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Hidden Bethe states in a partially integrable model
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We present a one-dimensional multicomponent model, known to be partially integrable when restricted to
the subspaces made of only two components. By constructing fully antisymmetrized bases, we find integrable
excited eigenstates corresponding to the totally antisymmetric irreducible representation of the permutation
operator in the otherwise nonintegrable subspaces. We establish rigorously the breakdown of integrability in
those subspaces by showing explicitly the violation of the Yang-Baxter equation. We further solve the constraints
from the Yang-Baxter equation to find exceptional momenta that allows Bethe ansatz solutions of solitonic
bound states. These integrable eigenstates have distinct dynamical consequence from the embedded integrable
subspaces previously known, as they do not span their separate Krylov subspaces, and a generic initial state can
partly overlap with them and therefore have slow thermalization. However, this novel form of weak ergodicity
breaking contrasts with that of quantum many-body scars in that the integrable eigenstates involved do not have
necessarily low entanglement. Our approach provides a complementary route to arrive at exact excited states in
nonintegrable models: instead of solving towers of single-mode excited states based on a solvable ground state
in a nonintegrable model, we identify the integrable eigenstates that survive in a deformation of the Hamiltonian
away from its integrable point.
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I. INTRODUCTION

Recent progress in cold atom experiments has made pos-
sible the simulation of a larger variety of strongly correlated
systems [1]. In particular, alkaline-earth atoms such as 137Yb
and 87Sr in optical atoms can be used to realize the Mott
insulating phase of the Fermi-Hubbard model, which can
be described by the SU(N) Heisenberg Hamiltonian [2–6].
This multicomponent generalization of the spin- 1

2 Heisenberg
model was solved based on Yang’s generalization [7,8] of
the Bethe ansatz method developed by Sutherland [9]. Using
the same nested Bethe ansatz method, Babelon, de Vega,
and Viallet constructed an integrable Zn+1 × Zn+1 symmetric
generalization of the XXZ model, from the solution of the
Yang-Baxter equations [10]. However, the anisotropy in this
model was artificially designed so that the model is exactly
solvable but not realistic to be realized in experiment.

In this paper, we propose a minimal generalization of the
spin- 1

2 XXZ Hamiltonian, written in terms of permutation
operators, whose SU(N) symmetry is explicitly broken to
the symmetric group SN by a diagonal term composed of
the Cartan operators. As shown in Sutherland’s original for-
mulation of the isotropic model [9], such a multicomponent
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spin model can be equivalently formulated in the language
of one-dimensional hard-core bosonic particles with density-
density interactions. The model proposed in this paper is in
part motivated by a recent quantum system bearing a number
theory analogy [11], whose low-energy effective theory can be
seen as the current model in certain limits of its parameters.
Some of the questions raised in the paper [11], such as the the
scaling of the spectral gap from the ground state, are partially
answered in this paper.

It is worth to underline that, while the model proposed here
is in general not integrable, the Krylov subspaces spanned by
configurations involving only two components are nonethe-
less integrable, as was originally noted in a series of papers in
the past [12–14]. Hence, such a model falls in the category of
quasi–exactly solvable models, which have long been studied
in quantum mechanics [15]. In many-body systems, there
is a class of models called frustration-free models, whose
zero-energy ground state can be explicitly written as the com-
mon lowest-energy eigenstate of each local operator in the
Hamiltonian. Examples include the Majumdar-Ghosh model
[16], the AKLT model [17], Motzkin and Fredkin spin chains
[18–23], and, in two dimensions, Kitaev’s toric code model
[24], to name a few. Many of these models boast solvable
eigenstates beyond the ground state as well. For instance,
stabilizer code Hamiltonians consist of mutually commuting
operators, so the entire spectrum is solvable. Despite the
fact that neither the Majumdar-Ghosh [25] nor spin-1 AKLT
model [26] satisfy this condition, they are known to have exact
excited states. Recently these models have attracted a lot of
attention for the experimental observation of anomalous dy-
namics in closely related Rydberg atom experiments [27] that
interpolate between ergodicity breaking and thermalization
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behaviors. Such dynamics have been attributed to a large
overlap of the initial state with a tower of numerically solved
eigenstates with equally spaced energies that violate the
eigenstate thermalization hypothesis (ETH) in the so-called
PXP Hamiltonian [28,29], used to model the Rydberg block-
ade experiment [30]. The discovery of this new form of weak
ergodicity breaking has drawn more attention to analytical
efforts for solving exact excited states in nonintegrable models
[31–43]. The tremendous success achieved in searching these
quantum many-body scar (QMBS) states is largely due to
the approach which examines the sparsity of entanglement
spectrum for numerically exactly diagonalized states [32]. In
this way, these states can be analytically represented in terms
of matrix product states [36] making use of a reverse engineer-
ing. Furthermore, a large portion of these exact eigenstates
share the common features of having energy expressed in
terms of either integer or rational numbers, and they can be
identified using single-mode approximation (SMA) with π

momenta [36]. Some of these features observed in individual
examples have found a more general explanation in the unified
framework of spectrum-generating algebra [44]. Concerning
the partial integrability of the model proposed in this paper, it
is useful to say that it does not lead to the slow dynamics of
weak ergodicity breaking, as the integrable subspaces studied
before [12–14]. Indeed, depending on the subspace to which
an initial state belongs, the system either thermalizes accord-
ing to ETH, or exhibits strong ETH violation due to partial
integrability and behaves as a generalized Gibbs ensemble.

The plethora of frustration-free models (and their suc-
cess in providing insights in understanding various aspects of
many-body systems and quantum computing through rigorous
mathematical theorems [45–50]) naturally gives rise to the
question, to what extent can a frustration-free Hamiltonian
interpolate between the situation in which only the ground
state is known, and a stabilizer code that provides the entire
solvable spectrum? The examples of exact QMBS in AKLT
models partially answered this question, in that the additional
eigenstates are of momenta π , allowing the diffractive scat-
tering to be canceled out in a momentum eigenstate [32]. In
this work, we will extend this idea to nondiffractive scattering
with other momenta using the Bethe ansatz, in a nonintegrable
multicomponent model with a “weaker” frustration. Such a
strategy of easing frustration by enlarging local degrees of
freedom has been employed by models with SU(N)-singlet
simplex solid ground states [51], in the form of geometric
frustration, which have also one-dimensional cousin models
with longer-range interaction, such as SU(3) spin chains with
trimer and valance bond solid (VBS) ground states [52], and
SU(N) VBS [53]. Here, instead of designing a Hamiltonian as
the sum of projectors pinning down a desired ground state,
we work with a minimal multicomponent generalization to
the spin- 1

2 XXZ spin chain with a 2-local interaction which
violates the Yang-Baxter equation (YBE) and therefore is not
integrable. We show that the reduced frustration with larger
local Hilbert space allows us to have additional Bethe ansatz
integrable eigenstates in any generic nonintegrable Krylov
subspace. Unlike the partial integrability studied before, these
integrable eigenstates now bear a new form of weak ergodicity
breaking, as a generic initial state in these subspaces will have
overlap with both integrable and nonintegrable eigenstates.

Entanglement entropy and its scaling have been a major
tool in probing many-body systems with strong correlations;
see [54] for a review. For one-dimensional systems, Hastings
has given a rigorous proof that the ground state entanglement
entropy scaling with system size is bounded by a constant for
gapped systems [55]. Meanwhile, people have been searching
for area-law violating grounds states in gapless systems with
logarithmic [18,21], power law [19], and even linear scaling
[20,22,23,56,57]. In the study of quantum many-body scars,
the sparsity of the entanglement spectrum and the subvolume
law scaling of entanglement entropy has been used to show
that the exact excited states violate the strong eigenstate ther-
malization hypothesis [32]. With the enlarged local Hilbert
space, the entanglement entropy of the ground state of our
model scales not only with the system size, but with the
dimensionality of local Hilbert space as well. By rigorously
establishing a volume law scaling of the ground state in the ex-
treme frustration-free case of a number of components equal
to the system size (which also accounts for the additional
contribution to the entanglement of integrable excited states
from the antisymmetrized basis in addition to that from the
corresponding Bethe ansatz states in the spin- 1

2 XXZ model
[58,59]), we show rigorously that the entanglement entropy
scaling of our integrable eigenstates interpolates between area
law (which violates entanglement entropy of corresponding
excited states in the XXZ chain) and volume law scaling of
the totally antisymmetric bases.

The paper is organized as follows. In Sec. II, we intro-
duce the model and discuss its symmetries, which we will
use later for achieving the diagonalization of its Hamiltonian.
Section III is rather articulated: in Sec. III A we first construct
a proper basis to diagonalize the integrable subspaces of the
Hilbert space; in Sec. III B we illustrate the previous proce-
dure in terms of an elementary approach for diagonalizing
the two-body case; in Sec. III C, using the general coordinate
Bethe ansatz, we establish the embedding of the spectrum of
spin- 1

2 Heisenberg in our model. In Sec. IV, we rigorously
prove the that a generic sector with multiple identical particles
is nonintegrable unless the anisotropy is turned off, and we
use this result to shed more light on the reason of the partial
integrability of the sectors discussed in the previous section.
We also provide an explanation to the π -momenta QMBSs
emerging from the condition to satisfy YBE with a generic
anisotropy. In Sec. V, we address the case of a large number
of components (this makes the ground state frustration free)
and we show analytically that the entanglement entropy of the
ground state scales linearly in the thermodynamic limit. We
also derive a rigorous decomposition of entanglement entropy
contribution from the Bethe ansatz wave function and the
antisymmetrized bases. In Sec. VI, we draw our conclusions,
also pointing out a few interesting directions worth exploring
in the future. The paper has also three Appendices which
address particular technical points discussed in the main text.

II. THE HAMILTONIAN AND ITS SYMMETRY

The local Hilbert space of our model CN is spanned by the
N components of the SU(N) group, or N species of hard-core
bosons. The model is defined on a one-dimensional lattice
of length L, with periodic boundary condition CL+1 ≡ C1. Its
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Hamiltonian takes the form

H =
L∑

i=1

[Pi,i+1 + 2�Ci,i+1], (1)

where transposition operator Pi,i+1 and the diagonal
anisotropy term Ci,i+1 are defined as

Pi,i+1 =
N∑

a,b=1

e(ab)
i ⊗ e(ba)

i+1 , (2)

Ci,i+1 =
N∑

a=1

e(aa)
i ⊗ e(aa)

i+1 , (3)

where (e(ab) )cd = δa
c δ

b
d is the standard basis of N × N ma-

trices, such that Pi,i+1(vi ⊗ vi+1) = vi+1 ⊗ vi for any vi, vi+1.
The transposition term is SU(N) invariant, as it can be written
as traces over product of SU(N) generators. The diagonal
term, however, can be written only in terms of the generators
of the Cartan subalgebra of SU(N), and therefore breaks the
symmetry down to the symmetric group SN.

Apart from the multicomponent chain interpretation, one
can also look at this model as a chain of hard-core bosons
with a local color degree of freedom subjected to a re-
pulsive density-density interaction. Henceforward, we shall
interchange freely between these two languages for the conve-
nience of presentation. The formulation in terms of hard-core
bosons permits us to put in correspondence the present model
with the number-theory quantum model analyzed in [11] (the
so-called coprime spin ladder model), in the sense that each
boson with different color can be put in correspondence with
a prime number while the diagonal term in the Hamiltonian
can be associated with the “coprime interaction.” There are
though some differences between the two models: unlike the
one discussed in [11], we do not have here a quasi-2D lattice
and, moreover, in the present case each boson does not have a
composite structure consisting of more elementary degrees of
freedom. Moreover, there is no on-site dynamical term in the
Hamiltonian that allows bosons of one species to transmute
into others. Nonetheless, the coprime spin ladder model does
reproduce the Hamiltonian (1) when restricted to a certain
sector of particle content {cn1

1 , cn2
2 , . . . , cns

s }, where cA denotes
the particle of color A, and nA denotes the number of times
it appears along the chain. Therefore, our Hilbert space is
fragmented into Krylov subspaces specified by the particle
content. In each sector, the restricted Hamiltonian will be
equivalent to [9]

H
({

cn1
1 , cn2

2 , . . . , cns
s

})
=

L∑
i=1

[
(1 + 2�)

∑
A

N (AA)
i,i+1 +

∑
A<B

P(AB)
i,i+1

]
, (4)

where N (AA) counts the number of neighboring pairs of species
A, and P(AB) transposes only neighboring pairs of species A
and B.

This restricted Hamiltonian manifests permutation symme-
tries in addition to the translational invariance. First, the total
number of each species nA is conserved. Second, being each
particle indistinguishable, the Hamiltonian is invariant under
Sn1

⊗ Sn2
⊗ · · · ⊗ Sns

, where
∑s

A=1 nA = L, and ⊗ denote
the outer product between symmetric groups [60,61]. Notice

that this is a subgroup of the original SL symmetry. There-
fore, eigenvectors of this Hamiltonian can be identified within
each of its irreducible representations (irreps). This step would
already reduce the complexity of the problem significantly
enough so that one could diagonalize the Hamiltonian written
in terms of standard irreducible representations matrices by
brute force, as was done in [62,63]. With some more thoughts,
Gaudin [64,65] turned the Young tableau formalism (equiv-
alently described in terms of Hund’s method, usually more
appealing to physicists) into a linear system of constraints
from Fock’s conditions, which by one remarkable algebraic
identity after another arrived at the same Bethe-Yang hypoth-
esis states. However, the anisotropy term in our Hamiltonian
mixes irreducible representations, making this approach not
applicable. So, in our case it is more promising to follow the
strategy of Yang and Sutherland [7–9] and first take advantage
of the translational invariance to go to momentum space and
consider irreps of permutation operators.

III. DIAGONALIZATION OF THE INTEGRABLE
SUBSPACES

The Hamiltonian (1) without the anisotropy term was
diagonalized by Sutherland using the nested Bethe ansatz
[9,66]. As shown in the next section, the anisotropy term
breaks the integrability of the original Hamiltonian by vio-
lating the Yang-Baxter equation (YBE) of scattering matrices,
except for certain irreps. The large number of local degrees
of freedom, or species of particles, can be both a curse and
a blessing. In this paper, we take advantage of this prop-
erty by constructing a particular basis, in which the solution
of relatively low-lying eigenstates using the Bethe ansatz is
drastically simplified. In this section, we first show how this
approach helps solving eigenstates in the sector where only
one species of particles appears multiple times, while the rest
of the species each appear only once. In the next section, we
show that the YBE is still violated in this basis for a generic
sector where multiple species appear more than once, as well
as in the orthogonal subspace to the basis within the same
symmetry sector.

A. Maximally antisymmetrized basis

The key observation which leads us to use this method
consists of realizing that each transposition operator is min-
imized by the eigenvalue −1. So the ground state corresponds
to that state reached by antisymmetrizing as many neighbors
as possible. Of course this can only reconcile among different
species, as antisymmetrizing a symmetric pair gives 0. There-
fore, we can restrict our searching for the ground state in the
subspace of the Hilbert space spanned by the basis

|i1, i2, . . . , in〉 =
∑

σ∈SL−n

sgn(σ )(−1)
∑n

a=1 ia

|i1, i2, . . . , in; σ (c2 c3 · · · cL−n)〉, (5)

where i1 < i2 < · · · < in labels the location of the n identi-
cal species (using the correspondence with the coprime spin
ladder model, these species are chosen to be the one corre-
sponding to the smallest prime numbers). The symbol sgn(σ )
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FIG. 1. An example of the basis vectors in a sector with particles
of 4 different colors, the red one appearing twice.

denotes the signature of the permutation σ acting on the
reference state in a certain order of species with c j denoting
particle of the jth color, before permuting the identical species
to their final locations. An illustration of the n = 2, L = 5 case
is given in Fig. 1. The reason for this convenient choice of
basis is such that

Pj, j+1|i1, . . . , in〉 =
⎧⎨
⎩

−|i1, . . . , in〉, j �= ia, ia − 1,∀a,

−|i1, . . . , ia−1, ia + 1, ia+1, . . . , in〉, j = ia �= ia+1 − 1,

|i1, . . . , in〉, j = ia = ia+1 − 1,

(6)

for any ia < L. Since the transposition operators act as the
kinetic term of the Hamiltonian, antisymmetrizing the species
is equivalent to picking a subspace where all the particles
are of different species except the identical one that appears
multiple times to have momenta π . The periodic boundary
condition on the physical chain leads to the (anti)periodic
boundary condition on our artificial basis, depending on the
parity of the length of the chain,

|i1, . . . , in−1, L + 1〉 ≡ (−1)L|1, i1, . . . , in−1〉, (7)

where i1 > 1. For simplicity, we restrict our discussion to
the case of even length from now on. The odd-length case
can be treated likewise. In this basis, we can diagonalize the
Hamiltonian by expanding the eigenvector as

|v〉 =
∑

1�i1<···<in�L

wi1,...,in |i1, i2, . . . , in〉. (8)

Keeping in mind that our basis vectors are already eigen-
vectors of transposition operators unless they act on the
identical species, the eigenvalue equation

H |v〉 = Ev|v〉 (9)

results in a difference equation version of the Helmholtz equa-
tion of weights wi1,...,in ,

∇2wi1,...,in = −(Ev + L)wi1,...,in , (10)

where we used ∇2 to denote the discrete Laplacian operator so
as to avoid confusion with the anisotropy parameter. If none
of the positions i are consecutive,

∇2wi1,...,in ≡
n∑

a=1

(
wi1,...,ia−1,...,in + wi1,...,ia+1,...,in − 2wi1,...,in

)
,

(11)

where wi1,...,in−1,L+1 ≡ (−1)n−1w1,i1,...,in−1 due to (7). When
certain positions i form consecutive strings la, la + 1, . . . , ra,
∇2 becomes instead

∇2wl1,...,r1,...,ls,...,rs

=
s∑

α=1

(
wl1,...,r1,...,lα−1,lα+1,...,rα,...,ls,...,rs

+ wl1,...,r1,...,lα,...,rα−1,rα+1,...,ls,...,rs

−
[

rα−1∑
a=lα

(2 + 2�) + 2

]
wl1,...,r1,...,ls,...,rs

)
. (12)

Let us now make a few remarks to underline the distinction
which exists between our model and the ferromagnetic spin- 1

2
Heisenberg model: in the Bethe ansatz solution of this latter
model, the coefficient of the third term in Eq. (12) would
remain −2, regardless of how long the string of consecutive
spin-downs would be. This is the main difference between
the two models which will eventually lead to our different
solution of the Bethe ansatz equations, as explicitly illus-
trated below. One might think that our derivation of the Bethe
ansatz equations, obtained from subtracting these two equa-
tions and requiring them both to hold simultaneously, would
put a restriction to our solution, namely that the number of
components must exceed half of the size of the system for
(11) to be valid. However, a closer examination reveals that the
subtraction is merely a shortcut in deriving the Bethe ansatz
equations, since alternatively one can compare the coefficients
of independent monomials on both sides of (12) and get the
same equations. That is to say, our solution exists for arbitrary
number of components N .

B. Elementary two-body example: The {c2
1, c2, . . . , cL−2} sector

1. The isotropic case

The following two subsections serve as a very elementary
introduction to readers who may be not familiar with the
Bethe ansatz formalism. More experienced readers should
jump directly to our main result in Sec. III C. The case of
n = 2 as we will see shortly corresponds to a 2-quasiparticle
excitation from the background of momentum-π species.
Considering this case is particularly illuminating as it allows
an exact diagonalization by solving a second-order linear ho-
mogeneous recurrence relation. To see this, we perform the
transformation

wi1,i2 → a(s)
r = wr,r+s, (13)

where r labels the site of the first occurrence of the identical
species, while s denotes the distance between the two of them.
The eigenvector is then expressed as

|v〉 =
L∑

r=1

L−r∑
s=1

a(s)
r |r, r + s〉. (14)

And the antiperiodic boundary condition is given by

a(L−r+1)
r = −a(r−1)

1 . (15)

We first exploit the translational invariance of the Hamilto-
nian by diagonalizing in the basis formed by eigenvectors of
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the translation operator,

T |v〉 = t−1|v〉. (16)

According to the antiperiodic boundary condition (7), we have

T L|1, 2〉 = T 2|L − 1, L〉 = −T |1, L〉 = |1, 2〉. (17)

So T L = 1 still applies, giving

t = e2iθ , θ = iπk

L
, k = 1, . . . , L. (18)

Therefore, (16) implies a(s)
r+1 = ta(s)

r , and up to a normalization
constant, we can choose a(1)

r = t r as the initial condition for
recurrence equations of a(s)

r with respect to index s.
The recurrence relation (10) now becomes

a(2)
r + a(2)

r−1 = ea(1)
r , (19)

a(s−1)
r+1 + a(s−1)

r + a(s+1)
r + a(s+1)

r−1 = ea(s)
r , s > 1, (20)

where e = −(Ev + N − 4). Using translation invariance, the
first equation gives the second initial condition necessary to
solve the second-order recurrence relation a(2)

r = et r+1

1+t , while
the second equation becomes

a(s+1)
r − et

1 + t
a(s)

r + ta(s−1)
r = 0. (21)

The solution of its characteristic equation depends on its
discriminant

D = e2t2

(1 + t )2
− 4t . (22)

D = 0: Identical root. In this scenario, the general solution
is of the form as

r = (c0 + c1s)t s, which cannot satisfy the
antiperiodic boundary condition (15) and the initial conditions
simultaneously. We conclude that the discriminant must be
nonzero.

D �= 0: Different root. The characteristic equation has two
roots in this case,

λ± =
(

e

4 cos θ
± i

√
1 −

( e

4 cos θ

)2
)

eiθ (23)

= ei(θ±α), (24)

where α = arccos( e
4 cos θ

). Here, we have assumed |e| �
4| cos θ |, which is necessary for the antiperiodic boundary to
hold. Together with the initial conditions given by a(1)

r and
a(2)

r , (21) gives

a(s)
r = t r+(s−1)/2 sin sα

sin α
. (25)

Plugging this into the antiperiodic boundary condition (15),
we get

α = θ + θ ′, θ ′ = 2πk′

L
, k′ = 1, 2, . . . , L. (26)

We can parametrize the energy eigenvalues with θ1 ≡ θ −
α = −θ ′ and θ2 ≡ θ + α = 2θ + θ ′, and the eigenvectors
with μ1,2 ≡ eiθ1,2 as

E (θ1, θ2) = − L + 4 − 2 cos θ1 − 2 cos θ2, (27)

|θ1, θ2〉 = 1

N

∑
1�i< j�L

(
μi

1μ
j
2 − μ

j
1μ

i
2

)|i, j〉, (28)

where θ1,2 = i2πk1,2/N , with k1,2 = 1, 2, . . . , N . Since its co-
efficients ai, j = −a j,i, we can alternatively express it as

|θ1, θ2〉 = 1

N

∑
1�i, j�L

μi
1μ

j
2|i, j〉, (29)

with |i, i〉 ≡ 0. Notice the θ1 = θ2 solutions give vanishing
eigenvectors, as is expected when one attempts to antisym-
metrize a symmetrized pair of identical species. In other
words, when the anisotropy or density-density interaction is
absent, these identical particles of same species behave as
free fermions. The fact that our original bosonic degrees
of freedom have ended up behaving as fermions is exactly
due to the unitary transformation pointed out by Sutherland
[9] of multiplying all wave functions by a completely an-
tisymmetric one in all objects, which flips the sign of the
Hamiltonian and the exchange statistics of the particles at the
same time. The ground state energy in this sector is therefore
−L + 2 − 2 cos 2π

L . In the thermodynamic limit, it gives rise
to a vanishing gap that scales with 1/L2 counting from the
universal ground state of L different species.

The partial spectrum and corresponding eigenstates given
above agree with the results from the nested Bethe ansatz by
Sutherland [9], which starts from a reference state of identical
species and considers the different ones as quasiparticles mov-
ing around. To map the eigenstates solved from our approach
of treating the different species as background and identical
ones as quasiparticles, to the framework of the Bethe ansatz,
the different species are understood to have π momenta. Our
solution corresponds to two particles having momenta θ1 and
θ2, with a scattering phase of π , which says the two identical
species, although impossible to be antisymmetrized in real
space, are antisymmetrized in momentum space.

2. Two-body problem with anisotropy/interaction

Since the interaction term acts on neighboring sites, it
would only change the e in (19) to e + 2� in determining
the initial condition a2

r , leaving the recurrence equation un-
changed. Their solution is given by

a(s)
r (�) = t r+(s−1)/2

2i sin α

[(
e + 2�

2 cos θ
− e−iα

)
ei(s−1)α

+
(

eiα − e + 2�

2 cos θ

)
e−i(s−1)α

]

= t r+(s−1)/2

(
sin(sα)

sin α
+ �

cos θ

sin(s − 1)α

sin α

)
,

which reproduces (25) when � is taken to be 0. Quantization
of the energy is once again given by the solution of the an-
tiperiodic boundary condition, now written as

eiL(α−θ ) = cos θ + �eiα

cos θ + �e−iα
. (30)

Taking the logarithm on both sides, one realize that for
each value of θ = kπ

N , there are N roots αJ , labeling the N
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degenerate eigenstates at energy level E (k, J ) = −N + 4 −
4 cos θ cos αJ ,

L(αJ − θ ) + 2πJ = 2 arctan
� sin αJ

cos θ + � cos αJ
,

J = 1, 2, . . . , L. (31)

Parametrizing as before, θ1 ≡ θ − α, θ2 ≡ θ + α, and μ1,2 ≡
eiθ1,2 , we still have

E (θ1, θ2) = −L + 4 − 2 cos θ1 − 2 cos θ2, (32)

|θ1, θ2〉 = 1

N
∑

1�i< j�L

(
μi

1μ
j
2 − S12μ

j
1μ

i
2

)|i, j〉, (33)

where S12 = μ−L
1 ≡ μL

2 , since (μ1μ2)L ≡ 1, and normaliza-
tion constant N 2 = L2 − L − LeiLθ sin(L − 1)α/ sin α.

C. The multimode integrable excited states: {cn
1, c2, . . . , cL−n+1}

sector

When there are more than two identical particles in one
species, the recursive equations as in the previous section will

involve multiple indices. Therefore, it is necessary to con-
struct the Bethe ansatz wave function

wi1,...,in =
∑

σ∈Sn

Aσ

n∏
a=1

μia
σa, (34)

where Sn denotes symmetric group of order n, and μa = eiθa .
When ia+1 > ia + 1 for all a, (10) takes the form

∑
σ∈Sn

Aσ

n∑
a=1

(
μ−1

σa + μσa − 2
) n∏

a=1

μia
σa

= −(Ev + L)
∑
ρ∈Sn

Aρ

n∏
a=1

μia
σa. (35)

The common factor on the left-hand side can be taken out of
the sum over σ , which gives Ev = −L + ∑n

a=1(2 − 2 cos θa).
When ia0+1 = ia0 + 1 for some a0, but ia+1 > ia + 1 for a �=
a0, (10) becomes

∑
σ∈Sn

Aσ

(
μ−1

σa0
+ μσ (a0+1) − 4 − 2� +

∑
a �=a0

(2 cos θσa − 2)

)
n∏

a=1

μia
σa = −(Ev + L)

∑
ρ∈Sn

Aρ

n∏
a=1

μia
ρa. (36)

Noticing that (35) still holds in this case, we can subtract this equation from it to get

∑
σ∈Sn

Aσ

(
μσa0 + μ−1

σ (a0+1) + 2�
) n∏

a=1

μia
σa = 0, (37)

or using explicitly ia0+1 = ia0 + 1,

∑
σ∈Sn

Aσ

(
μσa0μσ (a0+1) + 1 + 2�μσ (a0+1)

)
μ−1

σ (a0+1)

n∏
a=1

μia
σa = 0. (38)

Combining terms from permutations differing by a transposition (a0 a0 + 1), one can see that for this equation to be satisfied for
any coordinates ia and momenta ka, it requires

Aσ ′ (�)

Aσ (�)
= −μσa0μσ (a0+1) + 1 + 2�μσ (a0+1)

μσa0μσ (a0+1) + 1 + 2�μσa0

, (39)

where σ ′ = τa0σ , with τa0 transposing a0 and a0 + 1. In Appendix A, we introduce different parametrization of the momenta
for different magnitudes of the anisotropy, in which the scattering phase depends only on the difference of the rapidities of the
two scattering particles, so as to facilitate a unified treatment of the nested and algebraic Bethe ansatz in the next section. The
quantization condition comes from the periodic boundary condition (7). Decomposing the cycle-n permutation τ into a product
of transpositions between neighbors, and using (39), we have

n∏
a=1

� cos 1
2 (θσn − θσa) + cos 1

2 (θσn + θσa) + i� sin 1
2 (θσn − θσa)

� cos 1
2 (θσn − θσa) + cos 1

2 (θσn + θσa) − i� sin 1
2 (θσn − θσa)

= eiθσnL, (40)

where we have absorbed the minus signs into the scattering phases. Since (43) holds for any σ ∈ Sn, we have the Bethe ansatz
equations

2
n∑

b=1

arctan
� sin 1

2 (θa − θb)

� cos 1
2 (θa − θb) + cos 1

2 (θa + θb)
= Lθa + 2πJa, (41)

where Ja = 1, . . . , L, for any a = 1, . . . , n. Taking the sum on both sides over a, we get
∑n

a=1 θa = 2πk/L, with
k = 1, . . . , L.
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Once the momenta are solved from the Bethe ansatz equa-
tions, (39) can be used to deduce the relative weights of the
permutations among momenta, which gives the eigenstates in
this sector. If the interaction term is turned off, (39) becomes

Aσ = −Aσ ′ . (42)

Therefore Aσ = (−1)σ . The boundary condition now be-
comes

∑
σ

Aσ μL+1
σn

n−1∏
a=1

μia
σa = (−1)n−1

∑
ρ

Aρμρ1

n∏
a=2

μia
ρa, (43)

for any i1, . . . , in. Comparing the terms on both sides differing
by a global translation τ = (1 2 · · · n), we have

(−1)n−1 = Aστ−1

Aσ

= (−1)n−1μL
σn, ∀σ ∈ Sn. (44)

Hence, θa = 2πka/L, and the ground state energy in the sector
with n particles belonging to the identical species is

E = −L + 2
m∑

k=−m

(1 − cos 2πk/L) (45)

for n = 2m + 1, or

E = −L + 2
m∑

k=−m+1

(1 − cos 2πk/L) (46)

for n = 2m, since if any two of the momenta coincide, the
antisymmetrized coefficient (34) would vanish. We can use
the Lagrange trigonometric identity to estimate their gap from
the ground state in the thermodynamic limit n → ∞,

E − E0 → 2L

(
n

L
− 2

π
sin

πn

L

)
. (47)

With some extra steps explained in Appendix B, one can even
show that the normalization constant is fixed to be N = Ln/2.
The eigenstates are then expressed as

|θ1, . . . , θn〉 = L−n/2
∑

1�i1<···<in�L

∑
σ∈Sn

(−1)σ

× ei
∑n

a=1 θσaia |i1, . . . , in〉. (48)

The careful reader might now recognize that, choosing n
momenta among their L possible values allowed by the quan-
tization condition, the dimension of this eigenvector subspace
(L

n) is precisely the dimension of the irreducible representation
corresponding to the one-column Young tableau with n rows,
whereas the absolute ground state of the full Hilbert space
expressed by the Slater determinant corresponds to the 1-
dimensional irreducible representation of the L row, 1 column
tableau.

We emphasize that the integrable eigenstates found above
have finite energy density (evaluated with respect to the
ground state energy) in the thermodynamic limit. To see that,
notice that the energy of eigenstates in this sector consists
of two parts, a contribution from the antisymmetrized basis,
at the lowest energy εGS = −L, and a contribution from the
solution of the spin- 1

2 XXZ problem, of the form LεXXZ(Sz
tot =

L
2 − n), where lower and upper bound on εXXZ(Sz

tot = L
2 − n)

is established to be finite [67]. So the total energy density in

the thermodynamic limit is

εv − εGS = εXXZ. (49)

IV. VIOLATION OF YBE: THE
{cn1

1 , . . . , cnm
m , cm+1, . . . , cL−n+m} SECTOR

The spectrum of a generic sector, where multiple colors
appear multiple times in the particle content, is solved by
recourse to the Bethe-Yang hypothesis [7], used in Yang’s
solution to the one-dimensional Fermi problem with repulsive
δ interaction. As is well known, the same model was originally
and independently solved by Gaudin, using a less physical
and more algebraically involved approach [64], based on the
pioneering work of McGuire [68,69], Lieb and Flicker [70],
and subsequently further generalized by Sutherland [8,9].

Yang’s approach differs from the Bethe ansatz used in the
previous section since it does not assume any constraint on the
permutation symmetry of the wave function, which is indeed
the case when multiple species are involved. Therefore, if we
still label the sites of all identical species with i’s, Eq. (6) no
longer holds. Consequently, the basis |i1, . . . , in〉 no longer
spans the whole Hilbert space when restricted to i1 < · · · < in.
Instead, we should write the eigenvector of the Hamiltonian as

|v〉 =
∑

Q∈Sn

∑
1�xQ1<··· ,xQn�L

ψQ(x)|x〉, (50)

where x is an n-component array of the combinations of
coordinate and spin/color {qi; ci}, and xi < x j if qi < q j , or
ci < c j if qi = q j . The simultaneous swapping of a pair of
both of them gives a minus sign due to the fermionic nature of
the basis,

|xτ 〉 = sgn(τ )|x〉, (51)

where xτ = (xτ (1), . . . , xτ (n) ) ≡ ({qτ (1); cτ (1)}, . . . , {qτ (n);
cτ (n)}). Therefore, only the antisymmetric part of the wave
function multiplying an antisymmetric basis is meaningful,

ψτ−1Q(xτ ) = sgn(τ )ψQ(x). (52)

While we are discussing permutation symmetry, it is worth
mentioning theorems on the ordering of energy levels of the
isotropic Hamiltonian. According to the Lieb and Mattis the-
orem on the ordering of energy levels of antiferromagnets,
the lowest-energy eigenstate is determined by the so-called
“pouring principle” [71,72]. More recently, this result has
been generalized to a lattice model with higher spin with
both open and periodic boundary conditions [73]. In short,
it states that the lowest-energy eigenstate corresponds to the
Young tableau that gives the highest weight state of the sl (n)
algebra. The proof is given much in the same spirit of the
one due to Lieb and Mattis, namely, showing that the rep-
resentation corresponding to the Young tableau of highest
weight state follows from the Perron-Frobenius theorem and
the requirement to have non-negative components; hence, it
overlaps with the ground state, but, given at the same time
that the Hamiltonian does not mix representations, one can
conclude that it has to be the only representation correspond-
ing to the ground state. Irreducible representations of the
outer product can be constructed according to a simple rule
from the irreducible representations of each group in the outer
product, which in our case has to be the single-row Young
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FIG. 2. (a) Young diagram corresponding to a generic sector in the Hilbert space of our model, integrable only in the isotropic case.
(b) The Young diagram corresponding to the sector where the ground state of our model has only a finite number s of colors divisible by the
size of the chain, not integrable as anisotropy mixes irreducible representations corresponding to different Young tableaux. (c) Young diagram
corresponding to spin- 1

2 XXZ model as well as the partially integrable subspaces studied in [12–14]. (d) Young diagram corresponding to the
integrable excited states in the non-integrable subspace of our model.

tableau [n1], . . . , [nm], as one cannot antisymmetrize among
an identical species. Then the Young tableau in the outcome
of the outer product that every other one can “pour into,” alias
corresponding to the highest weight state, is [n1, . . . , nm],
where each row is filled with the same species, assuming
n1 > n2 > · · · > nm. The above analysis relies purely on the
permutation symmetry of the Hamiltonian. As we will see
shortly, Yang’s approach utilizes both permutation symmetry
and the translational invariance, and is more convenient in
practice. It starts with a first layer of the Bethe ansatz treating
all particles as if they have the same color, while keeping in
mind that their colors could be different later by keeping track
of the swapping of color indices

ψQ(x) =
∑

P∈Sn

AQ,P

n∏
i=1

μ
qQi

Pi (53)

for each sector 1 � xQ1 < xQ2 < · · · < xQn � L in the coor-
dinate space labeled by a permutation Q ∈ Sn, which are a
priori independent. Each Q corresponds to a particular sector
of the whole coordinate space, with the Q = id one called the
fundamental sector. AQ,P is an n! × n! matrix, whose columns
are denoted by ξP. To relate the wave functions defined in
these separate sectors, we use the boundary conditions be-
tween two sectors Q′ = Qτa that differ by a transposition
between indices a and a + 1. In Appendix C, we give the
detailed derivation of Yang’s scattering matrix Y from com-
paring the eigenvalue equations of nonadjacent and adjacent
cases, which requires

ξPσi j = Y a
i jξP, (54)

for P(a) = i, P(a + 1) = j, where the Y matrix as defined in
Appendix C. These n!(n − 1) equations are consistent for the
isotropic Hamiltonian only. For completeness, we carry out its
diagonalization following Sutherland [9].

The above Yang Y matrices are given in the reflection(-
diagonal) representation of the asymptotic wave function,
according to Sutherland [74], which is convenient for re-
lating the a priori independent wave functions defined in
separate sectors, as the coordinate of each particle remains
invariant after scattering in this representation. However,
in order to utilize the periodic boundary condition as a
quantization condition for the momenta, we switch to the
transmission(-diagonal) representation, where the diagonal
terms of scattering S matrices are the transmission amplitudes.

In the transmission representation, momentum is fixed to a
particle after scattering. Picking a particular permutation of
momenta P0 = Q, such that i = a, j = a + 1, we have

Si j = π (τi j )Y
i j

i j = Ti j1 + Ri jπ (τi j ), (55)

where reflection Rj j and the transmission Tj j coefficients are
defined as in Eqs. (57) and (56) hereafter. In Appendix C, we
show that in the presence of anisotropy in the Hamiltonian, the
Yang-Baxter equation, which is necessary for the following
procedures to work, is only satisfied for subsectors of the
Hilbert space corresponding to two types of Young tableaux,
namely those of the shape illustrated in Figs. 2(c) and 2(d).
The former corresponds to the solution of the spin- 1

2 XXZ
model, as well as the partially integrable subspaces studied
in [12–14]. The latter corresponds to our integrable excited
states. In fact, the Young tabeaux in Fig. 2(c) correspond to an
even broader class of integrable eigenstate: while the antisym-
metric bases requires the constituents to be all distinguishable,
a symmetric basis does not require its constituents to be identi-
cal. So we can also form symmetric bases from those different
components and obtain the upper spectrum counterparts of the
eigenstates solved in the previous section. The important point
is that we can either form totally symmetric or antisymmetric
irreps, but not a mixture of them in order for the YBE to be
satisfied.

Hence, for scattering between different colors, ca �= ca+1,
we have

Rab
i j (�) = −i

λi − λ j + i
≡ Ri j, (56)

T ab
i j (�) = λi − λ j

λi − λ j + i
≡ Ti j, (57)

where

λi = i

2

μi + 1

μi − 1
. (58)

Yet for scattering between the same colors, ca = ca+1, we
have π (τa(a+1)) = −1 [due to (52)], and

Y a(a+1)
i j (�)

= Ra(a+1)
i j (�) − T a(a+1)

i j (�) = −μiμ j + 1 + 2�μ j

μiμ j + 1 + 2�μi

= ϕ�
(
λ�

j − λ�
i + iη

)
ϕ�

(
λ�

j − λ�
i − iη

) ≡ �i j, (59)
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FIG. 3. Yang-Baxter equation in terms of reflection and trans-
mission coefficient.

with the parametrization (A8). It is easily verified that while
the unitarity relation

Y ab
i j (�)Y ab

ji (�) = 1 (60)

is satisfied for both cases, the Yang-Baxter equation

Y ab
jk (�)Y bc

ik (�)Y ab
i j (�) = Y bc

i j (�)Y ab
ik (�)Y bc

jk (�) (61)

requires

� jkRik�i j = Ri j�ikR jk + Ti jRikTjk, (62)

RjkTik�i j = Ti j�ikR jk + Ri jRikTjk, (63)

which only hold when � = 0 or � → ∞; see Fig. 3. If
� �= 0, YBE hold respectively for scattering between iden-
tical colors, and different colors, but not when they are mixed.
This means the scattering among three particles and more is
only factorizable into consecutive scatterings between pairs
of two particles, irrespective of their ordering, if their col-
ors are either all the same, which leads to the solution in
Sec. III C, or all different, corresponding to the absolute
ground state. Hence, for the generic case, where scattering
between particles of both same and different colors is present,
the scattering is not nondiffractive, and Yang’s nested Bethe
ansatz no longer applies. In fact, Sutherland has derived a
necessary consistent condition for the scattering between dif-
ferent species to be nondiffractive [74], an example of such an
exactly solvable anisotropic generalization of the multicom-
ponent Heisenberg model was solved by Babelon et al. [10],
albeit being less physically natural than our model.

Another way to look at the YBE is to find the momenta that
solve Eq. (63) for generic �. Multiplying the denominators on
both sides and comparing the coefficients of different orders

of � give the following solutions:

μk = 1,

μ j = μi,

μk = μ j,

μk = μi,

μ j = 2 − 1

μi
,

μk = 2 − 1

μ j
,

μk = 2 − 1

μi
.

(64)

The first solution is trivial, meaning the particle with a dif-
ferent color has momentum π , or is antisymmetrized. This
can only happen if it appears only once along the chain for
the wave function not to vanish. So this is included in the
case discussed before. The next three solutions correspond
to two of the three particles having the same momentum,
in which case they move collectively keeping their distance,
so a three-body scattering never happens. The last three so-
lutions are nontrivial. They require two of the momenta to
be complex-valued, with the corresponding particles forming
bond states.

V. ENTANGLEMENT ENTROPY
OF INTEGRABLE EIGENSTATES

By now it should be clear that our integrable eigenstates are
in 1-to-1 mapping with Yang’s solution to the δ-interaction
problem [7] of n particles, with the antisymmetrized bases
of distinguishable particles playing the role of the vacuum
there, or the pseudovacuum of all spin-up states in the XXZ
chain. In this section, we try to get a sense of the additional
entanglement that these antisymmetrizations contribute, by
first showing that in the extreme case of N = L, where the
antisymmetrized basis occupies the entire system, the ground
state has exactly linear scaling of entanglement entropy in the
thermodynamic limit. Then we argue that the entanglement
entropy of integrable excited states is lower-bounded by the
corresponding Bethe ansatz states in the spin- 1

2 XXZ chain
[58,59].

A. Ground state entanglement entropy for N = L

In the case of N = L, the ground state can be expressed as

|GS〉 = 1√
L!

∑
P∈SL

sgn(P )|cP1, cP2, . . . , cPL〉, (65)

where | . . . , ci, . . .〉 denotes the configuration with the ith site
having particle of color ci.

This ground state is highly entangled as the color at each
site depends on those at all the others. This can be seen by
calculation of the entanglement entropy between two halves
of the system. Let L = 2l; then the Schmidt decomposition of
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the ground state is

|GS〉 =
∑

P0∈SL/(Sl )2

sgn(P0)
l!√
(2l )!

|P01,P02, . . . ,P0l〉

⊗ |P0(l + 1),P0(l + 2), . . . ,P0L〉, (66)

where |i1, i2, . . . , il〉 = 1√
l!

∑
P∈Sl

sgn(P )|cP i1 , sP i2 , . . . ,

sP il 〉. The entanglement entropy between two subsystems is
then

S = −
(

2l

l

)
(l!)2

(2l )!
ln

l!2

(2l )!
. (67)

In the thermodynamic limit l → ∞, this is approximated by
the Sterling formula as

S  2l[ln(2l ) − 1] − 2l (ln l − 1)

 L ln 2.

B. Entanglement entropy of integrable excited states

An integrable eigenstate labeled by the n momenta
{θ1, . . . , θn} of the identical color c1, and the colors
{c2, . . . , cL−n+1} of the rest of the L − n sites, can be ex-
pressed as the superposition of bipartition across the middle
over different possibilities of coloring in the left half system
specified by the number of site in the identical color nA, and
the combination of the rest of the colors C:

|{θ1, . . . , θn}, {c1; c2, . . . , cL−n+1}〉 =
l∑

nA=n−l

( L−n
l−nA

)∑
C=1

sgn(C)

√
(l − nA)!(l − n + nA)!

(L − n)!

∑
{i1,...,inA }

∑
{inA+1,...,in}

wi1,...,in√
N

× 1√
(l − nA)!

|i1, . . . , inA〉 ⊗ 1√
(l − n + nA)!

|inA+1, . . . , in〉, (68)

where sgn(C) is the signature of the permutation of the coloring of the whole system divided by the those of the two subsystems,
and N takes care of the normalization for the usual Bethe wave function without antisymmetric basis. Plugging in the definition
of the basis vectors (5), and taking the partial trace of the density matrix over the right subsystem, we get the reduced density
matrix of the left subsystem,

ρA = trB|{θ1, . . . , θn}, {c1; c2, . . . , cL−n+1}〉〈{θ1, . . . , θn}, {c1; c2, . . . , cL−n+1}|

=
l∑

nA=n−l

( L−n
l−nA

)∑
C=1

(l − nA)!(l − n + nA)!

(L − n)!

∑
{i1,...,inA }

∑
{inA+1,...,in} |wi1,...,in |2

N |i1, . . . , inA〉〈i1, . . . , inA |

=
l⊕

nA=n−l

( L−n
l−nA

)⊕
C=1

(l − nA)!(l − n + nA)!

(L − n)!
ρXXZ

A (nA), (69)

where ρXXZ
A (nA) denotes the block of the reduced density matrix of the XXZ chain with nA spin-down in the left subsystem. The

entanglement entropy of the integrable excited states is computed from the Schmidt coefficients

pA(nA;C; {inA+1, . . . , in}) = (l − nA)!(l − n + nA)!

(L − n)!
pXXZ

A (nA; {inA+1, . . . , in}), (70)

which are given in terms of the Schmidt coefficients of the corresponding XXZ excited states pXXZ
A (nA; {inA+1, . . . , in}),

SA = −
l∑

nA=n−l

∑
{i1,...,inA }

pXXZ
A (nA; {inA+1, . . . , in}) ln

(
(l − nA)!(l − n + nA)!

(L − n)!
pXXZ

A (nA; {inA+1, . . . , in})

)
(71)

= SXXZ
A + ln(L − n)! −

l∑
nA=n−l

pXXZ
A (nA)[ln(l − nA)! + ln(l − n + nA)!], (72)

where pXXZ
A (nA) = trAρXXZ

A (nA) is the sum of the Schmidt coefficient of XXZ eigenstates with a fixed number of down-spins
nA in subsystem A. So the entanglement entropy of our integrable excited states decomposes nicely into the entanglement
contribution from the Bethe ansatz state and the antisymmetrized bases, in the thermodynamic limit of L = 2l → ∞. Such a
decomposition of entanglement entropy is common for systems with enlarged local degrees of freedom, as has been shown
recently in two-dimensional models with internal color degrees of freedom [75,76]

SA − SXXZ
A ∼ (2l − n) ln(2l − n) −

l∑
nA=n−l

pXXZ
A (nA)[(l − nA) ln(l − nA) + (l − n + nA) ln(l − n + nA)]. (73)
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The additional entanglement entropy from the bases varies
with the number of colors involved, and the Schmidt decom-
position of the particular XXZ eigenstate in question. It ranges
between 0 and (L − n) ln 2. So the entanglement entropy of
the integrable excited states are lower-bounded by those of
the corresponding Bethe ansatz states in the spin- 1

2 model,
which are area law breaking [58,59], and upper-bounded by
the volume law, as a function of the number of components
available in the Hilbert space.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have addressed the integrable excited
states in a partially integrable SN -invariant antiferromag-
netic multicomponent Heisenberg chain. The model is not
integrable in symmetry sectors involving more than two
components, because three-body scatterings between quasi-
particles depend generally on the ordering of the factorized
two-body scatterings, as interaction between identical and
different components are different. However, in addition to the
more apparently integrable Krylov subspaces studied before
[12–14], we found a large number of Bethe ansatz integrable
excited states in the symmetry sectors involving more than
two components, by constructing an antisymmetrized basis
among components that appear once in the chain. The excited
states we found differ from the previously studied set in the
integrable symmetry sectors in that an initial state in the
nonintegrable sector overlaps both with integrable eigenstates
and ETH-violating ones. So there will be consequences for
what concerns the slow dynamics of local observables toward
thermalization as a weak form of ETH violation, i.e., a process
that interpolates between integrable and chaotic systems.

While our discussion has referred to a local Hilbert space of
arbitrary N dimension (we have even used thermodynamically
large N as an extreme case to illustrate the scaling of the con-
tribution to entanglement entropy from the antisymmetrized
bases), it is worth stressing that these integrable excited states
exist even for as small a number of components as N = 3; this
implies that, employing a mapping between SU(3) and SU(2)
spin-1, these states can be realized in a cold atom experiment.
Although as N gets smaller, integrable excited states are more
outnumbered by the nonintegrable ones, we speculate that
the slowdown in thermalization can still be observed with a
smart choice of initial state in an array of smaller number
of cold atoms. However a proposal for the realization of the
anisotropy interaction goes beyond the scope of the current
paper and is deferred to future work.

Our approach to arrive at weak ergodicity breaking should
be compared with the paradigm of QMBS. In those models,
one usually starts with a nonintegrable model of which little
is known with the possible exception of a solvable ground
state. So the nonintegrability is established by numerical ev-
idence of level-spacing statistics. Then by applying SMA to
the solvable ground state, one can construct a tower of exact
excited states, usually with π momenta. In our case instead,
we start with a model that is Bethe ansatz integrable, and add
deformation to break integrability, so we can directly check
the YBE to see the generic breakdown of integrability, as well
as identify the surviving integrable eigenstates. Although the
integrable excited states have finite energy density, they do not

fall into the category of exact quantum many-body scar states,
in the following sense. First, given these states are solved with
the Bethe ansatz, their corresponding energies are not integer
or rational valued, nor are they equally distant in the spectrum.
So the periodic revival on top of a slow dynamics characteris-
tic to QMBS will not be observable here. Second, they exhibit
severe violation of area law and are not expressible by matrix
product states with finite bond dimension [36,77].

We emphasize that violation of YBE only implies the
absence of nondiffractive scattering. When the Bethe ansatz
fails, the Sommerfeld diffraction ansatz can still apply
if internal consistency depending on solution of certain
Riemann-Hilbert problem is met. Indeed, McGuire and Hurst
has developed algebraic formulation for solving the three-
body problem with different scattering between particles of
different species [78,79]. Yet so far, this approach has only
been applied to three- or four-body problems [80], except for
scattering with bound states [81]. At the end of Sec. IV, we
have identified exceptional momenta that allow such exact
analytical solutions by solving the YBE as equations of mo-
menta for arbitrary anisotropy. We believe that this method
can be more widely applicable than model-specific results.
For instance, one can apply the Bethe ansatz instead of SMA
to the frustration-free ground state of the AKLT chain, and
solve the YBE of scattering matrices to either find momenta
different from π that allow a multimode exact excited state, or
have a definitive explanation of the relation between QMBS
and π momenta. Another direction to pursue in terms of diag-
onalization without going into the most general Sommerfeld
diffraction ansatz is to calculate the diffractive scattering am-
plitude for the � → 0 case, when the Yang-Baxter equation is
weakly violated [82].

We have been able to express the entanglement entropy
of our integrable excited state as a sum of the entanglement
entropy of the corresponding Bethe ansatz eigenstates in the
XXZ chain, and an additional entanglement contribution from
the antisymmetrized bases. This gives another way to see how
the integrable excited states we found are more nontrivial than
those in the integrable symmetry sector previously studied.
We believe such a sum of entanglement entropy contributions
may exist elsewhere, such as the in the isotropic multicom-
ponent model integrable by the nested Bethe ansatz. We also
showed that when the number of components is large enough,
the ground state has volume law scaling of entanglement
entropy, and the spectrum is gapless. It would be interesting
to see how these features change as the number of local
degrees of freedom becomes finite, either from numerics or
a combination of analytical and numerical methods.
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APPENDIX A: PARAMETRIZATION
OF SCATTERING MATRICES

The reparametrization of momenta into rapidities for dif-
ferent anisotropy parameters is due to Orbach [83].

� > 1: Using parametrization � ≡ cosh η, and

μ ≡ − sin(λ + iη/2)

sin(λ − iη/2)
, (A1)

(39) becomes

Aσ ′ (η)

Aσ (η)
= sin(λσ (a0+1) − λσa0 + iη)

sin(λσ (a0+1) − λσa0 − iη)
. (A2)

� = 1: In this case, we parametrize

μ ≡ −λ + i/2

λ − i/2
, (A3)

and (39) takes the form

Aσ ′ (η)

Aσ (η)
= λσ (a0+1) − λσa0

+ i

λσ (a0+1) − λσa0
− i

. (A4)

0 � � < 1: Using parametrization � ≡ cos η, and

μ ≡ − sinh(λ + iη/2)

sinh(λ − iη/2)
, (A5)

(39) then becomes

Aσ ′ (η)

Aσ (η)
= sinh(λσ (a0+1) − λσa0

+ iη)

sinh(λσ (a0+1) − λσa0
− iη)

. (A6)

Summarizing, we have

ϕ�(λ� ± iη) =
⎧⎨
⎩

sin(λ� ± iarccosh�), � > 1,

λ� ± i, � = 1,

sinh(λ� ± i arccos �), 0 � � < 1,

(A7)
and

μ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− sin(λ�+iη/2)
sin(λ�−iη/2) , � > 1,

− λ�+i/2
λ�−i/2 , � = 1,

− sinh(λ�+iη/2)
sinh(λ�−iη/2) , 0 � � < 1.

(A8)

APPENDIX B: NORMALIZATION OF EIGENSTATES

In the absence of the interaction term, the eigenvalues of
the translation operator are roots of unity. Therefore it admits
a cute calculation of the normalization constant, as we demon-
strate below:

N 2 =
∑

1�i1<...<in�N

|wi1,...,in |2

=
∑

1�i1<...<in�L

∑
σ,ρ∈Sn

(−1)σ+ρ

n∏
a=1

(μσaμ
∗
ρa)ia

=
∑

1�i1<...<in�L

∑
σ,τ∈Sn

(−1)τ
n∏

a=1

(μσaμ
∗
τσa)ia (τ = ρσ−1)

=
∑

1�i1<...<in�L

∑
σ,τ∈Sn

(−1)τ
n∏

a=1

(μaμ
∗
τa)i

σ−1a (dummy index a)

=
∑

1�i1<...<in�L

∑
σ,τ∈Sn

(−1)τ
n∏

a=1

(μaμ
∗
τa)iσa (dummy index σ )

=
∑

1�i1 �=...�=in�L

∑
τ∈Sn

(−1)τ
n∏

a=1

(μaμ
∗
τa)ia

=
∑
τ∈Sn

(−1)τ
n∏

a=1

L∑
ia=1

(μaμ
∗
τa)ia −

∑
∃b,c,
ib=ic

∑
τ∈Sn

(−1)τ (μbμ
∗
τbμcμ

∗
τc)ib

∏
a �=c,d

(μaμ
∗
τa)ia

=
∑
τ∈Sn

(−1)τ
n∏

a=1

(δa,τaL) (as μa’s are distinct)

−
∑
∃b,c,
ib=ic

∑
τ∈Sn/S2

(−1)τ
∏

a �=c,d

(μaμ
∗
τa)ia

∑
π∈{id,(b c)}

(−1)π (μbμ
∗
τbμcμ

∗
τc)ib

=
∑
τ∈Sn

(−1)τ δτ,id Ln

=Ln.
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As a special case, when n = L, this norm can be easily calculated by representing the wave function as a Slater determinant, and
evaluating the product of determinants with the determinant of the product of the two matrices.

APPENDIX C: DERIVATION OF SCATTERING MATRIX

In this Appendix, we give the detailed derivation of Yang’s scattering Y matrix in the reflection(-diagonal) representation.
Using (50), (51), and (52), the eigenvalue equation H |v〉 = E |v〉, when considering adjacent identical particles case Qa =
Q(a + 1) − 1 separately, gives

∑
Q

( ∑
xQi+1<xQ(i+1)

ψQ

[
n∑

i=1

−(|..., xi − 1, ...〉 + |..., xi + 1, ...〉) − (L − 2n)|...〉
]

+
∑

xQa+1=xQ(a+1)

ψQ

[ ∑
i �=k,k+1

−(|..., xi − 1, ...〉 + |..., xi + 1, ...〉)
− |..., xa − 1, xa+1, ...〉 − |..., xa, xa+1 + 1, ...〉 − (L − 2n + 1)|..., xi, ...〉

− |..., xa+1, xa, ...〉 + 2�δa,a+1|..., xa, xa+1, ...〉
] + · · ·

)
=

∑
Q

∑
1�xQ1<...<xQn�L

EψQ|...〉,

where δa,a+1 = 1 if cQa = cQ(a+1), and δa,a+1 = 0 if cQa �= cQ(a+1), and we have omitted the unchanged variables in the ket
vectors, and the ellipsis in the sum on the left-hand side denotes terms with multiple adjacent identical particles. Collecting
coefficients of the same basis vectors on both sides, we have

−
n∑

i=1

[ψQ(x − ei) + ψQ(x + ei)] − (L − 2n)ψQ(x) = EψQ(x), (C1)

for the nonadjacent case, where ei denotes the unit vector in the ith coordinate component, and

−
n∑

i=1

[ψQ(x − ei) + ψQ(x + ei)] + ψQ(x + ea ) + ψQ(x − ea+1) − (L − 2n + 1)ψQ(x)

− ψτa(a+1)Q(xτa(a+1)) + 2�δa,a+1ψQ(x) = EψQ(x), (C2)

for the adjacent case, where τa(a+1) denotes the transposition between a and a + 1. The difference between the above two
equations then gives the boundary condition

ψQ(x + ea ) + ψQ(x − ea+1) − ψQ(x) − ψτa(a+1)Q(xτa(a+1)) + 2�δa,a+1ψQ(x) = 0. (C3)

Plugging in our Bethe trial wave function for φQ, we have

∑
P∈Sn

[(
μPa + μ−1

P(a+1) − 1 + �pQa,Q(a+1)
)
AQ,P − Aτa(a+1)Q,P

] n∏
i=1

μ
qQi

Pi = 0. (C4)

Denoting Pa, P(a + 1) with Pa = i, P(a + 1) = j, we have∑
P∈Sn/Z2

(
[μiμ j + 1 + (2�δa,a+1 − 1)μ j]AQ,P − μ jAτa(a+1)Q,P

+ [μiμ j + 1 + (2�δa,a+1 − 1)μi]AQ,Pσi j − μiAτa(a+1)Q,Pσi j

)
(μiμ j )

a
∏

i �=a,a+1

μ
xQi

Pi = 0. (C5)

A sufficient condition for this equation to hold for any choice of {xi} is that the coefficients in the sum vanish term by term.
Treating now AQ,P as components of n! dimensional column vectors ξP, this becomes

(μiμ j + 1 + (2�δa,a+1 − 1)μ j − π (τa(a+1))μ j )ξP + [μiμ j + 1 + (2�δa,a+1 − 1)μi − π (τa(a+1))μi]ξPσi j = 0, (C6)

where π is the left regular representation of Sn, which is associated with the scattering process of a Bethe wave function [84].
From this, we can solve Yang’s scattering Y matrix, as defined in (54), to be

Y a(a+1)
i j (�) = Ra(a+1)

i j (�)1 + T a(a+1)
i j (�)π (τa(a+1)), (C7)
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where the reflection coefficient

Rab
i j (�) = − (μiμ j + 1 + 2�δabμ j )[μiμ j + 1 + 2(�δab − 1)μi] + (μiμ j + 1)(μi − μ j )

(μiμ j + 1 + 2�δabμi )[μiμ j + 1 + 2(�δab − 1)μi]
, (C8)

and transmission coefficient

T ab
i j (�) = − (μiμ j + 1)(μi − μ j )

(μiμ j + 1 + 2�δabμi )[μiμ j + 1 + 2(�δab − 1)μi]
. (C9)

APPENDIX D: NESTED BETHE ANSATZ
DIAGONALIZATION FOR THE ISOTROPIC

HAMILTONIAN

The periodic boundary condition in the multiple identical
species case relates wave functions in different sectors of the
coordinate space,

ψQ(x1, . . . , {q j = 1; c j}, . . . , xn)

= ψτ̃Q(x1, . . . , {q j = L + 1; c j}, . . . , xn),
(D1)

where τ̃ denotes the translation (2 3 · · · n 1). Upon applying
the ansatz wave function, this implies

AQ,P = Aτ̃Q,τ̃PμL
P(1), (D2)

and consequently

π (τ̃ )ξP = μL
P(1)ξτ̃P, (D3)

since the left regular representation acts as π (τ̃ )AQ,P =
Aτ̃−1Q,P. Taking P0 = τ12 · · · τ( j−1) j , ϕ = ξP0 , and using the
braiding property Sk jπ (τik ) = π (τik )Si j , the periodic bound-
ary condition then leads to

μL
j ϕ = S( j+1) jS( j+2) j · · · Sn jS1 jS2 j · · · S( j−1) jϕ, (D4)

for j = 1, . . . , n. Unlike the single identical species case,
this is no longer a scalar equation, but an eigenvalue prob-
lem that requires diagonalization of the right-hand side. To
proceed from here, we have to specify an irreducible rep-
resentation of the permutation group Sn corresponding to
sector {cn1

1 , . . . , cnm
m , cm+1, . . . , cL−n+m} of the Hilbert space.

To find the lowest energy of this sector, let us take the
irrep R = [mnm , (m − 1)nm−1−nm , . . . , 2n2−n3 , 1n1−n2 ]. Suther-
land’s approach of diagonalization of this irrep corresponding
to the multirow Young tableau using Bethe-Yang hypothesis
is to first treat all the other m − 1 species as the same, except
the first one, then all the other m − 2 species as the same,

except the second one, and so on. This way, at each stage
of the nesting, we are dealing with an irrep corresponding
to a 2-row Young tableau, which can be solved by recourse
to the algebraic Bethe ansatz as used in diagonalizing the
spin-half Heisenberg model. Notice, however, at each stage,
while the irrep of the spin part of the wave function forms a
2-row Young tableau, the spatial wave function must form the
irrep corresponding to the 2-column tableau [2n1 , 1n−n1 ] at the
first stage, for instance. Yang’s prescription to this difficulty
is to consider instead of the eigenvalue problem of (D4) the
equivalent eigenvalue problem of

μL
j ϕ = S′

( j+1) jS
′
( j+2) j · · · S′

n jS
′
1 jS

′
2 j · · · S′

( j−1) jϕ, (D5)

where

S′
i j = Ti j1 − Ri jπ̃ (τi j ) = λi − λ j + iπR̃(τi j )

λi − λ j + i
(D6)

is written in terms of the conjugate representation R̃ =
[n1, n − n1]. Their equivalence is manifested by the fact that
πR̃(τi j ) = −πR(τi j ). The advantage of adopting such a conju-
gate representation is that it admits a realization in terms of
the scattering matrix in the Heisenberg spin- 1

2 problem of a
length n chain. So we can readily apply the results from the
algebraic Bethe ansatz at each stage to write ϕ as

ϕ =
∑

σ∈Sn−n1

Aσ F (�σ1, y1)

× F (�σ2, y2) · · · F (�σ (n−n1 ), yn−n1 ), (D7)

where y1 < y2 < · · · < yn−n1 are the coordinates of the n1

“down-spins,” and

F (�, y) =
y−1∏
j=1

λ j − � + i/2

λ j+1 − � − i/2
(D8)

are defined in terms of the set of unequal numbers to be solved
from the set of coupled algebraic equations,

μL
j = −

n∏
k=1

λ j − λk − i

λ j − λk + i

n−n1∏
α=1

λ j − �(1)
α + i/2

λ j − �
(1)
α − i/2

, j = 1, . . . , n, (D9)

n∏
j=1

�(1)
α − λ j − i/2

�
(1)
α − λ j + i/2

= −
n−n1∏
β=1

�(1)
α − �

(1)
β − i

�
(1)
α − �

(1)
β + i

n−n1−n2∏
γ=1

�(1)
α − �(2)

γ + i/2

�
(1)
α − �

(2)
γ − i/2

, α = 1, . . . , n − n1, (D10)

...

nm−1+nm∏
δ=1

�
(m)
ζ − �

(m−1)
δ − i/2

�
(m)
ζ − �

(m−1)
δ + i/2

= −
nm∏

ε=1

�
(m)
ζ − �(m)

ε − i

�
(m)
ζ − �

(m)
ε + i

, ζ = 1, . . . , nm. (D11)
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This set of equations are historically called Lieb-Wu equations [85], and the details of their derivation of these equations can be
found in standard texts such as [84]. Now if there is a cutoff on the number of components, the ground state of our Hamiltonian
will no longer be a superposition of fully antisymmetrized spin configurations. Instead, from the reasoning above, it will be in the
sector where each color appear the same number of times along the chain, say the number of colors s divides L, and l = L/s. In
this sector, the Young tableau corresponding to the lowest-energy eigenstate in this sector will be [ls]. The Lieb-Wu equations for
this irrep become

Lθ (λ j ) = 2πJ (0)
j +

L∑
k=1

θ

(
1

2
(λk − λ j )

)
+

(s−1)l∑
α=1

θ
(
λ j − �(1)

α

)
, j = 1, . . . , L, (D12)

L∑
j=1

θ
(
λ j − �(1)

α

) = 2πJ (1)
α +

(s−1)l∑
β=1

θ

(
1

2

(
�

(1)
β − �(1)

α

)) +
(s−2)l∑
γ=1

θ
(
�(1)

α − �(2)
γ

)
, α = 1, . . . , (s − 1)l, (D13)

...

2l∑
δ=1

θ
(
�

(s−1)
δ − �

(s)
ζ

) = 2πJ (s)
ζ +

l∑
ε=1

θ

(
1

2

(
�(s)

ε − �
(s)
ζ

))
, ζ = 1, . . . , l, (D14)

where θ (λ) = 2 cot−1(2λ), and the quantum numbers that label the eigenstates J are half integers.
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