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Inertial spin waves in ferromagnets and antiferromagnets

Ritwik Mondal 1,* and Levente Rózsa 2,†

1Department of Physics, Indian Institute of Technology (ISM) Dhanbad, IN-826004, Dhanbad, India
2Fachbereich Physik, Universität Konstanz, DE-78457 Konstanz, Germany

(Received 29 July 2022; revised 7 October 2022; accepted 10 October 2022; published 20 October 2022)

Inertial effects in spin dynamics are theoretically predicted to emerge at ultrashort time scales, but their
experimental signatures are often ambiguous. Here we calculate the spin-wave spectrum in ferromagnets and
two-sublattice antiferromagnets in the presence of inertial effects. It is shown how precession and nutation spin
waves hybridize with each other, leading to the renormalization of the frequencies, the group velocities, the
effective gyromagnetic ratios, and the effective damping parameters. Possible ways of distinguishing between
the signatures of inertial dynamics and similar effects explainable within conventional models are discussed.
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I. INTRODUCTION

Spin waves or magnons correspond to the elementary
excitations of magnetically ordered systems. The magnon
dispersion relation provides extensive information about the
spin configuration and about the microscopic magnetic in-
teractions. The dispersion relation is possible to probe using
a variety of experimental methods including light, spin-
polarized electron, or neutron scattering. Magnons have also
been put forward as possible information carriers in com-
putational architectures [1,2], where their typically short
wavelengths at the required operational frequencies facilitate
their integration with existing CMOS devices.

Combining a high speed with a long lifetime of magnons
is preferred for such computing applications, but these re-
quirements are often competing with each other. Very low
damping parameters and consequently long lifetimes have
been achieved in ferromagnets or strongly uncompensated
ferrimagnets such as yttrium iron garnet, but the typical ex-
citation frequencies of these materials lie in the GHz regime
[3–7]. Antiferromagnetic materials are characterized by THz
excitation frequencies due to the exchange enhancement
caused by the coupling between the sublattices. However,
the exchange enhancement also affects the effective damping
parameters [8], leading to short magnon lifetimes.

A possible solution for achieving high frequencies and
low damping is offered by inertial spin dynamics [9–11].
Including an inertial term in the Landau-Lifshitz-Gilbert
equation [12–14] describing the time evolution of the spins
leads to a separation between the directions of the magnetic
moment and of the angular momentum, giving rise to spin
nutation. Various theoretical proposals have been put forward
for explaining the microscopic origin of the inertial term
[10,15–21]. Theoretical and experimental estimates for the
inertial relaxation time η [see Eq. (2) below for the definition
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used here] range from a few femtoseconds to several hundred
femtoseconds [10,11,15,22–24], establishing the characteris-
tic time scale on which nutation can be observed.

The inertial dynamics introduces an additional peak in
the ferromagnetic resonance (FMR) spectrum. While the tra-
ditional precession resonance peak is observable at GHz
frequencies, the nutation resonance occurs in the THz range
[25–27] based on the above estimates for the inertial re-
laxation time. The nutation resonance has been observed
experimentally in bulk CoFeB and NiFe [24] and in epitax-
ial Co films [28]. Despite the enhancement of the excitation
frequency, the effective damping parameter characterizing the
linewidth of the resonance is reduced due to the inertial
dynamics [26,29]. The presence of spin inertia not only intro-
duces a second resonance peak, but also shifts the precession
resonance frequency to a lower value [30,31]. While the spins
rotate counterclockwise around their equilibrium direction at
the precession resonance, they rotate clockwise at the nutation
resonance [32,33]. The opposite rotational sense also induces
a sign change in the injected spin current from a ferromagnet
to an adjacent metallic layer between the precession and the
nutation resonances [33]. Compared to ferromagnets, the in-
terplay between precession and nutation is exchange enhanced
in two-sublattice antiferromagnets, causing an increase in
the frequency and magnitude of the nutation resonance peak
while the precession resonance is suppressed [29]. The high
susceptibility in FMR of the nutation resonance compared to
the precession resonance in antiferromagnets is explained by
the profile of the excitation modes: While the two sublattices
align almost antiparallel at the precession resonance, the nuta-
tion resonance is dominated by one of the sublattices, thereby
a finite net magnetic moment arises [33].

Away from the center of the Brillouin zone probed by
FMR, the inertial dynamics gives rise to propagating nutation
spin waves at finite wave vectors, which could be detected,
e.g., by Brillouin light scattering or spin-polarized electron or
neutron scattering. It has been derived in previous theoretical
works [34–37] that excitation frequencies of nutation spin
waves are enhanced compared to conventional, or precession,
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spin waves in ferromagnets. These studies either primarily
focused on small wave vectors where magnetostatic effects
dominate [35,36], or only took isotropic exchange interactions
into account [34,37]. Nutation spin waves in antiferromagnets
have not been considered so far.

Going beyond the isotropic exchange, the Dzyaloshinsky-
Moriya interaction [38,39] arises in systems with broken
inversion symmetry due to spin-orbit coupling, and leads to
nonreciprocal magnon propagation in ferromagnets, i.e., a
different frequency of magnons with wave vectors k and −k
[40–42]. This asymmetry in the spectrum is widely used for
the experimental determination of the Dzyaloshinsky-Moriya
interaction [43,44]. This interaction is essential for under-
standing the stabilization of noncollinear spin structures such
as chiral domain walls, spin spirals, and skyrmions in sys-
tems both with ferromagnetic and antiferromagnetic isotropic
exchange interactions [45], as well as for the formation of
topological magnon boundary states [46]. However, the ef-
fect of the Dzyaloshinsky-Moriya interaction on nutation spin
waves remains unexplored.

Here we present a calculation of the magnon frequencies in
the presence of inertial effects within linear spin-wave theory,
including the effects of Heisenberg exchange, Dzyaloshinsky-
Moriya interaction, and magnetocrystalline anisotropy terms
in the Hamiltonian. The results are discussed for ferromagnets
in Sec. II and for antiferromagnets in Sec. III. The most pro-
nounced signature of the inertial dynamics is the emergence
of high-frequency nutation magnon bands. In order to account
for the difficulties in the experimental detection of spin waves
at such high frequencies, it is also discussed how the sig-
natures of inertial dynamics could be observed in the group
velocity, the gyromagnetic ratio, or the effective damping
parameter of precession magnons due to their hybridization
with nutation spin waves.

II. FERROMAGNETS

A. Linear spin-wave theory

We will consider the classical atomistic spin Hamiltonian

H = 1

2

∑
i �= j

SiJi jS j +
∑

i

SiK iSi −
∑

i

BiMiSi, (1)

where Si is the unit magnetization vector and Mi is the mag-
nitude of the moment at lattice site i, the 3 × 3 tensors Ji j

and K i describe interactions between the spins and on-site
magnetocrystalline anisotropy, respectively, while Bi stands
for the external magnetic field.

The inertial Landau-Lifshitz-Gilbert (ILLG) equation de-
scribing the time evolution of the spins reads [10,18,25]

dSi

dt
= Si ×

[
−γiBeff

i + αi
dSi

dt
+ ηi

d2Si

dt2

]
, (2)

where γi is the absolute value of the gyromagnetic ratio for
electrons, αi is the Gilbert damping, ηi is the inertial relaxation
time, Beff

i = − 1
Mi

∂H
∂Si

is the effective magnetic field acting on
the spins, and the effective Hamiltonian of the total system is
denoted as H.

In the ferromagnetic ground state we assume that all spins
are pointing along the ẑ direction. We introduce the variables

β1i and β2i to describe small deviations from the ground state.
The spin directions are expanded up to second order in these
variables as [47]

Si =

⎛
⎜⎝

β2i

−β1i

1 − β2
1i

2
− β2

2i

2

⎞
⎟⎠. (3)

This expansion enables the linearization of the ILLG Eq. (2),
see Appendix A for details. In the following we consider
translationally invariant systems with a single sublattice,
meaning γi = γ , αi = α, ηi = η, Mi = M, K i = K, Ji j =
J(Ri − R j ), and homogeneous external magnetic field Bi =
B. We introduce the spatial Fourier transforms of the small
variables β̃1,2(k), and use the circularly polarized basis de-
fined by β̃±(k) = β̃2(k) ± iβ̃1(k). We also assume a harmonic
time dependence for the variables β̃±(k), replacing the differ-
ential operator −i d

dt with the frequency ω, turning the ILLG
dynamical equations into a set of algebraic equations. These
may be written as

[D(ω) + HSW(k)]β̃(k) = 0, (4)

with

β̃(k) =(β̃+(k) β̃−(k))T , (5)

D(ω) = − ηω2 + (iα + σ z )ω, (6)

where σ z is the Pauli matrix acting on the components of
β̃(k) and the spin-wave Hamiltonian HSW(k) is given in Ap-
pendix A. The solutions of the linearized ILLG equation form
pairs: for each eigenvalue ω(k) and eigenvector β̃(k), there
is a corresponding eigenvalue ω(−k) = −ω∗(k) and eigen-
vector β̃(−k) = Cβ̃(k), where C = σ xK is the particle-hole
symmetry operator, σ x is a Pauli matrix, and K is complex
conjugation. Particle-hole symmetry describes a special struc-
ture of the dynamical equation [48], which is enforced by the
commutation relations of bosonic creation and annihilation
operators in the quantum-mechanical case, and by the require-
ment that the spin-wave eigenfunctions β1i, β2i can always be
chosen to be real valued in the classical model discussed here.
Here it is demonstrated that this symmetry is conserved even
in the presence of inertial and damping terms which do not
have a direct quantum-mechanical analog.

B. Dispersion relation

As a specific example we consider the system sketched
in Fig. 1, representing a magnetic monolayer on a bcc(110)
surface, for example Fe/W(110) where the prominent effect
of the Dzyaloshinsky-Moriya interaction on the spin-wave
spectrum has been established in previous works [41,43,47].
The z direction describing the orientation of the spins is
oriented along the long side of the centered rectangular unit
cell, while x is along the perpendicular in-plane direction. We
will consider on-site anisotropy with only Kzz being finite,
nearest-neighbor exchange interactions with Jzz and Jxx =
Jyy, and next-nearest-neighbor Dzyaloshinsky-Moriya inter-
actions with Di j = Jxy

i j = −Jyx
i j . The symmetry of the system

ensures that the Dzyaloshinsky-Moriya vector D is oriented
along the z direction for next-nearest neighbors, and only this
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FIG. 1. Sketch of a two-dimensional centered rectangular lattice,
describing a magnetic monolayer on a bcc(110) surface. The lattice
constants are

√
2a and a along the z and x directions, respectively.

The arrows show the ground state spin orientation along the equilib-
rium direction z, with a small tilting of spins illustrating the traveling
spin wave. The nearest-neighbor lattice vectors are labeled as δ1 and
δ2, while the next-nearest-neighbor lattice vector is δ3. The nearest-
neighbor coupling coefficients are denoted by J containing Jxx = Jyy

and Jzz, while the next-nearest-neighbor Dzyaloshinsky-Moriya vec-
tors are D.

component of the vector enters the linearized ILLG equation.
Under these assumptions, Eq. (4) simplifies to two uncoupled
second-order algebraic equations,

−ηω2 + (iα ± 1)ω + 	±(k) = 0, (7)

with

	±(k) = γ

M
{−4Jzz + 2Jxx[cos(k · δ1) + cos(k · δ2)]

−2Kzz + MBz ∓ 2D sin(k · δ3)}, (8)

The dispersion relation for precession and nutation spin
waves is given by

ω±Prec(k) = ±[1 − a±(k)] + iα[1 − a−1
± (k)]

2η
, (9)

ω±Nut (k) = ±[1 + a±(k)] + iα[1 + a−1
± (k)]

2η
, (10)

with

a±(k)

=

√√√√ [1 − α2 + 4b±(k)] +
√

[1 − α2 + 4b±(k)]2 + 4α2

2
,

(11)
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FIG. 2. Spin-wave dispersion in a ferromagnet without and with the inertia. (a) Precession and (b) nutation bands along kz for kx = 0.
(c) Precession and (d) nutation bands along kx for kz = 0. The used parameters are given in Table I.
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TABLE I. Model parameters used in Eqs. (7) and (8) for the
following calculations for ferromagnets.

Jzz Jxx = Jyy D Kzz Bz α

−1.02 × 10−21 J −0.99 × 10−21 J 10−22 J −10−22 J 0 0

where we introduced the dimensionless factor b±(k) =
η	±(k). For a±(k) � 1, the imaginary part of all frequencies
is positive, meaning that the spin waves decay over time. It can
be shown that this stability condition is satisfied for 	±(k) �
0 for all η � 0 inertial relaxation times. In the following, due
to the particle-hole symmetry, we only show the solutions
with positive real parts, i.e., ω−Prec(k) and ω+Nut (k) due to
a±(k) � 1.

These frequencies are illustrated in Fig. 2 for the param-
eters given in Table I. We emphasize that these parameters
have been used throughout all the plots presented in ferro-
magnets except Fig. 4 where a damping of α = 0.05 has
been considered. These parameters chosen do not exactly
represent a real system, rather their magnitude is chosen such
a way that their effect is clearly identifiable in the plotted
spectra. Additionally, we mention that the model parame-
ters considered here are rather close to the nearest-neighbor
J , next-nearest-neighbor D, and total anisotropy parameters
reported in Ref. [41] for Fe/W(110) based on ab initio
calculations. From Eqs. (9) and (10) follows ω±Prec(k) +
ω±Nut (k) = (±1 + iα)/η. This means that the relation be-
tween the precession and nutation branches in Figs. 2(a) and
2(c) and Figs. 2(b) and 2(d) is given by

ω+Nut (k) = ω−Prec(−k) + η−1, (12)

where a−(k) = a+(−k) was used. The two bands are shifted
by a constant with respect to each other and inverted in k
space. The shift is subtracted from the nutation frequencies
for visualization purposes, otherwise the branches would be
further away from each other as η is varied. The inversion is
apparent in Figs. 2(c) and 2(d) where nonreciprocal spin-wave
propagation ω(k) �= ω(−k) can be observed. This is caused
by the Dzyaloshinsky-Moriya interaction as can be seen from
Eq. (8), which creates an asymmetry in the spectrum along the
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FIG. 3. The calculated group velocity of precession spin waves
at several inertial relaxation times along kx for kz = 0 with the lattice
constant a = 3 Å. The other used parameters are given in Table I.

-1 -0.5 0.0 0.5 1.0
akz

0.2

0.4

0.6

0.8

1.0

γ
eff

,P
re

c/
γ

,α
eff

,P
re

c/
α

η = 0 s

η = 10 fs

η = 100
fs

η = 1 ps

FIG. 4. The effective gyromagnetic ratio γeff,Prec and effective
damping parameter αeff,Prec from Eqs. (16) and (17) calculated for
several inertial relaxation times along kz for kx = 0. The values
are divided by γ and α observable for free precession. The used
parameters are given in Table I, however a nonzero damping value
of α = 0.05 has been considered.

kx direction, dictated by the symmetry of the system. For the
selected sign of D, nutation spin waves have a lower frequency
when propagating along −kx, while for precession spin waves
have a lower frequency along kx. This follows from the fact
that at a given lattice site, precession and nutation spin waves
have opposite circular polarizations, as it is known for the
k = 0 modes [29]. For α = 0, the two frequencies in Eqs. (9)
and (10) can be expanded in b±(k) as

ω−Prec(k) ≈ 	−(k) − b−(k)	−(k), (13)

ω+Nut (k) ≈ 1

η
+ 	+(k) − b+(k)	+(k). (14)

In this approximation, the original precession frequency
	±(k) is renormalized by the factor 1 − b±(k) due to the
inertia. While in the k = 0 point this is typically small, at high
wave vectors 	±(k) is dominated by the exchange terms, and
b±(k) is orders of magnitude larger. The stronger decrease of
the excitation frequencies at higher wave vectors leads to a
flattening of the parabolic spin-wave spectrum with increasing
inertial relaxation time η, as shown in Fig. 2.

The most apparent consequence of the inertial dynamics
is the appearance of the nutation spin-wave band. Since it
is shifted by 1/η with respect to the precession band, it
may be challenging to observe using experimental techniques
calibrated to typical precession frequencies. Therefore, it is
worthwhile to discuss how the signatures of inertial dynamics
show up in the precession band. While the decrease of the
spin-wave frequencies between the inertial and noninertial
cases at the edges of the Brillouin zone can achieve rela-
tively high values in this model calculation, it is unlikely
that inertial effects can be experimentally demonstrated based
on the measurement of the precession spin-wave band alone.
The value of the exchange parameters in such measurements
is determined based on the observed spectrum, and the flat-
tened dispersion relation in Fig. 2 may also be fitted by
renormalizing the nearest-neighbor exchange and taking inter-
actions with further neighbors into account. The signatures of
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inertial dynamics could only be proven if the spin interactions
obtained from the spectrum are compared to static quantities
determined by the spin model parameters but unaffected by
the dynamics, such as magnetization curves or the critical
temperature.

The group velocity of precession spin waves is given by the
expression

v−Prec(k) = dω−Prec(k)

dk
= a−1

− (k)
d	−(k)

dk
. (15)

The group velocity is presented in Fig. 3 for the consid-
ered model system. Due to the inertial dynamics, v−Prec(k)
is rescaled by the factor a−1

− (k). The group velocity vanishes
in the minimum of the spin-wave spectrum, which is shifted
along the kx direction due to the Dzyaloshinsky-Moriya in-
teraction as discussed above. The position of the minimum
is independent of η. The magnitude of v−Prec is reduced for
increased inertial relaxation times η and further away from
the minimum of the spectrum. As it was explained above
for the dispersion relation, the experimental determination of
the group velocities in only the precession band is probably
insufficient for concluding on the strength of inertial effects,
since a similar decrease could also be explained by a different
set of interaction parameters.

It is worthwhile to compare the results here to the cal-
culations in Refs. [34,37], to which the formalism here is
equivalent if only isotropic exchange interactions are con-
sidered, and the Fourier transforms are expanded in k in the
long-wavelength limit. In Ref. [34] it was stated that nutation
waves have higher frequencies and speeds compared to con-
ventional precession spin waves. While we can confirm the
higher frequencies of the nutation spin waves by the constant
shift of 1/η at a fixed wave vector (the nonreciprocity vanishes
in the absence of the Dzyaloshinsky-Moriya interaction) in
agreement with Ref. [37], nutation waves have the exact same
group velocity given by Eq. (16) as precession waves. A
higher speed for the nutation waves can only be observed if
different wave vectors are compared between the two bands,
as it was performed in Ref. [34].

A closer inspection of the dispersion relation of precession
spin waves may shed further light on the consequences of
inertial dynamics. For an external magnetic field applied along
the ẑ direction, the effective gyromagnetic ratio is computed
as

γeff (k) = dω−Prec(k)

dBz
= a−1

− (k)
d	−(k)

dBz

= γ√
1 + 4b−(k)

, (16)

where the last formula holds for α = 0. This expression
is illustrated in Fig. 4. While γeff corresponds to the free
gyromagnetic ratio in the absence of inertia, it displays a
wave-vector-dependent reduction as η increases. The renor-
malization factor a−1(k) is the same as for the group velocity
in Eq. (15). Note that γeff is the same for the nutation band
when a−1

− (k) is replaced by a−1
+ (k) because of the constant

shift and the inversion in k space described above.
However, a renormalization of the gyromagnetic ratio with

the wave vector is not unique to inertial dynamics. It can
also be observed in ferromagnets with biaxial anisotropy, see

Appendix A for the calculation; however, the renormalization
shows a different qualitative dependence on k. In biaxial fer-
romagnets in the absence of inertia, the gyromagnetic factor
is enhanced at short wave vectors and then converges to γ

on the scale ka ∝ √
(Kxx − Kyy)/J , where Kxx − Kyy is the

anisotropy energy between the intermediate and the hard axes.
In contrast, in the inertial case the gyromagnetic ratio is al-
ways smaller than its free value, and it typically displays a
decrease in a broad range in reciprocal space, occurring on the
characteristic scale of J0 − Jk ≈ M

γ
η, which is away from the

center of the Brillouin zone for typical values of the exchange
interaction and of the inertial relaxation time. Therefore, the
experimental determination of the gyromagnetic ratio in a
wide range of wave vectors should make it possible to dis-
tinguish between anisotropic and inertial effects.

The effective damping parameter of the spin waves is de-
fined as

αeff,−Prec(k) = Im ω−Prec(k)

Re ω−Prec(k)
= a−1

− (k)α; (17)

for nutation spin waves a−1
− (k) has to be replaced by a−1

+ (k).
Since the dependence on the wave vector is precisely the same
as for the effective gyromagnetic ratio in Eq. (16), Fig. 4 also
provides an illustration of the wave-vector dependence of the
effective damping. The analysis also follows similar lines:
While the effective damping also depends on the wave vector
in biaxial ferromagnets, it is only enhanced in the vicinity
of the k = 0 point, while inertial effects reduce the effective
damping and yield a broad variation in the Brillouin zone.
Although the Gilbert damping α is material dependent while
γ is more or less constant between magnetic systems, the
different behavior in the Brillouin zone should make it pos-
sible to distinguish between inertial and anisotropic effects on
the effective damping. Finally, we remark that the enhanced
robustness of nutation waves compared to precession waves
proposed in Ref. [34] only holds if effective damping param-
eters at different wave vectors are compared. The same value
for the effective damping between precession and nutation
waves and its decrease at higher wave vectors agrees with the
results of Ref. [37], where the quality factor Q = 1/(2αeff )
was calculated.

III. ANTIFERROMAGNETS

A. Linear spin-wave theory

Here we consider two-sublattice antiferromagnets. In the
ground state, the magnetic moments on the two sublattices
A and B point antiparallel, assumed to lie along the +ẑ and
−ẑ directions. Introducing the variables β1i, β2i on sublattice
i ∈ A and β1 j , β2 j on sublattice j ∈ B, the spin directions are
expanded as

Si =

⎛
⎜⎝

β2i

−β1i

1 − β2
1i

2
− β2

2i

2

⎞
⎟⎠, (18)

S j =

⎛
⎜⎜⎝

β2 j

β1 j

−1 + β2
1 j

2
+ β2

2 j

2

⎞
⎟⎟⎠. (19)
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FIG. 5. Sketch of a two-dimensional centered rectangular lattice
with nearest-neighbor antiferromagnetic coupling. The lattice con-
stants are

√
2a and a along the z and x directions, respectively. The

arrows show the ground state spin orientation along the equilibrium
direction z, with a small tilting of spins illustrating the traveling spin
wave. The nearest-neighbor lattice vectors are labeled as δ1 and δ2.
The nearest-neighbor coupling coefficients are denoted by J with
Jxx = Jyy and Jzz, while the nearest-neighbor Dzyaloshinsky-Moriya
vectors are D.

Following the same procedure as for ferromagnets, in
Fourier space and the circularly polarized basis we arrive
again at the linearized equation of motion Eq. (4). In this case,
the eigenvectors contain four components,

β̃(k) =(β̃+A(k) β̃−A(k) β̃+B(k) β̃−B(k))T , (20)

D(ω) =diag[D+A(ω), D−A(ω), D+B(ω), D−B(ω)], (21)

with

D±A/B = − ηA/Bω2 + (iαA/B ± 1)ω. (22)

The derivation and the expression for HSW(k) are given in
Appendix B.

The equation of motion still satisfies particle-hole sym-
metry, implying ω(−k) = −ω∗(k) for the eigenvalues and
β̃(−k) = Cβ̃(k) for the eigenvectors. Now we consider the
antiferromagnetic limit, where the two sublattices are equiv-
alent, i.e., γA = γB = γ , αA = αB = α, ηA = ηB = η, MA =
MB, KA = KB, and JkAB = JkBA. The external magnetic field
is set to zero (Bz = 0), and the A and B sublattices are as-
sumed to form a Bravais lattice together. In this case and for
α = 0, the eigenvalues ω(−k) = ω(k) and the eigenvectors
β̃(−k) = T β̃(k) are divided into pairs between wave vectors
k and −k by the effective time-reversal symmetry T = τ xK,
where τ x is a Pauli matrix exchanging the two sublattices. T
satisfies certain natural requirements on time reversal, namely
that it is broken if the system has a finite net magnetic moment
due to the inequivalence of the sublattices or because of the
application of an external field, and it does not hold in the
presence of dissipation α.

B. Dispersion relation

For illustration, we again consider the centered rectangular
lattice sketched in Fig. 5. Such a local antiferromagnetic order
have been observed in monolayers of Mn [49] and Cr [50] on

W(110), although on longer length scales they are modulated
to form spin spirals. We only consider exchange (Jzz, Jxx =
Jyy) and Dzyaloshinsky-Moriya (Di j = Jxy

i j = −Jyx
i j ) interac-

tions between the nearest neighbors belonging to different
sublattices, and a uniaxial on-site anisotropy term Kzz

A/B. In this
model, the linearized equations of motion decouple into two
two-by-two systems of equations containing the components
(β̃+A(k), β̃−B(k)) and (β̃−A(k), β̃+B(k)), respectively. Denot-
ing the first pair by + and the second pair by −, we obtain the
following secular equation for the eigenfrequencies:

A±ω4(k) + B±ω3(k) + C±ω2(k) + D±ω(k) + E±(k) = 0,

(23)

where the following parameters have been defined:

A± =ηAηB, (24)

B± =[±(ηA − ηB) − i(αBηA + αAηB)], (25)

C± =[−1 − αAαB − (	AAηB + 	BBηA) ∓ i(αA − αB)],
(26)

D± =[∓(	AA − 	BB) + i(	AAαB + 	BBαA)], (27)

E±(k) =	AA	BB − W±AB(k)W∓BA(k), (28)

	AA = γA

MA

(
4Jzz − 2Kzz

A + MABz
)
, (29)

	BB = γB

MB

(
4Jzz − 2Kzz

B − MBBz
)
, (30)

W±AB(k) = γA

MA
{2Jxx[cos(k · δ1) + cos(k · δ2)]

∓2D[sin(k · δ2) − sin(k · δ1)]}, (31)

W±BA(k) = γB

MB
{2Jxx[cos(k · δ1) + cos(k · δ2)]

±2D[sin(k · δ2) − sin(k · δ1)]}. (32)

We present the analytical solution of Eq. (23) only for two
identical sublattices, and set the damping and the external field
to zero. This leads to the simplification 	 = 	AA = 	BB and
W± = W±AB = W∓BA. The dispersion relation is given by

ω2
±Prec(k) =1 + 2b

2η2

(
1 −

√
1 − 4η2

(1 + 2b)2 [	2 − W 2±(k)]

)
,

(33)

ω2
±Nut(k) =1 + 2b

2η2

(
1 +

√
1 − 4η2

(1 + 2b)2 [	2 − W 2±(k)]

)

(34)

for precession and nutation spin waves, respectively. Here b =
η	 was introduced, analogously to b±(k) in the ferromagnetic
case. We will only consider the ω±Prec,Nut(k) � 0 solutions
due to particle-hole symmetry.

The spin-wave frequencies are shown in Fig. 6 for two
equivalent sublattices with the parameters given in Table II.
These parameters have been used throughout all the plots
presented in antiferromagnets except Fig. 9 where a damping
value α = 0.05 has been considered. In Figs. 6(c) and 6(d) it
can be seen that the individual branches ω+Prec(k), ω−Prec(k),
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FIG. 6. Spin-wave dispersion relation in the antiferromagnet without and with the inertia, computed based on Eq. (23). Solid and dashed
lines indicate the + and − branches of the dispersion relation. (a) Precession and (b) nutation bands along kz for kx = 0. (c) Precession and
(d) nutation bands along kx for kz = 0. The used parameters are given in Table II.

ω+Nut(k), and ω−Nut(k) are nonreciprocal due to the pres-
ence of the Dzyaloshinsky-Moriya interaction. However, the
branches are connected by the reciprocal symmetry R = τ x,
ensuring ω+Prec(k) = ω−Prec(−k) and ω+Nut(k) = ω−Nut(−k).
In contrast to the time-reversal symmetry T = RK intro-
duced above, reciprocal symmetry requires certain spatial
symmetries beyond the equivalence of the two sublattices.
These are satisfied by the present system as discussed in
Appendix A. Note that reciprocal symmetry also holds for
finite damping α, unlike time-reversal symmetry.

While in the ferromagnetic case the sum of the precession
and nutation frequencies was fixed in the same spin-wave
branch while ω+Prec(k) and ω+Nut(k) had opposite signs, in
the antiferromagnetic case the sum of the squared frequencies
is a constant as a function of wave vector,

ω2
±Prec(k) + ω2

±Nut(k) = 1 + 2b

η2
. (35)

TABLE II. Model parameters used in Eqs. (29)–(32) for the
following calculations for antiferromagnets.

Jzz Jxx = Jyy D Kzz Bz α

1.02 × 10−21 J 0.99 × 10−21 J −10−22 J −10−22 J 0 0

This leads to a considerably different spectrum. While in
the ferromagnet the precession and nutation bands are only
shifted with respect to each other and inverted in k space,
in the antiferromagnet the nutation frequencies are smaller
for higher precession frequencies, meaning that they decrease
when moving away from the center of the Brillouin zone.
This can also be seen when expanding the frequencies in the
parameter b, yielding

ω±Prec(k) ≈
√

	2 − W 2±(k)

1 + 2b
, (36)

ω±Nut(k) ≈
√

1 + 2b

η
− η(	2 − W 2

±(k))

2(1 + 2b)3/2 . (37)

While the ordinary precession frequencies ω
(0)
± (k) =√

	2 − W 2±(k) are decreased by a factor of (1 + 2b)−1/2,

the nutation frequency is around
√

1 + 2b/η, which is
enhanced compared to the ferromagnetic case by

√
1 + 2b,

as it was already discussed in Ref. [29] in the k = 0 case.
While the precession band is almost linear in wave vector
except very close to the minimum where the anisotropy
leads to a quadratic dispersion, the nutation band behaves as
∝ −η(ω(0)

± (k))2 at low wave vectors, which describes a broad
quadratic dispersion with a small negative curvature, as is also
visible in Figs. 6(b) and 6(d). Note that the nutation bands are

134422-7



RITWIK MONDAL AND LEVENTE RÓZSA PHYSICAL REVIEW B 106, 134422 (2022)

-2 -1 0 1 2
akz

−4

−2

0

2

4

v
(k

)
(k

m
·s−

1 )

η = 0 s

η =
10 fs

η = 100 fs

η = 1 ps

FIG. 7. Group velocity of spin waves in antiferromagnets along
kz for kx = 0, computed based on Eq. (23). The solid and dashed lines
are the group velocities for precession waves and nutation waves,
respectively. A lattice constant a = 3 Å has been considered. The
other used parameters are given in Table II.

shifted down by 1/η in the figure as in the ferromagnetic case,
which here does not lead them to coincide with the precession
bands, but it does make it possible to visualize them in the
same frequency range regardless of the value of η.

The group velocity in the antiferromagnetic case is

v±Prec(k) ≈ 1√
1 − 4η2

(1+2b)2 (	2 − W 2±)

1√
1 + 2b

v
(0)
±Prec(k),

(38)

v±Nut(k) ≈ − 1√
1 − 4η2

(1+2b)2 (	2 − W 2± )

2ω
(0)
± (k)η

(1 + 2b)3/2 v
(0)
±Prec(k),

(39)

where v
(0)
±Prec(k) = 1

2ω
(0)
± (k)

∂ (ω(0)
± (k))2

∂k is the group velocity in the

absence of inertia.
The group velocity is shown in Fig. 7 along the kz direction.

Compared to the ferromagnetic case in Fig. 3, the slope of
the group velocity is higher at low wave vector, indicative
of the high curvature of the dispersion relation. The lead-
ing correction of v±Prec(k) due to the inertial dynamics is a
renormalization by a factor of (1 + 2b)−1/2, similarly to the
frequency itself. Since this renormalization is independent of
the wave vector, it would not be possible to detect it exper-
imentally, unless the interaction parameters are known from
independent measurements as mentioned in the ferromagnetic
case. The first term on the right-hand side of Eq. (38) describes
a further decrease of the group velocity, which only becomes
relevant at high wave vectors where η2(ω(0)

± (k))2 is relatively
large. The group velocity of nutation spin waves points along
the opposite direction compared to precession spin waves, and
here it is considerably lower in magnitude for all wave vectors
because of the flat dispersion relation.

Similarly to the ferromagnetic case, deriving the effective
gyromagnetic ratios and damping parameters from the dis-
persion relation could provide signatures for the experimental
detection of the inertial dynamics if only the frequency range

-3 -2 -1 0 1 2 3
akx
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FIG. 8. Effective gyromagnetic ratio for spin waves in antiferro-
magnets along kx for kz = 0, computed based on Eq. (23). The solid
and dashed lines are the gyromagnetic ratios for precession waves
and nutation waves, respectively. The used parameters are given in
Table II.

of the precession spin waves is accessible. The gyromagnetic
ratios are expressed as

γeff,Prec±(k) = −γeff,Nut±(k)

≈ ± 1

1 + 2b

(
1 + 2η2

(
ω

(0)
± (k

)
)2

(1 + 2b)2

)
γ , (40)

while the effective damping parameters read

αeff,Prec(k) ≈
	 − η(ω(0)

± (k))2

(1+2b)

ω
(0)
± (k)(1 + 2b)1/2

α, (41)

αeff,Nut(k) ≈
[

1 + b

(1 + 2b)3/2 + 3 − 5b

2(1 + 2b)7/2 η2(ω(0)
± (k))2

]
α;

(42)

see Appendix B for the idea of the derivation. These expres-
sions are linearized in the small parameter η2(ω(0)

± (k))2 	 1,
which should be valid at low wave vectors for typical interac-
tion and inertial parameters.

The gyromagnetic ratios are illustrated in Fig. 8. Note that
the two spin-wave branches ω± are described by opposite
signs of the gyromagnetic ratio, i.e., one is increasing in
external magnetic field while the other is decreasing. This
is a consequence of the antiferromagnetic alignment of the
spins irrespective of the inertial dynamics. Only the posi-
tive gyromagnetic ratio is shown in Fig. 8. Due to the finite
value of η, the effective gyromagnetic ratio of precession spin
waves in Eq. (40) is decreased at zero wave vector stronger
than in ferromagnets, since bAFM 
 bFM(k = 0). However,
at increasing wave vector the gyromagnetic ratio increases,
in contrast to the ferromagnetic case. The relative change in
γeff,Prec between the center and the boundary of the Brillouin
zone is smaller in antiferromagnets than in ferromagnets due
to a decreased prefactor. While the dependence on the wave
vector is caused entirely by inertial effects in this model, a
biaxial anisotropy may enhance the gyromagnetic ratio at low
wave vectors even without inertia, as already discussed for the
ferromagnetic case. According to Eq. (40), the gyromagnetic
ratio for the nutation band is inverted in k compared to the
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FIG. 9. Effective damping for spin waves in antiferromagnets
along kz for kx = 0, computed based on Eq. (23). The solid and
dashed lines represent effective damping for precession and nutation
modes, respectively. The used parameters are given in Table II,
however a nonzero damping value of α = 0.05 has been considered.

precession band, when the branches γeff,Prec+(k) and
γeff,Nut−(k) with positive gyromagnetic ratios are considered,
as is also shown in Fig. 8.

The effective damping parameters are shown in Fig. 9.
Already in the absence of inertia, αeff is increased by a factor
of 	/ω

(0)
± (k) with respect to α, which constitutes an exchange

enhancement ∝ √
J/K at low wave vectors and decreases

away from the center of the Brillouin zone. This effect is qual-
itatively similar to the case of biaxial ferromagnets mentioned
above. The leading correction due to inertial dynamics is once
again the renormalization by the constant factor (1 + 2b)−1/2,
decreasing the effective damping. However, the renormaliza-
tion by a factor independent of the wave vector is not possible
to detect experimentally if the value of the Gilbert damping
is not known in advance. Expanding the effective damping in
η leads to a subleading correction which leads to a stronger
decrease away from the center of the Brillouin zone; however,
based on Fig. 9 this correction may be difficult to discern
since the shape is already qualitatively similar without iner-
tia. Nutation spin waves are not influenced by the exchange
enhancement [29], and their effective damping parameters are
reduced compared to the Gilbert damping α by a factor of
(1 + b)/(1 + 2b)3/2. The dependence on the wave vector only
appears when expanding up to second order in η, leading to
a weak increase at higher wave vectors if b is sufficiently
small.

IV. CONCLUSIONS

We calculated the spin-wave dispersion relation in fer-
romagnets and antiferromagnets in the linear spin-wave
approximation in the presence of an inertial term in the
equation of motion. The inertial term doubles the number
of spin-wave bands due to the appearance of nutation spin
waves at high frequency, and also decreases the conventional
precession spin-wave frequencies due to the hybridization

between the bands. The decrease of the precession spin-wave
frequencies becomes more pronounced at higher wave vec-
tors. In uniaxial ferromagnets, the nutation band is shifted by
η−1 compared to the precession band, and is inverted in re-
ciprocal space. If the spin-wave propagation is nonreciprocal,
for example due to the presence of the Dzyaloshinsky-Moriya
interaction, then the preferential direction for spin-wave prop-
agation is inverted between precession and nutation spin
waves. In antiferromagnets with two identical sublattices, the
sum of the squares of the precession and nutation spin waves
is independent of the wave vector. This leads to the fact that
the dispersion relation of the nutation waves is quadratic at
low wave vectors in contrast to the typical linear dispersion of
antiferromagnetic precession spin waves, and the frequency
of nutation spin waves decreases at higher wave vectors. The
group velocity of spin waves is reduced as a consequence of
inertial effects, and nutation spin waves in antiferromagnets
propagate in the opposite direction compared to their wave
vectors.

While the direct detection of nutation spin waves would
provide the most direct evidence of inertial effects on spin
dynamics, analyzing the precession band alone may also pro-
vide indications for inertial motion. Since the renormalization
of spin-wave frequencies and the group velocity may also be
explained by a different set of spin-model parameters, these
parameters could be fixed by the measurement of static prop-
erties such as the critical temperature which is not affected
by the inertia. Alternatively, the decrease of the effective
gyromagnetic ratio or the effective damping parameter with
increasing wave vector could hint towards the role of inertial
dynamics. Although a similar wave-vector dependence may
also be caused by anisotropy terms, those modify the gyro-
magnetic ratio and the effective damping typically at lower
frequencies compared to where inertial effects are the most
pronounced. Such signatures are expected to be more pro-
nounced in ferromagnets than in antiferromagnets, since in the
latter the frequencies of precession spin waves and all derived
quantities are renormalized by a factor which depends very
weakly on the wave vector. Such a constant renormalization
cannot be determined from the investigation of spin waves
unless the interaction parameters, the gyromagnetic ratio, or
the damping is known from independent measurements. The
comparison between precession and nutation spin waves is
more intriguing in antiferromagnets: while the effective damp-
ing is identical in the two spin-wave bands in ferromagnets,
in antiferromagnets nutation spin waves do not experience an
exchange enhancement of the effective damping.
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APPENDIX A: DERIVATION OF THE LINEARIZED ILLG EQUATION FOR FERROMAGNETS

The Hamiltonian Eq. (1) in the harmonic approximation may be written as

H = E0 + Hlin + HSW, (A1)

with

E0 = 1

2

∑
i �= j

Jzz
i j +

∑
i

Kzz
i −

∑
i

Bz
i Mi (A2)

the ground-state energy,

Hlin =1

2

∑
i �= j

(
Jxz

i j β2i + Jzx
i j β2 j − Jyz

i j β1i − Jzy
i j β1 j

) +
∑

i

(
2Kxz

i β2i − 2Kyz
i β1i

) −
∑

i

Mi
(
Bx

i β2i − By
i β1i

)
(A3)

the term linear in the expansion variables β1i and β2i, and

HSW =1

2

∑
i �= j

[
−Jzz

i j

(
β2

1i

2
+ β2

2i

2
+ β2

1 j

2
+ β2

2 j

2

)
+ Jxx

i j β2iβ2 j + Jyy
i j β1iβ1 j − Jxy

i j β2iβ1 j − Jyx
i j β1iβ2 j

]

+
∑

i

[
Kxx

i β2
2i + Kyy

i β2
1i − Kzz

i

(
β2

2i + β2
1i

)] −
∑

i

2Kxy
i β1iβ2i +

∑
i

Bz
i

(
β2

1i

2
+ β2

2i

2

)
Mi. (A4)

the spin-wave Hamiltonian. The term Hlin must vanish if the ferromagnetic state is equilibrium, leading to the conditions∑
j

Jxz
i j + 2Kxz

i j − Bx
i Mi = 0, (A5)

∑
j

Jyz
i j + 2Kyz

i j − By
i Mi = 0, (A6)

when using the identity Jαβ
i j = Jβα

ji following from the definition of the Hamiltonian including a double summation over lattice
sites i and j.

The effective field in Eq. (2) is computed as

Beff
i = − 1

Mi

∂H
∂Si

= − 1

Mi

∂H
∂β2i

x̂ + 1

Mi

∂H
∂β1i

ŷ. (A7)

Using this expression, the linearized ILLG equation may be written as

dβ2i

dt
= γi

Mi

∑
j

(−Jzz
i j β1i + Jyy

i j β1 j − Jyx
i j β2 j

)

+ γi

Mi

( − 2Kzz
i β1i + 2Kyy

i β1i − 2Kxy
i β2i

) + γiB
z
i β1i + αi

dβ1i

dt
+ ηi

d2β1i

dt2
, (A8)

dβ1i

dt
= − γi

Mi

∑
j

(−Jzz
i j β2i + Jxx

i j β2 j − Jxy
i j β1 j

)

− γi

Mi

( − 2Kzz
i β2i + 2Kxx

i β2i − 2Kxy
i β1i

) − γiB
z
i β2i − αi

dβ2i

dt
− ηi

d2β2i

dt2
. (A9)

For translationally invariant systems, Eqs. (A8) and (A9) may be rewritten in a block-diagonal form in k after Fourier
transformation,

dβ̃2(k)

dt
= γ

M

( − Jzz
k=0 + Jyy

k − 2Kzz + 2Kyy + MBz
)
β̃1(k) + γ

M

( − Jyx
k − 2Kxy

)
β̃2(k) + α

dβ̃1(k)

dt
+ η

d2β̃1(k)

dt2
, (A10)

dβ̃1(k)

dt
= − γ

M

( − Jxy
k − 2Kxy

)
β̃1(k) − γ

M

( − Jzz
k=0 + Jxx

k − 2Kzz + 2Kxx + MBz
)
β̃2(k) − α

dβ̃2(k)

dt
− η

d2β̃2(k)

dt2
, (A11)

with the definitions

β̃1(2)(k) = 1√
N

∑
Ri

e−ik·Riβ1i(2i), (A12)

Jk =
∑

Ri−R j

e−ik·(Ri−R j )Ji j . (A13)
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Switching to the circularly polarized basis and performing Fourier transformation in time results in Eq. (4) in the main text,
with the spin-wave Hamiltonian HSW(k) given by

HSW(k) =
(

	+(k) W+(k)
W−(k) 	−(k)

)
, (A14)

	±(k) = γ

2M

( − 2Jzz
k=0 + Jxx

k + Jyy
k ∓ iJyx

k ± iJxy
k − 4Kzz + 2Kxx + 2Kyy + 2MBz

)
, (A15)

W±(k) = γ

2M

(
Jxx

k − Jyy
k ∓ iJyx

k ∓ iJxy
k + 2Kxx − 2Kyy ∓ i4Kxy

)
. (A16)

The relations 	∗
±(k) = 	∓(−k) and W ∗

±(k) = W∓(−k) are satisfied by definition, and they enforce the particle-hole symmetry
mentioned in the main text.

To calculate the dependence of the gyromagnetic ratio on the wave vector in biaxial ferromagnets, we keep the off-diagonal
terms W±(k) of HSW in Eq. (A14). In the absence of an inertial term, this yields the dispersion relation

ω
(0)
Prec(k) = 1

1 + α2

⎛
⎝	− − 	+ + iα(	− + 	+)

2
+

√
(1 − α2)

(
	− + 	+

2

)2

+ iα
	2− − 	2+

2
− W+W−

⎞
⎠, (A17)

the gyromagnetic ratio

γ
(0)

eff (k) = γ√
1 − 4W+(k)W−(k)

[	−(k)+	+(k)]2

(A18)

for α = 0, and the effective damping parameter

α
(0)
eff (k) = α√

1 − 4W+(k)W−(k)
[	−(k)+	+(k)]2

. (A19)

While Eq. (A18) predicts a decrease of the gyromagnetic ratio with k similarly to Eq. (16), quantitatively the formulas depend
differently on the wave vector, as discussed in the main text. The same conclusion applies to the effective damping, since
Eq. (A19) shows the same dependence on the wave vector as Eq. (A18), similarly to Eqs. (17) and (16) in the inertial case.

APPENDIX B: DERIVATION OF THE LINEARIZED ILLG EQUATION FOR ANTIFERROMAGNETS

Using the definition of the spins on the two sublattices in Eqs. (18) and (19), expansion of the Hamiltonian for an
antiferromagnet has the following form:

E0 =
∑

i∈A, j∈B

−Jzz
i j +

∑
i∈A

Kzz
i +

∑
j∈B

Kzz
j −

∑
i∈A

Bz
i Mi,A −

∑
j∈B

−Bz
jMj,B, (B1)

Hlin =
∑

i∈A, j∈B

(−Jxz
i j β2i + Jzx

i j β2 j + Jyz
i j β1i + Jzy

i j β1 j
) +

∑
i∈A

(
2Kxz

i β2i − 2Kyz
i β1i

) +
∑
j∈B

(−2Kxz
j β2 j − 2Kyz

j β1 j
)

−
∑
i∈A

Mi,A
(
Bx

i β2i − By
i β1i

) −
∑
j∈B

Mj,B
(
Bx

i β2i + By
i β1i

)
, (B2)

HSW =
∑

i∈A, j∈B

[
Jzz

i j

(
β2

1i

2
+ β2

2i

2
+ β2

1 j

2
+ β2

2 j

2

)
+ Jxx

i j β2iβ2 j − Jyy
i j β1iβ1 j + Jxy

i j β2iβ1 j − Jyx
i j β1iβ2 j

]

+
∑
i∈A

[
Kxx

i β2
2i + Kyy

i β2
1i − Kzz

i

(
β2

2i + β2
1i

) − 2Kxy
i β1iβ2i

]

+
∑
j∈B

[
Kxx

j β2
2 j + Kyy

j β2
1 j − Kzz

j

(
β2

2 j + β2
1 j

) + 2Kxy
j β1 jβ2 j

]

+
∑
i∈A

Bz
i

(
β2

1i

2
+ β2

2i

2

)
Mi,A +

∑
j∈B

−Bz
j

(
β2

1 j

2
+ β2

2 j

2

)
Mj,B. (B3)

The linearized equations of motion are calculated similarly to the ferromagnetic case. The effective fields acting on each
sublattice Beff,A

i and Beff,B
j are determined and inserted into the ILLG equation. Translational invariance is assumed with γi,A/B =

γA/B, αi,A/B = αA/B, ηi,A/B = ηA/B, Mi,A/B = MA/B, K i/ j = KA/B, and Ji j = J(Ri − R j ), enabling diagonalization in lattice sites
via Fourier transformation. In the circularly polarized basis and after Fourier transformation in time, the equations of motion are

134422-11



RITWIK MONDAL AND LEVENTE RÓZSA PHYSICAL REVIEW B 106, 134422 (2022)

formally identical to Eq. (4), as mentioned in the main text. The spin-wave Hamiltonian reads

HSW(k) =

⎛
⎜⎝

	+AA(k) W+AA(k) 	+AB(k) W+AB(k)
W−AA(k) 	−AA(k) W−AB(k) 	−AB(k)
	+BA(k) W+BA(k) 	+BB(k) W+BB(k)
W−BA(k) 	−BA(k) W−BB(k) 	−BB(k)

⎞
⎟⎠, (B4)

containing the coefficients

	±AA(k) = γA

2MA

(
Jxx

kAA + Jyy
kAA ∓ iJyx

kAA ± iJxy
kAA − 2Jzz

k=0AA + 2Jzz
k=0AB − 4Kzz

A + 2Kxx
A + 2Kyy

A + 2MABz
)
, (B5)

W±AA(k) = γA

2MA

(
Jxx

kAA − Jyy
kAA ∓ iJyx

kAA ∓ iJxy
kAA + 2Kxx

A − 2Kyy
A ∓ i4Kxy

A

)
, (B6)

	±BB(k) = γB

2MB

(
Jxx

kBB + Jyy
kBB ± iJyx

kBB ∓ iJxy
kBB − 2Jzz

k=0BB + 2Jzz
k=0BA − 4Kzz

B + 2Kxx
B + 2Kyy

B − 2MBBz
)
, (B7)

W±BB(k) = γB

2MB

(
Jxx

kBB − Jyy
kBB ± iJyx

kBB ± iJxy
kBB + 2Kxx

B − 2Kyy
B ± i4Kxy

B

)
, (B8)

	±AB(k) = γA

2MA

( − Jyy
kAB + Jxx

kAB ∓ iJyx
kAB ∓ iJxy

kAB

)
, (B9)

W±AB(k) = γA

2MA

(
Jyy

kAB + Jxx
kAB ∓ iJyx

kAB ± iJxy
kAB

)
, (B10)

	±BA(k) = γB

2MB

( − Jyy
kBA + Jxx

kBA ± iJyx
kBA ± iJxy

kBA

)
, (B11)

W±BA(k) = γB

2MB

(
Jyy

kBA + Jxx
kBA ± iJyx

kBA ∓ iJxy
kBA

)
. (B12)

Particle-hole symmetry is enforced by the coefficients
satisfying 	∗

±(k) = 	∓(−k) and W ∗
±(k) = W∓(−k) for all

sublattice indices.
Assuming that the sublattices are identical and the external

field is set to zero, the spin-wave Hamiltonian simplifies to

HSW(k) =

⎛
⎜⎝

	(k) W (k) 	′(k) W ′(k)
W ∗(−k) 	(−k) W ′∗(−k) 	′∗(−k)
	′∗(k) W ′(−k) 	(−k) W ∗(−k)
W ′∗(k) 	′(−k) W (k) 	(k)

⎞
⎟⎠,

(B13)

where 	(k) = 	∗(k) and W (k) = W (−k). Time-reversal
symmetry with T = τ xK also requires W ′(k) = W ′∗(k) and
	′(k) = 	′(−k). These conditions are satisfied if the two
sublattices together form a Bravais lattice, e.g., the centered
rectangular lattice consisting of two primitive rectangular sub-
lattices on the bcc(110) surface discussed in the main text.
Such effective time-reversal symmetries in antiferromagnetic
systems are always protected by a crystal symmetry, since the
physical time reversal inverts the spin direction on both sublat-

tices, and the crystal symmetry is required for exchanging the
two sublattices in order to get back to the initial configuration.

For the monolayer on the bcc(110) surface discussed in
the main text, any two lattice sites can be exchanged by a
180◦ rotation around the out-of-plane y axis, which implies
Jxy

i j = −Jyx
i j . The mirror symmetry on the yz plane leads to

Kxy = 0. Due to these conditions, HSW(k) is a real matrix
[in particular, 	′(k) = 	′∗(k) and W (k) = W ∗(k) since the
other two coefficients are real anyways as mentioned above],
and the equation of motion satisfies reciprocal symmetry with
R = τ x, as discussed in the main text.

To calculate the effective gyromagnetic ratios and damping
parameters, we treat the damping α and the magnetic field Bz

perturbatively in Eq. (23). For identical sublattices this yields

η2ω4(k) − (1 + 2b)ω2(k) + 	2 − W 2
±(k) + i2α(	ω′(k)

− η(ω′(k))3) ∓ 2γω′(k)Bz = 0, (B14)

where ω′(k) is the eigenfrequency without damping or
magnetic field. Following the procedure in Ref. [29], the
eigenfrequencies are extended up to linear order in Bz and α,
leading to Eqs. (40)–(42) in the main text.
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