωex. The lines correspond to Eqs. (5) and
(7). The circles and crosses are plotted by numerically solving Eq. (1) for Case I. “Prec.” denotes the precession state, i.e., self-oscillation. The
dashed parts of ωu

SOT curves are not the phase boundaries, just for showing the complete curve of ωu
SOT, i.e., Eq. (7).
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FIG. 5. Evolutions of x-components (upper panel), y-components (middle panel), and z-components (lower panel) of m1,2 for the AFM
state (the first column), the precession (the second column), and the FM state (the third column) of case II. The parameters are the same as
Fig. 2. Putting them into (21) and (22), the lower and upper thresholds of the self-oscillation are ωl

SOT = 0.000 847 THz and ωu
SOT = 0.0549

THz, which is consistent with the numeric results. Here, m1 (m2) is initially directed towards the y (−y) axis.

with

B = (ωex + 2ωea)(ωex + 2ωea + 2ωha). (20)

In the absence of the hard-axis anisotropy, αc = 0. The self-
oscillation range is independent of the damping. For this
case, from ωl

SOT < ωu
SOT, we obtain ωea < 1/3ωex. As seen

in Fig. 3(g), all the contour lines converge to the point at
which ωea/ωex = 1/3. In other words, it ωea > ωex/3, no self-
oscillation can arise for any ωha and α.

In the absence of the easy-axis anisotropy, the self-
oscillation range is related with the damping. Keeping the
leading-order terms of α and ωha/ωex, the inequation ωl

SOT <

ωu
SOT yields ωha < 2αωex. As illustrated in Fig. 3(g), the

boundary lines are located in different points (ωha/ωex ≈ 2α)
of the ωha-axis, which are evenly arrayed according to α.

Finally, let us discuss the range of the frequency. The upper
threshold of the frequency ( f u) can be expressed as an analytic
equation (18), which is also the resonant frequency of the
FM state. In view of the strong exchange, f u depends weakly
on ωea and ωha, as shown by the surfaces marked by f u in
Figs. 3(d), 3(e), and 3(f). On the other hand, it is not possible
to obtain analytically the lower threshold of the frequency
( f l ). So, we resort to numerically solving Eqs. (17) and (18)
with ωSOT(En) = ωl

SOT. Then, we plot the surface of f l based
on the ωea-ωha plane, as shown by the surfaces marked by f l

in Figs. 3(d), 3(e), and 3(f). Inspection of these figures reveals
that, unlike f u, f l is highly sensitive to the easy- and hard-axis

anisotropies. The window of the self-oscillation frequency
narrows with the anisotropies increasing.

IV. CASE II: up ‖ uha

For this case, as shown in Fig. 1, the hard axis (uha) and the
spin polarization (up) coincide, assuming they lie along the z
direction. The easy axis (uea) is along the y direction.

A. Lower and upper thresholds of the self-oscillation

By the linear stability analysis or the averaging technique,
we now define the stability region of all the stable equilibria,
which can be confirmed from numerical integration of the
coupled LLGS equations [Eq. (1)] for case II.

Without the SOT, m1 (m2) prefers to line up along the
y (−y) direction. After applying a small SOT, m1,2 are
slightly perturbed away from the easy axis, as shown in
Figs. 5(a), 5(d), and 5(g). As calculated in Appendix B, m1

(m2) rotates in the x-y plane to the direction at an angle of
1/2 arcsin(ωSOT/ωea) with respect to the y (−y) axis. Because
m1 and m2 still remain antiparallel, this equilibrium is named
after a tilted-AFM state, which is stable if |ωSOT| < ωl

SOT,
with (see Appendixes B 3 and E for details of the derivation)

ωl
SOT = 2

√
ωea + ωha + ωex

[
ωea + 2α

√
ωea(ωha + ωex)

]
π

√
ωha + ωex

.

(21)
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Another stable equilibrium emerges under the large SOT.
As demonstrated in Figs. 5(c), 5(f), and 5(i), the large SOT
directs m1,2 towards the spin polarization up finally. By the
stability analysis, we can infer that m1,2 reach a ferromagnetic
saturation when |ωSOT| > ωu

SOT, where (see Appendix B 2 for
details of the derivation)

ωu
SOT = α(2ωex + ωea + 2ωha). (22)

There are two other kinds of equilibria, which are unstable
for any ωSOT (see Appendixes B 1 and B 4 for details) and not
presented here.

If ωl
SOT < ωu

SOT, no stable equilibrium exists in the interval
in which ωl

SOT < |ωSOT| < ωu
SOT. Then, a precessional state

may appear, as demonstrated in Figs. 5(b), 5(e), and 5(h).
Below ωl

SOT, a weak SOT tilts m1 (m2) from ey (−ey), i.e.,
the easy axis. Then, driven by the exchange and anisotropy
torques, m1 (m2) rotates around ey (−ey). Once m1 and m2

rotate to the x-y plane, they restore antiparallel. In this scene,
the exchange torques vanish. The SOT is balanced by the
anisotropy torque, and the system remains a tilted AFM state,
as shown in Figs. 5(a), 5(d), and 5(g). In general, under pertur-
bations, m1 (m2) rotates around its equilibrium direction with
a small amplitude, forming a linear oscillation.

When |ωSOT| > ωl
SOT, the anisotropy torque cannot bal-

ance the SOT, accompanied by an instability of the linear
mode. This relative strong SOT tilts both m1 and m2 to ez

(−ez) for ωSOT > ωl
SOT (ωSOT < −ωl

SOT), bringing about a
conic precession (self-oscillation) around ez (−ez) driven by
the exchange torques. With ωSOT increasing, the conic angle
becomes smaller.

If ωSOT > ωu
SOT (ωSOT < −ωu

SOT), the self-oscillation dis-
appears, and m1,2 point to ez (−ez) together, as indicated in
Figs. 5(c), 5(f), and 5(i).

B. Frequency of the self-oscillation

By a procedure similar to that in Sec. III B, and taking up =
ez, uea = ey, and uha = ez (see Fig. 1), the coupled LLGS
equation (1) is reduced to a single-vector equation (9), just
replacing the energy by

En = (ωex + ωha)(n · ez )2 − ωea(n · ey)2. (23)

Then, from Eqs. (12)–(14), we can obtain ωSOT of a self-
oscillation in the En orbit (see Appendix D for details of the
derivation),

ωSOT(En) = 4α
√

(ωea + En)(ωex + ωea + ωha)

π (ωex + ωha − En)

×[(ωex + ωha)E(k) − EnK(k)], (24)

where the modulus k of the elliptic integrals reads

k =
√

ωea(ωex + ωha − En)

(ωea + En)(ωha + En)
. (25)

The frequency is calculated as (see Appendix D for details of
the derivation)

f (En) =
√
En(ωex + ωea + ωha)

2K(k)
. (26)

Eliminating En from Eqs. (24) and (26), we can calculate
the dependence of the frequency on the SOT. At the upper
threshold, En = ωex + ωha, and the corresponding frequency

f u = 1

π

√
(ωex + ωha)(ωex + ωea + ωha). (27)

C. Range of the self-oscillation

Here, from Eqs. (21) and (22), we analyze the dependence
of the self-oscillation range of ωSOT on the damping, the easy-,
and hard-axis anisotropies. In addition, the frequency range is
inferred from Eqs. (24), (26), and (27).

When a spin current with up ‖ uha is injected into the
biaxial AFM, the AFM state is disturbed and we observe
either a tilted-AFM state or self-oscillations depending on
the magnitude of the SOT, as well as the strengthes of the
damping and the magnetic anisotropies. First, similar to Case
I, the self-oscillation range becomes wider for a heavier damp-
ing. Comparing Figs. 5(a), 5(b), and 5(c) reveals that, along
with an increasing α, the region of ωl

SOT < ωu
SOT expands.

Namely, the self-oscillation range is enlarged. This feature
is also illustrated in Fig. 7(a), where we plot the lower and
upper thresholds as a function of α while keeping ωea and ωha

constant. For a small damping, with an increasing SOT, the
system switches directly from the tilted-AFM to the FM state
at ωl

SOT. For a large damping, the self-oscillation occurs first.
Then, if the SOT increases further, the system enters the FM
state at ωu

SOT.
The critical damping constant, beyond which the self-

oscillation can then exist, is easily gotten by solving ωl
SOT =

ωu
SOT,

αc = 2

π

√
ωea

ωex+ωha

2ωex+ωea+2ωha√
ωea

√
ωex+ωea+ωha

− 4
π

. (28)

As shown in Fig. 6(g), this critical damping is depicted as
an isosurface in the α-ωea-ωha parametric space. Above this
surface, the self-oscillation happens when the tilted-AFM
state becomes unstable. Below this surface, no self-oscillation
occurs and a FM state emerges after an instability of the
tilted-AFM state at ωl

SOT.
Second, the influence of anisotropies on the self-oscillation

range differs from Case I, as observed by comparing Figs. 3
and 6. In particular, the hard-axis anisotropy enlarges the
self-oscillation range, as shown in Fig. 7(c). By contrast,
the easy-axis anisotropy shrinks the self-oscillation range,
as indicated in Fig. 7(b). In the absence of the easy-axis
anisotropy, the lower threshold becomes zero. This means that
an infinitesimal current can excite the self-oscillation for this
highly symmetric case.

Finally, the frequency range of the self-oscillation is shown
in Figs. 6(d), 6(e), and 6(f). It can be observed that the range
of frequency becomes wider with increasing ωha, while it
becomes narrower with increasing ωea. The hard axis uha

coincides with the spin polarization up, which is also the
precessional axis. So, the torque of the hard-axis anisotropy
[ωha(mi · uha)(mi × uha)] propels the magnetic moments to
rotate left-handedly, playing the same role as the exchange
torque. Thus, a stronger hard-axis anisotropy favors a wider
frequency range.
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FIG. 6. Range of the self-oscillation for case II. (a), (b), and (c) The lower (ωl
SOT) and upper (ωu

SOT) thresholds of self-oscillations as
functions of the easy-axis anisotropy (ωea) and the hard-axis one (ωha) for α = 0.01, 0.02, and 0.04, respectively. (d), (e), and (f) The
frequencies ( f l and f u) at lower and upper thresholds for α = 0.01, 0.02, and 0.04, respectively. (g) The isosurface of ωl

SOT = ωu
SOT. The

curves in the ωea-ωha plane of (a)–(g) are contours of ωl
SOT = ωu

SOT. In (g), along the ωea-axis, the contours correspond to α varying from 0.01
to 0.05 with an increment 0.01.

V. DISCUSSION

First, it should be mentioned that the orbits of self-
oscillation are located in the upper hemisphere (mz > 0) for
ωSOT > 0, while they are in the lower hemisphere for ωSOT <

0. Taking into account the similarity of precessions for posi-
tive and negative ωSOT, we restrict our discussion to positive
ωSOT. Moreover, we only study two special cases with the spin
polarization along the easy and hard axes, for which the sys-
tem is symmetric with respect to the x-z and y-z planes. Com-
bining this symmetry with the evolutions of m1,2, we reduce
the coupled LLGS equations to a single-vector one, which

can be treated analytically by the averaging technique. The
analytic expressions are verified by comparing with numerical
results by solving the original LLGS equations numerically.
However, difficulties arise when an attempt is made to gen-
eralize this method to arbitrary spin polarizations [33,56,57].
Although we do not consider arbitrary spin polarizations, a
further investigation about this case may be valuable.

Second, to show flexibility in SOT control of the AFM
self-oscillations, we do not select parameters that correspond
precisely to a specific AFM in analyzing the ranges of the fre-
quency and the strength of SOT. However, it is instrumental to
calculate the values of the frequency and the exciting current

FIG. 7. Phase diagram of case II in the parametric plane spanned by ωSOT and α (a), ωSOT and ωea (b), as well as ωSOT and ωha (c). In (a),
ωea = 0.02ωex and ωha = 0.1ωex. In (b), α = 0.01 and ωha = 0.1ωex. In (c), α = 0.01 and ωea = 0.01ωex. The lines correspond to Eqs. (21) and
(22). The circles and crosses are plotted by numerically solving Eq. (1) for Case II. “Prec.” denotes the precession state, i.e., self-oscillation.
The dashed parts of ωl

SOT curves are not the phase boundaries, just showing the complete curve of ωu
SOT, i.e., Eq. (22).
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TABLE I. Magnetic parameters of several typical AFMs and their self-oscillation thresholds of the current and frequency. For Case I, the
current thresholds are calculated from Eqs. (4), (5), and (7), and the frequency thresholds from Eqs. (5), (15), (17), and (18). For Case II, the
current thresholds are calculated from Eqs. (4), (21), and (22), and the frequency thresholds are calculated from Eqs. (21), (24), (26), and (27).
The values in the parentheses are obtained by solving the LLGS equation [Eq. (1)] numerically. The critical damping constants are calculated
from Eq. (19) for Case I, and Eq. (28) for Case II. For all listed AFMs, the SOT efficiency ξ = 0.1, the damping constant α = 0.001, and the
thickness of the AFM layer d = 4 nm.

Current and frequency thresholds of self-oscillations

Magnetic parameters Case I: up ‖ uea (up ⊥ uha) Case II: up ‖ uha (up ⊥ uea)

ωex ωea ωha Ms jl
e ju

e f l f u jl
e ju

e f l f u

(THz) (GHz) (GHz) (kA/m) αc (TA/m2) (TA/m2) (THz) (THz) αc (TA/m2) (TA/m2) (THz) (THz)

5.58 13.3 3.66 8.72 0.206 13.3 0.135 8.73
NiOa 27.4 1 23 351 0.00042 0.000012

(5.60) (13.6) (3.72) (8.33) (0.197) (13.7) (0.124) (8.62)
0.0684 0.505 0.331 2.436

MnF2
b 7.79 136 0 47.7 0 0.0061 2.92 0.52

(0.0689) (0.554) (0.331) (2.439)
0.282 16.8 0.226 13.5 1.69 16.8 1.36 13.5

Cr2O3
c 42.4 12 0 286 0 0.000091

(0.280) (17.1) (0.227) (12.5) (1.80) (17.2) (1.46) (13.5)
27.0 9.83

MnPtd 30.5 0 387 632 0.0063 167 26.5 0 0 0
(27.5) (9.71)

aReferences [24,25,52,53].
bReferences [58–61].
cReferences [62,63].
dReferences [64–68].

for some typical AFM materials. The preceding calculations
are also suitable for the uniaxial AFMs, including the easy-
axis and easy-plane types. Then, in Table I, taking the biaxial
(NiO), easy-axis (MnF2 and Cr2O3), and easy-plane (MnPt)
AFMs as examples, we list the lower and upper thresholds of
electric currents and the corresponding frequencies for the two
cases. For comparison, except for the magnetic parameters,
the damping constant, the SOT efficiency, and the thickness
of the AFM layer take the same values. In particular, we plot
the frequency as a function of the current density in Fig. 8 for
the biaxial NiO.

From Table I and Fig. 8, several conclusions are imme-
diately seen. (i) The frequency lies in the range of THz and
increases with the current nearly linearly. (ii) For a biaxial
AFM (NiO), the current and frequency ranges of Case II are
wider than those of Case I. However, the opposite happens
for an easy-axis AFM (Cr2O3). This is related to the role of
hard-axis anisotropy on the self-oscillation. In the absence of
a hard axis (such as Cr2O3), until the SOT tilts m1,2 from
the antiparallel state enough, the exchange torques between
m1 and m2 propel them to rotate around the spin-polarization
direction (up). In the presence of a hard axis (for example,
NiO), if up coincides with the hard axis (namely, for Case
II), the hard-axis anisotropy torque drives m1,2 precessing
left-handedly, just like the exchange torque. But, the tilting
of m1,2 is not required. Even for an antiparallel state, m1,2

can precess around the hard axis. Thus, the self-oscillation
occurs just for a slight tilting of m1,2, which results in a
smaller lower threshold. (iii) For easy-axis AFMs, the critical
damping constant (αc) vanishes for Case I. For easy-plane
AFMs, αc vanishes for Case II. (iv) When α < αc, the lower
current threshold ( jl

e) is greater than the upper one ( ju
e ), as

shown in Table I for Case I of MnPt and Case II of MnF2.
So, the self-oscillation window is closed for this scenario. As

argued in Secs. III C and IV C, the system flips from an AFM
state to a FM at the lower threshold.

FIG. 8. The dependance of frequency on the current density for
Case I (a) and Case II (b). The magnetic parameters of NiO are
adopted. Other parameters are the same as Table I. The inset shows
magnified views around the lower threshold for Case II. The dotted
lines are analytic results, of which the corresponding self-oscillations
are unstable.
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Third, we discuss the possible approaches to detect the
self-oscillations, during which m1x = −m2x, m1y = −m2y, and
m1z = m2z remain, and the z-components are almost constant.
As such, for methods based on the spin Hall magnetoresis-
tance [46,69] and the inverse spin Hall effect combining with
the spin pumping [24,25], of which the output signals depend
on

∑
i(mi · up)2 (=m2

1z + m2
2z) [46], it is difficult to generate

detectable ac signals.
Fortunately, the anisotropic magnetoresistance (AMR)

[46,70] depends on the angle between the electric current and
the magnetization direction, ∼ ∑

i(mi · jc)2 [46]. Then, an ac
signal can be extracted from the THz oscillations of sublat-
tice magnetizations. In view of the periodic variation of the
angle between m1,2 and the current je, two electrodes can be
attached on end points of the metallic AFM layer to probe the
self-oscillation. Because the detecting current mostly passes
through the AFM layer, it barely affects the longitudinal cur-
rent in the HM layer, which induces the SOT via the spin Hall
effect. Hence, in the single-domain formalism, the detecting
current cannot influence the magnetic dynamics driven by
the SOT. Furthermore, to avoid the influence of the detecting
current on the dynamics, it is useful to add a capacitor on the
probing branch circuit and a solenoid on the input dc one.

On the other hand, for the insulating AFM/HM bilayer
structures, tunneling AMR may be a choice to probe the self-
oscillations. It has been proposed [71] and realized [72] that
the AFM dynamics can be detected by the measured tunnel-
ing AMR in the FM/metallic AFM/insulator/HM spin-valve
structures. A similar scheme has been put forward to produce
a THz signal in a Pt/metallic AFM/MgO/Pt structure [73].
Besides, it has been revealed that [74], in a junction composed
by a ferromagnetic insulating barrier sandwiched between
nonmagnetic electrodes, there is a remarkable angular de-
pendence of the tunneling AMR. Here, the magnetization
direction in the magnetic insulating barrier affects the resis-
tance. A similar effect has been found in a multilayer based
on an AFM barrier [75], where switching of the AFM order
parameter in the barrier leads to a substantial change of the
resistance of the junction. Inspired by these works, it is natural
to conjecture that the AFM self-oscillation does influence
the tunneling current through it, generating an ac signal via
the tunneling AMR in the nonmagnetic electrode/insulating
AFM/HM structure.

Finally, it is worth mentioning that the effective damping
constant is determined by the spin pumping mechanism, and
it relies on the thickness of the AFM layer [25]. Moreover,
the anisotropy constant can be controlled by a voltage [76,77].
Therefore, besides choosing different AFMs, the damping and
anisotropy constants may be adjusted even for a particular
AFM.

VI. CONCLUSION

In conclusion, for the AFMs driven by a dampinglike SOT
with the spin polarization along the easy axis (case I) or the
hard axis (case II), we analytically formulate the lower and
upper thresholds of self-oscillations by the linear stability
analysis or the average technique. Additionally, we derive the
dependence of the self-oscillation frequency on the strength
of SOT.

Based on these analytic results, we analyze the influences
of the damping and the easy- and hard-axis anisotropies on the
adjustable range of a self-oscillation. We find that enhancing
the damping can expand the adjustable range of the current
and the frequency. This is because a stable self-oscillation
is sustained by the balance between the dampinglike SOT
and the damping. Along with the damping increasing, the
SOT also increases to oppose the damping. This results in an
expanding of the adjustable range. Moreover, there exists a
critical damping, only beyond which the self-oscillation can
occur. If the system is axial symmetry, for example, ωha =
0 for case I and ωea = 0 for case II, this critical damping
vanishes. Also, ωl

SOT = 0, i.e., an infinitesimal current can
generate a self-oscillation. In addition, the adjustable range
shrinks with ωea and ωha increasing for case I, while for
case II, it shrinks with ωea increasing, and broadens with ωha

increasing.
Next, by changing the values of damping and anisotropies,

we discover that there exist two kinds of transitions of the
magnetic states when increasing the current. For both cases,
an AFM-FM transition can happen for a weak damping, sim-
ilar to the spin-flip transition [54] of AFMs with a strong
anisotropy under an increasing magnetic field. For a heavy
damping, the AFM state is switched to the self-oscillation
with the current increasing. For case I, the spin-flip transition
occurs for large easy-axis and hard-axis anisotropies, while
the transition from AFM to self-oscillation occurs for small
ones. For case II, which transition happens is determined by
the easy-axis anisotropy.

AFM materials are more abundant than FMs [46]. There
are more choices of the magnetic parameters, such as the
damping constant, and the easy-axis and hard-axis anisotropy
constants. Moreover, these parameters can be tuned in experi-
ment for one AFM. These offer a possibility to adjust the AFM
oscillators over a broad frequency range for realistic material
parameters and electric currents. So, it can be expected that
our results can not only enrich the current-driven nonlinear
magnetic dynamics, but also serve as a guideline to design the
THz AFM oscillators.
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APPENDIX A: EQUILIBRIA AND THEIR STABILITIES
FOR CASE I

In this case, the spin polarization is along the easy axis. So,
we can take up = uea = ez and uha = ex, as shown in Fig. 1.
The equilibria are obtained when the SOT balances out the
precessional torques, i.e.,

mi × dE
dmi

= ωSOTmi × (mi × up). (A1)

To solve these equilibrium equations (A1), it is convenient to
parametrize the unit magnetization vectors mi in terms of the
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polar angle θi and the azimuthal one φi according to mi =
(sin θi cos φi, sin θi sin φi, cos θi ). Then, one has(

ωSOT − ωha sin 2φ0
i

)
sin θ0

i

= ωex sin
(
φ0

i − φ0
3−i

)
sin θ0

3−i, (A2)[
ωex cos θ0

3−i − 2
(
ωea + ωha cos2 φ0

i

)
cos θ0

i

]
sin θ0

i

= ωex cos
(
φ0

i − φ0
3−i

)
cos θ0

i sin θ0
3−i. (A3)

Obviously, θ0
i = 0 or π solves Eqs. (A2) and (A3), generating

two FM states. Similarly, θ0
1 = 0 (π ) and θ0

2 = π (0) compose
the AFM states.

For sin θ0
i �= 0, there exist other kinds of solutions, which

satisfy sin 2φ0
i = ωSOT/ωha, sin(φ0

1 − φ0
2 ) = 0, and cos θ0

i =
0. These yield four FM states in which θ0

i = π/2 and φ0
i =

φ0, and four AFM states in which θi = π/2, φ0
1 = φ0, and

φ0
2 = π − φ0. φ0 reads

φ0 = 1

2

[
(P − 1)π − (−1)P arcsin

ωSOT

ωha

]
, (A4)

with P = 1, 2, 3, 4. For these two kinds of equilibria, mi are
located in the x-y plane and deviate from the easy axis. So, we
name them tilted-FM or tilted-AFM states. In the following,
we will derive the stable regions of the above four kinds of
equilibria by the linear stability analysis.

1. Stability analysis of AFM states

For these states, θ0
1 = 0 (π ) and θ0

2 = π (0). In the spheri-
cal coordinate system, these equilibria are two singular points,
because φ0

i is not defined. So, we use the Cartesian coordinate
instead, in which the equilibria are expressed as m0

1 = ηez

and m0
2 = −ηez with η = ±1. Under a small perturbation,

the magnetic moments deviate from the equilibria slightly,
i.e., mi = m0

i + δmixex + δmiyey, with δmix and δmiy being the
responses to the perturbation.

To linearize Eq. (1) in the vicinity of these equilibria, we
rewrite it in the component form. Considering the constraint
of unit norm for m1,2, we only need to use the x- and y-
component equations, which read

ṁix − α(miyṁiz − mizṁiy) = f x
i , (A5)

ṁiy − α(mizṁix − mixṁiz ) = f y
i , (A6)

where the dot convention for the time derivative has been
adopted, and

f x
i = ωex(miym(3−i)z − mizm(3−i)y)

− 2ωeamiymiz − ωSOTmizmix, (A7)

f y
i = ωex(mizm(3−i)x − mixm(3−i)z )

− 2(ωea + ωha)mizmix − ωSOTmiymiz. (A8)

By use of m2
ix + m2

iy + m2
iz = 1, the z-component equa-

tions can be obtained from Eqs. (A5)–(A8).
Inserting the ansatz mi = m0

i + δmixex + δmiyey into
Eqs. (A5)–(A8) and keeping the linear terms of δmix and δmiy,
the obtained linearized system near the equilibria is governed

by

Aẋ = Bx, (A9)

where x = (δm1x, δm1y, δm2x, δm2y)T , with T denoting the
matrix transpose,

A =

⎛
⎜⎝

1 ηα 0 0
−ηα 1 0 0

0 0 1 ηα

0 0 −ηα 1

⎞
⎟⎠, (A10)

and B is the Jacobian matrix at the equilibrium,

B =

⎛
⎜⎜⎜⎜⎜⎝

∂ f x
1

∂m1x

∂ f x
1

∂m1y

∂ f x
1

∂m2x

∂ f x
1

∂m2y

∂ f y
1

∂m1x

∂ f y
1

∂m1y

∂ f y
1

∂m2x

∂ f y
1

∂m2y
∂ f x

2
∂m1x

∂ f x
2

∂m1y

∂ f x
2

∂m2x

∂ f x
2

∂m2y

∂ f y
2

∂m1x

∂ f y
2

∂m1y

∂ f y
2

∂m2x

∂ f y
2

∂m2y

⎞
⎟⎟⎟⎟⎟⎠

mi=m0
i

. (A11)

Then, taking the oscillating ansatz (δmix, δmiy ∝ eλt ) into
Eq. (A9), the existence of a nontrivial solution leads to the
secular equation

a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0, (A12)

where

a0 = (1 + α2)2, (A13)

a1 = 4α(1 + α2)(ωex + 2ωea + ωha), (A14)

a2 = 2
{
2[(2ωea + ωha)ωex + 2ωea(ωea + ωha)]

+ 2α2[ω2
ex + 3(2ωea + ωha)ωex + 6ω2

ea

+ 6ωeaωha + ω2
ha

] − (1 − α2)ω2
SOT

}
, (A15)

a3 = 4α(ωex + 2ωea + ωha)
[
4ωea(ωea + ωha)

+ 2(2ωea + ωha)ωex + ω2
SOT

]
, (A16)

a4 = [
4ωea(ωea + ωha) + ω2

SOT

][
4(ωex + ωea)

× (ωex + ωea + ωha) + ω2
SOT

]
. (A17)

It should be noted that the secular equation is independent of
η. This is due to the equivalence of the two AFM states.

If all the roots of λ have a negative real part, the corre-
sponding equilibrium state is stable. This can be judged by
the Routh-Hurwitz criterion [78–80], which defines a series
of determinants,

�1 = a1, (A18)

�2 =
∣∣∣∣a1 a0

a3 a2

∣∣∣∣, (A19)

�3 =
∣∣∣∣∣∣
a1 a0 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣, (A20)

�4 = a4�3. (A21)

If all � are positive, the real parts of all roots of λ are negative.
Namely, this equilibrium state is stable.
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Inserting Eqs. (A13)–(A17) into Eqs. (A18)–(A21), the
Routh-Hurwitz determinants for the AFM states read

�1 = 4α(1 + α2)(ωex + 2ωea + ωha), (A22)

�2 = �1
{
2[(2ωea + ωha)ωex + 2ωea(ωea + ωha)]

+ 2α2
[
2ω2

ex + 5(2ωea + ωha)ωex

+ 2
(
5ω2

ea + 5ωeaωha + ω2
ha

)]
− (3 − α2)ω2

SOT

}
, (A23)

�3 = �2
1

1 + α2

{
4ω2

haω
2
ex + 4

[
α2(2ωea + ωha)

× (2ωex + 2ωea + ωha) − ω2
SOT

][
(ωex + 2ωea)

× (ωex + 2ωea + 2ωha) + ω2
SOT

]}
, (A24)

�4 = a4�3. (A25)

It is apparent that a4 > 0 and �1 > 0. Thus, the stability
conditions are simplified as �2 > 0 and �3 > 0.

In view of α2 
 1, it can be inferred from �2 > 0 that
|ωSOT| < ωa

SOT, where

ωa
SOT =

√
2√

3 − α2

{
[(2ωea + ωha)ωex + 2ωea(ωea + ωha)]

+α2
[
2ω2

ex + 5(2ωea + ωha)ωex

+2
(
5ω2

ea + 5ωeaωha + ω2
ha

)]}1/2
. (A26)

To solve �3 > 0, we rewrite it as

�3 = − �2
1

1 + α2

(
ω2

SOT − r+
)(

ω2
SOT − r−

)
, (A27)

where

r± = 1
2

( ±
√

4ω2
haω

2
ex + A2+ − A−

)
, (A28)

with

A± = (ωex + 2ωea)(ωex + 2ωea + 2ωha)

±α2(2ωea + ωha)(2ωex + 2ωea + ωha). (A29)

Given the strong exchange and the small damping, ωex >

ωea(ha) and α2 
 1. Then, A+ > A− > 0 and r− < 0 < r+.
Therefore, the solution of �3 > 0 is |ωSOT| < ωb

SOT, with
ωb

SOT = √
r+.

Combining the solutions of �2 > 0 and �3 > 0, the sta-
bility condition is |ωSOT| < min(ωa

SOT, ωb
SOT). By rearranging

terms and squaring, it can be proved that ωa
SOT > ωb

SOT by
a straightforward derivation. Finally, we conclude that these
two equivalent AFM states are stable under the condition that
|ωSOT| < ωl

SOT, where

ωl
SOT = 1√

2

√√
4ω2

haω
2
ex + A2+ − A−. (A30)

2. Stability analysis of FM states

For these states, θ0
i = 0 or π , in a Cartesian coordinate

system, corresponding to m0
i = ηez with η = ±1. By the same

procedure as that in Appendix A 1, the secular equation is
derived as

(a0λ
2 + a1λ + a2)(a0λ

2 + a1λ + a2) = 0, (A31)

where

a0 = 1 + α2, (A32)

a1 = 2[α(2ωea + ωha) + ηωSOT], (A33)

a2 = 4ωea(ωea + ωha) + ω2
SOT, (A34)

b0 = 1 + α2, (A35)

b1 = 2[−α(2ωex − 2ωea − ωha) + ηωSOT], (A36)

b2 = 4(ωex − ωea)(ωex − ωea − ωha) + ω2
SOT. (A37)

In light of the Routh-Hurwitz criterion [78–80], if a1, a2,
b1, and b2 are all positive, the equilibrium state is stable.
For a realistic AFM, the exchange coupling is generally
stronger than the anisotropy. So, it is reasonable to assume that
ωex > ωea + ωha. Then, it is obvious that a2 > 0 and b2 > 0.
Solving a1 > 0 and b1 > 0 yields ηωSOT > max[−α(2ωea +
ωha), α(2ωex − 2ωea − ωha)]. Finally, the FM state with m0

i =
ez is stable if ωSOT > ωu

SOT, while ωSOT < −ωu
SOT is the stable

condition of the FM state with m0
i = −ez. The critical value

is

ωu
SOT = α(2ωex − 2ωea − ωha). (A38)

3. Stability analysis of tilted-AFM states

For these kinds of states, θ0
1,2 = π/2, φ0

1 = φ0, and φ0
2 =

±π + φ0, with φ0 being Eq. (A4). To linearize Eq. (1) in
the vicinity of these equilibria, we express it in the spherical
coordinates

θ̇i + α sin θiφ̇i = f θ
i , (A39)

−αθ̇i + sin θiφ̇i = f φ
i , (A40)

where

f θ
i = ωex sin θ3−i sin(φi − φ3−i )

+ωha sin θi sin 2φi − ωSOT sin θi, (A41)

f φ
i = −ωex[sin θi cos θ3−i − sin θ3−i cos θi cos(φi

− φ3−i )] + (ωea + ωha cos2 φi ) sin 2θi. (A42)

Including the small disturbance (δθi and δφi) from equi-
librium, we assume that θi = θ0

i + δθi and φi = φ0
i + δφi.

Inserting this ansatz into Eqs. (A39)–(A42), and keeping the
linear terms of δθi and δφi, the linearized equations are written
as

Cẏ = Dy, (A43)
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where y = (δθ1, δφ1, δθ2, δφ2)T , with T denoting the matrix
transpose,

C =

⎛
⎜⎝

1 α 0 0
−α 1 0 0
0 0 1 α

0 0 −α 1

⎞
⎟⎠, (A44)

and D is the Jacobian matrix at the equilibrium,

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ f θ
1

∂θ1

∂ f θ
1

∂φ1

∂ f θ
1

∂θ2

∂ f θ
1

∂φ2

∂ f φ
1

∂θ1

∂ f φ
1

∂φ1

∂ f φ
1

∂θ2

∂ f φ
1

∂φ2

∂ f θ
2

∂θ1

∂ f θ
2

∂φ1

∂ f θ
2

∂θ2

∂ f θ
2

∂φ2

∂ f φ
2

∂θ1

∂ f φ
2

∂φ1

∂ f φ
2

∂θ2

∂ f φ
2

∂φ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

θi=θ0
i ,φi=φ0

i

. (A45)

Then taking the oscillating ansatz (δθi, δφi ∝ eλt ) into
Eq. (A43), the existence of a nontrivial solution demands
that λ satisfies the secular equation as Eq. (A31), where the
parameters are listed as

a0 = 1 + α2, (A46)

a1 = α[2ωex − 2ωea − ωha + 3(−1)PM], (A47)

a2 = −2[ωex + (−1)PM]

× [2ωea + ωha − (−1)PM], (A48)

b0 = 1 + α2, (A49)

b1 = α[2ωex − 2ωea − ωha + 3(−1)PM], (A50)

b2 = 2M[(−1)P(2ωex − 2ωea − ωha) + M], (A51)

where M =
√

ω2
ha − ω2

SOT. It is easy to observe that a2 <

0 for P = 1, 2, 3, 4. Thus, taking into account the Routh-
Hurwitz criterion [78–80], these four tilted-AFM states are all
unstable.

4. Stability analysis of tilted-FM states

The equilibria are θ0
1,2 = π/2 and φ0

i = φ0, with φ0 being
Eq. (A4). Using the same method as in Appendix A 3, a secu-
lar equation such as Eq. (A31) is obtained with the parameters
listed as

a0 = 1 + α2, (A52)

a1 = −α[2ωea + ωha − 3(−1)PM], (A53)

a2 = 2M[M − (−1)P(2ωea + ωha)], (A54)

b0 = 1 + α2, (A55)

b1 = −α[4ωex + 2ωea + ωha − 3(−1)PM], (A56)

b2 = 2[ωex − (−1)PM]

× [2ωex + 2ωea + ωha − (−1)PM]. (A57)

Apparently, if ωex > ωha, b1 < 0 for P = 1, 2, 3, 4. So, ac-
cording to the Routh-Hurwitz criterion [78–80], these four
tilted-FM states are all unstable.

APPENDIX B: EQUILIBRIA AND THEIR STABILITIES
FOR CASE II

In this case, the spin polarization is along the hard axis.
So, we can take up = uha = ez and uea = ey. The balance
between the SOT and the precessional torques produces the
equilibrium equation, using spherical coordinates, which read,(

ωSOT − ωea sin 2φ0
i

)
sin θ0

i

= ωex sin
(
φ0

i − φ0
3−i

)
sin θ0

3−i, (B1)[
ωex cos θ0

3−i + 2
(
ωha + ωea sin2 φ0

i

)
cos θ0

i

]
sin θ0

i

= ωex cos
(
φ0

i − φ0
3−i

)
cos θ0

i sin θ0
3−i. (B2)

Inspection of Eqs. (B1) and (B2) leads to a first kind of
solutions that satisfy sin θ0

i = 0. This yields the up-FM states
(θ0

i = 0 or π ) with m0
i in the direction of up, and the up-AFM

states in which θ0
1 = 0 (π ) and θ0

2 = π (0).
For sin θ0

i �= 0, Eqs. (B1) and (B2) allow sin 2φ0
i =

ωSOT/ωea, sin(φ0
1 − φ0

2 ) = 0, and cos θ0
i = 0. These generate

four tilted-FM states in which θ0
i = π/2 and φ0

i = φ0, and
four tilted-AFM states in which θi = π/2, φ0

1 = φ0, and φ0
2 =

π + φ0. φ0 reads,

φ0 = 1

2

[
(P − 1)π − (−1)P arcsin

ωSOT

ωea

]
, (B3)

with P = 1, 2, 3, 4. For these equilibria, mi are located in the
x-y plane and deviate from the easy axis. In the following,
we will derive the stable regions of the above four kinds of
equilibria by the linear stability analysis.

1. Stability analysis of up-AFM states

For these states, m0
1 = ηez and m0

2 = −ηez with η = ±1.
Following the same procedure as in Appendix A 1, and taking
up = uha = ez and uea = ey in the derivation, a secular equa-
tion such as Eq. (A12) is obtained with the parameters listed
as

a0 = (1 + α2)2, (B4)

a1 = 4α(1 + α2)(ωex − ωea − 2ωha), (B5)

a2 = 2
{
4ωha(ωea + ωha) − 2(ωea + 2ωha)ωex

+ 2α2
[
ω2

ex − 3(ωea + 2ωha)ωex

+ω2
ea + 6ωeaωha + 6ω2

ha

] − (1 − α2)ω2
SOT

}
, (B6)

a3 = 4α(ωex − ωea − 2ωha)[4ωha(ωea + ωha)

− 2(ωea + 2ωha)ωex + ω2
SOT], (B7)

a4 = [
4ωha(ωea + ωha) + ω2

SOT

]
× [

4(ωex − ωha)(ωex − ωea − ωha) + ω2
SOT

]
. (B8)
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By use of Eqs. (A18)–(A21), the Routh-Hurwitz determinants
are derived,

�1 = 4α(1 + α2)(ωex − ωea − 2ωha), (B9)

�2 = �1
[ − 2( f 1 − α2 f 2) − (3 − α2)ω2

SOT

]
, (B10)

�3 = 4�2
1

1 + α2

[
ω2

eaω
2
ex − α2 f 3 f 4

− ( f 3 + α2 f 4)ω2
SOT − ω4

SOT

]
, (B11)

�4 = a4�3, (B12)

where

f1 = (ωea + 2ωha)ωex − 2ωha(ωea + ωha), (B13)

f2 = 2ω2
ex − 5(ωea + 2ωha)ωex

+ 2
(
ω2

ea + 5ωeaωha + 5ω2
ha

)
, (B14)

f3 = (ωex − 2ωha)(ωex − 2ωea − 2ωha), (B15)

f4 = (ωea + 2ωha)(2ωex − ωea − 2ωha). (B16)

If �1 > 0, we have ωex > ωea + 2ωha. This results in a4 > 0,
f1 > 0, and f4 > 0. By now, the stability requires positive
�2 and �3. Considering α2 < 3, the necessary condition for
�2 > 0 is f1 − α2 f2 < 0. If f2 < 0, this inequality is unsatis-
fied and �2 < 0. If f2 > 0, we obtain the necessary condition
α2 > f1/ f2 for �2 > 0. Additionally, if f3 > 0, the necessary
condition for �3 > 0 is α2 < ω2

eaω
2
ex/( f 3 f 4). So, to ensure

�2 > 0 and �3 > 0 simultaneously, the damping constant
must satisfy f1/ f2 < α2 < ω2

eaω
2
ex/( f 3 f 4). Unfortunately, it

can be proved that f1/ f2 > ω2
eaω

2
ex/( f 3 f 4) for ωex > ωea +

2ωha. �2 and �3 cannot be positive simultaneously for f3 > 0.
If f3 < 0, we have ωea + 2ωha < ωex < 2ωea + 2ωha. In this
range, it is easy to infer that f2 < 0 and �2 < 0. In summary,
whether f2 and f3 are positive or negative, �2 and �3 cannot
be positive simultaneously. Finally, it can be concluded that
the up-AFM states are unstable.

2. Stability analysis of up-FM states

For these states, m0
i = ηez with η = ±1. After taking up =

uha = ez and uea = ey in the derivation, like Appendix A 2, the
secular equation is factorized into the product of two second-
order polynomials such as Eq. (A31) with the parameters

a0 = 1 + α2, (B17)

a1 = 2[−α(ωea + 2ωha) + ηωSOT], (B18)

a2 = 4ωha(ωea + ωha) + ω2
SOT, (B19)

b0 = 1 + α2, (B20)

b1 = 2[−α(2ωex + ωea + 2ωha) + ηωSOT], (B21)

b2 = 4(ωex + ωha)(ωex + ωea + ωha) + ω2
SOT. (B22)

If ηωSOT > α(2ωex + ωea + 2ωha)], a1, a2, b1, and b2 are
all positive. Thus, in view of the Routh-Hurwitz criterion

[78–80], the up-FM state with m0
i = ez is stable if ωSOT >

ωu
SOT, while ωSOT < −ωu

SOT is the stable condition of the FM
state with m0

i = −ez. The critical value is

ωu
SOT = α(2ωex + ωea + 2ωha). (B23)

3. Stability analysis of tilted-AFM states

For these states, θ0
1,2 = π/2, φ0

1 = φ0, and φ0
2 = π + φ0,

with φ0 being Eq. (B3). By the method used in Appendix A 3,
and taking up = uha = ez and uea = ey in the derivation, a
secular equation such as Eq. (A31) is obtained with the pa-
rameters listed as

a0 = 1 + α2, (B24)

a1 = α[2ωex + ωea + 2ωha + 3(−1)PN], (B25)

a2 = 2N[(−1)P(2ωex + ωea + 2ωha) + N], (B26)

b0 = 1 + α2, (B27)

b1 = α[2ωex + ωea + 2ωha + 3(−1)PN], (B28)

b2 = 2[ωex + (−1)PN][ωea + 2ωha + (−1)PN], (B29)

where N =
√

ω2
ea − ω2

SOT. Evidently, a1, a2, b1, and b2 are
all positive for P = 2, 4. According to the Routh-Hurwitz
criterion [78–80], these two equivalent tilted-AFM states
are stable, which is expressed as θ0

1,2 = π/2, φ0
1 = 1/2[π −

arcsin(ωSOT/ωea)], and φ0
2 = π + φ0

1 .

4. Stability analysis of tilted-FM states

For these states, θ0
1,2 = π/2, φ0

1,2 = φ0, with φ0 being
Eq. (B3). By the method used in Appendix A 3, and taking
up = uha = ez and uea = ey in the derivation, a secular equa-
tion such as Eq. (A31) is obtained with the parameters listed
as

a0 = 1 + α2, (B30)

a1 = α[ωea + 2ωha + 3(−1)PN], (B31)

a2 = 2N[(−1)P(ωea + 2ωha) + N], (B32)

b0 = 1 + α2, (B33)

b1 = −α[4ωex − ωea − 2ωha − 3(−1)PN], (B34)

b2 = 2[ωex − (−1)PN]

× [2ωex − ωea − 2ωha − (−1)PN]. (B35)

Obviously, a2 < 0 for P = 1, 3. For P = 2, 4, from b1 >

0, we have 4ωex < ωea + 2ωha + 3
√

ω2
ea − ω2

SOT, while from
b2 > 0, 4ωex > 2ωea + 4ωha + 2

√
ω2

ea − ω2
SOT. These two in-

equalities are conflicting. Thus, a1, a2, b1, and b2 cannot
be positive simultaneously. Taking into account the Routh-
Hurwitz criterion [78–80], these four tilted-FM states are all
unstable.
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FIG. 9. Schematic view of the constant-energy orbits (black solid
curves) around the spin polarization up. The red dashed curves are
through the saddle points of Eq. (10). The right panel is the projection
of the orbits on the y-z plane. We should emphasize that the orbits
are made to be seen clearly, and the corresponding values of adopted
parameters are not used to analyze self-oscillations in the main text.

APPENDIX C: DERIVATIONS OF EQS. (15) and (17)

In this Appendix, for Case I, we use the averaging tech-
nique [47,48] to derive the strength of SOT [Eq. (15)] to excite
a self-oscillation and the corresponding frequency [Eq. (17)].

To perform the integrals of Eqs. (13) and (14), it is essential
to define the constant-energy orbits, which are the intersection
of the hyperbolic cylindrical surfaces [Eq. (10)] and the unit
sphere (|n| = 1), as shown by the black solid curves as ex-
amples in the left panel of Fig. 9. These orbits are identified
by the energy En. For certain En, there are two branches on
both sides of the equator. When En = ωex − ωea, these orbits
shrink to points in the north or south poles. When En = ωha,
these orbits degenerate to those through the saddle points of
Eq. (10), as shown by the red dashed curves in Fig. 9.

The exchange torques drive m1 and m2 to rotate left-
handedly. So, the damping torques drive m1 and m2 far away
from the z axis. For the upper (lower) orbit, only the SOT with
ωSOT > 0 (<0) can counteract the damping torque and sustain
a stable oscillation.

Projecting on the y-z plane, the orbits are parts of
the hyperbolic curves, as shown in the right panel
of Fig. 9. From Eq. (10), the curves are defined by
n2

z /a2
z − n2

y/a2
y = 1 with az = √

En − ωha/
√

ωex − ωea − ωha,
and ay = √

En − ωha/
√

ωha. Observing the curves on the
sphere surface, when nx = 0, nz is maximum. When ny = 0,
nz is minimum. Then, the maximal and minimal values of nz

are obtained as

a =
√

En

ωex − ωea
, (C1)

b =
√

En − ωha

ωex − ωea − ωha
. (C2)

By use of Eq. (10) and the unit constraint of n, we express
nx and ny by nz and replace dt by dnz/(dnz/dt ) with dnz/dt
obtained by Eq. (9). Then, considering the reflection symme-
tries along the x and y axes, the loop integrals of Eqs. (13) and
(14) can be divided into four equivalent parts. Finally, keeping

the first-order terms of α and ωSOT, Eqs. (13) and (14) are
written as

Wdamp = 8α

[√
ωex − ωea

√
ωex − ωea − ωhaI2

− En(En − ωha)√
ωex − ωea

√
ωex − ωea − ωha

I0

]
, (C3)

WSOT = 4ωSOT
ωex − ωea − En√

ωex − ωea
√

ωex − ωea − ωha
I1, (C4)

where

Ip =
∫ a

b

(nz )pdnz√
a2 − n2

z

√
n2

z − b2
, (C5)

with p = 0, 1, 2. Taking a substitution nz =√
a2 − (a2 − b2)s2, Eq. (C5) becomes

Ip = ap−1
∫ 1

0
ds

(
√

1 − k2s2)p

√
1 − s2

√
1 − k2s2

, (C6)

with the modulus

k =
√

1 − b2

a2
=

√
ωha(ωex − ωea − En)

En(ωex − ωea − ωha)
. (C7)

Specifically, the three integrals are calculated as

I0 = 1

a

∫ 1

0

ds√
1 − s2

√
1 − k2s2

=
√

ωex − ωea

En
K(k), (C8)

I1 =
∫ 1

0

ds√
1 − s2

= π

2
, (C9)

I2 = a
∫ 1

0
ds

√
1 − k2s2

√
1 − s2

=
√

En

ωex − ωea
E(k), (C10)

where E(k) and K(k) are the complete elliptic integrals of
the second and first kinds. Substituting Eqs. (C8)–(C10) into
Eqs. (C3) and (C4) yields Eq. (15) from Eq. (12).

By a similar procedure, the precessional period is derived
as

T = 4
∫ a

b

dnz

dnz/dt
= 2I0√

ωex − ωea
√

ωex − ωea − ωha
.

(C11)

Inserting Eq. (C8) into Eq. (C11), Eq. (17) is obtained via
f = 1/T .

APPENDIX D: DERIVATIONS OF EQS. (24) and (26)

Here, for Case II, we derive the strength of SOT [Eq. (24)]
to excite a self-oscillation and the corresponding frequency
[Eq. (26)], with the same procedure as Appendix C, just tak-
ing different reduced energy, which is Eq. (23). From it, the
maximal and minimal values of nz are obtained as

a =
√

En + ωea

ωex + ωea + ωha
, (D1)

b =
√

En

ωex + ωha
, (D2)
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and the integrals of Eqs. (13) and (14) are expressed as

Wdamp = 8α

[√
ωex + ωha

√
ωex + ωea + ωhaI2

− En(En + ωea)√
ωex + ωha

√
ωex + ωea + ωha

I0

]
, (D3)

WSOT = 4ωSOT
ωex + ωha − En√

ωex + ωha
√

ωex + ωea + ωha
I1, (D4)

where

Ip =
∫ a

b

(nz )pdnz√
a2 − n2

z

√
n2

z − b2
, (D5)

with p = 0, 1, 2. Taking a substitution nz =√
a2 − (a2 − b2)s2, Eq. (D5) becomes

Ip = ap−1
∫ 1

0
ds

(
√

1 − k2s2)p

√
1 − s2

√
1 − k2s2

, (D6)

with the modulus

k =
√

1 − b2

a2
=

√
ωea(ωex + ωha − En)

(ωea + En)(ωha + En)
. (D7)

Specifically, the three integrals are calculated as

I0 = 1

a

∫ 1

0

ds√
1 − s2

√
1 − k2s2

=
√

ωex + ωea + ωha

En + ωea
K(k), (D8)

I1 =
∫ 1

0

ds√
1 − s2

= π

2
, (D9)

I2 = a
∫ 1

0
ds

√
1 − k2s2

√
1 − s2

=
√

En + ωea

ωex + ωea + ωha
E(k). (D10)

Substituting Eqs. (D8)–(D10) into Eqs. (D3) and (D4) allows
us to get Eq. (24) from Eq. (12).

Additionally, the precessional period is derived as

T = 4
∫ a

b

dnz

dnz/dt
= 2I0√

ωex + ωha
√

ωex + ωea + ωha
.

(D11)

Inserting Eq. (D8) into Eq. (D11), Eq. (26) is obtained via
f = 1/T .

APPENDIX E: DERIVATIONS OF EQ. (21)

Unlike Case I, the lower threshold of the self-oscillation
cannot be determined by the linear instability of the tilted-
AFM state for case II. To make sense of the tilted-AFM
state physically, Eq. (B3) implies that ωSOT < ωc

SOT = ωea. In
Fig. 10, we take ωea = 0.01ωex. A self-oscillation emerges
when increasing ωl

SOT to 0.0079ωex, which is smaller than
ωc

SOT (0.01ωex). So, this ωc
SOT is not the lower threshold of

the self-oscillation.
To derive the lower threshold analytically, we utilize an

averaging technique [16], which is in good agreement with the
numeric result for the FM self-oscillation. Before doing that,
we need to define two fixed points for the considered nonlinear

FIG. 10. Evolutions of m1 (a) and m2 (b) at the lower threshold
(ωl

SOT = 0.0079ωex) of the self-oscillation for Case II. The arrow
denotes the spin-polarization direction. The black dots represent the
initial states without the SOT. The red curves are the final orbits of
evolutions. The dashed curves are the constant-energy orbits passing
through the saddle points (En = 0). Here, to identify clearly the
curves, the parameters are taken as α = 0.01, ωea = 0.01ωex, and
ωha = 0.1ωex. Putting them into Eq. (21), the lower threshold ωl

SOT =
0.0077ωex, which agrees well with the numerical calculations except
for a slight difference.

magnetic system without the SOT. From Eq. (23), it is easy
to infer that ny = 1 (m1y = −m2y = 1) is a focus, as marked
by the black dots in Figs. 10(a) and 10(b). Correspondingly,
the energy Emin = −ωea. Also, nx = 1 (m1x = −m2x = 1) is
a saddle, as marked by the blue circles, whose energy is
Esaddle = 0.

Then, we maintain our attention on the evolutions of m1,2

at the lower threshold, as plotted in Figs. 10(a) and 10(b). In
the absence of the SOT, m1 (m2) prefers to line up along the
y (−y) direction initially, i.e., they are located at its focus.
Applying a SOT at the lower threshold, m1,2 evolve from
the foci to the saddle points, then enter their own constant-
energy orbit. The trajectory between the focus and the saddle
is not a constant-energy one. Therefore, before precessing in
a constant-energy orbit, m1,2 (n) should overcome an energy
barrier Esaddle − Emin = ωea. In this startup stage, besides off-
setting the damping, the SOT should do extra work to cross
this barrier. On average, this work-energy relation reads

ωSOT

∫ saddle

focus
(n × ez ) ·

(
n × dEn

dn

)
dt

= α

∫ saddle

focus

(
n × dEn

dn

)2

dt + ωea. (E1)

The absence of an explicit expression for this part
of the trajectory makes an exact analytical solution of
Eq. (E1) untractable. Fortunately, in view of the strong
exchange, ωex � ωea generally. The constant-energy or-
bit through the saddle is very close to the x-y plane,
as indicated in Figs. 10(a) and 10(b). By setting En =
Esaddle = 0 in Eq. (23), we obtain the intersection points
(F±) between this orbit and the y-z plane, which are
(0,±ñy,±ñz ), with ñy = √

ωex + ωha/
√

ωex + ωea + ωha and
ñz = √

ωea/
√

ωex + ωea + ωha). Obviously, in view of ωea 

ωex, ñz 
 1. So, F± are very close to the focus, and the integral
can be approximately completed along the constant-energy
trajectory from F+ or F− to the saddle point.
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Adopting this approximation, taking mz as the integral
variable, and utilizing Eq. (23), Eq. (E1) becomes

ωSOT
√

ωex + ωha
√

ωex + ωea + ωha

∫ 0

ñz

2mzdmz√
ñ2

z − m2
z

= α

√
ωex + ωha√

ωex + ωea + ωha

∫ 0

ñz

dmz√
ñ2

z − m2
z

+ ωea. (E2)

Performing integration and solving Eq. (E2) for ωSOT yields
the lower threshold, i.e., Eq. (21).

The analytic lower threshold Eq. (21) agrees very well with
the numeric result. This is because the constant-energy orbit
through the saddle points is very close to the x-y plane, i.e.,
ωea 
 ωex. Fortunately, Fig. 6 shows that the self-oscillation
exists for small ωea, especially when α � 0.01. Therefore, the
approximation is self-consistent in performing the integrals of
Eq. (E1).
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