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High-temperature magnetization reversal in the inertial regime
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Motivated by the remarkable experimental observation of all-optical femtosecond-scale magnetization reversal
at relatively high temperatures, a stochastic inertial Landau-Lifshitz-Gilbert-Bloch (iLLGB) equation is written
to describe nonequilibrium magnetization dynamics in ferromagnets at elevated temperatures and at short enough
timescales that an inertial effect manifests. The effect of thermal agitations is described by a Fokker-Planck
equation derived from the iLLGB equation including the longitudinal relaxation effect, which is solved with
perturbation theory valid at elevated temperatures. Considering a uniaxially symmetric ferromagnet with uniaxial
anisotropy, a thermal diffusion-driven exponential mode and alternating field-driven nutation mode of stable
magnetization reversal are identified. Our theory proposes a magnetization reversal mechanism based entirely on
transfer of angular momentum to the local magnetization, but which takes into account thermal fluctuations and
inertial effect at the same time. The theory explains several key observations in all-optical magnetization reversal
experiments; the absence of the need for a static field, the subpicosecond switching timescale, the relative roles
of thermal and field effects, and the relevance of circularly polarized light. Our results have direct implications
for magnetic recording devices operating close to room temperatures and in the ultrafast regime.

DOI: 10.1103/PhysRevB.106.134415

I. INTRODUCTION

Understanding magnetization dynamics in the ultrafast
regime and at elevated temperatures is a key challenge in
realizing high-speed magnetic devices operating at ambient
temperature. Magnetization dynamics in ferromagnets has
so far been studied using the Landau-Lifshitz-Gilbert equa-
tion assuming that the magnetization magnitude is constant,
valid at low enough temperatures (relative to Curie temper-
ature TC) [1,2]. An improvement of this approach takes into
account the longitudinal mode corresponding to the change
in the magnitude of the magnetization using Landau-Lifshitz-
Bloch equation that is valid even at high temperatures, below
and above the TC of ferromagnets [3–5]. Building on the
free-energy description of ferromagnets [6], the effect of ther-
mal fluctuations and longitudinal relaxation were then studied
[7], highlighting the general importance of fluctuations in
magnetic phase transitions [8]. All these studies assume that
magnetization dynamics is slow enough.

Remarkable development in recent decades has demon-
strated theoretically [9,10] and experimentally [11] the
existence of magnetic inertial effect in the magnetization
dynamics in ferromagnets at short timescales. Its effect is
analyzed using the so-called inertial Landau-Lifshitz-Gilbert
equation and shown to give rise to a type of collective mode
called nutation for a single spin [9,12,13] and nutation wave
for lattice of spins [14,15]. The formalism has been extended
to include the thermal fluctuations effect [16]. From a prac-
tical perspective, inertial magnetization dynamics has been
suggested to be applied to magnetic switching technique [17].

However, all these studies still assume fixed magnitude of
magnetization that underlies the employed inertial Landau-
Lifshitz-Gilbert equation. A Landau-Lifshitz-Bloch type of
description exists, but does not address the inertial regime
[18,19].

From an experimental point of view, the study of ultrafast
magnetization dynamics has become an active research area
of its own, especially since the experimental observation of
a femtosecond timescale demagnetization process [20,21].
Further experimental progress following after that produced
important observations that call for theoretical description
beyond Landau-Lifshitz-Gilbert theory. One example is the
relative importance of the role of temperature and applied field
in driving the dynamics [22–24]. Furthermore, remarkable
recent experimental developments show that magnetization
reversal can be realized at zero static field using a nonther-
mal all-optical method [25,26] which nevertheless operates at
relatively high temperatures (that is, not close to T = 0 K),
as opposed to thermal-assisted laser-induced heating mag-
netization reversal [23] or demagnetization processes [20].
This advance has unfolded while the microscopic mecha-
nism responsible for the ultrafast magnetism phenomena has
come under intense scrutiny [22,27], which can in fact be
all-optical [28,29], even though more complicated scenarios
exist [30–33], while the all-optical mechanism has again been
demonstrated by more recent studies [34].

In this paper, we develop an inertial Landau-Lifshitz-
Gilbert-Bloch (iLLGB) equation to study magnetization
dynamics in the inertial regime at elevated temperatures not
far from TC , taking into account longitudinal relaxation and
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thermal fluctuations. While strong thermal fluctuations at
elevated temperatures are expected to destroy any stable mag-
netization reversal mechanism, the present paper shows that
this restriction does not apply to inertial magnetization dy-
namics; an intriguing type of switching mode originating from
the inertial effect with a subpicosecond timescale that survives
thermal agitations is unraveled, requiring only an ac field of
high-enough frequency and amplitude for its manifestation.
Our theory also provides a natural explanation for some of
the key observations of all-optical magnetic switching experi-
ments.

This paper starts with an equation of motion proposed
to be appropriate for describing magnetization dynamics in
high temperatures below Curie temperature and in the ultra-
fast regime where inertial effect manifests in Sec. II. The
corresponding Fokker-Planck equation describing stochastic
dynamics out of equilibrium in ultrafast regime is derived
from the equation of motion in Sec. III. The magnetic poten-
tial governing the energetics of the magnetization dynamics
and the corresponding modes of magnetization reversal are
given in Sec. IV. The solutions of the Fokker-Planck equa-
tion in the steady-state and nonsteady state subject to constant
magnetic potential are given in Sec. V while the solution for
the actual magnetic potential is given in Sec. VI. The speeds
of two principal modes of magnetization reversal are given in
Sec. VII. The paper ends with Discussion and Conclusions.

II. THE INERTIAL LANDAU-LIFSHITZ-
GILBERT-BLOCH EQUATION

The dynamics of magnetization in ferromagnets at elevated
temperatures and in the inertial regime is supposed to be de-
scribed by an inertial Landau-Lifshitz-Gilbert-Bloch (iLLGB)
equation which can be written as

ṁ = γ0(m × (Heff + h(t ))) + γ0α‖
m2

(m · (Heff + h(t )))m

− α⊥
m2

[m × ṁ + τm × m], (1)

where γ0 is the gyromagnetic constant, m is the magnetization
vector with temperature-dependent magnitude normalized to
its zero temperature (saturation) value m = M/Ms, where
Ms = |M(T = 0)| and is also time dependent, appropriate
to describe magnetization dynamics near Curie tempera-
ture [35], ṁ = ∂m/∂t , m = ∂2m/∂t2, Heff = −∂V [m]/∂m,
where V [m] is a magnetic potential energy to be defined in
Sec. IV, and h(t ) the stochastic field used to describe ther-
mal fluctuations (agitations) satisfying a purely random field’s
white-noise properties [36],

〈hi(t )〉 = 0, 〈hi(t )h j (t + τ )〉 = μδi jδ(τ ), (2)

while α‖(α⊥) are the effective damping coefficients along
(perpendicular to) the direction of m, both of which are tem-
perature dependent [7,37], τ is a timescale that separates the
inertial t � τ and noninertial (slow, adiabatic) t � τ regimes
in timescale while μ = 2α⊥kBT/(γ0vMs) is the white noise
constant. The first term on the right-hand side of Eq. (1) (pro-
portional to γ0) represents the gyroscopic torque due to the
effective magnetic field, the second one (proportional to α‖) is
the Bloch term representing longitudinal relaxation necessary

to describe magnetization dynamics at elevated temperatures,
while the last two terms (proportional to α⊥) represent, re-
spectively, the Gilbert damping and inertial effects. Notably,
the second term in Eq. (1) (proportional to α‖) generates a
torque along the direction of m; applying an effective field
Heff antiparallel to m tends to reverse the m. This effect is
absent in Landau-Lifshitz-Gilbert theory.

In the present paper, we will derive Fokker-Planck equa-
tion using the heuristic approach of Brown [36], shown
by later studies to be justified under appropriate conditions
and gives a unique Fokker-Planck equation for stochas-
tic Landau-Lifshitz-Gilbert theory [18,19]. In our paper,
a unique Fokker-Planck equation corresponding to conti-
nuity equation (conservation of Brown particle current) is
postulated a priori to emerge independent of choices of
stochastic variables, which is a posteriori demonstrated to
give Boltzmann distribution in statistical equilibrium. As we
will apply an alternating magnetic field that drives the sys-
tem out of equilibrium, fluctuation-dissipation theorem is not
imposed.

Working in a spherical coordinate to be concrete, we can
write m = mr (sin θ cos φ, sin θ sin φ, cos θ ), with mr = |m|,
where m in general form has been defined earlier following
Eq. (1). Adopting the physical picture put forward in the
elegant theory of Brown [36], the tip of the m vector is
treated as an effective (magnetic) charge. Since in our theory
the magnitude of the M vector is not fixed, that is, the mr

may depend on time (in addition to temperature), the charge
density is defined as density per unit volume which we will
denote with ρ, resulting in current density when moving with
velocity v given by J = ρv where v = ∂m/∂t = ∂M/∂t/Ms,
when thermal fluctuations (agitations) are neglected. Thermal
agitations are then included by adding a term of the form
−k′∇ρ into the magnetic current density, giving a total current
density of the Brown particle,

J = ρ
∂m
∂t

− k′∇ρ, (3)

where the second term on the right-hand side reflects the
stochastic effect of thermal fluctuations. Within Brown’s orig-
inal framework [36],

k′ 	 kBT

v

α⊥γ0

Ms
, (4)

where kB is Boltzmann constant, v the volume of the mag-
netic single domain, and the approximate equality assumes
α2

⊥ � 1. In this paper, we will take v to be the volume of
the unit cell of the crystal lattice of the (elemental) ferro-
magnets to be considered as examples for application of our
theory, since the unit cell gives a characteristic volume for
the material. Since the unit cell is the elementary volume of
the material, our theory can be directly extended and applied
to larger systems made up of such atomic-scale unit cells,
such as magnetic nanoparticles and thin films. This assumes a
certain degree of correlation between the microscopic atomic
moments living in different unit cells that make up the mag-
netization at the macroscopic level.
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III. FOKKER-PLANCK EQUATION

The first goal is to obtain a Fokker-Planck equation for
the Brown particle density ρ. As established in Ref. [36], the
Fokker-Planck equation eventually reduces to the continuity
equation

∂ρ

∂t
+ ∇ · J = 0, (5)

which thus requires the expression for the current volume
density J in spherical coordinates. Evaluating J from Eq. (3)
with dm/dt derived using Eq. (1) and spherical coordinate
representation of m, we obtain

J ≡ (Jr, Jθ , Jφ ) = (Lr, Lθ , Lφ )ρ − k′
(

∂ρ

∂mr
,

∂ρ

∂θ

mr
,

∂ρ

∂φ

mr sin θ

)
,

(6)
where Lr, Lθ , Lφ , the detailed form of which is to be derived
at the end of this section, representing the drift terms, each of
which is a function of mr, θ, φ, t (in the most general case) de-
pendent on V [m] multiplying the density function ρ while the
terms multiplying k′ represent the diffusion terms. The Bloch
term contributes to the radial current Jr via a term proportional
to the longitudinal relaxation coefficient α‖, reflecting the fact
that the dynamics involves a volumetric particle number and
current densities rather than a superficial particle number and
current densities used in Brown’s original formulation [36].

To derive the expression for the current density J from
the iLLGB Eq. (1), we must first transform the latter into a
form such that all the time derivative terms of m are moved
to the left-hand side of the iLLGB equation. To this end, we
transform the iLLGB equation using the method normally
used to translate a Landau-Lifshitz-Gilbert equation back into
a Landau-Lifshitz equation. There are several ways of doing
so. One of them is to substitute the whole right-hand side
of the iLLGB equation for ṁ into the ṁ and m̈ terms that
appear on the right-hand side of the iLLGB equation itself.
This, however, would generate an infinite series of terms with
increasing higher order time derivatives of m. A more viable
approach is to multiply both sides of the iLLGB equation that
allows cancellation of some (though not all) time derivative
terms of m. This can be achieved by multiplying both sides of
the iLLGB equation by (1 − (α⊥/m2)m×) from the left. The
resulting equation becomes

ṁ = γ0

1 + α2
⊥

m2

(m × (Heff + h(t )))

+ γ0
α‖
m2

1 + α2
⊥

m2

(m · (Heff ) + h(t ))m

− 1

1 + α2
⊥

m2

α⊥
m2

[γ0m × (m × (Heff + h(t ))) + τm × m]

+ 1

1 + α2
⊥

m2

α2
⊥

m4
[(m · ṁ)m + τ ((m · m̈)m − m2m̈)], (7)

which still has time derivative terms of m on the right-hand
side of the equation. We will proceed with approximation
where we take ṁ to be given by all terms on the right-hand
side that contains no time derivative and use it to obtain

the corresponding expression for m̈. We will also drop the
last terms [the second line of Eq. (7) above] as they are
proportional to second-order power of the expected small pa-
rameter α⊥ � 1. In the rest of the derivation, we will simplify
1 + α2

⊥/m2 	 1. justified for α2
⊥/m2 � 1.

One can define an error factor

δ =
∣∣∣∣∣∣1 − 1

1 + α2
⊥

(mmin
r )2

∣∣∣∣∣∣ (8)

as a measure of the error introduced by the above approxi-
mation 1 + α2

⊥/m2 	 1, where mmin
r is the value of mr that

minimizes the magnetic potential V [m], to be derived in the
next section. Constraining this error factor to be smaller than
a threshold value (for example, δ � 0.1) sets a criterion to the
temperature range, field strength, and the material parameters
for which our theory can be applied since α⊥ and mmin

r are
dependent on those quantities, as described in the next section.
When δ goes beyond the chosen threshold value of tolerance,
our simplified analysis becomes less accurate. However, this
can be partially mitigated by compensating for the error in
the final result. The simplest way to compensate for this error
(that is, lowest order correction) will be adopted; the error
factor δ will eventually be used to correct the final result of
the analytical derivation, especially the physical result of main
interest: the magnetization reversal rate.

The Brown particle current density vector J in the absence
of thermal fluctuations is then given by J = ρṁ, where the ṁ
is equal to the right-hand side of Eq. (1) [without the stochas-
tic field h(t )] expressed in the spherical coordinates. We then
add the contributions of thermal fluctuations (or agitations)
Jt f = −k′∇ρ described by a diffusion term (proportional to
the gradient or spatial inhomogeneity of the magnetic charge)
with its components:

Jt f
r = −k′ ∂ρ

∂mr
, Jt f

θ = − k′

mr

∂ρ

∂θ
, Jt f

φ = − k′

mr sin θ

∂ρ

∂φ
.

(9)

The total current density is given by the sum of the drift and
diffusive contributions. With the details of derivation given in
Appendix A, the three spherical coordinate components of the
current vector are given by

Jr = −ργ0α‖
∂V

∂mr
− k′ ∂ρ

∂mr
= Lrρ − k′ ∂ρ

∂mr
, (10)

Jθ = ργ0

sin θ

(
1 + α⊥τγ0

mr

∂V

∂mr

)
∂V

∂φ

− ρ
α⊥γ0

mr

(
1 + τ

∂

∂t

)
∂V

∂θ
− k′

mr

∂ρ

∂θ

= Lθρ − k′

mr

∂ρ

∂θ
, (11)

Jφ = −ργ0

(
1 + α⊥τγ0

mr

∂V

∂mr

)
∂V

∂θ

− ρα⊥γ0

mr sin θ

(
1 + τ

∂

∂t

)
∂V

∂φ
− k′

mr sin θ

∂ρ

∂φ

= Lφρ − k′

mr sin θ

∂ρ

∂φ
, (12)
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where the differential operators Lr, Lθ , Lφ can be easily iden-
tified from each corresponding equation.

The corresponding Fokker-Planck equation is given by

∂ρ

∂t
+

[
∂

∂mr

(
m2

r Jr
)

m2
r

+
∂
∂θ

(sin θJθ )

mr sin θ
+

∂Jφ

∂φ

mr sin θ

]
= 0 (13)

to be solved for the Brown particle density ρ.

IV. MAGNETIC POTENTIAL AND SWITCHING MODES

Our theory assumes a magnetic single domain for which
exchange energy relevant for spatially nonuniform magneti-
zation can be neglected, even though the effect of exchange
energy enters indirectly via the Curie temperature TC . To be
specific, we will consider uniaxial anisotropy with respect to
an easy axis defined along the Zeeman field H = H0 + Hac(t )
for which

Ṽ (mr, θ ) = MsV (mr, θ )

= −Ms(H0 + Hac(t ))mr cos θ

+ M2
s

2χ⊥
m2

r sin2 θ + M2
s

8χ‖

(
m2

r − m2
e

)2
, T � Tc,

(14)

where H0, Hac(t ) = H0ac cos ωt, χ⊥, χ‖ are the static and al-
ternating applied magnetic fields, both of which are along the
easy axis ẑ, transverse susceptibility, and longitudinal suscep-
tibility. respectively [38]. The me is a temperature-dependent
[me(T )] thermal equilibrium value of magnetization (nor-
malized with respect to saturation magnetization) determined
from solving Curie-Weiss equation

me = BS (meβ̃ ), (15)

involving Brillouin function

BS (meβ̃ )=2S + 1

2S
coth

(
2S + 1

2S
meβ̃

)
− 1

2S
coth

(
1

2S
meβ̃

)
,

(16)

where β̃ = S2J0/(kBT ), S is the length of spin vector, and

J0 = 3kBTc

S(S + 1)
(17)

is an energy scale related to Curie temperature TC[7]. Within
the framework of linear response theory and thermodynamics
consideration, the coefficients in Eqs. (1)–(14) are given by
[3,7]

α‖ = λ

me

2T

3Tc

2q

sinh 2q
, (18)

α⊥ = λ

me

(
tanh q

q
− T

3Tc

)
, (19)

where q = 3Tcme/(2(S + 1)T ). On the other hand,

χ⊥(T = 0) = M2
s

2K (T = 0)
, χ⊥(T ) = M2

s m2
e (T )

2K (T )
(20)

is deduced from the experimental value of the anisotropy
coefficient K (T ) while

χ‖ = vM2
s

S2J0

β̃B′
S (meβ̃ )

(1 − β̃B′
S (meβ̃ ))

, (21)

FIG. 1. The profile of the snapshot of the magnetic potential
V (mr, θ, t ) in Eq. (14) at zero static field H0 = 0 but finite alternating
field H0ac > 0 at t = 0(t = π/ω) displayed in orange (red) driving
a displacement of the Brown magnetic particle between the two
minima A and B across a maximum C of height Q relative to the
two minima. The possible modes of magnetic switching correspond
to different trajectories of Brown particle displacement: I– III corre-
spond to the standard circular, linear, and elliptical switching modes
[38]. The one labeled by III∗ is the nutation-driven switching mode
emerging in inertial regime.

where B′
S = dBS (x)/dx. Only T � Tc is considered in the

present paper because the application of our theory is aimed
at magnetization reversal in ferromagnetic (not paramagnetic)
state.

The profile of the potential is given in Fig. 1 depicting
the snapshots of V (mr, θ, t ) at two different instants of time:
t = 0, π/ω. Without the static and ac fields, one obtains two
lines of global minima at θ = 0, π . A key role will be played
by alternating field Hac to excite the nutation that is the hall-
mark of inertial term, while noting that Hac is directed along
the easy axis rather than normal to it [12,13]. Adding the ac
field, one obtains an isolated point global minimum at mmin

r =
f (Ms, χ‖, me, H0ac) when t = 0, π/ω where the function f
is provided as follows. Given that Hac(t ) = H0ac cos ωt and
taking zero static field H0 = 0, the potential has an isolated
global minimum at

mmin
r = m2

eMs

3
1
3
(
9χ‖H0acM2

s + √
3
√

27χ2
‖ H2

0acM4
s − m6

eM6
s

) 1
3

+
(
9χ‖H0acM2

s + √
3
√

27χ2
‖ H2

0acM4
s − m6

eM6
s

) 1
3

3
2
3 Ms

,

(22)

where the right-hand side of the equation defines the function
f (Ms, χ‖, me, H0ac) mentioned earlier. The effective field due
to the potential V is given by

F = − δV

δm
= (H0 + Hac(t ))ẑ − Mxx̂ + Myŷ

χ⊥
+

(
1 − m2

r
m2

e

)
2χ‖

M

(23)
in Cartesian coordinates for easier visualization. It can be
seen that it is the anisotropic field that induces a precessional
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TABLE I. Comparison of basic parameters and dynamical magnetic properties of gadolinium (Gd), a rare-earth metal (lanthanide, more
precisely), and several most common transition metal ferromagnets. Operating temperature T = 280 K and H0ac = 0.5 T (for mmin

r ).

Quantity Gadolinium (Gd) Iron (Fe) Nickel (Ni) Cobalt (Co)

Curie temperature TC (Kelvin) 293 1043 627 1388
Effective spin S 3.5 [44] 1.5 [45] 1 [45] 2 [45]
Exchange energy J0 (Joule) [Eq. (17)] 7.7 × 10−22 1.2 × 10−21 4.5 × 10−21 5.2 × 10−21

Uniaxial anisotropy constant K (T ) (Jm−3) 2.5 × 104 [44,46] 4.9 × 104 [47] 2.9 × 103 [48] 5.5 × 105 [49,50]
Saturation magnetization Ms (Joule Tesla−1m−3) 2.5 × 105 [51] 1.7 × 106 [52] 4.9 × 105 [52] 1.4 × 106 [53]
Dimensionless equilibrium magnetization me(T ) [Eqs. (15) and (16)] 0.300 0.992 0.958 0.995
Dimensionless V -minimizing magnetization mmin

r [Eq. (22)] 0.374 0.992 0.958 0.995
Magnetic system volume v(in units of 10−30m3) 66.2 23.6 15.2 21.8
Transverse damping coefficient α⊥ [Eq. (19)] 0.2259 0.0354 0.0443 0.0334
Thermal diffusion coefficient k′ (s−1) [Eq. (4)] 9.15 × 1012 5.96 × 1011 4.03 × 1012 7.43 × 1011

Longitudinal damping coefficient α‖ [Eq. (18)] 0.2108 0.0019 0.0080 0.0010
Ratio α‖/α⊥ 0.9331 0.0537 0.1809 0.0288
Transverse susceptibility χ⊥(T ) (Joule Tesla−2m−3) [Eq. (20)] 1.16 × 105 2.95 × 107 3.88 × 107 1.76 × 106

Longitudinal susceptibility χ‖(T ) (Joule Tesla−2m−3) [Eq. (21)] 4709.13 100.27 47.57 20.64
Error factor δ [Eq. (8)] 0.2676 0.0013 0.0021 0.0011

motion that will drive a reversal of magnetization between the
two minima along ±ẑ.

Figure 1 visualizes an energy landscape with two minima
separated by a barrier of height Q 	 vK . The tunneling be-
tween these two minima corresponds to magnetic switching
between two opposite magnetization orientations. Paths on
the energy landscape corresponding to the different modes
of magnetization reversal are also shown in Fig. 1. Standard
modes for magnetization reversal consist of circular (Stoner-
Wolfrath) switching at low temperature limit (I), elliptical
switching at moderate temperatures (III), and linear switch-
ing at high temperatures, near Curie temperature (II). The
prospective magnetic switching mode in the inertial regime
involves nutation, labeled by III∗ in Fig. 1. The existence
of two minima at θ = 0, π requires H0ac > H0, permitting
magnetic switching type III* to occur even in the absence of
static field.

The magnetic transverse damping coefficient α⊥ in
Eq. (19) and the V -minimizing magnetization mmin

r in Eq. (22)
give rise to a field-temperature (H0ac − T ) parameter space
with varying size of error factor δ that determines the accu-
racy of our approximation, as discussed in Sec. III. We will
illustrate and apply our theory to some familiar ferromagnetic
metals: gadolinium (Gd); a rare-earth metal (lanthanide, more
precisely) and several most common transition-metal ferro-
magnets; iron (Fe), nickel (Ni), and cobalt (Co) with basic
parameters presented in Table I for comparison. The error fac-
tor δ(H0ac, T ) is presented in the form of color contour plots
for the four elemental ferromagnets considered as examples
in this paper in Fig. 2. The four subfigures indicate that for
Fe, Ni, and Co, the error factor is reasonably small that our
approximation 1 + α2

⊥/m2 	 1 is justified everywhere near
room temperature. On the other hand, for Gd, a small enough
error factor requires working at relatively cold temperatures
and strong ac field. Figure 2 can thus be used as reference
map for the region of applicability or degree of accuracy of
our theory.

In addition, it can be seen that the error factors of the
three ferromagnetic transition metal elements (Fe, Ni, and Co)

are practically independent of the amplitudes of ac field H0ac

while varying with the operating temperature T like a tem-
perature gradient. This is because for these three elements,
the near-room temperatures are relatively low with respect to
their Curie temperature, TC . It can be verified from Eq. (21)
that χ‖ → 0 as T → 0. The dependence of error factor on H0ac

only enters via the potential energy-minimizing magnetization
mmin

r and it can be checked from Eq. (22) that mmin
r → me

FIG. 2. The color contour plots of the error factor δ(H0ac, T ) for
the four elemental ferromagnets under consideration (a) Gd, (b) Fe,
(c) Ni, and (d) Co. The darker the region, the lower the error intro-
duced by our approximation: 1 + α2

⊥/m2 	 1.
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as χ‖ → 0 when T → 0 or T � Tc, noting also that me(T =
0) = 1.0. As such, the potential energy-minimizing magneti-
zation mmin

r and the error factor are practically independent of
H0ac (though still weakly varying on T ) at temperatures much
lower than TC . For Gd, on the other hand, the color contour
plot of the error factor displays more variation and also a
nonlinear feature on the high temperature side. This is because
the operating temperature T already approaches the Curie
temperature TC = 293 K, making the mmin

r and error factor
strongly dependent on both H0ac and T near TC . In this paper,
we will work at a specified operating temperature T = 280 K
and ac field H0ac = 0.5 Tesla to give concrete results; the
temperature at 280 K is chosen because it is reasonably close
to room temperature, even though a tolerance for about 27%
error factor for Gd is implied (Table I), while the error factor is
much smaller for Fe, Ni, and Co at this operating temperature.
However, our paper gives all the necessary details that permit
the readers to repeat the calculation for any arbitrary values of
H0ac and T < TC .

V. SOLUTION OF FOKKER-PLANCK EQUATION

The speed of various switching modes considered above is
to be computed from the escape rate of the Brownian particle
by first solving the Fokker-Planck Eq. (13). Considering that
the system still has axial symmetry, we solve the Fokker-
Planck equation using the ansatz

ρ(mr, θ, t ) = ρ0(mr, θ ) + δρ(mr, θ, t ), (24)

with explicit dependence on mr . The zeroth order solution for
particle density can be determined by considering the steady-
state situation ∂ρ/∂t = 0 in Eq. (13), subject to the actual
potential energy Eq. (14). It can be checked that the stationary-
state solution corresponding to statistical equilibrium can only
be achieved if we turn off the alternating magnetic field, that
is, Hac = 0. In such statistical equilibrium, the particle density
should in principle take the form

ρ0(mr, θ, t ) = ρ0(mr, θ ) ∼ e− vṼ (mr ,θ )
kBT . (25)

The task is to find the proportionality function, which in this
case is not necessarily constant (normally taken to be unity).
To that end, it is helpful to work with the continuity equa-
tion in the original form from Eq. (13),

∂
∂mr

(
m2

r Jr
)

m2
r

+
∂
∂θ

(sin θJθ )

mr sin θ
= 0, (26)

where we have set ∂ρ/∂t = 0 and used the fact that the Jφ has
no dependence on φ at all. Clearly, the equation is satisfied by
a ρ0 such that Jr = Jθ = 0. So, using Eqs. (10) and (11), we
have

−ργ0α‖
∂V

∂mr
− k′ ∂ρ

∂mr
= 0, (27)

−ρ
α⊥γ0

mr

∂V

∂θ
− k′

mr

∂ρ

∂θ
= 0 (28)

to be solved for ρ, that gives ρ0. Solving Eq. (28) first imme-
diately gives

ρ0(mr, θ ) = A0(mr )e− vṼ (mr ,θ )
kBT , (29)

where we have used the definition of k′ as given in Eq. (4).
Then, substituting Eq. (29) into Eq. (27), we obtain

A0(mr ) = D0e(1− α‖
α⊥ ) vṼs (mr )

kBT , (30)

where Ṽs(mr ) refers to the θ -independent part of Ṽ (mr, θ ),
thus corresponding to the longitudinal relaxation part in our
model. The full solution for the stationary-state density is thus
given by

ρ0(mr, θ ) = D0e(1− α‖
α⊥ ) vṼs (mr )

kBT e− vṼs (mr ,θ )
kBT , (31)

where Ṽs(mr ), Ṽs(mr, θ ) are, respectively, the θ + t-
independent and t-independent parts of Eq. (14) while
D0 > 0 is a reference value for the particle density. As can be
seen in Table I, one indeed has α‖ 	 α⊥ for certain elemental
ferromagnets when working at operating temperature T � TC

such as gadolinium (Gd) at T = 280 K; the steady state
solution Eq. (31) therefore then takes a Boltzmann distribution
in terms of the potential energy V (mr, θ ) in Eq. (14) as
required for statistical equilibrium. On the other hand, as can
be seen from Table I, this condition α⊥ 	 α‖ is not satisfied
by transition-metal ferromagnets iron, nickel, and cobalt
at T = 280 K. Nevertheless, at much higher temperatures
close to their respective Curie temperature T � TC , it can be
verified using Eqs. (18) and (19) that the condition α⊥ 	 α‖ is
again satisfied. However, working at T � 627, 1043, 1388 K
is evidently not of practical interest for a spintronic device.

Based on Eq. (31), when α⊥ 	 α‖ is not satisfied, one still
obtains a Boltzmann-like distribution in terms of an effec-
tive potential energy that differs from the original potential
Ṽ(mr, θ ) in Eq. (14),

Ṽeff(mr, θ ) = Ṽs(mr, θ ) −
(

1 − α‖
α⊥

)
Ṽs(mr )

= −MsH0mr cos θ + M2
s

2χ⊥
m2

r sin2 θ

+ α‖
α⊥

M2
s

8χ‖

(
m2

r − m2
e

)2

	 −MsH0mr cos θ + M2
s

2χ⊥
m2

r sin2 θ, (32)

where the last line in Eq. (32) applies when α‖ � α⊥, as is
especially the case for Fe and Co according to Table I, result-
ing in an effective magnetic potential without the longitudinal
fluctuation energy term, corresponding to fixed magnitude
of magnetization |M|. This latter effective potential can in-
deed be used as an approximate description for magnetization
dynamics at an operating temperature much lower than the
Curie temperature T � TC since in that regime the thermal
fluctuations that drive the longitudinal relaxation are weak.
It can be seen that our theory based on the Fokker-Planck
equation provides a self-consistent description of magnetiza-
tion dynamics for ferromagnets with a diverse range of Curie
temperatures.

Substituting the ansatze Eq. (24) into the Fokker-Planck
Eq. (13), we obtain an exact analytical solution only for the
case with constant potential. The four terms in Eq. (14) will
thus be treated as perturbation terms, even though only H0

and H0ac are tunable. The exact analytical solution for the
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case with a (hypothetical) constant potential V (mr, θ ) = V0 is
derived as follows. Readers interested only in the final result
can skip the following derivation and jump immediately to the
end of this section.

Since ferromagnets with uniaxial symmetry still have axial
symmetry, the solution of the Fokker-Planck equation in terms
of the magnetic charge density ρ will be independent of φ.
Calling x = cos θ, y = mr , we find that our Fokker-Planck
Eq. (13) can be written as

∂ρ(x, y, t )

∂t
+ D · ∇ρ(x, y, t ) + E [ρ(x, y, t )]

= M(x, y, t )ρ(x, y, t ), (33)

where ∇ = (∂/∂x, ∂/∂y) and

D(x, y, t ) =
(

−1 − x2

y2
α⊥γ0

(
∂V

∂x
+ τ

∂2V

∂x∂t

)
, α‖γ0

∂V

∂y

)
,

(34)

E [ρ(x, y, t )] = − k′

y2

∂

∂y

(
y2 ∂ρ

∂y

)
− k′

y2

∂

∂x

[
(1 − x2)

∂ρ

∂x

]
(35)

M(x, y, t ) = α‖γ0

(
2

y

∂V

∂y
+ ∂2V

∂y2

)

+ α⊥γ0

y2

∂

∂x

[
(1 − x2)

(
∂V

∂x
+ τ

∂2V

∂x∂t

)]
, (36)

where

V (x, y, t ) = −(H0 + Hac(t ))yx + y2

2χ⊥
(1 − x2) +

(
y2 − y2

e

)2

8χ‖
.

(37)
Perturbation theory will be used by starting from the solution
of our Fokker-Planck equation but assuming a constant po-
tential energy V = V0 followed by perturbation expansion in
vṼ /(kBT ) using methods in mathematical physics [39].

With constant potential, the full Fokker-Planck equa-
tion can be decoupled into x and y parts and written as
eigenvalue problems,

Lx
(
ux

n(x)
) + λx

nux
n(x) = 0, (38)

Ly
(
uy

nα (y)
) + λy

nuy
nα (y) = 0, (39)

where Lx, Ly are some differential operators, the detailed form
of which is given in Appendix B, while ux

n(x), uy
nα (y) are the

unperturbed eigenfunctions and λx
n, λ

y
nα are the corresponding

eigenvalues.
With the details of derivation given in Appendix B, it is

found that

ux
n(x) = cPnPn(x), uy

nα (y) = cynαY−n−1(u−n−1,αy), (40)

with x = cos θ, y = mr , involving a spherical Bessel function
Y−n−1(y) of order −n − 1, u−n−1,α 	 (n/2 + α + 1)π is the
αth zero of the Y−n−1(y), and Pn(x) is a Legendre polynomial
of nth order. The eigenvalues are given by

λx
n = −n(n + 1), λy

nα = −n(n + 1)

u2
−n−1,α

, (41)

corresponding, respectively, to the Legendre and spherical
Bessel functions as the eigenfunctions.

Given the above results, the solution of the Fokker-Planck
Eq. (33) for the unperturbed case (constant potential energy)
in terms of the Brown magnetic particle density is found to be
that given by Eq. (24) with

δρ(mr, θ, t ) =
∞∑

n=1,α=0

cnαux
n(cos θ )uy

nα (mr )e−pnαt . (42)

The coefficients are determined by the initial condition
δρ(x, y, 0). The pnα is the eigen-(damping)frequency (or
eigendecay (or damping) rate more precisely),

pnα = u2
−n−1,αk′ 	 k′

(
n

2
+ α + 1

)2

π2, (43)

indicating a decay rate that is quadratically dependent on
the mode number n and is proportional to the coefficient
k′ that characterizes thermal fluctuation-induced diffusion of
Brownian particles giving rise to an exponential temporal
dependence exp(−pnαt ).

Turning on the magnetic potential V (mr, θ, t ) in Eq. (14),
the full solution for the particle density is computed per-
turbatively in vMsH0(0ac)/(kBT ), vM2

s /(χ⊥(‖)kBT ) � 1 using
perturbation theory [39], where in Eq. (42) we will have
ux

n → ux
n, uy

nα → uy
nα, pnα → pnα . In addition to the above

equations, conservation of Brown particle density is implied
by the continuity Eq. (5); the decay of the density at a point
(corresponding to a minimum of the magnetic potential en-
ergy) in the sphere must give rise to a growth of the density
at another point (corresponding to another minimum of the
magnetic potential energy) on the sphere.

VI. PERTURBATIVE SOLUTION OF FOKKER-PLANCK
EQUATION WITH MAGNETIC POTENTIAL V (mr, θ, t )

Perturbation theory is defined by expanding the perturbed
eigenfunctions and the eigenvalues [39],

ux
n(x, y, t ) = ux

n(x) + εxv
x
n(x, y, t ) + ε2

x w
x
n(x, y, t ) + · · · ,

(44)

λ
x
n(y) = λx

n + εxμ
x
n(y) + ε2

x ν
x
n (y) + · · · , (45)

uy
nα (x, y, t ) = uy

nα (y) + εyv
y
nα (x, y, t ) + ε2

y w
y
nα (x, y, t ) + · · · ,

(46)

λ
y
nα (x) = λy

nα + εyμ
y
nα (x) + ε2

y ν
y
nα (x) + · · · , (47)

where the unperturbed eigenfunctions ux
n(x), uy

nα (y) and un-
perturbed eigenvalues λx

n, λ
y
nα are those given in the previous

section. We will eventually work only up to first-order cor-
rections in the eigenfunctions and eigenvalues justified by the
fact that εx, εy ∼ vMsH0/(kBT ), vMsH0ac/(kBT ) � 1 and as
well vM2

s /(χ⊥kBT ), vM2
s /(χ‖kBT ) � 1 for the system of our

interest. It is to be noted that the expansion is slightly more
complicated than that for single-variable perturbation theory
because we now have two independent variables x and y,
resulting in perturbed eigenfunctions that are now in general
functions of both x and y and perturbed eigenvalues that are
also functions of one of the two variables x or y. The task is
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TABLE II. Comparison of expansion parameters (EPs) in our perturbation solution of the Fokker-Planck equation applied to gadolinium
(Gd), a rare-earth metal (lanthanide, more precisely), and several most common transition metal ferromagnets. The value within parentheses
is the longitudinal susceptibility expansion parameter multiplied by the scaling factor α‖/α⊥ of the effective potential in Eq. (32). Operating
temperature T = 280 K and H0ac = 0.5 T.

Perturbation expansion parameter Gadolinium (Gd) Iron (Fe) Nickel (Ni) Cobalt (Co)

Transverse susceptibility EP εχ⊥ = vM2
s

χ⊥kBT 0.009499 0.000607 0.000024 0.006282

Longitudinal susceptibility EP εχ‖ = vM2
s

χ‖kBT ((
α‖
α⊥

)εχ‖ ) 0.233(0.217) 178.471(9.577) 20.012(3.617) 540.787(15.499)

ac field EP εH0ac = vMsH0ac
kBT 0.002172 0.005222 0.000968 0.003957

to compute the perturbation expansion functions appearing in
Eqs. (44)–(47), the details of which are given in Appendix C.

Before proceeding with the calculation of the coefficients
of the perturbation expansion, we evaluate the perturbation
expansion parameters of the elemental ferromagnets as con-
sidered in Table I. Their numerical values are presented in
Table II. As can be seen, at the near-room temperature of
interest T = 280 K, the perturbation expansion parameters are
all smaller than unity for Gd, but those of Fe, Ni, and Co
exceed unity for longitudinal relaxation energy terms, even
after scaled by the corresponding factor α‖/α⊥. This suggests
that our perturbation theory breaks down and is not appli-
cable to the latter three elements, at least at the temperature
T = 280 K of interest, which is relatively low compared to
the Curie temperatures of the three transition metal ferro-
magnets. There are two possible options to remediate this
problem. First, the longitudinal relaxation term is dropped
altogether, justified by taking the α‖/α⊥ → 0 approximation
in the effective magnetic potential Ṽeff(mr, θ ) in Eq. (32), thus
the longitudinal relaxation term is no longer present in the
perturbation theory. Second, the iLLGB equation of motion is
solved fully numerically rather than analytically using our per-
turbation theory. Certainly, one may consider a much higher
operating temperature T closer to the respective TC of each
of the transition metal ferromagnets but, as mentioned in the
previous section, this is not of practical interest for near-room
temperature spintronic applications. The implication of the
breakdown of perturbation theory on the final result in terms
of the magnetization reversal rate will be discussed in the next
section.

VII. MAGNETIZATION REVERSAL RATE

From previous analysis, the dynamics has two sources of
time dependence; one due to the exponential decay with time,
reflecting the diffusion of the Brownian particle driven by
the thermal fluctuations, the other due to the driving field
Hac(t ) hiding in the perturbed eigenfunctions, also containing
inertial effect. These two are to be referred to as, respectively,
exponential mode and nutation mode. The exponential mode
is nothing but the thermal switching corresponding to super-
paramagnetism, the speed of which is directly estimable using
Eqs. (4) and (43), giving a characteristic switching rate

Rswitching
thermal−diffusion 	 9

4
π2 kBT

v

α⊥γ0

Ms

[
1 − O1

(
vṼ

kBT

)]
(48)

taken from the eigendecay rate with n = 1, α = 0, which
turns out to be proportional to the system temperature, but

inversely proportional to the saturation magnetization, a very
intuitive result because a magnetization vector of smaller
magnitude can reverse faster. This superparamagnetic mode,
however, does not lead to a stable magnetic switching because
the Brown particle keeps moving between the two minima.

The switching rate in the field-dominated region can be
determined by looking at Fig. 1. If the Brown particle is swept
along the topography of the V (mr, θ, t ) in such a way that it
always sticks to the locus of the minimum of V (mr, θ, t ) at
any t , then one has

Rswitching
field = 2ν

[
1 − O2

(
vṼ

kBT

)]
, (49)

where ν = ω/(2π ) is the frequency of the ac field, 2ν being
an upper bound on the field-driven switching rate. Our pertur-
bation theory calculation does not give simple analytical ex-
pressions for the correction terms 0 < O1,2(vṼ /(kBT )) � 1
in terms of all pertinent parameters. The perturbative correc-
tions O1,2(vṼ /(kBT )) are small when the argument vṼ /(kBT )
is small, but can be significant and thus significantly reduces
the corresponding switching rate when vṼ /(kBT ) is rather
large.

As an illustration, the theory is applied to magnetization
dynamics in a ferromagnetic element with Curie temperature
near room temperature: gadolinium (Gd). The resulting
profile of ρ(mr = 0.5, x = cos θ, t ) is shown in Fig. 3 where
the following numerical values for the parameters have been
used [44,46,51] as also summarized in Table I: TC = 293 K,

T = 280 K, J0 = 7.7 × 10−22J, Ms=2.54×105J Tesla−1m−3,

me(T ) = 0.3, mmin
r = 0.373, S = 7/2, v = 6.62 × 10−29 m3,

λ = 0.1, α⊥ = 0.226, α‖ = 0.211, χ‖ = 4.71 × 103J Tesla−2

m−3, χ⊥ = 1.16 × 105 J Tesla−2 m−3, k′ = 9.15244 × 1012

s−1, H0 = 0.0 Tesla, H0ac = 0.5 Tesla, τ = 10−11s, ω = 2π/

Tperiod, Tperiod = 10−14s, D0 = 1/unitcell whereas the
standard constants are kB = 1.38 × 10−23 m2 kgs−2K−1,
γ0 = 1.76 × 1011 C kg−1, μB = 9.274 × 10−24 J Tesla−1

for the Boltzmann factor, gyromagnetic ratio, and
Bohr magneton, respectively. Substituting the above
parameters, we obtain Rswitching

thermal−diffusion = 2.0 × 1014 s−1,
corresponding to subpicosecond switching time already;
τ

switching
thermal = 1/Rswitching

thermal−diffusion = 0.5 × 10−14 s. On the other
hand, for the field-driven nutation mode, the switching time
is half the period of the ac field; τ

switching
field = 0.5 × 10−14 s.

The switching time can be estimated from the time evo-
lution of the Brown particle density, more precisely in terms
of its change from statistical equilibrium value δρ(x, y, t ) ≡
δρ(mr, θ, t ). A particularly simple initial condition is given
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FIG. 3. The time-space evolution of Brown particle density
ρ(mr = 0.5, x = cos θ, t ): (a) without static and ac fields applied;
(b) with H0 = 0 and H0ac = 0.5 Tesla. The parameters used are given
in Table I and the text. Red arrows mark time periods corresponding
to complete magnetization reversals.

by

δρ(mr, θ, t = 0) = δρ0 + D0

( ∞∑
n=0

ηn cosn θ

)
e(1− α‖

α⊥ ) vṼs (mr )
kBT ,

(50)
subject to a constraint ηn+1 � ηn � · · · � η1 � 1, assuming
that the static fields (including the anisotropy and longitudinal
relaxation fields) are applied at t = 0+. This initial condi-
tion has been used to produce Fig. 3. The δρ0 is a constant
chosen in such a way that ρ(mr, θ = 0, 0) = ρ̃0 > ρ0 while
ρ(mr, θ = π, 0) = 0, where ρ0 is given by Eq. (31) at Vs = 0,
a second constraint designed to describe Brown particles ini-
tially accumulating in the northern hemisphere near the north
pole. In producing Fig. 3, we have used the same δρ0 = 0,
η0 = −0.36, η1 = 1.0, η2 = 0.6, and the sum is taken over
a few first modes n = 0, 1, 2, because eventually only these
three modes are generated with the above choice of initial
condition, for both parts of the figure. The reason we add the
η0 is to generate a strong v

Hac,x
1 (x, y, t ) term in the perturba-

tion expansion Eq. (44) which would give a strong switching
effect since it is odd in x. The presence of nonzero η0 means
a breathing mode contribution; that is, an isotropic pertur-
bation of the distribution of Brown particles from thermal
equilibrium distribution. This isotropic component is dom-
inant when the anisotropy energy is small. Experimentally,

anisotropy coefficient K (T ) decreases as one increases the
temperature T from below TC [44,47]. This means, as long
as one works at high enough temperatures (but lower than
TC), the anisotropy energy is small and the system tends to
have isotropic nonequilibrium distribution of magnetization
orientation. The initial condition assumed with nonzero η0 is
thus a pertinent rather than an ad hoc or artificial assumption,
and thus corresponds to realistic experimental situations, as
long as one operates at high enough temperatures (below
TC) in such a way that the anisotropy energy is smaller than
the energy scales that drive the switching (thermal energy
and especially the driving field energy). The switching effect
predicted in this paper is thus realistic to be manifested in
experiment, under the above condition. In applying our theory,
however, the operating temperature T should not be too close
to TC to not augment the error factor δ [Eq. (8)] associated
with the approximation 1 + α2

⊥/m2 	 1.
The switching time is estimated from the sum of the decay

time of the Brown particle density at θ = 0 and the growth
time of the same quantity at θ = π . The results are compared
with τ = 0 (adiabatic switching) and nonzero τ , for which
inertial switching occurs for timescales smaller than τ . Im-
posing the conservation of the number of Brown particles, it
can be shown that in the thermal diffusion-dominated region,
the Brown particle density can be simplified to (in terms of
x = cos θ, y = mr)

ρ(x, y = y0, t ) = δρ0 + ρ0

2
+

∞∑
n=1

δρn(x)

(
e−pnt − 1

2

)

	 δρ0 + ρ0

2
+ ρ̃0x

(
e−p1t − 1

2

)
, (51)

where ρ̃0 = ∑∞
n=1 δρn(x) at a fixed value of y = y0, while the

last line of Eq. (51) is for a single mode (n = 1) approxima-
tion. In the presence of ac field, the time dependence contains
a sinusoidal term. The δρ0 is chosen in such a way that makes
sure ρ(x, y, t ) is non-negative everywhere.

Figure 3(a) illustrates the time evolution of the Brown
particle density in the presence of thermal diffusion (k′),
uniaxial anisotropy (χ⊥), and longitudinal relaxation (χ‖) in
the absence of static and ac fields. Switching occurs corre-
sponding to mode III in Fig. 1, which is entirely thermally
dominated, with switching time that is nevertheless subpi-
cosecond. Figure 3(b) demonstrates the effect of static and
ac fields, showing that sinusoidal external force can produce
an even shorter switching time; switching may occur when
a peak in the x < 0 regime (southern hemisphere) spikes up
while a dip occurs in the x > 0 regime (northern hemisphere).
This corresponds to mode III* of the magnetization reversal
predicted in Fig. 1. Setting τ � Tperiod or dropping altogether
the inertial term in Eq. (1), the nutational mode III* also disap-
pears. It is clear from Fig. 3(b) that switching occurs at about
Tperiod/2. From our numerical experiments, this field-driven
switching requires strong enough H0ac; the minimum required
value of H0ac is smaller for the lower temperatures, according
to perturbation theory.

Our result thus suggests that within the inertial regime,
a new switching mode tied to nutation emerges and only
requires the presence of an alternating field. While in the
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precession and Bloch terms of Eq. (1) the effect of Hac(t ) is
overrun by the superparamagnetic thermal fluctuations, Hac(t )
still takes effect indirectly via inertial term and has an effective
magnitude of (τ/Tperiod )Hac(t ). The type-II switching, on the
other hand, tends to be driven by the Bloch term in Eq. (1) but
is dominated by the inertial term that gives type III* above.
The type-II mode may prevail close enough to Curie temper-
ature, induced by heating, and in the absence of ac field, but
requires an appropriate modeling of temperature dependence
of |m(T )| [7]. Finally, the type-I mode is absent (or was not
observed) because it requires application of a static field and
normally occurs in the low-temperature regime.

For comparison, we have computed the thermal-driven
switching rate Rswitching

thermal−diffusion for common transition metal
ferromagnets, presented in Table III. Taking into account the
error introduced by the approximation 1 + α2

⊥/m2
r ∼ 1 with

a measure of error given by δ in Eq. (8), the error factor-
corrected thermal switching rate is simply given by

R̃switching
thermal−diffusion = (1 − δ)Rswitching

thermal−diffusion, (52)

where Rswitching
thermal−diffusion is given in Eq. (48). This result,

however, implicitly assumes that the perturbation theory
converges, giving finite value for O1,2(vṼ /(kBT )) small com-
pared to unity. As discussed in the previous section, this is not
the case for Fe, Ni, and Co at T = 280 K—relatively low com-
pared to their Curie temperatures. A naive consequence of this
is that, if we insist on relying on the result of our perturbation
theory, the actual thermal diffusion-driven magnetization re-
versal rate of Fe, Ni, and Co would be significantly lower than
the theoretically predicted values given in Table III. This is
entirely in agreement with the intuitive expectation that since
T = 280 K is relatively low compared to TC of these three
transition metal ferromagnets, thermal fluctuations are weak
and, as a consequence, the resulting thermal diffusion-driven
switching rate should also be relatively low. Overall, the the-
oretical part of Table III suggests that gadolinium gives the
highest thermal diffusion-driven magnetization reversal rate
at a given temperature (T = 280 K). With the same argument,
Eq. (49) suggests that gadolinium should also give the highest
field-driven switching rate due to the fact that the perturbation
expansion parameter vṼ /(kBT ) is smaller for Gd than those
of the three transition metal ferromagnets. The corresponding
error factor-corrected field-driven switching rate is

R̃switching
field = (1 − δ)Rswitching

field , (53)

where Rswitching
field is given in Eq. (49).

Our theoretical values for the switching rates (times)
should, however, be taken as upper (lower) bounds to experi-
mental values. In addition, in comparing the theoretical results
and experimental data, care must be taken with respect to
the operating temperature T and fields H0 and H0ac. Higher
temperatures, in general, give rise to higher thermal-driven
switching rates (shorter switching times). Furthermore, the
switching rates and times for compounds or alloys of com-
pounds are not simply related to those of the constituent
elements. This is because in alloys, the atoms of the con-
stituent elements may form sublattices with nontrivial, e.g.,
antiferromagnetic exchange interaction between the moments
at two different sublattices. Ultrafast magnetization dynamics

in such a multisublattice system may require a more so-
phisticated theoretical description [33]. In certain situations,
however, the magnetization dynamics of the different sublat-
tices in a compound or alloy of compounds may be decoupled
and, in such a case, the magnetic moment dynamics of differ-
ent types of atoms may be treated independently.

Table III presents experimental data for the timescale
for demagnetization, magnetization reversal (switching), and
thermal-driven switching processes. It is first to be noted
that our theory proposes a magnetization reversal mechanism
based entirely on the transfer of angular momentum between
the source of effective field (e.g., the photon or optical mag-
netic field via the torque applied by effective field) and the
magnetic moments constituting the magnetization field. In
actual experiments, however, various other mechanisms may
play a role, such as electron-spin coupling, spin-lattice cou-
pling, and electron-magnon scattering, that may contribute to
the demagnetization or magnetization reversal process. Nu-
merical data from experiments at their face values should
therefore not be compared strictly quantitatively with our
theoretical numbers.

Experimental data for thermal effect are available mostly in
terms of thermal-assisted demagnetization time τ demag; that is,
the time taken for magnetization to decrease as the magnetic
sample is heated (due to laser irradiation), approaching its
Curie temperature TC . In our framework, such a thermally
assisted demagnetization process as reported in Ref. [20] man-
ifests half of the trajectory of type-II switching illustrated in
Fig. 1. The speed of such a demagnetization process depends
on the precise mechanism of thermalization; how the spins
have their temperature increased. Noting that experimental
data demonstrate femtosecond scale for demagnetization time
τ demag, the demagnetization may, in fact, be driven by the
transfer of angular momentum between the spins themselves,
mediated by exchange interaction, which is a quantum spin-
spin interaction. In such scenario, τ demag will scale as τ demag ∼
1/Tc under exactly the same experimental condition. This
would explain, for example, the experimental data listed in
the lower half of Table III for the τ demag of Fe and Gd in
Ref. [31], which reported τ

demag
Gd /τ

demag
Fe ≈ 4, differs by less

than 12.5% from T Fe
C /T Gd

C 	 3.56. The finding that Gd and
Tb have very close thermal-assisted demagnetization times
as reported in Ref. [32] also agrees with our simple scaling
picture above, noting the similar Curie temperatures (TC =
293(300) K for Gd (Tb) respectively), giving τ

demag
Gd /τ

demag
Tb 	

1.02 	 T Tb
C /T Gd

C 	 1.02. It is to be noted that the thermal
demagnetization time τDeMag is to be distinguished from the
thermal switching time that we discuss, as the latter pertains
to superparamagnetism rather than the reduction of magneti-
zation.

With regard to experimental results on field-driven magne-
tization reversal, a global conclusion that can be drawn from
the experimental data is that the observed switching rates all
satisfy the condition of being lower than the upper bound 2ν

found in our theory Eq. (49). This offers a possible expla-
nation for how the switching time could cover a relatively
wide range of different scales, from few hundreds of fs to few
hundreds of ps, a startling phenomenon that has been a fun-
damental question in ultrafast magnetism; the switching time
scale is only constrained by a lower bound in fs range. Fur-
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TABLE III. Comparison of theoretically predicted thermal diffusion-driven and field-driven switching rates and times in Gd, Fe, Ni, and
Co and the available experimental data. Operating temperature T = 280 Kelvin is assumed for theoretical results. The laser frequency ν is
deduced from the photon energy Ephoton or laser wavelength λ: ν = Ephoton/h = c/λ, where h is the Planck constant while c is the speed of light.
When not stated as nanoparticles, thin film or layer geometry is implied. (*) The nanosecond thermal switching timescale can be reproduced
by our theory [Eq. (48)] using volume v of nm3 scale corresponding to experiments instead of Å3 we used to produce the theoretical values at
the top of this table.

Theoretical results

Quantity Gadolinium (Gd) Iron (Fe) Nickel (Ni) Cobalt (Co)

Thermal switching rate Rswitching
thermal−diffusion(s−1) [Eq. (48)] 2.035 × 1014 1.324 × 1013 8.945 × 1013 1.645 × 1013

Thermal switching time τ
switching
thermal = 1/Rswitching

thermal−diffusion(fs) = 4.92 75.53 11.16 60.61

Corrected rate R̃switching
thermal−diffusion(s−1) [Eq. (52)] 1.489 × 1014 1.322 × 1013 8.926 × 1013 1.643 × 1013

Corrected time τ̃
switching
thermal = 1/R̃switching

thermal−diffusion (fs) 6.72 75.63 11.19 60.68

Experimental data

Material Thermal
demagnetization

time τ demag

Field-driven
switching time

τ
switching
field

Thermal switching
time τ

switching
thermal

Experimental details (Note: MRev: magnetization
reversal, demag: demagnetization, MRecov:
magnetization recovery)

Ni [20] 100 to 200 fs − − 60 fs ν = 483.54 THz linearly polarized laser pulse,
T = 340 − 580K, demag

Ni [21] (230±30)fs − − 150 fs ν = 374.74 THz linearly polarized laser
pulse, T = 300 K, demag

Ni [22] 500 to 1000 fs − − 70 fs ν = 411 THz laser pulse, T = 300 K, demag

Ni [24] (300±70)fs(A),
(3.2 ± 0.2)ps(B)

− − 85 fs ν = 362.69 THz laser pulse, T = 300 K,
A: demag, B: MRecov

Co [27] 300 fs − − 50 fs ν = 374.74 THz laser pulse, demag

Fe(A) [31],
Gd(B) [31]

(100±25)fs(A),
(430±100)fs(B)

− − 60 fs ν = 374.79 THz linearly polarized laser,
T = 83 K

Gd(A) [32], (760±250)fs(A), − − 50 fs 362.69 THz circularly polarized laser

Tb(B) [32] (740±250)fs(B) − − pulse, H0 = 0.5Tesla, T = 140 K, demag

GdFeCo [23] − τ
switching
field =

(190 ± 40) ps
− 100 fs ν = 374.74 THz circularly polarized laser

pulse, T = 300 K, TC = 532 K, all-optical, MRev

DyFeO3 [25] − τ
switching
field = 2.3 ps

(resonance period)
− 200 fs ν = 241.8 THz circularly polarized laser

pulse, all-optical, T = 175 K

Garnet [26] − τ
switching
field � 100 fs − 100 fs ν = 372.41 THz linear and

circularly-polarized laser pulse, T = 300 K,
all-optical, MRev

GdFeCo [28] − τ
switching
field ∼

subpicosecond
− 40 fs ν = 374.74 THz circularly polarized laser

pulse, T = 300 K, TC = 500 K, all-optical, MRev

GdFeCo [39] − τ
switching
field = 700 fs − 500 fs ν = 374.74 THz laser pulse,

T = 10 − 300 K, athermal all-optical

GdFeCo [30] − τ
switching
field = 30 ps − 100 fs ν = 374.74 THz circularly polarized laser

pulse, T = 10 K, all-optical

GdFeCo [34] − − − 100 fs ν = 374.74 THz circularly polarized laser
pulse, T = 300 − TC K, all-optical

Gd2O3 [40] − − ≈ 0.1 ns(*) thermal, 5–10 nm nanoparticles, T = 285−287 K

Ni [41] − − 0.055ns(*) thermal, 3.8 nm nanoparticles, T = 310 K

Fe [42] − − (0.1±0.05)ns(*) thermal and field, (2.9 ±0.3)nm nanoparticles,
T = 80 K

Co [43] − − 0.1 ns(*) thermal and field, (25±5) nm-diameter
nanoparticles, T = 0.1 − 6 K
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thermore, our Eq. (49) suggests that the field-driven switching
rate, which would correspond also to a resonance frequency of
the nutation mode, increases monotonically with temperature.
A spin resonance mode with such temperature dependence has
in fact been observed in Ref. [25] (referred to as a “quasi-AFM
mode” represented by filled circles in Fig. 3 of Ref. [25]),
but with a much lower frequency range (few hundreds of
GHz) than that expected based on our theory (few hundreds
of THz). This can be partly attributed to the magnetic domain
size, which is in the μm scale in Ref. [25] rather than the Å
scale assumed in our calculation, as larger volume gives rise
to lower field-driven switching rate or resonance frequency,
according to our Eq. (49).

The last part of Table III on the bottom pertains to the
thermal switching time, commonly referred to as superpara-
magnetic relaxation time in the literature. The available data
indicate a timescale mostly in the order of nanosecond. This
is partly due to the fact that the systems under studies in
Refs. [41,43] mostly involve magnetic particles with sizes in
the nanometer regime, giving larger volume v than what we
used in Table I. According to Eq. (48), to leading order, this
will reduce the relaxation rate and thus increase the relaxation
time, relative to our theoretical numbers presented in Ta-
ble III, for which subnanometer size has been assumed. More
precisely, according to Eq. (48), thermal switching time is
proportional to the magnetic volume v. Since the experimental
volume is in the nm3 regime while our calculation assumes the
Å3 regime, we expect experimental thermal switching time
to be at least 103 = 1000 times larger than our values, in
agreement with the data presented in Table III. Furthermore,
comparing the available data on the four elemental ferro-
magnets, especially the three transition metal ferromagnets
(omitting the ±0.05 ns uncertainty in the result for Fe), the re-
laxation time for Ni is found to be the smallest between those
of Fe, Ni, and Co, in precise agreement with our theoretical
prediction. Data for Gd nanoparticles are not available; only
data for compound Gd2O3 is listed, for which direct compar-
ison with the theoretical result for Gd should not be made.
It can be seen that, while the present paper is not aimed at
reproducing every available experimental data quantitatively,
our theory gives some penetrating insights and conceptual
framework for understanding experimental observations and
available data on ultrafast magnetism phenomena at elevated
temperatures.

VIII. DISCUSSION AND CONCLUSIONS

We have developed an accurate model for describing mag-
netization dynamics in ferromagnetic materials under Curie
temperature and in an ultrafast regime, where inertial effect
must be taken into account. Our main results demonstrate that
in the ultrafast regime, a new mode of magnetization reversal
corresponding to nutation emerges persists against thermal
fluctuations that reduce the stability of the former, requiring
only ac field to generate it and gives rise to the fastest switch-
ing rate proportional to the ac field frequency. Stable reversal
of magnetization state can be realized by the application of
a pulse of ac field of finite duration �t = (2n + 1)Tperiod/2
where n = 0, 1, 2, 3, · · · .

Our finding that a stationary alternating (ac) field induces
magnetization reversal even in the absence of static field
explains the experimental observation of magnetization rever-
sal induced by laser pulse without any static field [28], by
simple extension of our theory to Hac(x, t ) ∼ cos(ωt − kx).
The subpicosecond timescale for magnetic switching found
in our work naturally explains the femtosecond timescale of
all-optical magnetic switching [25,29,34]. Furthermore, the
observation that circularly polarized light is able to drive
the reversal while the linearly polarized one is not follows
naturally from the fact that at any direction in the yz plane
normal to the wave propagation direction x, the circular po-
larization always projects a nonzero alternating optomagnetic
field along the magnetization direction m, taken to be along
the z axis, for example, whereas a linearly polarized light
has zero projection in direction z if the linear polarization
direction is along y. In this illustration, linearly polarized
light with polarization direction on yz plane away from y axis
can still induce a magnetization reversal. Our exposition of
the thermal-driven and field-driven modes also demonstrates
that both temperature and field effects play roles in experi-
ments [22,23]. In particular, lower critical H0ac required for
the nutation switching mode at lower temperatures implies
lower laser fluence as well, in agreement with experimental
findings [29]. Our results provide a transparent macroscopic
picture of ultrafast magnetization reversal dynamics relying
on alternating field or optical waves and will motivate further
works to realize ultra-high-speed magnetic devices.
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APPENDIX A: DERIVATION OF COMPONENTS
OF CURRENT DENSITY VECTOR

Noting that Heff = −∂V/∂m, the LLG part of the iLLGB
equation

γ0(m × (Heff + h(t ))) − α⊥
m2

[m × ṁ] (A1)

is equivalent to

γ0m ×
(

− ∂V

∂m
+ h(t )

)
− α⊥γ0

m2
m

×
(

m ×
(

− ∂V

∂m
+ h(t )

))
, (A2)

where

m = |m| = mr . (A3)

In the intuitive derivation of the Fokker-Planck equa-
tion [36], the effect of stochastic field h(t ) is already
represented by the thermal diffusion term −k′∇ρ. The terms
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involving h(t ) in Eqs. (7), (A1), and (A2) are thus not further-
more evaluated as their equivalent −k′∇ρ will be added at the
end of this Appendix. We evaluate the remaining term by term
of Eq. (A2) in a spherical coordinate system, which produces
the following equation:

−m × ∂V

∂m
=

(
1

sin θ

∂V

∂φ

)
êθ +

(
−∂V

∂θ

)
êφ, (A4)

noting that m = mrêr . So,

γ0(m × Heff ) = −γ0m × ∂V

∂m

= γ0

[(
1

sin θ

∂V

∂φ

)
êθ +

(
−∂V

∂θ

)
êφ

]
(A5)

becomes, after transformation from Landau-Lifshitz-Gilbert
back to Landau-Lifshitz form:

γ0

[(
1

sin θ

∂V

∂φ

)
êθ +

(
−∂V

∂θ

)
êφ

]
. (A6)

The Bloch term in spherical coordinates is given by

+γ0α‖
m2

r

(m · Heff )m = −γ0α‖
mr

mrêr
∂V

∂mr
. (A7)

The Gilbert damping term in spherical coordinates upon
transformation into Landau-Lifshitz form is given by

−α⊥
m2

[γ0m × (m × Heff )]

= −α⊥γ0

mr

[
1

sin θ

∂V

∂φ
êφ + ∂V

∂θ
êθ

]
. (A8)

The inertial term becomes, after a rather tedious algebraic
manipulation,

−α⊥
m2

r

[τm × m] = −α⊥τγ 2
0

mr

∂V

∂mr

(
1

sin θ

∂V

∂φ
êθ − ∂V

∂θ
êφ

)

+α⊥γ0τ

(
∂2V

∂t∂mr
m − ∂

∂t

∂V

∂m

)
, (A9)

with

∂V

∂m
= ∂V

∂mr
êr + 1

mr

∂V

∂θ
êθ + 1

mr sin θ

∂V

∂φ
êφ, (A10)

where we have applied zeroth order approximation for which
we omit ∂mr/∂t when evaluating m. In this case, the inertial
term contributes to the fully transverse spin torque (or velocity
of the magnetic particle in the language of Brown theory):

−α⊥
m2

r

[τm × m] 	 −α⊥τ

mr

(
− γ 2

0

sin θ

∂V

∂mr

∂V

∂φ
+ γ0

∂2V

∂t∂θ

)
êθ

− α⊥τ

mr

(
γ 2

0
∂V

∂mr

∂V

∂θ
+ γ0

sin θ

∂2V

∂t∂φ

)
êφ.

(A11)

Eventually, we will consider time-dependent potential energy
to accommodate time-dependent ac magnetic field or electro-
magnetic field to drive switching or the collective mode of
interest. The expression Eq. (A11) was obtained by retaining
only time dependence due to the ac field applied along a
fixed direction along ẑ, whereas the time dependence due to

dynamical fluctuation of mr as well as time dependence of θ

and φ are subleading to that of the ac field.
The above equations give the spherical coordinate com-

ponents of the Brown particle current density vector in the
absence of thermal agitations:

Jr = −ργ0α‖
∂V

∂mr
, (A12)

Jθ = ργ0

sin θ

(
1 + α⊥τγ0

mr

∂V

∂mr

)
∂V

∂φ
− ρ

α⊥γ0

mr

(
1 + τ

∂

∂t

)
∂V

∂θ
,

(A13)

Jφ= − ργ0

(
1 + α⊥τγ0

mr

∂V

∂mr

)
∂V

∂θ
− ρα⊥γ0

mr sin θ

(
1 + τ

∂

∂t

)
∂V

∂φ
.

(A14)

The effective conservative potential is V (mr, θ, φ) in spherical
coordinates.

APPENDIX B: DERIVATION OF ANALYTICAL
SOLUTION OF FOKKER-PLANCK EQUATION

WITH CONSTANT POTENTIAL

Considering a (hypothetical) constant potential
V (x, y, t ) = V0, one can use the method of separation
of variables to solve for the ρ[x, y, t] by writing
ρ[x, y, t] = X (x)Y (y)T (t ). We obtain the following set
of ordinary differential equations:

(x2 − 1)
d2X (x)

dx2
+ 2x

dX (x)

dx
− const2X [x] = 0, (B1)

y2 d2Y (y)

dy2
+ 2y

dY (y)

dy
−

(
const1

k′ y2 + const2

)
Y [y] = 0

(B2)

dT (t )

dt
− const1T (t ) = 0, (B3)

where const1, const2 are constants to be determined (eventu-
ally acting as the eigenvalues of the corresponding eigenvalue
problem). In fact, Eq. (B1) takes exactly the form of the
Legendre equation when const2 = n(n + 1) while Eq. (B2)
takes exactly the form of the spherical Bessel function when
const1 = −k′, const2 = n(n + 1). In fact, any const1 = −sk′
with scaling factor s still gives a spherical Bessel function
with appropriate rescaling of y. It will be seen later when
considering expanding the full solution for ρ(x, y, t ) that we
have to choose s = u2

−n−1,α , where u2
−n−1,αis the αth zero of

spherical Bessel function Y−n−1(y).
The solutions of the above set of ordinary differential equa-

tions are

T (t ) = Ct e
const1t , (B4)

X [x] = CxPP

[
(−1 + √

1 + 4const2)

2
, x

]

+CxQQ

[
(−1 + √

1 + 4const2)

2
, x

]
, (B5)
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Y [y] = CyJJ
[

(−1 − √
1 + 4const2)

2
,− i

√
const1y√

k′

]

+CyYY
[

(−1 − √
1 + 4const2)

2
,− i

√
const1y√

k′

]
,

(B6)

where Ct ,CxP,CxQ,CyJ ,CyY are constants to be determined
by boundary and initial conditions as well as physical con-
straints such as analytic behavior to give a nondivergent result,
P[λ, x], Q[λ, x] represent the Legendre polynomial and Leg-
endre function of the second kind, respectively. Both functions
impose that the degree λ be integer λ = n = 0, 1, 2, 3, · · · ,
giving a quantized value for const2 = n(n + 1). They are,
respectively, given by

P[n, x] = Pn(x) = 1

2nn!

dn

dxn
(x2 − 1)n

= 1

2n

n∑
k=0

(
n!

k!(n − k)!

)2

(x − 1)n−k (x + 1)k,

(B7)

Q0(x) = 1

2
ln

1 + x

1 − x
, (B8)

Q1(x) = P1(x)Q0(x) − 1, (B9)

Qn = 2n − 1

n
xQn−1(x) − n − 1

n
Qn−2(x), n � 2,

(B10)

which suggests that the full solution for the x-dependent func-
tion X (x) ≡ X (θ ) involves both polynomial and logarithmic
functions of x = cos θ . Both functions are singular at x = ±1,
corresponding to θ = 0, π , precisely where the minima of the
actual potential V (θ ) we have in our problem are located.

On the other hand, J ,Y represent spherical Bessel func-
tions, solutions of the differential equation

y2 d2Y (y)

dy2
+ 2y

dY (y)

dy
+ (y2 − n(n + 1))Y [y] = 0, (B11)

with solutions

J [n, y] = jn(y) =
√

π

2y
Jn+ 1

2
(y), (B12)

Y[n, y] = yn(y) =
√

π

2y
Yn+ 1

2
(y),

= (−1)n+1
√

π

2y
J−n− 1

2
(y), (B13)

in terms of the ordinary Bessel functions Jn and Yn.
The occurrence of the Legendre polynomial for the solu-

tion of the x = cos θ part is well expected due to the axial
symmetry of the system. Since the Legendre polynomial is
quantized in discrete integers, this imposes a constraint on
the value of const2. On the other hand, the const1 acts as
the eigenvalue of the temporal part of the set of differential
equations. The full solution of the partial differential equa-

tion Eq. (33) for constant potential V is

ρ[x, y, t] = X0(x)Y0(y)T0(t ) +
∞∑

n=1

Xn(x)Yn(y)Tn(t ). (B14)

The basis functions are given by Eqs. (B5) and (B6) for the
x and y parts, respectively, which give, imposing the physical
condition of finite magnetic particle density everywhere in the
interval x ∈ [−1, 1], y ∈ [0, 1] gives rise to

ux
n(x) = cPnPn(x), (B15)

uy
nα (y) = cY nαY−n−1(u−n−1,αy), (B16)

taking into account the fact that the Legendre Q and spherical
Bessel J functions both are singular in the respective intervals.
The overall coefficients cPn, cY n are fixed by imposing the
normalization condition,∫ 1

−1
dxux

n(x)ux
m(x) = δnm, (B17)

∫ 1

0
dyy2uy

nα (y)uy
nβ (y) = δαβ, (B18)

where the presence of y2 in the last equation is to be noted,
reflecting the fact that the spherical Bessel function pertains
to spherical coordinates. Furthermore, spherical Bessel func-
tions of the same index n are orthogonal to each other if their
zeros are different (α �= β).

Using standard identity [54],∫ 1

0
dxPn(x)Pm(x) = 2

2n + 1
δnm, (B19)

we obtain

cPn =
√

2n + 1

2
. (B20)

On the other hand, for the y part, we employ the orthogonality
relation for spherical Bessel function∫ 1

0
dyy2Yn(un,αy)Yn(un,βy) = 1

2
δαβ[Yn+1(un,α )]2, (B21)

where un,α represents the αth zero of Y[n, y]. Substituting
Eqs. (B16) and (B21) into Eq. (B18), we obtain

cY nα =
√

2

Y−n(u−n−1,α )
(B22)

for n = 1, 2, 3, · · · . The y part of the solution involves the
spherical Bessel function. Expansion in terms of Bessel func-
tions of a given n but different zeros α (forming the Bessel
series) follows from the orthogonality relation for such spher-
ical Bessel functions. In this paper, we will extensively use the
asymptotic form of Bessel function

Jν (z) 	
√

2

πz
cos

(
z − νπ

2
− π

4

)
(B23)

for z � |n2 − 1/4|, which has zeros at

u−n−1,α =
(

n

2
+ α + 1

)
π, (B24)

134415-14



HIGH-TEMPERATURE MAGNETIZATION REVERSAL IN … PHYSICAL REVIEW B 106, 134415 (2022)

and α = 0, 1, 2, 3, . . .. Substituting Eqs. (B23)–(B24) into
Eq. (B22) gives

cY nα = (−1)n−α−2
√

2

(
n

2
+ α + 1

)
π. (B25)

The full solution Eq. (B14) now explicitly takes the form

ρ(x, y, t ) = ρ0(x, y) +
∞∑

n=1

∞∑
α=0

cnαY−n−1(u−n−1,αy)Pn(x)e−pnt ,

(B26)
where x = cos θ, y = mr , and cnα depends on the initial con-
dition ρ(x, y, t = 0) at t = 0. The coefficient is given by

cnα = 2n + 1

[Y−n(u−n−1,α )]2

∫ 1

0
dyy2

∫ 1

−1
dxδρ(x, y, t = 0)Pn(x),

×Y−n−1(u−n−1,αy) (B27)

where u−n−1,α is the αth zero of the spherical Bessel function
Y−m−1(y). Alternatively, we may expand the solution in terms
of the J Bessel function

δρ(x, y, t ) =
∞∑

n=0

∞∑
α=0

c̃nαJn+ 1
2

(
un+ 1

2 ,αy
)
Pn(x)e−pnt , (B28)

with the coefficient

c̃nα = 2n + 1[
Jn+ 3

2
(un+ 1

2 ,α )
]2

∫ 1

0
dyy

∫ 1

−1
dxδρ(x, y, t = 0)

× Jn+ 1
2
(un+ 1

2 αy)Pn(x), (B29)

where un+ 1
2 ,α is the αth zero of Jn+ 1

2
(y). The J and spherical

Y Bessel functions are related by

Yñ(x) = (−1)ñ+1
√

π

2y
J−ñ− 1

2
(y), (B30)

in which ñ = −n − 1.

APPENDIX C: CALCULATIONS FOR PERTURBATIVE
SOLUTION OF FOKKER-PLANCK EQUATION

WITH THE ACTUAL POTENTIAL

This Appendix gives the details of the perturbative analyt-
ical solution to the Fokker-Planck equation with the actual
magnetic potential energy. Readers not interested in these
mathematical details can skip this Appendix altogether.

Turning on the static field, alternating field, longitudinal
relaxation, and anisotropy terms, we obtain additional terms
entering the partial differential equation

α⊥γ0

k′Ms

(
Ms(H0 + Hac(t )) + M2

s

χ⊥
xy

)
(1 − x2)y

dXn(x)
dx

Xn(x)

+α⊥τγ0

k′ (1 − x2)y
dHac(t )

dt

1

Xn(x)

dXn(x)

dx

−α⊥γ0

k′Ms

(
2xyMs(H0 + Hac(t )) + 2Msτxy

∂Hac(t )

∂t

)

−α⊥γ0

k′Ms

(
2M2

s

χ⊥
x2y2 − M2

s

χ⊥
(1 − x2)y2

)
(C1)

for the x part of the full partial differential equation and

−α‖γ0

k′Ms

(
Ms(H0 + Hac(t )) + M2

s

χ⊥
xy

)
xy2 1

Yn(y)

dYn(y)

dy

+
(

α‖Msγ0

2χ‖k′
(
y2 − y2

e

)
y3 + α‖Msγ0

χ⊥k′ (1 − x2)y3

) dYn (y)
dy

Yn(y)

−2
α‖γ0

k′ (H0 + Hac(t ))xy + 3
α‖Msγ0

k′χ⊥
y2(1 − x2)

+α‖Msγ0

2k′χ‖

(
3y2

(
y2 − y2

e

) + 2y4
)

(C2)

for the y part of the full partial differential equation, which
makes the full partial differential equation not exactly an-
alytically solvable in general. In fact, is is found that any
finite nonzero value of H0, Hac, 1/χ⊥, 1/χ‖ would preclude
the exact analytical solution of the partial differential equa-
tion. We thus resort to the perturbative solution described in
the following section.

We adopt the perturbative method outlined in Ref. [39] but
in a generalized form where the perturbation term appears not
only as a term multiplying the (perturbed) eigenfunction but
also involves a (perturbative) differential operator acting on
the perturbed eigenfunction. More precisely, the full Fokker-
Planck Eq. (33) can be written as an eigenvalue problem,

Lx
(
ux

n(x)
) + δLx

(
ux

n(x)
) − εxrx(x, y)

(
ux

n(x)
) + λ

x
n

(
ux

n(x)
)

+ Ly
(
uy

n(y)
)+δLy

(
uy

n(y)
)−εyry(x, y)

(
uy

n(y)
)

+ λ
y
n

(
uy

n(y)
) = 0, (C3)

while the unperturbed Fokker-Planck equations in terms of x
and y parts are given by Eqs. (B1) and (B2) that, respectively,
can be written as

Lx
(
ux

n(x)
) + λx

nux
n(x) = 0, (C4)

Ly
(
uy

nα (y)
) + λy

nuy
nα (y) = 0 (C5)

for any αth zero of the spherical Bessel function which gives
the y part of the eigenfunction uy

nα (y). In the equations above,
ux

n(x)(ux
n(x)), respectively, represent the unperturbed (per-

turbed) eigenfunctions (for the x part, similarly for the y
part), Lx(ux

n(x)), δLx (ux
n(x)) represent, respectively the unper-

turbed (and perturbative) differential operators acting on the
(perturbed) eigenfunctions (for the x part, similarly for the
y part), εx(y) the perturbation small parameter for x(y) part,
rx(y)(x, y) the perturbative function (not differential operator)

multiplying the (perturbed) eigenfunction, while λ
x(y)
n , λ

x(y)
n

the perturbed (unperturbed) eigenvalues of the corresponding
eigenvalue problems. The eigenvalues are given by

λx
n = −n(n + 1), λy

nα = −n(n + 1)

u2
−n−1,α

, (C6)

where the latter can be shown via a little algebraic exercise
starting from the differential equation defining the spherical
Bessel function,

y2 d2Y (y)

dy2
+ 2y

dY (y)

dy
+ (y2 − n(n + 1))Y (y) = 0, (C7)
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where λn = −n(n + 1) acts as the eigenvalue. We then scale
the variable as follows: y → un,αy. It is easy to show that
Y (un,ay) also satisfies the above equation but with eigenvalue
λnα = −n(n + 1)/u2

n,α .
The unperturbed eigenfunctions are given by Eqs. (B15)

and (B16) for the x and y parts respectively. The perturbation
differential operators and multiplying functions are obtained
from Eqs. (C1) and (C2) and are given by

δLx
(
ux

n(x)
)

= α⊥γ0

k′Ms

(
Ms(H0 + Hac(t )) + M2

s

χ⊥
xy

)
(1 − x2)y

dux
n(x)

dx

+ α⊥τγ0

k′ (1 − x2)y
dHac(t )

dt

dux
n(x)

dx
, (C8)

δLy
(
uy

n(y)
)

= −α‖γ0

k′Ms

(
Ms(H0 + Hac(t )) + M2

s

χ⊥
xy

)
xy2 duy

n(y)

dy

+ α‖Msγ0

2k′χ‖

(
3y2

(
y2 − y2

e

) + 2y4
)duy

n(y)

dy
(C9)

−εxrx(x, y)

= −α⊥γ0

k′Ms

(
2xyMs(H0 + Hac(t )) + 2Msτxy

∂Hac(t )

∂t

)

−α⊥γ0

k′Ms

(
2M2

s

χ⊥
x2y2 − M2

s

χ⊥
(1 − x2)y2

)
(C10)

−εyry(x, y)

= −2
α‖γ0

k′ (H0 + Hac(t ))xy + 3
α‖Msγ0

k′χ⊥
y2(1 − x2)

+α‖Msγ0

2k′χ‖

(
3y2

(
y2 − y2

e

) + 2y4
)
. (C11)

Writing the resulting partial differential equation in the
form of an eigenvalue problem, we will obtain an equa-
tion containing terms of different orders in εx, εy. Grouping
them term by term, the zeroth order terms O(ε0

x , ε
0
y ) are given

by

δLx
(
ux

n(x)
) + δLy

(
uy

nα (y)
) = 0. (C12)

The first-order terms O(εx, εy) are given by

εx
[
Lx

(
vx

n(x)
) + δLx

(
vx

n(x)
) + λx

nv
x
n(x) − rx(x, y)ux

n(x)
]

+ εxμ
x
n(y)ux

n(x) + εy
[
Ly

(
vy

nα (y)
)

+ δLy
(
vy

nα (y)
) + λy

nv
y
nα (y)

]
× εy

[−ry(x, y)uy
nα (y) + μy

nα (x)uy
nα (y)

] = 0. (C13)

We will treat εx as independent of εy. As such, each line of
Eq. (C13) must vanish, giving a form mimicking the standard
first-order term in the perturbation theory for the eigenvalue

problem with a single variable [39],

[Lx + δLx]vx
n(x) + λx

nv
x
n(x)

+[−rx(x, y) + μx
n(y)

]
ux

n(x) = 0, (C14)

[Ly + δLy]vy
nα (y) + λy

nαvy
nα (y)

+ [−ry(x, y) + μy
nα (x)

]
uy

nα (y) = 0, (C15)

where there are new terms corresponding to the perturbation
differential operator terms δLx(vx

n(x)), δLy(vy
n(y)). Multiply-

ing from the left Eq. (C14) with ux
l (x) and Eq. (C15) with

uy
l (y) and integrating both over corresponding fundamental

domain
∫

dg = ∫ 1
−1 dx for Eq. (C14) and

∫
dg = ∫ 1

0 dyy2 for
Eq. (C15), we obtain for the expansion coefficient ax

nl (y) of
the first-order correction to the eigenfunction,

vx
n(x, y, t ) =

∑
l

′
ax

nl (y, t )ux
l (x) (C16)

(where
∑

l
′ means l = n is excluded [39]) or

ax
nl (y, t ) =

∫
dgvx

n(x, y, t )ux
l (x), (C17)

the following expression:

ax
nl (y, t ) = 1

λx
n − λx

l

[
dx

nl (y, t ) − μx
n(y, t )δnl − ex

nl (y, t )
]
,

(C18)
where the y dependence in ax

nl (y) comes from that of

dx
nl (y) =

∫ 1

−1
dxrx(x, y)ux

n(x)ux
l (x), (C19)

ex
nl (y) =

∫ 1

−1
dxux

l (x)δLx
(
vx

n(x, y)
)
, (C20)

μx
n(y) = dx

nn(y) − ex
nn(y). (C21)

Looking at Eq. (C18), the coefficient ax
nl (y, t ) can be inter-

preted as the amplitude of the contribution of the eigenmode
l to the perturbation of the eigenfunction of the eigenmode n
due to the fields and thermal agitations. Since λn = −n(n +
1), the contribution decreases with l , more precisely with l2

for large enough l , if we consider n = 0, 1 as the leading
modes of interest.

The corresponding expressions for the y part are rather
tricky, due to the fact that spherical Bessel functions are in
general not orthogonal between each other. Only those spher-
ical Bessel functions having the same index n but different
orders (α, β ) of its zeros are orthogonal to each other. As a
result, the first-order correction of the eigenfunction for the y
part is expanded as follows:

vy
nα (x, y, t ) =

∑
lβ

′
ay

nl;αβ
(x, t )δnl u

y
lβ (y) (C22)

(where
∑

lβ
′ means β = α is excluded [39]) or

ay
nl;αβ

(x, t ) =
∫

dgvy
nα (x, y, t )uy

lβ (y); (C23)
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the following expression:

ay
nl;αβ

(x)δnl
(
λy

nα − λ
y
lβ

)
= dy

nl;αβ
(x) − μy

nα (x)(δnlδαβ + hnl;αβ (1 − δnl )) − ey
nl;αβ

(x),

(C24)

where the various factors appearing on the right-hand side are
given by

dy
nl;αβ

(x) =
∫ 1

0
dyy2ry(x, y)uy

nα (y)uy
lβ (y), (C25)

ey
nl;αβ

(x, t ) =
∫ 1

0
dyy2uy

lβ (y)δLy(vy
nα (x, y)), (C26)

hnl;αβ =
∫ 1

0
dyy2uy

nα (y)uy
lβ (y). (C27)

In this situation, we have three possible cases: (i) n =
l, α = β, (ii) n = l, α �= β, and (iii) n �= l regardless of α, β.
Case (i) gives the expression for the first-order correction
μ

y
nα (x) to eigenvalue λ

y
nα

μy
nα (x) = dy

nn;αα (x) − ey
nn;αα (x). (C28)

Case (ii) gives the expression for the diagonal element ann;αβ

of the coefficient of expansion in Eq. (C22),

ay
nn;αβ (x, t ) = 1

λ
y
nα − λ

y
nβ

(
dy

nn;αβ (x) − ey
nn;αβ

)
, (C29)

while the last case (iii) gives rise to the off-diagonal element
of the coefficient of expansion in Eq. (C22),

ay
nl;αβ

= 1

λ
y
nα − λ

y
lβ

(
dy

nl;αβ
(x) − μy

nα (x)hnl;αβ−ey
nl;αβ

)
, (C30)

which completes all coefficients of the expansion.
The expression for ax

nl (y) in Eq. (C18) cannot be evaluated
explicitly because vx

n(x) is not yet known. In fact, one has to
solve Eqs. (C16) and (C18) self-consistently. We will not pur-
sue this self-consistent exact solution. Instead, we will employ
an approximate solution by replacing vx

n(x) in Eq. (C18) with
that obtained by setting δLx to zero, as given in [39]

v(0)x
n (x, y) =

∞∑
j=1, j �=n

dx
n j (y)

λx
n − λx

j

ux
j (x) (C31)

to be substituted into Eq. (C20). The corresponding expres-
sion for the y part is

v(0)y
nα (x, y) =

∞∑
β=1,β �=α

dy
nn;αβ (x)

λ
y
nα − λ

y
nβ

uy
nβ (y). (C32)

In both Eqs. (C31) and (C32), additional dependence
shows up for the contribution from the ac field, giving
v(0)x

n (x, y, t ), v(0)y
nα (x, y, t ) due to dx

n j (y, t ), dy
nn;αβ (x, t ), respec-

tively. This completes our perturbative solution calculation
for our Fokker-Planck equation to first order in εx(y) ∼
vMsH0/0ac/(kBT ), vM2

s /(χ⊥/‖kBT ) � 1.
We evaluate the coefficients ax(y)

nl (y(x)) and eigenvalue
correction μ

x(y)
n (y(x)) by first evaluating the coefficients

dx(y)
nl (y(x)), μx(y)

n (y(x)), and ex(y)
nl (y(x)) using the relevant

equations given earlier. To this end, we first note that the

perturbation multiplying function for x from Eq. (C10) can
be rewritten as

−εxrx(x, y) = −εH0
x rH0

x (x, y) − εχ⊥
x rχ⊥

x (x, y) − εHac
x rHac

x (x, y),
(C33)

where

εH0
x = vMsH0

kBT
, (C34)

rH0
x (x, y) = 2α⊥γ0

kBT

k′vMs
xy, (C35)

εχ⊥
x = vM2

s

χ⊥kBT
, (C36)

rχ⊥
x (x, y) = α⊥γ0

kBT

k′vMs
(3x2 − 1)y2, (C37)

εHac
x = vMsH0ac

kBT
, (C38)

rHac
x (x, y) = 2α⊥γ0

kBT

k′vMs
xy(cos ωt − ωτ sin ωt ), (C39)

which implies the fixed frequency ω of the ac field while vary-
ing its amplitude H0ac. That is, we control the small parameter
for the ac field only in terms of its amplitude.

On the other hand, the perturbative multiplying function
for the y part can be rewritten as

−εyry(x, y) = −εχ⊥
y rχ⊥

y (x, y) − ε
χ‖
y rχ‖

y (x, y) − εH
y rH

y (x, y),

(C40)

giving

εχ⊥
y = vM2

s

χ⊥kBT
, (C41)

rχ⊥
y (x, y) = −3α‖γ0

kBT

k′vMs
(1 − x2)y2, (C42)

ε
χ‖
y = vM2

s

χ‖kBT
, (C43)

rχ‖
y (x, y) = −α‖γ0

2

kBT

k′vMs

[
3
(
y2 − y2

e

) + 2y2
]
y2, (C44)

εH0
y = vMsH0

kBT
, (C45)

rH0
y (x, y) = 2α‖γ0

kBT

k′vMs
xy, (C46)

εHac
y = vMsH0ac

kBT
, (C47)

rHac
y (x, y) = 2α‖γ0

kBT

k′vMs
xy cos ωt . (C48)

Substituting the above expressions for rH0,χ⊥,H0ac (x, y) into
Eq. (C19) and using Eqs. (B15) and (B16), gives the following
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expressions for d (H0,χ⊥,H0ac )x
nl (y):

dH0,x
nl (y) = 2α⊥γ0

kBT

k′vMs
cPncPly

∫ 1

−1
dxxPn(x)Pl (x) = 2α⊥γ0

kBT

k′vMs
cPncPly

n + l + 1

(2n + 1)(2l + 1)
(1 − δnl )δn,l±1, (C49)

dχ⊥,x
nl (y) = α⊥γ0

kBT

k′vMs
cPncPly

2
∫ 1

−1
dx(3x2 − 1)Pn(x)Pl (x)

= 3α⊥γ0
kBT

k′vMs
cPncPly

2
2(n+1)(n+2)

2n+3 δn,l−2 + 2(n−1)n
2n−1 δl,n−2

(2n + 1)(2l + 1)
+ α⊥γ0

kBT

k′vMs
cPncPly

2

(
3
( 2(n+1)2

(2n+3) + 2n2

2n−1

)
(2n + 1)(2l + 1)

− 2

2n + 1

)
δnl ,

(C50)

dH0ac,x
nl (y, t ) = 2α⊥γ0

kBT

k′vMs
cPncPl y(cos ωt − ωτ sin ωt )

∫ 1

−1
dxxPn(x)Pl (x)

= 2α⊥γ0
kBT

k′vMs
cPncPl y(cos ωt − ωτ sin ωt )

n + l + 1

(2n + 1)(2l + 1)
(1 − δnl )δn,l±1, (C51)

while substituting Eqs. (C40)–(C48) into the corresponding expression for dχ⊥y
nl;αβ

(x), dχ‖y
nl;αβ

(x), one obtains

dχ⊥,y
nl;αβ

(x) = −3α‖γ0
kBT

k′vMs
(x2 − 1)cY nαcY lβIχ⊥

nl;αβ
, (C52)

where

Iχ⊥
nl;αβ

=
∫ 1

0
dyy4Y−n−1(u−n−1,αy)Y−l−1(u−l−1,βy)

	 (−1)−(n+l )

u−n−1,αu−l−1,β

∫ 1

0
dyy2 cos

(
u−n−1,αy − (n + 1)

π

2

)
cos

(
u−l−1,βy − (l + 1)

π

2

)
, (C53)

where to get a simple closed-form analytical expression exactly, for general n, l , we have evaluated this expression approximately
using the standard relation Eq. (B30) between the spherical Y and regular J Bessel functions of the first kind. The final result is

Iχ⊥
nl;αβ

	 (−1)l+n 4
π2

wln,βα

(
(−1)α+β

(2α − 2β − l + n)2
− (−1)α+β

(4 + 2α + 2β + l + n)2

)

+ (−1)l+n 4
π3

wln,βα

(
2 sin[(l − n)π

2 ]

(2α − 2β − l + n)3
+ 2 sin[(l + n)π

2 ]

(4 + 2α + 2β + l + n)3

)
, (C54)

where wln,βα = u−l−1,βu−n−1,α and

u−n−1,α =
(

n

2
+ α + 1

)
π, (C55)

with α = 0, 1, 2, 3, · · · and likewise for u−l−1,β have been used. All the final expressions for perturbation coefficients in this
calculation carry the indices n, l (and also α, β for the y part) and depend explicitly on them. The analytical expressions of those
coefficients may at first glance contain terms that are singular for certain values of n, l; α, β, such as Iχ⊥

nl;αβ
in Eq. (C54) which

contains terms which become singular when n = l, α = β. Such terms in fact do not contribute to final results due to being
excluded from the sums in Eqs. (C16) and (C22). This exclusion of singular terms from the sums has been implemented by
multiplying the perturbation coefficients with (1 − δn,l ) and (or) (1 − δα,β ).

For the longitudinal part,

dχ‖,y
nl;αβ

(x) = −α‖γ0

2

kBT

k′vMs
cY nαcY lβIχ‖

nl;αβ
, (C56)

where

Iχ‖
nl;αβ

=
∫ 1

0
dyy2

[
3
(
y2 − y2

e

) + 2y2
]
y2Y−n−1(u−n−1,αy)Y−l−1(u−l−1,βy), (C57)

	 (−1)−(n+l )

u−n−1,αu−l−1,β

∫ 1

0
dyy2

[
3
(
y2 − y2

e

) + 2y2
]

cos

(
u−n−1,αy − (n + 1)

π

2

)
cos(u−l−1,βy − (l + 1)

π

2

)
, (C58)
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which gives

Iχ‖
nl;αβ

= (−1)−(n+l )

u−n−1,αu−l−1,β

(
1

2π5

)(
80(−1)α+βπ (−24 + 4α2π2 + 4β2π2 + l2π2 + 4β(l − n)π2)

(2α − 2β − l + n)4

)

+ (−1)−(n+l )

u−n−1,αu−l−1,β

(
− 1

2π5

)(
−80(−1)α+βπ (−4α(2β + l − n)π2 − 2lnπ2 + n2π2)

(2α − 2β − l + n)4

)

+ (−1)−(n+l )

u−n−1,αu−l−1,β

(
− 1

2π5

)(
80(−1)α+βπ (−24 + (4 + 2α + 2β + l + n)2π2)

(4 + 2α + 2β + l + n)4

)

+ (−1)−(n+l )

u−n−1,αu−l−1,β

(
− 1

2π5

)(
96(−1)α+β (2 + 2β + l )(2 + 2α + n)π3y2

e

(2α − 2β − l + n)2(4 + 2α + 2β + l + n)2

)

+ (−1)−(n+l )

u−n−1,αu−l−1,β

(
− 1

2π5

)(
3840 sin[(l − n)π

2 ]

(2α − 2β − l + n)5
+ 3840 sin[(l + n)π

2 ]

(4 + 2α + 2β + l + n)5

)

+ (−1)−(n+l )

u−n−1,αu−l−1,β

(
− 1

2π5

)
× (−3π2y2

e

)(− 16 sin[(l − n)π
2 ]

(2α − 2β − l + n)3
− 16 sin[(l + n)π

2 ]

(4 + 2α + 2β + l + n)3

)
. (C59)

The last d coefficient comes from the response to magnetic fields, which for the static field is given by

dH0,y
nl;αβ

(x) = 2α‖γ0x
kBT

k′vMs

∫ 1

0
dyy2yuy

nα (y)uy
lβ (y) = 2α‖γ0x

kBT

k′vMs
IH0
nl;αβ

cY nαcY lβ, (C60)

where

IH0
nl;αβ

=
∫ 1

0
dyy3Y−n−1(u−n−1,αy)Y−l−1(u−l−1,βy)

	 (−1)−(n+l )

u−n−1,αu−l−1,β

∫ 1

0
dyy cos

(
u−n−1,αy − (n + 1)

π

2

)
cos

(
u−l−1,βy − (l + 1)

π

2

)

= (−1)−(n+l )

u−n−1,αu−l−1,β

2

π2

(
(−1)α+β − cos

[
(l − n)π

2

]
(2α − 2β − l + n)2

)
+ (−1)−(n+l )

u−n−1,αu−l−1,β

2

π2

(
− (−1)α+β − cos

[
(l + n)π

2

]
(4 + 2α + 2β + l + n)2

)
, (C61)

while for the ac field, the d coefficient is given by

dHac,y
nl;αβ

(x, t ) = 2α‖γ0x
kBT

k′vMs
cos ωt

∫ 1

0
dyy2yuy

nα (y)uy
lβ (y) = +2α‖γ0x

kBT

k′vMs
IHac
nl;αβ

cY nαcY lβ cos ωt,

IHac
nl;αβ

=
∫ 1

0
dyy3Y−n−1(u−n−1,αy)Y−l−1(u−l−1,βy)

	 (−1)−(n+l )

u−n−1,αu−l−1,β

∫ 1

0
dyy cos

(
u−n−1,αy − (n + 1)

π

2

)
cos

(
u−l−1,βy − (l + 1)

π

2

)
,

= (−1)−(n+l )

u−n−1,αu−l−1,β

2

π2

(
(−1)α+β − cos[(l − n)π

2 ]

(2α − 2β − l + n)2

)
+ (−1)−(n+l )

u−n−1,αu−l−1,β

2

π2

(
− (−1)α+β − cos[(l + n)π

2 ]

(4 + 2α + 2β + l + n)2

)
. (C62)

We have verified numerically that the error from the
discrepancy between the exact value of the integral from
Eq. (C56) and its approximation from using Eq. (B23) is very
small, less than 1%. This is because the largest deviation of
the asymptotic function Eq. (B23) from the exact expression
for the Bessel J function occurs at small y � 1. But this small
y has reduced the contribution to the integral Inl due to the y3

term in Inl in Eq. (C56).
On the other hand, using Eqs. (C8), (C9), and (C20), one

obtains the following expression:

eα,x
nl (y) = cPl

∞∑
j=1, j �=n

dα,x
n j (y)

−n(n + 1) + j( j + 1)
cP j f α

l j (y),

(C63)

where α = H0, χ⊥, Hac with

f α
l j (y) = α⊥γ0

k′

∫ 1

−1
dxPlx

j(1 − x2)

x2 − 1
(xPj (x) − Pj−1(x))

×
(

δα,H0 H0 + δα,H0ac H0ac cos ωt + δα,χ⊥
Ms

χ⊥
xy

)
y

(C64)

where δα,(H0,χ⊥,H0ac ) is the Kronecker delta function; e.g.,
δα,H0 = 1 if α = H0 and zero otherwise. In the last part of
the expression for f α

l j (y) above, we have used the following
identity for the derivative of Legendre polynomial:

dPj (x)

dx
= j

x2 − 1
(xPj (x) − Pj−1(x)). (C65)
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Explicit evaluation of the integral gives

f H0
l j (y) = − jγ0α⊥H0

k′

[
(l + j + 1)gl, j

(2l + 1)(2 j + 1)
− 2δl, j−1

2l + 1

]
y,

(C66)

f Hac
l j (y, t ) = − jγ0α⊥Hac(t )

k′

[
(l + j + 1)gl, j

(2l + 1)(2 j + 1)
− 2δl, j−1

2l + 1

]
y,

(C67)

where gl, j = (1 − δl j )δl, j±1 and

f χ⊥
l j (y) = − jγ0Msα⊥

k′χ⊥

[
δl j

( 2(l+1)2

2l+3 + 2l2

2l−1

)]
(2l + 1)(2 j + 1)

y2

− jγ0Msα⊥
k′χ⊥

[ 2(l+1)(l+2)
2l+3 δl, j−2 + 2(l−1)l

2l−1 δ j,l−2
]

(2l + 1)(2 j + 1)
y2

+ jγ0Msα⊥
k′χ⊥

(1 − δl, j−1)δl, j−1±1
l + j

(2l + 1)(2 j − 1)
y2.

(C68)

Substituting dχ,x
n j (y) from Eqs. (C49)–(C51) and f χ

l j from
Eqs. (C66)–(C68) above into Eq. (C63) and evaluating the
sum over j gives

eH0,x
nl (y) = −α2

⊥γ 2
0 kBT H0y2

k′2vMs

(n + 1)(n + 2)δn,l−2

(2n + 3)
√

(2n + 1)(2n + 5)

− α2
⊥γ 2

0 kBT H0y2

k′2vMs

n(n − 1)δn,l+2

(2n − 1)
√

(2n − 3)(2n + 1)

+ 2
α2

⊥γ 2
0 kBT H0y2

k′2vMs

n2 + n − 1

(2n − 1)(2n + 3)
δnl , (C69)

eHac,x
nl (y, t ) = −α2

⊥γ 2
0 kBT H0ac(cos ωt − ωτ sin ωt )y2

k′2vMs

[
−2

n2 + n − 1

(2n − 1)(2n + 3)
δnl

]

− α2
⊥γ 2

0 kBT H0ac(cos ωt − ωτ sin ωt )y2

k′2vMs

1√
(2n + 1)

[
(n + 1)(n + 2)δn,l−2

(2n + 3)
√

(2n + 5)
+ n(n − 1)δn,l+2

(2n − 1)
√

(2n − 3)

]
(C70)

eχ⊥,x
nl (y) = − 3α2

⊥γ 2
0 kBTy4

2k′2vχ⊥
√

(2n + 1)(2l + 1)

n(n − 1)(n − 2)

(2n − 1)2(2n − 5)

(
n − 1

2n − 1
δl,n−2 + (n − 3)δl,n−4

)

+ 3α2
⊥γ 2

0 kBTy4

2k′2vχ⊥(2n + 1)

[
(n + 1)2(n + 2)2(n + 3)

(2n + 3)3(2n + 5)
+ (n − 1)2n2(n − 2)

(2n − 3)(2n − 1)3

]
δnl

+ 3α2
⊥γ 2

0 kBTy4

2k′2vχ⊥
√

(2n + 1)(2l + 1)

(n + 1)(n + 2)2(n + 3)

(2n + 3)2
,

(
1

(2n + 3)(2n + 7)
δl,n+2 − (n + 4)

(2n + 5)(2n + 7)
δl,n+4

)
.

(C71)

One thing to observe is that the eα coefficients are proportional
to εα (kBT )2 where α = H0, Hac, χ⊥.

For the y part, we obtain for the transverse relaxation

eχ⊥,y
nl;αβ

(x) = 1

k′
α‖γ0Ms

χ⊥
cY lβ (1 − 2x2)

×
∞∑

β ′=0,β ′ �=α

dχ⊥,y
nn;αβ ′ (x)cY nβ ′

− n(n+1)
u2

−n−1,α

+ n(n+1)
u2

−n−1,β′

Gχ⊥
ln;ββ ′

= 3α2
‖γ

2
0

k′2χ⊥

kBT

v
(1 − x2)(1 − 2x2)

cY nαcY lβ

n(n + 1)

×
∞∑

β ′=0,β ′ �=α

u2
−n−1,β ′u2

−n−1,α(
u2

−n−1,α − u2
−n−1,β ′

)
× (cY nβ ′ )2Iχ⊥

nn;αβ ′G
χ⊥
ln;ββ ′ , (C72)

where Iχ⊥
nn;αβ ′ can be deduced from Eq. (C54) while

Gχ⊥
ln;ββ ′ =

∫ 1

0
dyy2y3Y−l−1(u−l−1,βy)

d

dy
(Y−n−1(u−n−1,β ′y)),

(C73)
and we have used Eq. (C6) for the eigenvalues. Employing
again the relation Eq. (B30) as well as the following identity

for the derivative of the Bessel function:
dJν (z)

dz
= 1

2
(Jν−1(z) − Jν+1(z)), (C74)

where ν = n + 1/2, we obtain

Gχ⊥
ln;ββ ′

= (−1)−(n+l )π

2
√

u−l−1,βu−n−1,β ′

∫ 1

0
dyy3Jl+ 1

2
(zlβ )

×
[
−1

2
Jn+ 1

2
(znβ ′ ) + znβ ′

2

(
Jn− 1

2
(znβ ′ ) − Jn+ 3

2
(znβ ′ )

)]
,

(C75)

where

znβ ′ = u−n−1,β ′y, zlβ = u−l−1,βy. (C76)

Substituting the asymptotic expression and asymptotic ap-
proximation Eq. (B23) for the J’s, we obtain

Gχ⊥
ln;ββ ′ 	 (−1)−(n+l )

2(u−l−1,βu−n−1,β ′ )

∫ 1

0
dyy2 cos

(
�l,β − π

2

)

×
[
− cos

(
�n,β ′ − π

2

)
+ 2u−n−1,β ′y cos(�n,β ′ )

]
,

(C77)
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where �l (n),β(β ′ ) = u−l (n)−1,β(β ′ )y − l (n)π
2 . The final result for e

χ⊥ ,y
nl;αβ

(x) can be written as

eχ⊥,y
nl;αβ

(x) = 3α2
‖γ

2
0

k′2χ⊥

kBT

v
(1 − x2)(1 − 2x2)

cY nαcY lβ

n(n + 1)
Eχ⊥

nl;αβ

= 3
α2

‖
α2

⊥
εχ⊥

y (1 − x2)(1 − 2x2)
cY nαcY lβ

n(n + 1)
Eχ⊥

nl;αβ
, (C78)

where Eχ⊥
nl;αβ

(x) is an analytical function in closed form involving special functions obtained from evaluating the sum over β ′ in
Eq. (C72) which does give explicit result but is too tedious to be written out explicitly here.

The corresponding result for the longitudinal relaxation part is

eχ‖,y
nl;αβ

(x) = α‖γ0Ms

2χ‖k′

∞∑
β ′=0,β ′ �=α

cY lβdχ‖,y
nn;αβ ′ (x)cY nβ ′

− n(n+1)
u2

−n−1,α

+ n(n+1)
u2

−n−1,β′

Gχ‖
ln;ββ ′

= − 1

k′2
α2

‖γ
2
0 kBT

4χ‖v
cY nαcY lβ

n(n + 1)

∞∑
β ′=0,β ′ �=α

u2
−n−1,β ′u2

−n−1,α(
u2

−n−1,α − u2
−n−1,β ′

) (cY nβ ′ )2Iχ‖
nn;αβ ′G

χ‖
ln;ββ ′

= − α2
‖

4α2
⊥

ε
χ‖
y

cY nαcY lβ

n(n + 1)

∞∑
β ′=0,β ′ �=α

u2
−n−1,β ′u2

−n−1,α(
u2

−n−1,α − u2
−n−1,β ′

) (cY nβ ′ )2Iχ‖
nn;αβ ′G

χ‖
ln;ββ ′ , (C79)

where Iχ⊥
nn;αβ ′ can be deduced from Eq. (C59) while

Gχ‖
ln;ββ ′ =

∫ 1

0
dyy2y3(y2 − y2

e )Y−l−1(u−l−1,βy)
∂

∂y
(Y−n−1(u−n−1,β ′y))

	 (−1)−(n+l )

2(u−l−1,βu−n−1,β ′ )

∫ 1

0
dyy2(y2 − y2

e ) cos

(
�l,β − π

2

)[
− cos

(
�n,β ′ − π

2

)
+ 2u−n−1,β ′y cos(�n,β ′ )

]
, (C81)

where �l (n),β(β ′ ) = u−l (n)−1,β(β ′ )y − l (n)π
2 , with the final result for which the analytical expression is too long to be written

explicitly here.
For the e coefficient describing the response to the magnetic fields

eHα,y
nl;αβ

(x) = −α‖γ0

k′ HαxcY lβ

∞∑
β ′=0,β ′ �=α

dHα,y
nn;αβ ′ (x)cY nβ ′

− n(n+1)
u2

−n−1,α

+ n(n+1)
u2

−n−1,β′

GHα

ln;ββ ′

= −2
α2

‖γ
2
0 kBT

k′2vMs
Hαx2 cY nαcY lβ

n(n + 1)

∞∑
β ′=0,β ′ �=α

u2
−n−1,β ′u2

−n−1,α

(u2
−n−1,α − u2

−n−1,β ′ )
(cY nβ ′ )2IHα

nn;αβ ′G
Hα

ln;ββ ′

= −2
α2

‖
α2

⊥
εHα

y x2 cY nαcY lβ

n(n + 1)

∞∑
β ′=0,β ′ �=α

u2
−n−1,β ′u2

−n−1,α

(u2
−n−1,α − u2

−n−1,β ′ )
(cY nβ ′ )2IHα

nn;αβ ′G
Hα

ln;ββ ′ , (C82)

where Hα = H0, Hac, and IH
nn;αβ ′ can be deduced from Eqs. (C61)–(C62) while

GHα

ln;ββ ′ =
∫ 1

0
dyy4Y−l−1(u−l−1,βy)

∂

∂y
(Y−n−1(u−n−1,β ′y))

	 (−1)−(n+l )

2(u−l−1,βu−n−1,β ′ )

∫ 1

0
dyy cos

(
u−l−1,βy − (l + 1)

π

2

)[
− cos

(
u−n−1,β ′y − (n + 1)

π

2

)]

+ (−1)−(n+l )

2(u−l−1,βu−n−1,β ′ )

∫ 1

0
dyy cos

(
u−l−1,βy − (l + 1)

π

2

)
[u−n−1,β ′y(cos(�n,β ′ ) − cos(�n,β ′ − π ))], (C83)

where �n,β ′ = u−n−1,β ′y − nπ
2 .

The last coefficient hnl;αβ from Eq. (C27) is evaluated in similar manner, giving

hnl;αβ =
∫ 1

0
dyy2cY nαY−n−1(u−n−1,αy)cY lβY−l−1(u−l−1,βy) 	 (−1)1−(n+l )cY nαcY lβ

πu−n−1,αu−l−1,β

(
sin[(−α + β )π ] − sin[(−l + n)π

2 ]

(2α − 2β − l + n)

)

	 (−1)1−(n+l )cY nαcY lβ

πu−n−1,αu−l−1,β

(
sin[(2 + α + β )π ] + sin[(l + n)π

2 ]

(4 + 2α + 2β + l + n)

)
, (C84)
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where the zeros u−n−1,α, u−l−1,β can be deduced from
Eq. (C55).

It is to be noted that all the coefficients eξ ;y
nl (x) are of first

order in εξ
y , where ξ = χ⊥, χ‖, H0, Hac. Substituting the above

results for dξ,y
nl (x) and eξ,y

nl (x), we obtain the first lowest order
correction to the eigenvalue for the y part, which directly gives
the decay rate due to thermal diffusion

λ
y
nα = λy

nα + εξ
y μξ ;y

nα (x) + O(ε2)

= λy
nα + ε

ξ
ξ ;yμ

ξ ;y
nα (x) + O(ε2)

= λy
nα + εξ

y (dξ ;y
nn;αα (x) − eξ ;y

nn;αα (x)) + O(ε2)

	 λy
nα + εξ

y dξ ;y
nn;αα (x) + Õ(ε2) (C85)

and with Eq. (C6),

−n(n + 1)

u2
−n−1,α

	 −n(n + 1)

u2
−n−1,α

+ εξ
y dξ ;y

nn;αα (x) + Õ(ε2), (C86)

where summation over ξ is implied. Solving for u2
−n−1,α and

noting that pnα = u2
−n−1,αk′, we obtain

pnα (x) = pnα

(
1 + u2

−n−1,α

n(n + 1)
εξ

y dξ ;y
nn;αα (x)

)

= pnα

(
1 − u2

−n−1,α

n(n + 1)
εξ

y |dξ ;y
nn;αα (x)|

)
, (C87)

provided dy
nn;αα (x) < 0.
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