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Zhe Wang,1 Fan Zhang,1 and Wenan Guo 1,2,*

1Department of Physics, Beijing Normal University, Beijing 100875, China
2Beijing Computational Science Research Center, Beijing 100193, China

(Received 21 July 2022; revised 8 September 2022; accepted 29 September 2022; published 10 October 2022)

Using quantum Monte Carlo simulations, we study the spin-1/2 Heisenberg model on a two-dimensional
lattice formed by coupling diagonal ladders. The model hosts an antiferromagnetic Néel phase, a rung singlet
product phase, and a topological nontrivial Haldane phase, separated by two quantum phase transitions. We show
that the two quantum critical points are all in the three-dimensional O(3) universality class. The properties of the
two gapped phases, including the finite-size behavior of the string orders in the Haldane phase, are studied. We
show that the surface formed by the ladder ends is gapless, while the surface exposed along the ladder is gapful
in the Haldane phase. Conversely, in the gapped rung singlet phase, the former surface is gapped, and the latter
is gapless. We demonstrate that, although the mechanisms of the two gapless modes are different, nonordinary
surface critical behaviors are realized at both critical points on the gapless surfaces exposed by simply cutting
bonds without fine-tuning the surface coupling required to reach a multicritical point in classical models. We
also show that, on the gapped surfaces, the surface critical behaviors are in the ordinary class.
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I. INTRODUCTION

At a bulk critical point, the surface may show rich and
novel critical behaviors, called the surface critical behavior
(SCB) [1]. The surface critical behavior is classified into three
universality classes: ordinary, extraordinary, and special. Typ-
ically, the surface orders simultaneously with the bulk, and the
surface singularities are purely induced by the bulk criticality.
Therefore, the surface critical behavior is in the “ordinary”
class. However, with enhanced surface couplings, the surface
may be ordered by a surface transition while the bulk is disor-
dered. At the bulk transition point, the ordered surface exhibits
extra singularities; such a transition is in the “extraordinary”
class. At a fine-tuned surface coupling strength, a multicritical
point occurs between the two SCBs, known as the “special”
class.

The subject of SCB has attracted numerous previous in-
vestigations [2,3] due to its rich and novel properties and
recently obtained renewed attention when quantum phase
transitions are involved. Zhang and Wang [4] studied the
spin-1/2 Heisenberg model on a decorated square (DS) lattice
and found a “nonordinary” SCB realized without fine-tuning
the surface coupling. Based on the mapping between a
d-dimensional quantum system and a (d + 1)-dimensional
classical system, the surface of the two-dimensional (2D)
SU(2) quantum model maps onto the 2D surface of the
corresponding three-dimensional (3D) O(3) classical sys-
tem, which cannot host a long-range order according to the
Mermin-Wagner theorem [5]. As a result, there should be no
SCB other than the ordinary one. Therefore, the nonordinary
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SCB must have a purely quantum origin [4]. The authors
attributed it to the property of the symmetry-protected topo-
logical (SPT) phase [6–8]; the gapless edge state of the SPT
phase complemented with the critical mode of the bulk leads
to a multicritical behavior.

Later studies on simple 2D dimerized spin-1/2 Heisen-
berg models found similar nonordinary SCBs on surfaces
formed by dangling spins weakly coupled to the bulk, with
surface critical exponents close to those of the nonordinary
SCB found in the spin-1/2 DS Heisenberg model [9–11]. It
was argued that the surface formed by dangling spins can
be viewed as a spin-1/2 Heisenberg chain, which is gapless
due to the topological θ term of the spin-1/2 chain even if
the bulk is in a trivial product state [9]. Such a gapless edge
mode, together with the gapless bulk critical mode, leads to
nonordinary SCBs. However, this scenario was challenged by
the finding that the dangling surface of the S = 1 dimerized
Heisenberg model shows similar nonordinary exponents [12].
Naively, the surface is a spin-1 Haldane chain formed by
dangling S = 1 spins in this case, which is gapped.

In addition, the surface showing nonordinary SCBs of the
spin-1/2 DS Heisenberg model is shown to be a dangling
surface in a product state instead of an SPT state [10]. To
check if the gapless edge state of an SPT phase can lead to
similar nonordinary SCB, Zhu et al. [13] studied a 2D model
of coupled spin-1 Haldane chains (CHC). In the path integral
representation of the spin chain, the action has a topological
term that is ineffective for integer spin-S [14]. The chain is
then described by the O(3) nonlinear sigma model without
the topological term. However, this description only applies to
the periodic boundary conditions. For an integer spin-S chain
with free boundaries, the action has a topological term of two
spin-1/2 located at the ends of the chain [15]. For odd integer
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S, the state is an SPT protected by certain symmetries [7].
When spin-1 chains are weakly coupled to form a 2D Haldane
phase, which is the quasi-one-dimensional (1D) gapped phase
that adiabatically connected to the Haldane phase in 1D as
couplings between chains tend to 0. It was shown [16] that
the phase is an SPT phase using the strange correlator method
[17]. It is, therefore, natural to assume that the spin-1/2 ex-
citations at the ends of the chains form a gapless edge state,
according to the Lieb-Schultz-Mattis theorem [18]. This sce-
nario was verified and used to explain the nonordinary SCB
on the surface formed by the chain ends [13]. We emphasize
that the surface is not formed by dangling spins. Instead, the
gapless edge mode is due to a genuine SPT phase of the
model. On the other hand, the SCB on the surface formed by
a spin-1 chain is in the ordinary class.

Other mechanisms of such nonordinary SCB were also
proposed [19–23]. In particular, an extraordinary-log SCB
[19] is proposed and proved numerically [21] for a critical
classical model in the 3D O(3) universality class. A special
transition was found between the ordinary and extraordinary-
log transitions, with exponents close to the nonordinary
exponents of the quantum models. It was assumed that those
quantum models are sitting close to the special transition point
by chance and showing such special SCB at finite sizes [21].

In consideration of the current confusing research situ-
ation, to further investigate the origin of the nonordinary
SCB in 2D quantum models, it would be beneficial to
find/construct and study more 2D quantum SU(2) models
with nonordinary SCBs existing at its 3D O(3) critical point.
In this paper, we construct a model that hosts an SPT phase
with nontrivial gapless surface states and a simple product
phase with gapless mode on the surfaces formed by dangling
spins. Notably, the two surfaces are different. Two quantum
critical points in the 3D O(3) universality class separate the
SPT phase and the product phase from the Néel phase in the
middle. We show that the two gapless edge modes induce
nonordinary SCBs without fine-tuning surface couplings on
different surfaces with exponents agreed well at different bulk
critical points.

The model is constructed by coupling the spin-1/2 diag-
onal ladders to form a 2D lattice, as illustrated in Fig. 1. A
spin-1/2 diagonal ladder is shown in Fig. 1(a), which is the
composite spin representation of a spin-1 chain, in the sense
that the low-energy spectra of the two systems are identi-
cal [24]. The ground state of the diagonal ladder is gapped
and unique if periodic boundary conditions are applied; how-
ever, it is fourfold degenerate for open boundary conditions
due to spin-1/2 degrees of freedom living on the ends of
the ladder. Experimentally, materials described by quasi-one-
dimensional spin-1 chains or spin ladders have been found
[25–27]. In the weak coupling region J⊥ � J , the model
should stay in the Haldane phase. Similar to the coupled
spin-1 chains [16], we expect the phase is an SPT phase with
gapless edge modes. Indeed, at the surface formed [Y surfaces
shown in Fig. 1(b)] by the ends of the ladders, we observe
gapless surface states (see Sec. III B). When the coupling J⊥ is
strong enough, the model goes to the trivial product state: rung
singlet phase (RS), which has a gapless mode on the surface
formed by dangling spins [X surfaces, see Fig. 1(c)]. Since the
lattice is bipartite, when the couplings between the ladders are
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FIG. 1. Two-dimensional coupled diagonal ladders. A diagonal
ladder is shown inside the dashed rectangular box. The lattice is
bipartite with sublattices A (yellow circles) and B (blue circles).
(a) Periodic boundary conditions are applied in the x and y directions.
(b) Periodic boundary conditions are applied in the y direction, while
open boundaries are applied in the x direction to expose the Y
surfaces. (c) Periodic boundary conditions are used in the x direction,
while open boundary conditions are applied in the y direction to
expose the X surfaces. Open circles denote spins on the surfaces.
The intraladder couplings J > 0 are indicated by red lines, and
interladder couplings J⊥ > 0 by black lines.

competitive with the couplings inside the ladders, the model
should stay in the Néel phase. The three phases are separated
by two quantum critical points (QCPs). The phase diagram is
sketched in Fig. 2.

Using unbiased quantum Monte Carlo (QMC) simulations
[28,29], we determine the two quantum critical points and
show that they belong to the 3D O(3) universality class regard-
less of whether the nonmagnetic phase is an SPT phase or a
trivial product phase. We demonstrate that nonordinary SCBs
are realized at the two bulk critical points but on different
surfaces, which are exposed by simply cutting bonds without
fine-tuning the surface couplings required to reach a multi-
critical point in the classical models. We study the properties
of the two gapped phases, including the finite-size behavior
of the string orders in the Haldane phase. We show that the
surface formed by the ladder ends is gapless in the Haldane
phase, on which the nonordinary SCB is observed; the surface
along the chain direction is gapped; therefore, the SCB on it is
ordinary. However, in the RS phase, the latter surface becomes
a chain formed by dangling spins and gapless. Therefore, we
found nonordinary SCB on it instead.

The paper is organized as follows. In Sec. II, we describe
our model and the methods used in our study. Section III
presents a phase of the diagram and bulk quantum phase

Haldane AF RS

FIG. 2. Phase diagram with three phases: the antiferromagnetic
phase (AF), the Haldane phase, and the rung single phase (RS),
separated by two quantum critical points Jc1 and Jc2. A cartoon of
a representative ground state is graphed in each phase. The arrows
represent the orientation of spins. Thick-red lines denote spin sin-
glets. The circles in the Haldane phase indicate that two spins-1/2
form a spin-1.
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transitions of the model. Topological properties of the Hal-
dane phase and surface properties of the surfaces in two
magnetic disordered phases are also studied. In Sec. IV, we
study the surface critical behaviors of our model. Finally, we
present our conclusions and discuss the mechanisms of the
origins of nonordinary surface critical behavior in Sec. V.

II. MODELS AND METHODS

We study the spin-1/2 Heisenberg model on a designed
two dimensional bipartite lattice constructed by coupling di-
agonal ladders [24]; see Fig. 1(a). We will refer to the lattice
as coupled diagonal ladders (CDLs). The Hamiltonian is given
by

H =
∑
j=0

Hj + J⊥
∑
i, j=0

Si,2 j+1 · Si,2( j+1), (1)

where the first sum is over the diagonal ladders with Hj

describing the jth ladder written as follows:

Hj = J
∑
l=0,1

∑
i

Si,2 j+l · Si+1,2 j+l

+ J
∑

i

[Si,2 j · Si+1,2 j+1 + Si,2 j+1 · Si+1,2 j], (2)

where l = 0, 1 denote two legs of the jth diagonal ladder and
J > 0 is intraladder Heisenberg exchange interactions. The
second sum describes the coupling of the neighboring ladders
with the interladder couplings J⊥ > 0.

We set J to be unity. When J⊥ is comparable to J , the model
is expected in the Néel phase. For the limit J⊥ � 1, the model
is tuned into a disordered rung singlet phase (RS), a product
of singlets. On the other limit, J⊥ → 0, the model is tuned
into a gapped Haldane phase, which can be described by the
AKLT state. These three phases are separated by two quantum
critical points, as sketched in Fig. 2.

The lattice is bipartite; therefore, the model is free of
magnetic frustration and can be studied using quantum Monte
Carlo simulations. In this paper, we use stochastic series ex-
pansion (SSE) quantum Monte Carlo simulations with the
loop algorithm [28,29] to study the bulk and surface properties
of the gapped phases, as well as the bulk and surface critical
behaviors. Periodic boundary conditions are applied along
both the x and y directions when the bulk phase transitions are
studied. When the surface states and surface critical behaviors
are studied, periodic boundary conditions are applied along
one lattice direction and open boundary conditions are used
along the other direction to expose the surfaces, as shown in
Figs. 1(b) and 1(c). The Y surfaces are obtained by cutting the
lattice along the y direction. Similarly, we can expose the X
surfaces by cutting the lattice along the x direction. Note that
for the X surfaces, we only consider the case of cutting J⊥
bonds.

In our simulations, we have reached linear size up to L =
128. The inverse temperature scales as β = 2L, considering
the dynamic critical exponent z = 1 for the two critical points.
Typically 108 Monte Carlo samples are taken for each cou-
pling strength.

III. BULK RESULTS

A. Bulk phases and properties of associated bulk critical points

We study several physical quantities to investigate the bulk
phases and related phase transitions. The two transitions are
associated with the spontaneous breaking of the spin ro-
tational symmetry. The staggered magnetization is used to
describe the Néel order,

mz
s = 1

L2

∑
i

φiS
z
i , (3)

where the staggered phase factor φi = ±1 according to the
sublattice to which site i belongs. The Binder cumulant U2

[30,31] is defined using mz
s ,

U2 = 5

6

(
3 −

〈(
mz

s

)4〉
〈(

mz
s

)2〉2
)

, (4)

which is dimensionless at the critical point. U2 converging
to 1 with increasing system size indicates the existence of
magnetic order, while tending to zero with increasing system
size implies that the system is in the magnetic disordered
phase.

The mean spin stiffness ρs over the x and y directions is
also calculated. It is related to the fluctuations of the winding
number [32,33],

ρs = 3
4

〈
W 2

x + W 2
y

〉
/β, (5)

where

Wa = 1

La
(N+

a − N−
a ) = 0,±1,±2, · · · (6)

is the winding number along the a = x, y direction. Here, N+
a

and N−
a denotes the total number of operators transporting

spin in the positive and negative a direction, respectively.
ρs is nonzero if the state is magnetically ordered and goes

to zero when the system is in the magnetically disordered
phase. The size dependence of the spin stiffness exactly at a
QCP is expected as follows [34]:

ρs ∼ L2−(d+z), (7)

where z is the dynamic exponent and d = 2 are the dimen-
sions of the model. In the case that z = 1, ρsL is expected to
be dimensionless at the critical point.

Figure 3 plots ρsL and U2 as functions of J⊥ for different
system sizes. Clearly, the model is in the antiferromagnetic
ordered state when J⊥ is between 0.17 and 3. Since U2 and ρsL
are dimensionless at a critical point, the crossings of curves for
different sizes roughly indicate two transition points.

We adopt the standard (L, 2L) crossing analysis for U2 and
ρsL to estimate the critical point and critical properties, see,
e.g., the Supplemental Material of [35]. For Q = U2 or ρsL,
we define the finite-size estimator of the critical points J (Q)

c (L)
as the crossing point of the Q(J⊥) curves for L and 2L, which
drifts toward the critical point Jc in the thermodynamic limit
in the following way:

J (Q)
c (L) = Jc + aL−1/ν−ω, (8)

where ν is the correlation length exponent, ω > 0 is the effec-
tive irrelevant exponent, and a is an unknown constant. At the
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FIG. 3. Binder cumulant U2 and spin stiffness multiplied by the
system size ρsL vs J⊥ for different system sizes. Error bars are much
smaller than the symbols. [(a),(b)] Show the results near the critical
point Jc1. [(c),(d)] Show the results near critical point Jc2.

crossing point J (Q)
c (L), we define the finite-size estimator of

exponent ν as

1

ν (Q)(L)
= 1

ln 2
ln

(
s(Q)(2L)

s(Q)(L)

)
(9)

where s(Q)(L) is the slope of the curve Q(J⊥) for size L at
J (Q)

c (L). ν (Q)(L) converges to the exponent ν in the following

way:

ν (Q)(L) = ν + bL−ω, (10)

with b an unknown constant.
For U2 and ρsL, the analyses yield consistent estimates of

Jc and ν within error bars. The results with higher accuracy are
selected as the final results. All the results are listed in Table I.
In particular, the final estimates of the two critical points are
Jc1 = 0.17425(3) and Jc2 = 2.99046(5).

To further determine the universal properties of the two
critical points, we calculate the static spin structure factor and
the spin correlation at the longest distance in a finite system at
the two estimated critical points Jc1 and Jc2. The two quantities
are defined based on the spin correlation function

C(ri j ) = 〈
Sz

i Sz
j

〉
, (11)

where ri j is the vector from site i to j. The static spin structure
factor at wave vector (π, π ) is defined as follows:

S(π, π ) =
∑

r

εi jC(ri j ), (12)

where εi j = ±1, depending on whether i and j belong to
the same sublattice. The spin correlation function of the half
lattice size C(L/2, L/2) averages C(ri j ) between two spins i
and j at the longest distance ri j = (L/2, L/2).

S(π, π ) and C(L/2, L/2) are used to extract the scaling
dimension yh of the staggered magnetic field h and the anoma-
lous dimension η. At QCP, S(π, π ) and C(L/2, L/2) satisfy
the following finite size scaling forms:

S(π, π )/L2 ∼ L−2(d+z−yh )(1 + bL−ω ), (13)

and

C(L/2, L/2) ∼ L−(d+z−2+η)(1 + bL−ω ), (14)

respectively, in which d = 2 is the spatial dimension, z = 1
is the dynamical critical exponent, and ω is the effective
correction to scaling exponent. The two exponents yh and η

are not independent and are expected to obey the following
scaling relation:

η = d + z + 2 − 2yh. (15)

TABLE I. Bulk critical properties. The exponents obtained by field theory (FT) and by Monte Carlo simulations (MC) are listed for
comparison.

Jc ν η yh

Jc1 0.17425(3) 0.707(48) 0.033(6) 2.484(1)
Jc2 2.99046(7) 0.705(6) 0.0324(34) 2.483(1)
FT [36] 0.7073(35) 0.0355(25)
MC [37] 0.7117(5) 0.0378(3)
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FIG. 4. C(L/2, L/2) and S(π, π )/L2 vs system size L at quan-
tum critical points Jc1 and Jc2 on a log-log scale. The symbols of
S/L2 at Jc1 are covered by those at Jc2. Error bars are much smaller
than the symbols.

The numerical results of S(π, π )/L2 and C(L/2, L/2) as
functions of system size L at two critical points are shown
in Fig. 4. We fit the data of S(π, π )/L2 and C(L/2, L/2)
according to Eqs. (13) and (14), respectively, and find the
critical exponents yh and η, as listed in Table I. The obtained
yh and η satisfy the scaling relations Eq. (15).

Compared with the best-known exponents of the 3D O(3)
universality class [36,37], we conclude that both critical points
belong to the 3D O(3) universality class. This also shows that
the topological order does not change the universality class of
the bulk phase transition.

B. Properties of the Haldane phase and its surface states

The spin-1/2 Heisenberg diagonal ladder is shown as the
composite spin representation of a spin-1 chain [24] by repre-
senting the spin-1 operator σ i of the chain as the sum of two
spin-1/2 operators σ i = Si,0 + Si,1 on two legs, as illustrated
in Fig. 5. The low-energy spectrum of the ladder is identical to
that of the spin-1 chain. When periodic boundary conditions
are applied, all spins are bound to form valence bonds and
the ground state is unique. The ground state of this ladder
can be well described by the AKLT state [38], which is a
short-ranged valence-bond (VB) state. A typical configuration
is shown in Fig. 2. The Haldane gap is related to the energy
needed to break a valence bond. More importantly, with open
boundaries, the ground states have two spin-1/2 spins local-
ized at the ends of the ladder. This is evident in the diagonal
ladders as shown in Fig. 5. The ladder is in a Haldane phase
with symmetry protected topological order.

The Haldane phase with symmetry protected topological
order is characterized by a nonlocal string order, which is ev-
ident when the z component of the spins on the same rung are
summed. The total Sz

i = Sz
i,0 + Sz

i,1 can take the values of 1,0,
–1. When the sites with Sz

i = 0 are removed, the remaining
sites have an Néel order, which means a string order, as shown
in Fig. 5(a). This order can be described by the following

(a)

(b)

FIG. 5. A representation of VB ground state with two spin-1/2
localized at the ends of the ladder and a spin configuration matches
the VB state. (a) Dashed boxes encircle rungs: Sz

i = Sz
i,0 + Sz

i,1, used
to calculate the string order parameter Sodd. After all sites with
Sz

i = 0 is removed, the remaining sites show Néel order. (b) Dashed
boxes encircle diagonals: Sz

i = Sz
i+1,0 + Sz

i,1, used to calculate the
string order parameter Seven. After all sites with Sz

i = 0 removed, the
remaining sites do not show Néel order.

string order parameter [24,39]:

Sodd(i, j) =
〈(

Sz
i,0 + Sz

i,1

)

× exp

(
iπ

j−1∑
k=i+1

(
Sz

k,0 + Sz
k,1

))(
Sz

j,0 + Sz
j,1

)〉
.

(16)

The name Sodd comes from the topology of the VBs in the
diagonal ladder [24], which is determined by the parity of the
number of VBs crossing an arbitrary vertical line. Note that
the VB state shown in Fig. 5 is odd.

Other ladders in the Haldane phase may show a topologi-
cally distinct string order, which can be defined as

Seven(i, j) =
〈(

Sz
i+1,0 + Sz

i,1

)

× exp

(
iπ

j−1∑
k=i+1

(
Sz

k+1,0 + Sz
k,1

))

× (
Sz

j+1,0 + Sz
j,1

)〉
, (17)

which is nonzero when the VB configuration is even, i.e., an
even number of VBs crossing an arbitrary vertical line [24].
In the case of the diagonal ladder, as shown in Fig. 5(b), when
the z component of the spins along the plaquette diagonals
are summed, there is no such a string order. Apparently, the
parity of the VB ground state is intimately related to the type
of string order.

The finite value of a string order parameter at the limit
|i − j| → ∞ characterizes a stable topological order in the
thermodynamic limit. In the simulations of a system of size L
with periodic boundaries, we calculate Sodd(L/2) [Seven(L/2)]
by averaging Sodd(i, j) [Seven(i, j)] at the maximum available
distance |i − j| = L/2 along an individual ladder. As shown
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FIG. 6. String order parameters Sodd(L/2) (a) and Seven(L/2)
(b) of the 2D coupled diagonal ladders at different interladder cou-
plings J⊥ in the SPT Haldane phase. (a) On a linear-log scale. (b) On
a log-log scale.

in Figs. 6(a) and 6(b), in the case J⊥ = 0, Sodd(L/2) is finite,
Seven(L/2) vanishes when L goes infinity, as expected for a
diagonal ladder. We find that Sodd converges to 0.374325(7).

Now consider that the diagonal ladders are coupled to form
a 2D lattice by interladder couplings J⊥ > 0. Due to the Hal-
dane gap, the properties of the ground state are robust against
a weak higher-dimensional coupling between ladders. There
is no phase transition when J⊥ is turned on to finite values
less than Jc1. This means that the model has a gapped Haldane
phase that is adiabatically connected to the AKLT states of
diagonal ladders. However, it was theoretically predicted that
the string order of the coupled spin-1 Haldane chains is not
stable and decays exponentially for arbitrarily weak interchain
coupling [40]. This prediction has been verified numerically
recently in the 2D CHC model [13] for sufficiently large
system sizes.

We obtain similar results in the SPT Haldane phase of
the current model. We find that the string order parameter
Sodd(L/2) decays exponentially with L, but much slower than
the decay of the string order parameter in the CHC model at
the same interladder/interchain couplings. The numerical re-
sults are shown in Fig. 6(a). Fitting according to the following
formula [40]:

Sodd(L/2) ∼ exp (−αL/2), (18)

we find α = 0.0007437(8) for J⊥ = 0.04, and α =
0.003089(1) for J⊥ = 0.08.

We also calculated Seven(L/2) inside the Haldane phase.
As expected, the even string order parameter values are much
smaller than the odd values. However, interestingly, we find
that Seven(L/2) decays algebraically with system size, as
shown in Fig. 6(b). We have tried to fit the data using the
following scaling form:

Seven(L/2) ∼ L−β, (19)

and find β = 4.2(1) for a single ladder, β = 3.97(5) at J⊥ =
0.04, and β = 3.74(3) at J⊥ = 0.08.
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FIG. 7. Surface correlation C‖(L/2) vs system size L. (a) Y sur-
face in the Haldane phase (J⊥ = 0.04, 0.08) and X surface in the RS
phase (J⊥ = 3.2, 4.0). The plot is on a log-log scale. Algebraically
decaying with L is seen, showing gapless surface states. (b) Y surface
in the RS phase and X surface in the Haldane phase. The plot is set on
a linear-log scale. Exponential decaying with L is observed, meaning
that the surface states are gapped.

However, the hallmark of the SPT phase is not the string
order, but the presence of nontrivial surface states that are
gapless or degenerate. Our model is spatially anisotropy, and
we consider two different surfaces, the Y surface and the X
surface, exposed by cutting the lattice; see Fig. 1. To study
the surface states, we calculate the surface parallel correlation
C‖(L/2), which averages C(ri j ) between the two surface spins
i and j at the longest distance L/2.

The results for the Y surface at two couplings J⊥ in the SPT
phase are plotted in Fig. 7(a). We see that C‖(L/2) decays with
system size L in a power law,

C‖(L/2) ∼ L−p (20)

with p = 1.30(4) at J⊥ = 0.04 and p = 1.12(2) at J⊥ = 0.08,
meaning that the surface states are gapless. Although the Y
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surface is strongly coupled to the bulk at this phase, it is
easy to understand from the AKLT state shown in Fig. 5(a).
With open boundaries, each ladder carries a spin-1/2 exci-
tation at each end. A gapless surface state described by a
(1+1)-dimensional gapless critical theory is formed at the Y
surface by coupling these spin-1/2 excitations, according to
the Lieb-Schultz-Mattis theorem [18].

Meanwhile, the results of C‖(L/2) for the X surface at
the same two couplings in the SPT phase have completely
different finite-size behavior, as shown in Fig. 7(b). The data
can be fitted using straight lines on a linear-log scale, meaning
the correlation decays exponentially. Fitting the curves with

C‖(L/2) ∼ exp (−L/a), (21)

we obtain a = 10.56(2) at J⊥ = 0.04 and a = 11.49(3) at
J⊥ = 0.08. The surface states on the X surface are gapped,
because the X surface is a gapped diagonal ladder, in its AKLT
state, weakly coupled to the bulk.

C. Surface states of the trivial rung singlet product phase

Now we move to the RS phase with J⊥ > Jc2. The nature of
this trivial disordered phase can be understood by examining
the limit J⊥ → ∞, at which the lattice reduces to disjoint
bonds, see Fig. 2. The ground state is the direct product of
these rung singlets.

We have calculated C‖(L/2) along the Y surface. The
results are plotted in Fig. 7(b). We see the correlations at
J⊥ = 3.2 and J⊥ = 4.0 decaying exponentially. Fitting data
according to Eq. (21), we find a = 7.2(2) and 3.46(6), re-
spectively, indicating that the Y surface states are gapped.
Apparently, the surface can be understood as sitting in a state
adiabatically connected to a product state of dimers.

However, the X surface can be considered a chain of dan-
gling spins, weakly coupled to the bulk, in the RS phase. Thus,
we expect the surface states to be gapless, forming a spin-1/2
Heisenberg chain. This is proven by our numerical results. As
shown in Fig. 7(a), the correlation C‖(L/2) along the X surface
at J⊥ = 3.2 and 4.0 decay in a power law. Fitting according to
Eq. (20), we obtain the powers p = 0.827(2) and 0.886(2),
respectively.

IV. SURFACE CRITICAL BEHAVIORS

We now study the surface critical behaviors on the X and
Y surfaces at the two bulk critical points. In addition to the
surface correlation C‖(L/2), we also calculate another spin-
spin correlation C⊥(L/2) and the surface staggered magnetic
susceptibility χs1 with respect to the surface field h1.

C⊥(L/2) averages C(ri j ) between spin i fixed on the sur-
face and spin j located at the center of the bulk, with ri j

perpendicular to the surface with | j − i| = L/2.
χs1 can be calculated through the Kubo formula [28]

χs1 = ∂
〈
mz

s1

〉
∂h1

= L
∫ β

0
dτ

〈
mz

s1(τ )mz
s1(0)

〉
, (22)

TABLE II. Surface critical exponents at different surface
configurations.

Configuration yh1 η‖ η⊥

Y-c1 1.756(3) −0.511(2) −0.237(2)
Y-c2 0.852(46) 1.318(31) 0.682(9)
X-c1 0.82(1) 1.36(6) 0.69(3)
X-c2 1.780(2) −0.56(1) −0.259(3)

where mz
s1 is the staggered surface magnetization defined as

follows:

mz
s1 =

∑
i∈surface

φiS
z
i , (23)

where the summation is restricted on the surface, φi = ±1
depending on the sublattice to which i belongs.

At bulk critical points, the finite-size scaling behavior of
the two correlations is characterized by two anomalous di-
mensions η‖ and η⊥;

C‖(L/2) ∼ L−(d+z−2+η‖ )(1 + b1L−ω ), (24)

and

C⊥(L/2) ∼ L−(d+z−2+η⊥ )(1 + b2L−ω ), (25)

where ω is the effective exponent of corrections to scaling and
b1 and b2 are unknown constants. The susceptibility χs1 has
the following scaling form:

χs1 ∼ L−(d+z−1−2yh1 )(1 + bL−ω ), (26)

where yh1 is the scaling dimension of the surface field h1, ω

is the effective exponent of corrections to scaling, and b is an
unknown constant. For our model, d = 2 and z = 1. ω = 1
yields good fitting for all critical exponents.

The three exponents yh1, η‖, and η⊥ are related through the
following scaling relations [3]:

2η⊥ = η‖ + η (27)

and

η‖ = d + z − 2yh1, (28)

where η is the anomalous magnetic scaling dimension of the
bulk critical point in the d + z spacetime.

In the remainder of this section, we use these physical
quantities to examine SCBs. Two ordinary and two nonor-
dinary SCBs on different surfaces are found. All the surface
critical exponents obtained by various fits [41] to Eqs. (24),
(25), and (26) are listed in Table II. For the reader’s con-
venience, the surface critical exponents of other models are
listed in Table III.

A. Surface critical behaviors at Jc2

We first study the surface critical behaviors associated with
the bulk critical point Jc2 separating the Néel ordered phase
from the RS phase.

We start by checking the SCB on the Y surface, referred to
as “Y-c2.” The numerical result of χs1 as a function of size L is
graphed in Fig. 8(a), and the results of C‖(L/2) and C⊥(L/2)
as functions of L are plotted in Fig. 8(b).
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FIG. 8. Surface staggered magnetic susceptibility χs1 (a) and the
correlations C‖(L/2) and C⊥(L/2) (b) vs system size L for four
surface configurations: X-c1, X-c2, Y-c1, and Y-c2. The plots are
on log-log scale.

We fit the data of C‖(L/2) and C⊥(L/2) according to
Eqs. (24) and (25) and find statistically sound estimates of
η‖ = 1.318(31) and η⊥ = 0.682(6).

The finite-size scaling form Eq. (26) supplemented with a
constant c as nonsingular contribution, i.e.,

χs1 = c + aL−(2−2yh1 )(1 + bL−ω ), (29)

is used to fit the data of χs1. The estimate of yh1 is 0.852(34),
with ω set to 1.

These surface exponents are listed in Table II. They obey
the scaling relations in Eqs. (27) and (28), and agree well
with the universal class of the ordinary transition associated
with the 3D O(3) universality class found in various classical

and quantum phase transitions (see Table III). This behavior
is expected since the surface state on the Y surface in the RS
phase is gapped, as shown in Sec. III C.

We then check the SCBs at critical point Jc2 on the X sur-
face, referred to as “X-c2.” This is the case when the surface
is made up of dangling spins.

The numerical result of χs1 as a function of size L is
graphed in Fig. 8(a), and the results of C‖(L/2) and C⊥(L/2)
as functions of L are shown in Fig. 8(b). Data fitting according
to Eqs. (24), (25), and (26) find statistically sound estimations
η‖ = −0.560(8), η⊥ = −0.259(4), and yh1 = 1.780(2), satis-
fying the scaling relations Eqs. (27) and (28).

The three exponents are also listed in Table II. They are
consistent or very close to the nonordinary SCBs found in
the quantum critical points of the 3D O(3) universality class
[4,9,10,13]. This result supports the scenario that nonordinary
SCB can be induced by the gapless surface mode on the
dangling spin-1/2 surface, as explored in Sec. III C.

B. Surface critical behaviors at Jc1

We then study the SCBs associated with the bulk critical
point Jc1 at which the SPT Haldane phase transfers to the O(3)
symmetry broken Néel phase.

We first study the Y surface with associated SCB denoted
by “Y-c1”. The surface does not consist of dangling spins.
However, we have shown in Sec. III B that the state of the
Y surface in the gapped SPT Haldane phase is gapless due to
the spin-1/2 excitations located at the ends of each diagonal
ladder.

The numerical results of C‖(L/2), C⊥(L/2), and χs1(L) as
functions of L are plotted in Fig. 8. Apparently, the SCBs on
the Y surface (Y-c1) are similar to those of X-c2 at Jc2.

We fit the data of χs1, C‖(L/2), and C⊥(L/2) according
to Eqs. (26), (24), and (25), respectively, and obtain statisti-
cally sound results yh1 = 1.756(3), η‖ = −0.511(2) and η⊥ =
−0.237(2), as listed in Table II. These exponents satisfy the
scaling relations Eqs. (27) and (28), and are consistent with or
very close to the nonordinary SCB found on the X surface at
Jc2, as well as those nonordinary SCBs found at other quantum
critical points of the 3D O(3) universality class [4,9,10,13].

Finally, we check the SCBs on the X surface, referred to as
“X-c1.” The surface is gapped in the Haldane phase, as shown
in Sec. III B, as a result, the surface transition must belong
to the ordinary class. Our numerical results verified that the
SCBs are of the ordinary type.

The numerical results of C‖(L/2), C⊥(L/2), and χs1(L)
as functions of L are plotted in Fig. 8. The curves share
similar slopes of the corresponding Y-c2 curves. Fitting these
results according to Eqs. (24), (25), and (26), we obtain yh1 =
0.82(1), η‖ = 1.36(5) and η⊥ = 0.69(2), as listed in Table II.
Again, they satisfy the scaling relations Eqs. (27) and (28),
and agree well with the exponents of the ordinary class in the
3D O(3) universality class.

V. DISCUSSION AND CONCLUSIONS

We have studied the spin-1/2 Heisenberg model on the
2D CDL lattice using quantum Monte Carlo simulations. We
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showed that the model realizes a 2D SPT Haldane phase when
the ladders are weakly coupled. By tuning the interladder
coupling, the model enters the Néel ordered phase first, then
the trivial product RS phase, through two quantum critical
points. Furthermore, we demonstrated that the two QCPs are
in the 3D O(3) universality class, whether the magnetically
disordered phase is a topologically nontrivial SPT phase or
the simple product RS phase.

We have also studied the properties of the two gapped
phases, including the finite-size behaviors of two topologi-
cally distinct string order parameters in the Haldane phase.
Compared with the previously studied models, this model has
more abundant surface configurations. We showed that the Y
surface, formed by the ends of the ladders, is gapless, while
the X surface, exposed along the ladder, is gapful, in the
Haldane phase. Conversely, in the gapped RS phase, the Y
surface is gapped, and the X surface is gapless.

The mechanisms of the two gapless modes are different.
One is due to the properties of a topological SPT state.
The equivalent spin-1 chain of the diagonal ladder with free
boundary conditions has a topological term of two spin-1/2
located at the boundaries. When the ladders are coupled to
form a 2D system, the spin-1/2 excitations form a gapless
edge state, according to the Lieb-Schultz-Mattis theorem.
This explains the gapless Y surface in the Haldane phase. The
other is due to the surface being formed by dangling spins. At
least for spin-1/2 models, this can be understood by assuming
that the dangling spins form a spin-1/2 Heisenberg chain,
which is gapless due to the topological θ term, suppressing
the topological defects. This applies to the X surface in the
RS phase.

We focused particular attention on the SCBs at the two bulk
critical points. We have shown that the SCBs are always in
the ordinary class on surfaces that are gapped in the gapped
bulk phases. More importantly, we have demonstrated that
nonordinary SCBs are realized at both critical points but only
on the gapless surfaces of gapped bulk states exposed by

simply cutting bonds without fine-tuning the surface coupling,
which is required to reach a multicritical point away from the
ordinary class in the classical models.

Considering that the gapless surface states in the gapped
bulk phase are intimately related to the nonordinary SCBs
at quantum critical points, and the mechanisms that lead to
such gapless surface states are quantum mechanical, our pa-
per strongly supports the quantum origin of the nonordinary
surface critical behaviors found in various quantum models.

Finally, we would like to point out that the nonordinary
SCBs have been found in many quantum models, includ-
ing various dimerized Heisenberg models, with spin-1/2 and
spin-1, the 2D coupled spin-1 Haldane chains, and are now
also found at two different critical points of the 2D coupled
diagonal ladders on two different surfaces. The surfaces show-
ing such nonordinary SCBs are exposed by simply cutting
lattices without any tuning of surface couplings. It is hard to
believe all these systems are, by chance, close to the special
transition of the critical 3D classical O(3) model. Our findings
call for further investigation.
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APPENDIX: A SUMMARY OF VARIOUS RESULTS

For the reader’s convenience, the surface critical exponents
of the coupled diagonal ladders (CDL), as well as other mod-
els at critical points in the 3D O(3) universality class are listed
in Table III for comparison. Some field theoretical results from
different methods are also listed for comparison.
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TABLE III. For the reader convenience, the surface critical exponents of the coupled diagonal ladders (CDL), as well as other models at
critical points in the 3D O(3) universality class are listed for comparison, with CHC the QCP of the coupled Haldane chains, CD-DAF the
Dimer-AF QCP of the columnar dimerized Heisenberg model, SD-DAF the Dimer-AF QCP of the staggered dimerized Heisenberg models,
DS-DAF and DS-PAF the Dimer-AF QCP and the PVBC-AF QCP of the dimerized Heisenberg model on the DS lattice, respectively, 3D CH
the three-dimensional classical Heisenberg model. For the types of surface configurations, D denotes dangling and N nondangling. “class.”
means classical model. For the SCB class, “Ord.” is the abbreviation of ordinary, “Nonord.” means nonordinary, and “Sp.” special. The field
theoretical results (FT) from different methods are also listed for comparison.

SCB class Model/methods Surfaces Spin S η‖ η⊥ yh1

Nonord. CDL X-c2 1/2 −0.56(1) −0.259(3) 1.780(2)
Nonord. Y-c1 1/2 −0.511(2) −0.237(2) 1.756(3)
Ord. X-c1 1/2 1.36(6) 0.69(3) 0.82(1)
Ord. Y-c2 1/2 1.318(31) 0.682(9) 0.852(46)

Nonord. [13] CHC x surface 1 −0.57(2) −0.27(2) 1.760(3)
Ord. [13] y surface 1 1.38(2) 0.69(2) 0.79(2)

Nonord. [9] CD-DAF D 1/2 −0.445(15) −0.218(8) 1.7339(12)
Nonord. [10] D 1/2 −0.50(6) −0.27(1) 1.740(4)
Nonord. [12] D 1 −0.539(6) −0.25(1) 1.762(3)
Ord. [10] N 1/2 1.30(2) 0.69(4) 0.84(1)
Ord. [9] N 1/2 1.387(4) 0.67(6) 0.840(17)
Ord. [12] N 1 1.32(2) 0.70(2) 0.80(1)

Ord. [9] SD-DAF N 1/2 1.340(21) 0.682(2) 0.830(11)

Nonord. [4] DS-DAF D 1/2 −0.449(5) −0.2090(15) 1.7276(14)
Nonord. [10] D 1/2 −0.50(1) −0.228(5) 1.728(2)
Ord. [10] N 1/2 1.29(6) 0.65(3) 0.832(8)

Ord. [4] DS-PAF N 1/2 1.327(25) 0.680(8) 0.810(20)
Ord. [10] N 1/2 1.33(4) 0.65(2) 0.82(2)
Nonord. [10] D 1/2 −0.517(4) −0.252(5) 1.742(1)

Ord. [42] 3D CH class. 0.813(2)

Ord. [43] FT, 4-d ε-exp class. 1.307 0.664 0.846
Ord. [44] FT, d-2 ε-exp class. 1.39(2)
Ord. [45,46] FT, Massive field class. 1.338 0.685 0.831
Ord. [47] FT, Conformal bootstrap class. 0.831
Sp. [48] FT, 4-d ε-exp class. −0.445 −0.212 1.723
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