
PHYSICAL REVIEW B 106, 134414 (2022)

Bridging atomistic spin dynamics methods and phenomenological models
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Florian Jakobs and Unai Atxitia
Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

(Received 22 May 2022; accepted 20 September 2022; published 14 October 2022)

We bridge an essential knowledge gap on the understanding of all-optical ultrafast switching in ferrimagnets,
namely, the connection between atomistic spin dynamics methods and macroscopic phenomenological models.
All-optical switching of the magnetization occurs after the application of a single femtosecond laser pulse to
specific ferrimagnetic compounds. This strong excitation puts the involved degrees of freedom, electrons, lattice,
and spins out-of-equilibrium between each other. Atomistic spin models have quantitatively described all-optical
switching in a wide range of experimental conditions, while having failed to provide a simple picture of the
switching process. Phenomenological models are able to qualitatively describe the dynamics of the switching
process. However, a unified theoretical framework is missing that describes the element-specific spin dynamics
as atomistic spin models with the simplicity of phenomenology. Here, we bridge this gap and present an element-
specific macrospin dynamical model which fully agrees with atomistic spin dynamics simulations and symmetry
considerations of the phenomenological models.

DOI: 10.1103/PhysRevB.106.134414

I. INTRODUCTION

Since its experimental discovery [1], the theoretical de-
scription of laser-induced all-optical switching (AOS) of the
magnetization in GdFeCo ferrimagnetic alloys has remained
a challenge. Despite intense experimental and theoretical re-
search in the field [1–12], an established and unified picture
of the process is still missing. Experimental findings are
mostly compared or interpreted in terms of atomistic spin
dynamics simulations [13–17], multisublattice spin dynamics
based on symmetry arguments [5,18,19], and based on the
Landau-Lifshitz-Bloch equation [20–22]. The main goal of
the present work is the revision, extension, and merging of
these approaches into a unified model.

Atomistic spin dynamics (ASD) models have been used
before to quantitatively describe ultrafast dynamics in 3d tran-
sition metals [23,24] and 4 f rare-earth ferromagnets [25,26].
They have also been used in GdFeCo to describe the equilib-
rium thermal properties [13], the thermal character of AOS
[4], the so-called transient ferromagneticlike state [3], the
demonstration of spin-current-mediated rapid magnon local-
ization and coalescence [27], and the possibility of AOS using
picosecond-long laser pulses [16]. Results from atomistic spin
models also compare qualitatively well to an analytical theory
based on the excitation of spin-wave exchange modes [8],
provide insights for optimal electron, phonon, and magnetic
characteristics for low-energy switching [28], and predict a
maximum repetition rate using two consecutive laser pulses
[29]. More sophisticated, orbital-resolved atomistic models
provide insights into the role of the intraexchange coupling
between 4 f and 5d electrons in the dynamics of GdFeCo al-
loys [14]. Atomistic models can naturally describe switching
in Gd/Fe multilayers composed of very thin layers [30,31].

Recent observations [32,33] of single pulse switching in
Mn2RuxGa alloys are also well described by ASD methods
[34]. Despite the demonstrated success in modeling AOS,
ASD simulation results are cumbersome to interpret with-
out an analytical model that unveils the role of the different
processes and interactions during the switching process. This
potential semianalytical model has to capture most of the
features of the ASD simulations.

Semiphenomenological models describing switching al-
ready exist. A macroscopic theory for the description of
the dynamics and relaxation of the macroscopic (sublattice)
magnetization of ferromagnets and antiferromagnets was de-
veloped originally by Baryakhtar [9,35]. An extension of
such phenomenology to ferrimagnets in the context of ul-
trafast spin dynamics was introduced in Ref. [5]. At the
ultrafast scale, magnetization dynamics are dominated by
atomic scale spin excitations; these spin dynamics are driven
by dissipative processes which in ferrimagnets are twofold,
relativistic and exchange driven. Relativistic processes allow
for the exchange of angular momentum between the spins and
lattice degree of freedom due to the presence of spin-orbit
interaction connecting them. Exchange processes can arise
due to the transport of spin angular momentum—spin and
magnon transport—which is the only means to exchange an-
gular momentum in ferromagnets. In multisublattice magnets,
another, different pathway opens, namely, the local exchange
of angular momentum. To account for such local exchange
processes in ferrimagnets, the equation of motion for the
magnetization dynamics proposed by Landau and Lifshitz
[36] is enhanced by an exchange-relaxation term [5,9,19,37].
Within this macroscopic model, the exchange relaxation
dominates the dynamics when the magnetic sublattices are
driven into mutual nonequilibrium. Qualitative agreement to
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experiments in two-sublattice magnets has been demonstrated
[19], such as AOS in ferrimagnetic GdFeCo using fs laser
pulses [5] and ps laser pulses [38], AOS in Heusler semimet-
als Mn2RuxGa [39], or element-specific demagnetization of
ferromagnetic NiFe alloys [18]. Quantitative comparison of
this model to neither experiments nor ASD simulations have
been conducted so far. While the arguments behind such
phenomenology are robust, the range of applicability and
the validity of the model parameters could be questioned.
For instance, the parameters defining the relativistic and ex-
change relaxation are assumed to be constant and of the
same order. The magnetic free-energy functional is calculated
for near-thermal equilibrium states. This implies a relatively
strong coupling to the heat bath, while switching conditions
are supposedly fulfilled when the exchange relaxation be-
tween sublattices dominates over the relaxation to the heat
bath.

An alternative macroscopic model directly derived from an
atomistic spin model has also been proposed. This model is
based in the Landau-Lifshitz-Bloch (LLB) equation of mo-
tion [20,40–43]. The LLB model for two-sublattice magnets
[20,42] has been used in the context of AOS in GdFeCo,
e.g., the element-specific demagnetization rates compare well
to experiment, and it predicts that near the magnetic phase
transition, the otherwise slower Gd sublattice becomes faster
than Fe [22], as recently observed [44]. The LLB model has
been demonstrated to provide accurate analytical expressions
for the temperature dependence of the relativistic relaxation
parameter as well as for the nonequilibrium effective fields
below and above the critical temperature [42]. Moreover, the
LLB model also describes the transverse motion of the mag-
netization. This makes it the preferred model for computer
simulations of heat-assisted magnetic recording [45] and re-
alistic description of all-optical switching [46], and ultrafast
spintronics, such as domain-wall motion [47,48] or skyrmion
creation by ultrafast laser pulses [49]. So far, the LLB model
and Baryakhtar-like models have been considered as comple-
mentary approaches. Here, we merge them into one unified
approach.

In this work, we address the issues discussed above by
directly comparing both phenomenological models to ASD
simulations. We do so since ASD simulations have already
been quantitatively compared to experiments in the liter-
ature. We find that quantitative comparison between ASD
and both phenomenological models is partially possible for
laser excitation producing small deviation from equilibrium.
However, those models hardly reproduce magnetic switching
using the same parameter values describing the relaxation of
small perturbations. Here, based upon those phenomenologi-
cal models, we propose a macroscopic model that compares
precisely to the magnetization dynamics calculated using
ASD simulations, including element-specific magnetization
relaxation and switching. This model bridges atomistic spin
dynamics based models and previously proposed phenomeno-
logical models. Notably, it provides a deeper understanding
to the parameters entering the phenomenological models and
sheds some light into the process of ultrafast switching in
ferrimagnets.

The work is broken down in the following way: In Sec. II,
we present the atomistic spin model for the calculation of the

magnetic equilibrium properties and nonequilibrium dynam-
ics. The equilibrium properties are compared to a mean-field
model. We then provide atomistic calculations of the ultrafast
magnetization dynamics with input from the two-temperature
model. These results are the basis for the comparison to the
phenomenological models presented in Sec. III. First, we
present the Baryakhtar model and the Landau-Lifshitz-Bloch
model. Second, we compare the ultrafast magnetization dy-
namics calculated with those models to the atomistic spin
dynamics results. Finally, in Sec. III C, we present the uni-
fied phenomenological model, a hybrid model combining
Baryakhtar and LLB models, and its comparison to atomistic
spin dynamics.

II. ATOMISTIC SPIN MODEL

Ferrimagnetic materials are characterized by spontaneous
magnetization as a result of two or more components of
nonparallel magnetic moments [50]. Atomistic spin models
based on the Heisenberg Hamiltonian can be considered one
of the simplest microscopic models able to reproduce the equi-
librium properties of ferrimagnets. The spin system energy
due to only the exchange interactions can be described by an
effective Heisenberg model,

H = −
∑
i �= j

JaSa,i · Sa, j −
∑
i �= j

JbSb,i · Sb, j −
∑
i �= j

JabSa,i · Sb, j,

(1)

where Ja(b)(ab) is the exchange constant between neighboring
sites represented by two classical spin vectors Si and S j (|S| =
1). Further, we include magnetic anisotropy terms in Eq. (1)
to set a preferential axis for the magnetization to switch about.
However, since the anisotropy energy is relatively low in com-
parison to the exchange energy, at the picosecond timescale it
plays a marginal role in the switching process. This makes
for a simpler Hamiltonian and a more direct comparison to
the phenomenological models. To model a ferrimagnet, one
needs to consider two alternating sublattices of unequal and
antiparallel moments, with three exchange coupling constants:
ferromagnetic for each sublattice (Ja and Jb) and a third for
the antiferromagnetic interaction between them, Jab. For in-
stance, GdFeCo alloys are composed of a transition-metal
FeCo and Gd rare-earth sublattices. We model the Fe and
Co spins as only one magnetic sublattice, and we assume
a common atomic magnetic moment of μFeCo = 1.94μB. In
these alloys, the rare-earth impurities add localized 4 f spins
to the system assumed to be μGd = 7.6μB. The amorphous
nature of GdFeCo is modeled by using a simple cubic lattice
model, but with random placements of Gd moments within
the lattice to the desired concentration. The applicability of
the Heisenberg approximation relies on the stability of local
moments under rotation and at high temperature where Stoner
excitations are generally weak [51]. It is assumed that the
electronic properties are temperature independent in the range
where the system is magnetically ordered.

A. Atomistic spin dynamics

Equilibrium and nonequilibrium element-specific mag-
netic properties of a ferrimagnet are calculated using atomistic
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spin dynamics simulations which are based in the stochastic-
Landau-Lifshitz-Gilbert equation (s-LLG) [52],

(
1 + λ2

i

)
μs,iṠi = −γ Si × [Hi − λi (Si × Hi )], (2)

where γ is the gyromagnetic ratio and λi is the so-
called phenomenological sublattice-specific damping param-
eter. By including a Langevin thermostat, the spin dy-
namics including statistical—equilibrium and nonequilibrium
thermodynamic—properties can be obtained. An effective
fieldlike stochastic term ζi is added to the effective field
Hi = ζi(t ) − ∂H

∂Si
, with white-noise properties [53]: 〈ζi(t )〉 =

0 and 〈ζi(0)ζ j (t )〉 = 2λikBT μs,iδi jδ(t )/γ . The variance of the
Langevin noise is chosen such that the fluctuation-dissipation
theorem is fulfilled.

B. Mean-field approximation

Exact analytical expressions for the M(T ) curve are cum-
bersome to derive due to the many-body character of the
problem. Here we resort to the mean-field approximation
(MFA), already used in previous works [8,13,54]. We note
that to be able to apply the MFA for the GdFeCo impu-
rity model, and thus translation nonsymmetric with respect
to spin variables Si, we need to transform the Heisenberg
Hamiltonian to a symmetric one. We use the spin anal-
ogy of the virtual crystal approximation (VCA) to transform
the disordered lattice Hamiltonian H to a symmetric VCA
Hamiltonian HVCA. Within the VCA, we evaluate the ef-
fective sublattice exchange parameters, given by the sum
of the exchange interactions of a given spin at a site ri

of sublattice i with all other atoms of this sublattice. This
involves weighting the exchange parameters by the relative
composition, xi ≡ concentration species i [8],

Ji =
∑
ri,r′

i

J (ri, r′
i ) ≡︸︷︷︸

VCA

xiJ (ri, r′
i ) intrasublattice, (3)

whereas the intersublattice effective exchange reads

Ji j =
∑

ri,r′
j /∈Ai

J (ri, r′
j ) ≡︸︷︷︸

VCA

xiJ (ri, r′
j ) intersublattice. (4)

Thus the VCA Hamiltonian reads

HVCA =
∑
j∈Ai

JiSi · S j +
∑
j /∈Ai

Ji jSi · S j, (5)

where Ai represent the magnetic sublattice of the spin
Si. In the exchange approximation, we define the MFA
field as

μaHMFA
a = zaJaama + zabJabmb. (6)

The element-specific equilibrium magnetization is calculated
via the self-consistent solution of ma = L(βμaHMFA

a ) and
mb = L(βμbHMFA

b ). za and zab correspond to the number of
first-nearest neighbors of type a and b, respectively. It is well
known that the MFA overestimates the value of the critical
temperature TC . However, a very good agreement between
ASD and MFA can be obtained by using a reduced value
for the exchange parameters, even for multilattice magnets
[54]. Figure 1 shows element-specific Ma = xaμama(T ) us-
ing ASD simulations and renormalized MFA for xGd = 25%.
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FIG. 1. Equilibrium magnetization of a GdFeCo alloy for Gd
concentration, xGd = 25%. Element-specific normalized equilib-
rium magnetization and net equilibrium magnetization, M(T ) =
xGdμGdmGd − xFeμFemFe, where μGd(Fe) is the atomic magnetic mo-
ment of Gd(Fe). Lines correspond to the mean-field approximation
with renormalized exchange parameters. Symbols correspond to
atomistic spin dynamics simulations.

Net magnetization is also shown in Fig. 1, which is defined
as M(T ) = xGdμGdmGd − xFeμFemFe. The agreement between
ASD and MFA is good enough for all the temperature regions.
We observe the presence of compensation temperature TM

at room temperature for xGd = 25% at which the thermally
averaged magnetization of both sublattices is equal but op-
posite, so that the magnetization of the system is equal to
zero, M(TM) = 0. The mapping of the atomistic spin model
and the corresponding mean-field approximation turns out to
be necessary for a quantitative comparison to the phenomeno-
logical models, and thereby paramount for the unification of
both pictures.

C. Two-temperature model

Single-pulse all-optical switching has been demonstrated
to be a thermal process in ferrimagnetic GdFeCo alloys [4]
and in Mn2RuxGa Heusler semimetals [32]. Ultrafast heating
by optical or electric means is sufficient to achieve switch-
ing in specific GdFeCo alloys [55]. Although the minimum
achievable duration of the electric pulses is limited to pi-
coseconds, those are better suited for potential integration
into applications. Laser pulses can be as short as only a few
femtoseconds, which permits it to excite the electron system
in timescales of the order of the exchange interaction, allow-
ing for the investigation of fundamental physics governing
switching. In this work, we center on excitation of the fer-
rimagnetic GdFeCo using femtosecond laser pulses. When a
metallic ferrimagnetic thin film is subjected to a near-infrared
laser pulse, only the electrons are accessible by the photon
electric field. Initially, the absorbed energy is barely trans-
ferred to the lattice and, consequently, the electron system
heats up. The electron and phonon temperatures are decoupled
for up to several picoseconds until the electron-phonon inter-
action equilibrates the two heat baths. This phenomenology is
well captured by the so-called two-temperature model (2TM)
[56,57], which can be written as two coupled differential
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FIG. 2. (a) Electron and lattice temperature dynamics for two
laser pulse power values, P0 and 2P0. Both electron and lattice tem-
perature are kept constant, T = 300 K, for t < 0. At t = 0, a laser
pulse is applied and the dynamics of the electron and lattice temper-
ature heat up. The dynamics of those temperatures are theoretically
described by the two-temperature model. (b) Element-specific mag-
netization dynamics induced by the heat profile at (a). The dynamics
are calculated using atomistic spin dynamics methods. For lower
laser powers P0, the magnetization of both sublattices demagnetizes
rapidly and remagnetizes towards the new equilibrium. For laser
power 2P0, the magnetization of both sublattices demagnetizes and
switches. After switching, they relax towards the thermal equilibrium
state. GdFeCo alloys with xGd = 25% are calculated.

equations,

Cel
∂Tel

∂t
= −gep(Tel − Tph ) + Pl (t ), (7)

Cph
∂Tph

∂t
= +gep(Tel − Tph ). (8)

Here, Cel = γelTel, where γel = 6 × 102 J/m3 K2, and Cph =
3.8 × 106 J/m3 K represent the specific heat of the electron
and phonon system. The electron-phonon coupling is taken
to be temperature independent, Gep = 7 × 1017 J/m3 K. Here,
P(t ) is a Gaussian-shaped pulse with a duration of 55 fs. The
exact values of the parameters entering the 2TM in GdFeCo
are still unknown. The values we use here are close to those
commonly used, e.g., in Refs. [4,8,34].

D. Ultrafast magnetization dynamics using ASD

Element-specific magnetization dynamics induced by a
femtosecond laser pulse are calculated by combining the
atomistic s-LLG equation for the spin dynamics [Eq. (2)]
and the 2TM for the electron temperature [Eq. (7)]. The
electron system acts as a heat bath for the atomic spins. We
consider a lattice with N = 50 × 50 × 50 spins, and damp-
ing parameters λGd = 0.01 = λFe. Figure 2 shows, for t < 0,
the dynamics of the element-specific magnetization from an
initial saturated state (T = 0 K), towards thermal equilibrium
with the heat bath which is set to T = 300 K. The relaxation
dynamics of the Fe sublattice is faster than those of the Gd
sublattice. This comes out naturally as the element-specific

dissipation of angular momentum scales as ṁz ∼ γ λ/μs in the
Gd sublattice (μGd = 7.6μB) is slower than in the Fe sublat-
tice (μFe = 1.94μB). Once the magnetic system is in thermal
equilibrium with the heat bath, we apply the laser pulse t > 0,
which introduces energy into the electron system and induces
ultrafast magnetization dynamics. To illustrate the switching
and no-switching dynamics, we consider two limiting cases:
dynamics induced by low laser power P0 and large laser power
2P0. The electron temperature increases up and above the
Curie temperature in timescales of a few hundreds of fem-
toseconds; see Fig. 2(a). This reflects in the magnetic system
as a fast demagnetization of both the Fe and Gd sublattices.
For relatively low laser power P0, the magnetization of both
sublattices reduces while the electron temperature remains
relatively high. Once the electron temperature reduces and
equalizes to the lattice temperature, they can be considered
to be in a new, thermal quasiequilibrium. The magnetization
recovers to the thermal state given by the heat-bath tempera-
ture, which is higher than it initially was (T = 300 K). This
is why the final magnetization value is smaller than the initial
one. For higher laser powers 2P0, the magnetization of both
sublattices reduces quickly. The Fe sublattice is faster than
the Gd one. Once the magnetization of the Fe sublattice hits
zero, instead of remaining demagnetized, the magnetization
starts to develop toward the opposite direction, while the
magnetization of the Gd sublattice is still in the process of
demagnetization. During a couple of picoseconds, both sub-
lattice magnetizations are aligned along the same direction,
similar to a ferromagnet. Consequently, this nonequilibrium
state has been named the transient ferromagneticlike state [3].
One can observe in Fig. 2(b) that the demagnetization rates of
both sublattices slow down when the Fe magnetization crosses
zero. This change reveals the set in of a process driving the
magnetization dynamics different from the one driving the
initial demagnetization. It has been argued that at this point,
direct exchange of angular momentum between sublattices
dominates over processes of relativistic origin, which in turn
dissipate angular momentum into the heat bath. Interestingly,
soon after switching, both sublattice magnetizations rapidly
relax to equilibrium, indicating that relaxation into the heat
bath dominates the dynamics.

III. PHENOMENOLOGICAL MODELS

Differently from ASD simulations, phenomenological
models describe the element-specific magnetization dynamics
by solving two coupled equations of motion, one for each
sublattice. In this work, we aim to find a phenomenological
model that describes the same element-specific magnetization
dynamics as those coming out from the ASD simulations
(Fig. 2). The starting point is the comparison of the ASD sim-
ulations to well-known phenomenological models. We show
that those models are unable to describe in a satisfactory way
the different element-specific magnetization dynamics studied
in the previous section and summarized in Fig. 2.

A. Baryakhtar model

The simplest model to describe element-specific magneti-
zation dynamics and switching in ferrimagnets was proposed
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by Mentink and co-workers [5]. Longitudinal spin dynamics
was derived from Onsager’s relations,

μa

γa

dma

dt
= αB

a μaHa + αB
e (μaHa − μbHb), (9)

μb

γb

dmb

dt
= αB

b μbHb + αB
e (μbHb − μaHa), (10)

where αB
a,b stands for the relaxation parameter of relativistic

origin, which dissipates angular momentum out of the spin
system, and αB

e stands for the exchange-relaxation parameter
and describes the rate of dissipation of angular momentum
between sublattices. By construction, exchange relaxation
conserves the total angular momentum. We emphasize here
the difference in the notation between the atomic relaxation
parameter λ, describing the dissipation of the atomic spins
in ASD simulations, and the macrospin relaxation parameter
α, describing the dissipation of the whole magnetic sample.
Within this model, the values for αB

a,b and αB
e are unknown,

but used as fitting parameters when compared to experiments.
The internal effective field Ha(b), acting on sublattice a(b), is
derived from a nonequilibrium mean-field approximation,

μaHa = −β−1L−1(ma) + μaHMFA
a , (11)

where L−1(x) is the inverse Langevin function, and β =
1/kBT , where T represents the temperature of the heat bath to
which the spin system is coupled. At equilibrium, the effective
field is Ha = 0, as ma = L(βμaHMFA

a ). The same arguments
apply for sublattice b. It turns out that by solving Eqs. (9)
and (10) together with the 2TM, described in Eqs. (7) and
(8), one obtains similar ultrafast magnetization dynamics as
those using ASD simulations (Fig. 2). Element-specific de-
magnetization [18] and switching dynamics [19] based on
this approach have been discussed thoroughly before. In those
works, the values for the relaxation parameters, relativistic
and exchange, are taken constant and of the same order, αB

Fe ≈
αB

Gd ≈ αB
e . We note that here αB

a defines the rate of change of
the angular momentum (mμ/γ ). It differs from the definition
of intrinsic damping parameters in ASD, which are related to
the rate of change of the magnetization (m). Similarly to ASD
methods though, within the Baryakhtar model, the observed
fast dynamics of the Fe sublattice is related to a smaller value
of atomic magnetic moment.

The switching process within the Baryakhtar-like model is
explained in the following manner. Since the Fe sublattice
reacts faster than Gd to heating, it is expected to remain
closer to thermal equilibrium with the heat bath. This trans-
lates into a smaller nonequilibrium effective field acting on
Fe than in Gd, HFe 
 HGd, during the action of the laser
pulse. For strong enough pulses, the Fe magnetization rapidly
reduces, mFe ≈ 0; still, HFe is small in comparison to HGd, in
a way that the dynamics of Fe can be fairly approximated by
ṁFe ≈ αB

e HGd. This drives the magnetization of Fe towards the
opposite direction. The field HGd is defined by the energy of
the system, HMFA

Gd [Eq. (6)] and αB
e from the coupling between

the Gd and the Fe sublattices. After switching, HFe ≈ HGd and
relativistic relaxation processes dominate the dynamics and
drive magnetization to complete the switching. The question
here is to what extent the nonequilibrium fields, as given by

(a)

(b)

-1

-0.5

0

0.5

1

-10 -5 0 5 10

laser power P0

laser power 2P0

-1

-0.5

0

0.5

1 laser power P0

laser power 2P0

m
z

time [ps]

αB
e /αB

a = 0

αB
e /αB

a = 0.3

αB
e /αB

a = 3

m
z Fe

Gd

FIG. 3. Element-specific magnetization dynamics of GdFeCo
calculated using atomistic spin dynamics (symbols) and macroscopic
Baryakhtar-like equation (solid lines) for two laser pulse power
values (a) P0 and (b) 2P0. Both electron and lattice temperature
are kept constant, T = 300 K, for t < 0. At t = 0, a laser pulse
is applied. In the Baryakhtar-like model, the relativistic relaxation
parameters αB

a have a value different from the Gilbert damping in
ASD simulations, (γ /μFe )αB

Fe = 0.005 and (γ /μGd )αB
Gd = 0.01. The

exchange-relaxation parameter is varied, αB
e /αB

Fe = 0, 0.3, and 3. The
relaxation to the thermal state (t < 0) is only well described for
the Fe sublattice. (a) For P0, the laser-induced dynamics is well
described by αB

e /αB
Fe = 0.1. (b) For 2P0, the demagnetization phase

of both sublattices is relatively well described in comparison to ASD
simulations. Switching is also possible; here, for instance, for a value
αB

e /αB
Fe = 3.

Eq. (11), are accurate and how the relaxation parameters are
related to the atomic damping parameters in ASD.

So far the connection between the relaxation parameters
in the ASD and Baryakhtar-like model is unknown. In ASD
simulations, shown in Fig. 2, we have used λFe = λGd = 0.01
as the atomistic relaxation parameter. One would expect that
the relaxation parameters in the atomistic and macroscopic
models are related as λa ≈ αB

a (γa/μa). In an attempt to find
this correspondence, we directly compare results from ASD
simulations and Baryakhtar-like models for different values
of αB

a and αB
e in Eqs. (9) and (10). We numerically solve

Eqs. (9)–(11) coupled to the 2TM with exactly the same
parameters as for the ASD simulations. After exploring the
results of the Baryakhtar model for a range of values for αB

a
and αe, we find that for some values, the agreement is good,
as one observes in Fig. 3; however, it is not possible to find a
good match for all scenarios.

In order to illustrate this, we first focus on the dynamics
induced by the laser pulse with power P0 [Fig. 3(a)]. We find
a good match for the laser-induced magnetization dynamics
[t > 0 for (γ /μFe)αFe = 0.005 and (γ /μGd)αGd = 0.01] and
for values of exchange relaxation of up to αB

e /αB
Fe = 0.3. For

values αB
e /αB

Fe < 0.3, thermal relaxation (t < 0) of the Fe is

134414-5



FLORIAN JAKOBS AND UNAI ATXITIA PHYSICAL REVIEW B 106, 134414 (2022)

also well described, however, the relaxation of the Gd sublat-
tice is significantly faster. For larger values of the exchange
relaxation, αB

e /αB
Fe = 3, the dynamics of both sublattices are

substantially sped up and strongly disagree with the ASD
simulations.

For larger laser pulse power 2P0, the magnetization
switches using ASD simulations. We keep the same val-
ues for the relaxation parameters in the Baryakhtar-like
model as for P0, and compare to the ASD simulations. For
small values of αB

e [Fig. 3(b)], differently from the P0 case
[Fig. 3(a)], the dynamics described by the Baryakhtar-like
model is not only slower than those of ASD simulations,
but it hardly reproduces magnetization switching. In order
to reproduce switching, we need to use larger values of the
exchange-relaxation parameter, αB

e /αB
Fe = 3. These findings

are in agreement with previous works using a Baryakhtar-like
model where switching was reproduced for comparable values
of αB

e . However, as we have discussed before, for those values
of αB

e , thermal relaxation dynamics (t < 0) is much faster than
in ASD simulations. This brings us to the following questions:
How much understanding about switching can we gain by
using this bare Baryakhtar-like model? Are we missing some-
thing?

B. The Landau-Lifshitz-Bloch model

Since the Baryakhtar-like model is based on symmetry
arguments, the macroscopic magnetization dynamics coming
out from the ASD simulations should also be described by
that model with adequate expression for the relaxation param-
eters and nonequilibrium effective fields. The magnetization
dynamics coming out from the ASD simulations is well de-
scribed by the LLB equation of motion,

dma

dt
= �‖,a(ma − m0,a), (12)

where

�‖,a = 2λa
γ

μa
kBT

1

ξa

L(ξa)

L′(ξa)
, (13)

with ξa = βμaHMFA
a , where HMFA

a is given in Eq. (6), and
m0,a = L(ξa). The same equation applies to the second sub-
lattice b. Here, the relaxation rate �‖,a depends nonlinearly
on the nonequilibrium sublattice magnetization ma(b) through
the parameter ξa. We note that Eq. (12) can be expanded
around equilibrium for small perturbations of the magnetiza-
tion. By doing so, the relaxation rates and effective fields are
expressed in terms of equilibrium properties such as equilib-
rium magnetization and zero-field susceptibilities [20]. In the
present work, however, we use the version in Eq. (12). Direct
comparison between ASD simulations and the LLB model
of element-specific magnetization dynamics is possible and
with relatively good agreement. Importantly, since the LLB
model is derived directly from the ASD microscopic model,
the damping parameters λa(b) in Eqs. (13) and (2) stand for the
same physics, i.e., the rate of angular momentum dissipation
of the atomic spins. Differently from the Baryakhtar model
where αB

a(b) is taken as a fitting parameter, within the LLB
model, the value of λa(b) in Eq. (13) is the same as in the ASD
simulations. A key difference between the Baryakhtar-like

model and the LLB model is that in the latter, an exchange-
relaxation term is missing. In order to find a meeting point
between these phenomenological models, we rewrite Eq. (12)
in terms of a damping term multiplied by an effective field,

dma

dt
= 2λaL(ξa)

ξa

γ

μa

ma − m0,a

βL′(ξa)
= γαaHa, (14)

where

αa = 2λa
L(ξa)

ξa
. (15)

Differently from the Baryakhtar-like model, in the LLB
model, the relaxation parameter strongly depends on tem-
perature and nonequilibrium sublattice magnetization through
the thermal field, ξa = βμaHMFA

a . At the same time, the
nonequilibrium fields μaHa within the LLB and Baryakhtar-
like models differ. The effective field in the LLB model is
defined as

μaHa = (ma − m0,a)

βL′(ξa)
. (16)

Equation (16) provides a microscopic description of the effec-
tive field driving the magnetization dynamics in ferrimagnets,
based on the Heisenberg spin model [Eq. (1)]. Under the
assumption of small perturbations around the equilibrium,
both the LLB and Baryakhtar-like effective fields simplify to
Landau-like expressions [19]. Equation (14) describes, with
a very good degree of accuracy, the relaxation of the angular
momentum via dissipation to the heat bath, which corresponds
to the relativistic term in Eqs. (9) and (10). Previously, it has
been found that ASD simulations compare well to Eq. (14)
for coupling parameters of λa ≈ 0.1–1 [20,42]. These values
can be considered to correspond to the intermediate-to-high
coupling regime. Direct comparison between ASD simula-
tions and experiments of single-pulse switching in GdFeCo
has suggested values of λFe ≈ 0.06 and λGd ≈ 0.01 [16]. In
the context of the present work, we find that Eq. (14) rela-
tively well describes the thermal relaxation dynamics in direct
comparison to ASD simulations (Fig. 4).

In order to account for the exchange relaxation in the LLB
model, we follow the Baryakhtar-like model [(9) and (10)] and
add an exchange-relaxation term to Eq. (14),

dma

dt
= γαaHa + γ

αe

μa
(μaHa − μbHb), (17)

where αe is a phenomenological exchange-relaxation param-
eter to be determined by comparison to ASD dynamics. The
inclusion of the exchange relaxation (second term on right-
hand side) in the LLB improves the agreement with the ASD
simulations. With this addition, the LLB model describes well
the thermal relaxation for small values of the ratio αe/αa,
as demonstrated in Fig. 4. For large values of αe, the LLB
model is unable to describe the thermal relaxation dynamics
[t < 0 in Figs. 4(a) and 4(b)]. For laser power P0 [Fig. 4(a)
(t > 0)], the magnetization dynamics is slightly slower using
the LLB model than those gained by ASD simulations for
αe/αa = 0. For αe/αa = 0.1, the agreement is even better
than without exchange relaxation. The agreement vanishes
when the exchange relaxation is increased to αe/αa = 1. Crit-
ically, when the laser power is increased from P0 to 2P0, for
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FIG. 4. Element-specific magnetization dynamics of GdFeCo
calculated using atomistic spin dynamics (symbols) and macroscopic
LLB equation (solid lines) for two laser pulse power values (a) P0

and (b) 2P0. For t < 0, the electron and lattice temperatures are T =
300 K, and at t = 0, a laser pulse is applied. The exchange-relaxation
parameter is varied, αe/αa = 0, 0.1, and 1, where αa = 0.01 and
a = FeCo or Gd. The initial relaxation dynamics is well described
by αe/αa = 0. (a) For laser power P0, the element-specific dynam-
ics is well described for αe/αa = 0.1. (a) For αe/αa = 1, exchange
relaxation dominates and the element-specific dynamics are similar.
(b) For laser power 2P0, the switching dynamics is not described by
the LLB model.

which ASD simulations show ultrafast switching, the LLB
model only shows demagnetization-remagnetization of both
sublattices. We find some agreement on the demagnetization
timescales when a quite large exchange relaxation is used,
αe/αa = 1. These dynamics are similar to those observed
using the Baryakhtar-like model for intermediate values of the
exchange-relaxation parameter (Fig. 3). It has been previously
demonstrated that by including the transverse components of
the equation of motion, switching is possible via a preces-
sional path when a canting between the magnetization of each
sublattice exists [21]. Here, we restrict to purely longitudinal
switching within the LLB model.

C. Unified phenomenological model

So far, we have constructed a phenomenological model
based on the LLB and Baryakhtar-like models, where the
dynamics is given by Eq. (17), the effective field by Eq. (16),
and the relativistic relaxation parameter by Eq. (15). We still
need an expression for the exchange-relaxation parameter. We
construct this expression starting with single-species ferro-
magnets, where sublattices a and b represent the same spin
lattice, and hence the exchange of angular momentum is
nonlocal. Therefore, μaHa − μbHb = μaHexa2

0
ma, with a0

representing the lattice constant. Hence, the rate of nonlo-
cal angular momentum transfer reads �nonloc.

ex = αex(μaHa −
μbHb) = αa(A/Ma(T ))
ma, where A is the so-called micro-
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FIG. 5. Thermal equilibrium value of the relativistic exchange
parameters αFe and αGd and the exchange-relaxation parameter αex

as a function of temperature.

magnetic exchange stiffness [58]. Ma(T ) = (μa/υa)ma is the
magnetization density at temperature T , where υa is the unit-
cell volume. Therefore, we find that αex = αa/(zma), where
z is the number of nearest neighbors. By considering that the
exchange-relaxation rate should conserve the symmetry under
the exchange of the lattice index, αex(M1, M2) = αex(M2, M1),
we find that

αex = 1

2

( αa

zabma
+ αb

zbamb

)
. (18)

This expression is the extension of the nonlocal exchange
relaxation in ferromagnets to local exchange relaxation in
ferrimagnets. This explicit expression for the exchange-
relaxation parameter in Eq. (18) completes our unified model,
which bridges the atomistic spin dynamics model and the
Baryakhtar and LLB macroscopic models.

The previously discussed phenomenological models have
introduced the relaxation parameters at a purely phenomeno-
logical level (Baryakhtar) or missed to include the exchange
relaxation (LLB). Contrary to this, our unified model over-
comes this shortcoming, by providing expressions for the
relativistic and exchange-relaxation parameters as a function
of the sublattice specific atomic relaxation parameter λa(b),
through Eqs. (15) and (18), and normalized magnetization
ma(b). We note that in our unified model, the values of the
relaxation parameters are given by the system parameters
and do not depend on the power of the laser fluence. For
all laser fluences, the expressions and values are exactly
the same; however, due to their dependence on the system
temperature and element-specific magnetization, upon pho-
toexcitation with the laser pulse, the values of the relaxation
parameters will change dynamically. For large laser powers,
the exchange-relaxation parameter becomes of the same order
or even larger than the relativistic relaxation parameter. In the
previous phenomenological models, the exchange-relaxation
constant needed to have a large value in order to describe
switching. By contrast, in order to describe low laser power
dynamics, the exchange-relaxation constant needed to have a
relatively small value (αex/αa(b) 
 1) (Fig. 3). The expres-
sion for the exchange-relaxation parameter that we propose in
Eq. (18) captures this behavior naturally.

Figure 5 shows the equilibrium value of the relativistic ex-
change parameters (αFe and αGd) and the exchange-relaxation
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FIG. 6. Element-specific magnetization dynamics of GdFeCo
calculated using atomistic spin dynamics (symbols) and the unified
phenomenological model derived here, following Eq. (17) (solid
lines), for two laser pulse power values (a) P0 and (b) 2P0. Both
electron and lattice temperatures are kept constant, T = 300 K, for
t < 0. At t = 0, a laser pulse is applied, which is the same as in
Fig. 2. GdFeCo alloys with xGd = 25% are calculated.

parameter (αex) as a function of temperature. For the sake
of simplicity, the values are those corresponding to the ther-
mal equilibrium. The element-specific relativistic relaxation
parameters scale with the value of λa(b) as given in Eq. (15)
and depend almost linearly with temperature, with a maxi-
mum at the Curie temperature of 2λa(b)/3. By contrast, the
exchange relaxation shows a drastically different behavior. At
low temperatures, assuming αa = αb, one gets αex ≈ αa/z.
By contrast, for relatively high temperatures, close to Tc,
where ma(b) → 0, αex scales as αex ∼ 1/ma. Therefore, even
at equilibrium, close to the critical temperature, the relaxation
dynamics is dominated by exchange-relaxation processes. At
nonequilibrium situations, the exchange relaxation can be-
come larger than the relativistic relaxation by driving one of
the sublattice magnetization to zero, in principle without the
need to approach the critical temperature.

We conduct a direct comparison between the proposed
unified and atomistic spin dynamics simulations. The sys-
tem parameters are exactly the same as those used in the
previous sections, when ASD simulations were compared to
Baryakhtar and LLB models. The damping parameter is the
same for both sublattices, λa(b) = 0.01, and we use the same
laser powers. We find that the agreement between our unified
phenomenological model and ASD simulations is excellent;
see Figs. 6(a) and 6(b). Figure 6(a) shows that for t < 0,
the sublattice magnetization relaxation towards the thermal
equilibrium value is described with a high level of accuracy
by our model. For t > 0 and a relatively low laser power P0,
the agreement is also excellent for the demagnetization and
remagnetization dynamics. Figure 6(b) shows the comparison
between the unified model and ASD simulations of the switch-
ing dynamics. We conclude that Eq. (17) for the sublattice
magnetization dynamics, together with Eq. (16) for the effec-
tive field and Eqs. (15) and (18) for the relaxation parameters,
unify the Baryakhtar and the LLB phenomenological models
for single-pulse all-optical switching in ferrimagnets.

Our unified model compares well to ASD simulations
for realistic system parameters. For some limiting cases, our
model is unable to reproduce ASD simulations. For example,
ASD simulations of an isolated ferrimagnet, e.g., no coupling
to the heat bath, are impossible to reproduce by our model
[14]. This type of sublattice magnetization relaxation has been

named nondissipative relaxation since there is no net dissipa-
tion into an external bath. All three phenomenological models
discussed in this work, i.e., Baryakhtar, LLB, and our unified
model, are based on the assumption that the spin system is
coupled to a heat bath and they are near thermal equilibrium.
Nondissipative relaxation processes could play a role in the
exchange relaxation for very low damping values, both non-
realistic and of little interest for ultrafast toggle switching.
Nevertheless, we emphasize that the agreement between our
model and ASD simulations demonstrates that the potential
contribution of internal exchange of angular momentum and
energy is minimal for the damping values considered here
(λ = 0.01).

IV. DISCUSSION AND CONCLUSION

The macroscopic model presented in this work solves some
open questions in the field of ultrafast magnetization dynam-
ics in ferrimagnets. For example, it answers the question of the
range of applicability and the validity of the parameters of the
Baryakhtar and LLB phenomenological models. On the one
hand, within our model, the relativistic relaxation parameters
(αa) are element specific and strongly depend on both the
temperature and the nonequilibrium sublattice magnetization.
The temperature and magnetization dependence of the rela-
tivistic relaxation parameters are well described by the LLB
model. On the other hand, the exchange-relaxation parame-
ter (αex) is cast in terms of the element-specific relativistic
relaxation parameters and sublattice magnetization. We have
demonstrated that in order to reproduce the ASD simulations
results, the relaxation parameters in the Baryakhtar model
have to be both temperature and magnetization dependent.
The explicit expression of the exchange-relaxation parameter
is the main result of the present work since it allows us to unify
the Baryakhtar and LLB models. While for the Baryakhtar
model αe is unconnected to αa, within our proposed model
they are proportional to each other, αe ∼ αa/ma. This re-
lation is the key to bridge both the ASD simulations and
Baryakhtar and LLB models together. Additionally, we have
also demonstrated the validity of the nonequilibrium effective
fields given in Eq. (16) as derived in the LLB model instead
of the Baryakhtar model.

Single-pulse switching in ferrimagnets has been described
before by the Baryakhtar model. A necessary condition for
switching is that the system transits from the relativistic relax-
ation regime to the so-called exchange-dominated relaxation
regime. Although details of switching in such a regime have
already been discussed in detail [5,19], our model resolves
the question of how this transition could be described theoreti-
cally. When the system is at equilibrium or weakly excited, the
exchange-relaxation parameter fulfills αe 
 αa. For strong
excitation, such that the magnetic order of one sublattice
reduces significantly close to zero ma → 0, the exchange re-
laxation will dominate the dynamics since αe ∼ αa/ma  αa.
From our model, one can derive universal criteria for switch-
ing in ferrimagnets, including GdFeCo and Mn2RuxGa [59].

The provided understanding is paramount for further
research on material engineering, for example, to find alterna-
tive material classes showing all-optical switching. Notably,
our model predicts that the exchange-relaxation term is
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enhanced as the number of neighbors reduces. This depen-
dence suggests that magnetic systems of lower dimension,
e.g., two-dimensional (2D) magnets [60], could show a faster,
more efficient switching than bulk materials. Further, the ex-
tension of our model to the micromagnetic level will allow
one to optimize switching conditions. The use of micromag-
netic computational solvers permits a realistic description
of ultrafast AOS processes in ferrimagnetic alloys, such as
helicity-independent and helicity-dependent AOS, where mul-
tidomain states and thermal gradients play an important role
in the process [46].

To summarize, in the present work we have presented a
unified model for single-pulse all-optical switching in ferri-
magnets. Our model merges and improves previous semiphe-
nomenological models, i.e., the Landau-Lifshitz-Bloch model
and Baryakhtar-like models. To verify the accuracy of the
proposed model, we directly compare the laser-induced mag-
netization dynamics to atomistic spin dynamics computer
simulations. Differently from previous models, our model has
the advantage that it can be directly compared to ASD simu-
lations. Further, we have established the connection between

ASD and macroscopic equations of motion. Importantly, here
we provide a stepping stone for the construction of a micro-
magnetic model that is valid for ferrimagnets including ex-
change relaxation between sublattices. This is paramount for
a robust construction of a multiscale scheme of the switching
process in which not only local magnetization dynamics is de-
scribed, but also magnetic domain nucleation and motion un-
der strong nonequilibrium. Multiscale-based micromagnetic
models will allow for the description of realistic sample sizes
and describe recent spintronics phenomena using laser pulses,
e.g., magnetic skyrmion creation/deletion with fs laser pulses,
or domain-wall motion under dynamics thermal gradients.
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