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Competing quantum spin liquids, gauge fluctuations, and anisotropic
interactions in a breathing pyrochlore lattice
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We use the projective symmetry group analysis to classify the quantum spin liquids on the S = 1/2 pyrochlore
magnet with a breathing anisotropy. We find 40 Z2 spin liquids and 16 U (1) spin liquids that respect the F 4̄3m
space group and the time reversal symmetry. As an application, we consider the antiferromagnetic Heisenberg
model, which is proposed to be the dominant interaction in the candidate material Ba3Yb2Zn5O11. Focusing
on the U (1) spin liquid Ansätze, we find that only two of them are physical when restricted to this model.
We present an analytical solution to the parton mean field theory for each of these two U (1) spin liquids. It is
revealed that one of them has gapless, while the other one has gapped, spinon excitations. The two U (1) spin
liquids are equal in energy regardless of the degree of breathing anisotropy, and they can be differentiated by
the low-temperature heat capacity contribution from the quadratically dispersing gapless spinons. We further
show that the latter is unaffected by fluctuations of the U (1) gauge field within the random phase approximation.
Finally, we demonstrate that a small Dzyaloshinskii-Moriya interaction lifts the degeneracy between the two
U (1) spin liquids, and it eventually causes the lattice to decouple into independent tetrahedra at strong coupling.
While current model parameters for Ba3Yb2Zn5O11 place it indeed in the decoupled regime, other candidate
materials may be synthesized in the near future that realize the spin liquid states discussed in our work.
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I. INTRODUCTION

Pyrochlore magnets with antiferromagnetically coupled lo-
cal moments are exemplary frustrated systems that provide
fertile grounds for the exploration of spin liquid physics in
three dimensions [1–4]. For instance, those with a strong Ising
anisotropy realize classical [5–12] or quantum [13–17] spin
ice, which displays emergent electromagnetism and magnetic
monopoles. Further enriching the research into pyrochlore
magnets is the abundance of synthesized materials, many of
which possess spin interactions that deviate significantly from
the spin ice Hamiltonian but nevertheless exhibit unusual be-
haviors [18–22].

In this work, we study a less symmetric variant of the
pyrochlore lattice known as the breathing pyrochlore lattice
[23–29], which breaks the inversion symmetry but retains all
other symmetries of its regular counterpart. Pictorially, the up
and down tetrahedra that share vertices with one another have
different sizes. Breathing pyrochlore materials, such as spinel
oxides [30–36] and Ba3Yb2Zn5O11 [37–42], with S = 3/2
and S = 1/2 local moments, respectively, were first synthe-
sized and investigated in the context of frustrated magnetism
as early as 2012. Recently, there has been a revival of interest
in breathing pyrochlore magnets due to proposals that they
may stabilize spin liquid phases that are characterized by
rank-2 U (1) gauge fields (i.e., the emergent electromagnetic
fields are tensors instead of vectors) and fractonic excitations
[43–45], and that host an emergent axion field and a θ term
coupled to the emergent QED [46].

Roughly coinciding with these works is the successful clas-
sification of symmetric Z2 and U (1) quantum spin liquids on
the regular pyrochlore lattice [47–50], within the frameworks
of bosonic and fermionic parton mean field theories. Such
a symmetry-based classification is yet to be extended to the
breathing pyrochlore lattice, a task which is taken up by this
study. A better understanding of the lower-rank spin liquids is
important and interesting in its own right, and, together with
the aforementioned rank-2 spin liquids, they will provide a
basis for future investigations into exotic phases of matter in
breathing pyrochlore magnets.

Here, we classify the possible Z2 and U (1) quantum spin
liquids in the S = 1/2 breathing pyrochlore magnet, via the
projective symmetry group (PSG) analysis [51–57] based on
the complex fermion mean field theory [58–61]. Both the
spatial symmetries of the breathing pyrochlore lattice, i.e.,
the space group F43̄m, and the time reversal symmetry are
enforced. This results in 40 Z2 spin liquids and 16 U (1) spin
liquids. We then explain how these quantum spin liquids are
related to those in the regular pyrochlore lattice previously
classified by Ref. [48]. In particular, we explicitly demonstrate
that all of the 16 U (1) spin liquids in the regular pyrochlore
lattice are special cases of the 8 U (1) spin liquids in the
breathing pyrochlore lattice.

As an application of the PSG classification results, we
consider the antiferromagnetic (AFM) Heisenberg model and
look for physical U (1) spin liquid Ansätze that have nonzero
bond parameters throughout the lattice. There are only two
such Ansätze out of 16, which we label U (1)0 and U (1)π ,
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with trivial and projective realizations of translational sym-
metries, respectively. Interestingly, their corresponding mean
field theories admit analytical solutions, owing largely to the
existence of flat bands [26,27]. We find that, independently of
the ratio between the interactions on the small and large tetra-
hedra that characterize the breathing anisotropy, the two spin
liquids are exactly degenerate. However, the U (1)0 state has
gapless spinon excitations with a quadratic dispersion at low
energies, while the U (1)π state has gapped spinon excitations,
so they can in principle be distinguished by thermodynamic
measurements [62].

For instance, the exponential (power law) dependence on
temperature of the heat capacity may be used to infer the
presence (absence) of an excitation gap. We further investi-
gate how the coupling of the U (1) gauge field to the gapless
spinons [63–75] may modify the low temperature heat capac-
ity by means of an effective field theory. Within the random
phase approximation and the small momentum limit, we find
that the heat capacity of the gauge photon has the same scaling
C(T ) ∼ T 3/2 as that of bare spinons, suggesting that the effect
of gauge fluctuations is not important.

The candidate spin model of the S = 1/2 breathing py-
rochlore material Ba3Yb2Zn5O11 (abbreviated as BYZO) con-
sists of an AFM Heisenberg interaction and a Dzyaloshinskii-
Moriya (DM) interaction roughly five times smaller in
magnitude [39,40]. For a more realistic model, we thus add a
subleading DM interaction to the AFM Heisenberg interaction
and study its effects on the two U (1) spin liquids. We find
that a finite DM interaction lifts the degeneracy between them
and favors the U (1)0 state. When the DM interaction becomes
sufficiently strong, it drives the system into isolated tetra-
hedra and neither spin liquid survives. In particular, neither
the U (1)0 state nor the U (1)π state can be stabilized in the
parameter space relevant for BYZO, where the interactions
on the large tetrahedra are very weak (i.e., near the decoupled
limit). This result corroborates the fact that single tetrahe-
dron modeling is well suited to understand the physics of
BYZO, as previously demonstrated by highly accurate fits to
inelastic neutron scattering spectra [39–42]. We expect that
the U (1)0 and U (1)π spin liquids will be relevant to spin
models closer to the Heisenberg limit or with a less severe
breathing anisotropy. Materials that satisfy these criteria may
be synthesized in the near future, given the growing interests
in breathing pyrochlore magnets.

The rest of the paper is organized as follows. In Sec. II,
we discuss the symmetry of the breathing pyrochlore lattice
and set up conventions for the coordinate system. In Sec. III,
we briefly introduce the complex fermion mean field theory,
before presenting the Z2 and U (1) quantum spin liquids that
result from the PSG analysis. In Sec. IV, we consider appli-
cations to the AFM Heisenberg model. Focusing on the U (1)
spin liquids, we first argue that there are only two physical
Ansätze, U (1)0 and U (1)π , due to constraints from the PSG
(Sec. IV A). Then we present analytical solutions to the corre-
sponding mean field theories (Sec. IV B). Taking into account
the coupling of gapless spinons to the gauge field, we con-
struct an effective field theory for the U (1)0 state, from which
we derive the low temperature heat capacity (Sec. IV C). After
that, we study the effects of adding a Dzyaloshinskii-Moriya
interaction (Sec. IV D). In Sec. V, we summarize our work,

FIG. 1. (a) The breathing pyrochlore lattice is characterized by
an asymmetry between the up and down tetrahedra, which are drawn
in green and red, respectively. (b) A tetrahedron can be embedded
inside a cube. A threefold rotation C3 about the [111] axis (indicated
by the red arrow) and a reflection σ across the plane perpendicular
to [011] (indicated by the blue plane) generate the entire point group
of the breathing pyrochlore lattice. This figure also defines the coor-
dinate system and the sublattice labelings.

discuss its relations to existing theoretical studies, and outline
potential future directions.

II. SYMMETRY

The pyrochlore lattice is a three dimensional network of
corner sharing tetrahedra. By convention, each tetrahedron
can be categorized as “up” or “down” according to its spatial
orientation. These two species are related by an inversion
symmetry about a site (i.e., a vertex of some tetrahedron). The
inversion symmetry can be broken by introducing a breathing
anisotropy, so that the up and down tetrahedra now have dif-
ferent sizes; see Fig. 1(a). The resulting structure is called the
breathing pyrochlore lattice, which belongs to the space group
F43̄m (No. 216) [37,39]. The underlying Bravais lattice is the
face centered cubic (fcc) lattice, with the primitive translation
vectors

a1 = a

2
(ŷ + ẑ), a2 = a

2
(ẑ + x̂), a3 = a

2
(x̂ + ŷ), (1)

where a is the lattice constant that defines the fcc unit cell.
We choose, for concreteness, the up (down) tetrahedra to be
the smaller (larger) ones. The coordinates of a site on the
breathing pyrochlore lattice can be expressed as

r = r1a1 + r2a2 + r3a3 + ds ≡ (r1, r2, r3; s), (2)

where ri ∈ Z, s ∈ {0, 1, 2, 3} indexes the four sites of a unit
cell, and the sublattice coordinates ds are

d0 = ρa(+x̂ + ŷ + ẑ)/8, (3a)

d1 = ρa(+x̂ − ŷ − ẑ)/8, (3b)

d2 = ρa(−x̂ + ŷ − ẑ)/8, (3c)

d3 = ρa(−x̂ − ŷ + ẑ)/8. (3d)

Here 0 < ρ < 1 parametrizes the breathing anisotropy, with
smaller ρ giving a greater difference between the sizes of
small and large tetrahedra. Note that with ρ = 1 in (3a)–(3d),
we restore the inversion symmetry and thus recover the regu-
lar pyrochlore lattice.
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The point group of F43̄m is the tetrahedral group Td of
24 elements, which are best visualized by embedding a tetra-
hedron in a cube [76,77]; see Fig. 1(b). These 24 elements
can be generated by just two of them, namely C3, a rotation
by 2π/3 about the [111] axis, and σ , a reflection across the
plane perpendicular to [011] and containing the origin. For
example, the fourfold rotoreflection consisting of a rotation
by π/2 about the [100] axis and then a reflection across the
yz plane can be expressed as S4 = C2

3 σC2
3 . Below we list the

action of the space group generators on a generic site with the
coordinates (r1, r2, r3, s),

T1 : (r1, r2, r3, s) −→ (r1 + 1, r2, r3, s), (4a)

T2 : (r1, r2, r3, s) −→ (r1, r2 + 1, r3, s), (4b)

T3 : (r1, r2, r3, s) −→ (r1, r2, r3 + 1, s), (4c)

C3 : (r1, r2, r3, s) −→ (r3, r1, r2,C3(s)), (4d)

σ : (r1, r2, r3, s) −→ ( − r1 − r2 − r3, r2, r3, σ (s)). (4e)

When s = 0, 1, 2, 3, C3(s) = 0, 2, 3, 1 and σ (s) = 1, 0, 2, 3.
Apart from the space group, we also consider time reversal

symmetry, which is present in a model with only bilinear spin
interactions (or, more generally, involving only products of
an even number of dipolar operators). We denote the time
reversal operator by T .

The commutation relations between these symmetry gener-
ators constitute what are called the algebraic identities, which
are listed in Appendix A. The algebraic identities will be
crucial to the projective symmetry group (PSG) analysis dis-
cussed in the next section.

III. COMPLEX FERMION MEAN FIELD THEORY

Complex fermion mean field theory [58–61] and its gauge
structure have been discussed extensively in numerous refer-
ences [51–57]. We only outline here some key steps that are
instrumental to the methodology of this work.

We first represent spins in terms of complex fermions,

Si =
∑
αβ

f †
iα

[�σ ]αβ

2
fiβ, (5)

so that the Hamiltonian, which is assumed to be bilinear
in the spins, is quartic in the fermions. We then perform a
mean field decoupling to obtain a Hamiltonian quadratic in
the fermions. For concreteness, let us consider the antiferro-
magnetic Heisenberg model,

H =
∑

i j

Ji j Si · S j, Ji j > 0, (6)

from which we obtain

HMF = −
∑

i j

Ji j

4
[χ∗

i j ( f †
i↑ f j↑ + f †

i↓ f j↓) + H.c. − |χi j |2

+ 	∗
i j ( fi↑ f j↓ − fi↓ f j↑) + H.c. − |	i j |2]

+
∑

i

[
λ

(3)
i (ni − 1) + (

λ
(1)
i + iλ(2)

i

)
fi↓ fi↑ + H.c.

]
,

(7)
where ni = f †

i↑ fi↑ + f †
i↓ fi↓ is the number operator, and χi j

and 	i j are variational parameters of the singlet hopping and

pairing channels, respectively. On-site Lagrange multipliers
λ

(1,2,3)
i ∈ R are introduced to enforce the single occupancy

constraint (i.e., one fermion per site), as the representation (5)
has enlarged the original Hilbert space H = ⊗i{|↑〉i, |↓〉i} by
allowing zero or double occupancies, which are unphysical.
In Sec. IV, we will study (6) with Ji j �= 0 only between the
nearest neighbors on the up and down tetrahedra.

Anisotropic spin interactions, such as the Dzyaloshinskii-
Moriya interaction that will be discussed in Sec. IV D, usually
require triplet hopping and pairing channels [78–81] in the
parton representation. Importantly, the projective symmetry
group classification of quantum spin liquids (discussed in
Sec. III A) does not depend on the particular spin model, but
only on the symmetries of the system.

The parton representation (5) introduces an SU (2) gauge
redundancy, in which the mean field Hamiltonian (7) is in-
variant under a symmetry X of the system only up to a gauge
transformation GX ∈ SU (2). In other words, the symmetries
of the system are realized projectively at the mean field level.
The 2 × 2 matrix of variational parameters,

ui j = Ji j

4

(
χi j −	∗

i j

−	i j −χ∗
i j

)
, (8)

by symmetry and SU (2) gauge redundancy, obeys

uX (i)X ( j) = GX (X (i))ui jG
†
X (X ( j)), (9)

for any space group element X .
The time reversal symmetry T , being an antiunitary opera-

tor, requires some care. We can choose a gauge such that [51]

ui j = −GT (i)ui jG
†
T ( j). (10)

The 2 × 2 matrix uii for the on-site terms is similarly defined,
see (B5), and it also obeys (9) and (10). Further details of
the complex fermion mean field theory can be found in
Appendix B.

A. Projective symmetry group analysis

It was first proposed in Ref. [51] that, given a particular
set of symmetries {X }, the different possible sets of gauge
transformations {GX } provide a means to classify quantum
spin liquids. Compound operators of the form GX X constitute
the so called projective symmetry group (PSG). This forms
the basis of the PSG analysis [52–57].

The form of GX ∈ SU (2) is not arbitrary but restricted by
the symmetries of the system. To understand this, we intro-
duce a special subgroup of PSG known as the invariant gauge
group (IGG), which consists of pure gauge transformations
that leave the mean field Ansatz invariant. The algebraic iden-
tities (A1a)–(A1n), such as T −1

2 T −1
1 T2T1 = e, constrain GX

via, for example,

(GT2 T2)−1(GT1 T1)−1(GT2 T2)(GT1 T1) ∈ IGG. (11)

This is because for expressions like the left hand side of (11),
the net effect of the symmetry operators is an identity, so
what remains must amount to a pure gauge transformation
that leaves the mean field Ansatz invariant [take X = e in
(9), for instance]. When both hopping and pairing terms are
present in the Hamiltonian, the IGG is {+1,−1}, and the
resulting spin liquids are called Z2 spin liquids. When only
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TABLE I. In conjunction with (12a)–(12f) and (14a)–(14f), this table lists all the possible Z2 and U (1) spin liquids. For all Z2 spin liquids,
gC3 (1, 2, 3) = 1 and gT (s) = iτ2. For all U (1) spin liquids, nT = 1, ϕC3 (s) = 0, ϕσ (0, 1, 2) = 0, and ϕT (s) = 0. Below q0 ∈ {0, 1, 2} and
pT2T1 , pσT2 , pσC3 ∈ {0, 1}.

Z2 U (1)

(ηT2T1 , ησT2 , ηT , ησ , ησT , ησC3 ) gC3 (0) gσ (0, 1, 2) gσ (3) nσ θT2T1 θσT2 ϕσ (3)

(±1, ±1, −1, +1, +1, ±1) 1 1 ησC3 0 pT2T1π pσT2π pσC3π

(±1, ±1, −1, −1, +1, ±1) 1 iτ2 ησC3 (iτ2) 1 pT2T1π pσT2π pσC3π

(±1, ±1, −1, −1, −1, ±1) e−i(2πq0/3)τ2 iτ3 ησC3 (iτ3)ei(2πq0/3)τ2

hopping terms are present in the Hamiltonian, the IGG is
{eiθτ3 | 0 � θ < 2π}, and the resulting spin liquids are called
U (1) spin liquids.

We summarize below the results of the PSG classification
of the Z2 and U (1) spin liquids. Details of the calculations
can be found in Appendices C and D.

1. Z2 spin liquids

We find 40 fully symmetric Z2 spin liquids on the breath-
ing pyrochlore lattice, which are distinguished by the gauge
transformations

GT1 (r1, r2, r3; s) = 1, (12a)

GT2 (r1, r2, r3; s) = η
r1
T2T1

, (12b)

GT3 (r1, r2, r3; s) = η
r1+r2
T2T1

, (12c)

GC3 (r1, r2, r3; s) = η
r1(r2+r3 )
T2T1

gC3 (s), (12d)

Gσ (r1, r2, r3; s) = η
r2
σT2

η
r2(r2−1)/2+r3(r3−1)/2+r2r3
T2T1

gσ (s), (12e)

GT (r1, r2, r3; s) = gT (s), (12f)

with η... and gX (s) given in Table I.

2. U (1) spin liquids

For U (1) spin liquids, the gauge transformations have the
specific form [48,51,54,56]

GX (r1, r2, r3; s) = (iτ1)nX eiφX (r1,r2,r3;s)τ3 ,

nX ∈ {0, 1}, φX ∈ [0, 2π ). (13)

We find 16 fully symmetric U (1) spin liquids on the breath-
ing pyrochlore lattice, which are distinguished by the gauge
transformations

φT1 (r1, r2, r3; s) = 0, nT1 = 0, (14a)

φT2 (r1, r2, r3; s) = r1θT2T1 , nT2 = 0, (14b)

φT3 (r1, r2, r3; s) = (r2 − r1)θT2T1 , nT3 = 0, (14c)

φC3 (r1, r2, r3; s) = r1(r2 − r3)θT2T1 + ϕC3 (s), nC3 = 0,

(14d)

φσ (r1, r2, r3; s) =
[

r2(r2 + 1)

2
+ (−1)nσ

r3(r3 + 1)

2

+ (−1)nσ r2 + r3 + r2r3

]
θT2T1

+ r2θσT2 + ϕσ (s), (14e)

φT (r1, r2, r3; s) = ϕT (s), (14f)

with θ... and ϕX (s) given in Table I.

B. Relation to the isotropic lattice

We have found 16 fully symmetric U (1) spin liquids in
the breathing pyrochlore lattice. Intriguingly, the regular py-
rochlore lattice has the same number of U (1) spin liquids
[48]. In this subsection, we would like to further investigate
the relation between the U (1) spin liquids of the regular and
breathing pyrochlore lattices. Let A and B be two systems
such that the symmetry group of B is a subgroup of the sym-
metry group of A. Generally, we expect the spin liquids in A to
be included, as special cases, among the spin liquids in B [55].
In our case, the breathing pyrochlore lattice is obtained from
the regular pyrochlore by breaking the inversion symmetry, so
we can think of A (B) as the regular (breathing) pyrochlore
lattice.

The PSG analysis for the regular pyrochlore lattice is
done with the set of space group generators {T1, T2, T3,C6, S},
where C6 is a sixfold rotoinversion and S is a twofold non-
symmorphic screw [48]. They can be used to construct the
point group generators of the breathing pyrochlore lattice,
via C3 = C

4
6 and σ = (C6)4SC

−1
6 . Therefore, to see the re-

lation between the spin liquids in the breathing and regular
pyrochlore lattices, we can compare the gauge transforma-
tion parts of GT1 T1, GT2 T2, GT3 T3, GC3C3, Gσ σ , and GT T
found in Sec. III A to those of GT1 T1, GT2 T2, GT3 T3, (GC6

C6)4,
(GC6

C6)4(GSS)(GC6
C6)−1, and GT T in Ref. [48], respec-

tively [55].
Leaving the detailed calculations to Appendix D 3, the final

result is stated as follows. All 16 U (1) spin liquids of the
regular pyrochlore lattice are continuously connected to the
8 U (1) spin liquids of the breathing pyrochlore lattice with
θσT2 = 0, in the fashion of a two-to-one mapping. The other
8 U (1) spin liquids in the breathing pyrochlore lattice with
θσT2 = π have no correspondence. A similar exercise can be
carried out to clarify the relation between the Z2 spin liquids
in the regular and breathing pyrochlore lattices, but we shall
not report it here for simplicity.

IV. ANTIFERROMAGNETIC HEISENBERG MODEL

Ba3Yb2Zn5O11 (abbreviated as BYZO) is so far the only
existing S = 1/2 breathing pyrochlore magnet [37–42]. There
are other breathing pyrochlore materials but with higher spins
[30–36], and they do not fall into the classification scheme
presented in this work. The proposed spin model for BYZO
[39,40] consists of a dominant antiferromagnetic (AFM)
Heisenberg interaction and a subleading Dzyaloshinskii-
Moriya interaction on isolated (small) tetrahedra [82]. The
inter-tetrahedron coupling, i.e., the interactions on the large
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tetrahedra, are not well understood at the moment but ex-
pected to be insignificant, due to the rather large ratio ∼2
between the bond lengths of the large and small tetrahedra.

As an application of the PSG classification results, we
first study the pure AFM Heisenberg model on the breathing
pyrochlore lattice, and then consider the effects of adding
a Dzyaloshinskii-Moriya interaction. For simplicity, we con-
sider only the fully symmetric U (1) spin liquid candidates.

We denote the nearest neighbor Heisenberg interactions on
the up (down) tetrahedra by J1 (J2). The mean field Hamil-
tonian of the AFM Heisenberg model is given by (7), which
describes a Z2 spin liquid as both hopping and pairing terms
are present (one can think of it as the spinon analog of a
BCS superconductor). We set the pairing terms to be zero
for a U (1) spin liquid Hamiltonian (essentially a chargeless
free fermion model). Notice that both U (1) spin liquids with
gapless and gapped spinons are allowed to exist in 3+1 di-
mensions, while in 2+1 dimensions U (1) spin liquids with
gapped spinons are unstable to monopole proliferation [83].

A. Physical spin liquid Ansätze

As discussed in Sec. III A, the mean field Ansätze ui j on
different bonds are related by the (projective) symmetries of
the system via (9), which reduces the number of independent
χi j and/or 	i j . On the other hand, a symmetry that maps a
bond onto itself, e.g., the time reversal symmetry via (10),
may impose additional constraints on the bond. If the sym-
metry, or the conflicting requirements arising from different
symmetries, forces ui j = 0 everywhere, then we get a zero
Hamiltonian, which is unphysical and thus discarded [52,54].
We also exclude the case of ui j �= 0 on one species of the
tetrahedra (say up) and ui j = 0 on the other (say down). This
describes a system of decoupled tetrahedra, which reduces to
a 4-spin problem. While the decoupled tetrahedron model is
interesting, it does not require complex fermion mean field
theory, and we do not consider it explicitly in this work where
we focus on spin liquid states with full spatial connectivity.

Therefore, having specified the spin model and thus the
mean field parameters, we may find that some of the PSGs in
Sec. III A are unphysical or irrelevant, upon the applications
of (9) and (10). For U (1) spin liquids, with the pairing terms
	i j = 0 (as well as the on-site λ

(1,2)
i = 0) in (7), we have

ui j =
(

χi j 0

0 −χ∗
i j

)
, (15)

where, to simplify the notation, we have temporarily dropped
the Ji j/4 factor in (15). First, we note that χ ji = χ∗

i j from the
definition (B2a). Second, all U (1) spin liquids must have real
χi j by virtue of time reversal symmetry: since GT (i) = iτ1 for
all i, (10) implies ui j = −(iτ1)ui j (−iτ1), or(

χi j 0

0 −χ∗
i j

)
=

(
χ∗

i j 0

0 −χi j

)
, (16)

so χi j = χ∗
i j . It follows that u ji = ui j for all i and j.

Introducing the shorthand notation ust to denote ui j with
i = (0, 0, 0; s) and j = (0, 0, 0; t ), i.e., the mean field Ansatz
of the bond formed by sublattices s and t in the unit cell at
the origin, we demonstrate that the PSGs with nσ = 1 are

FIG. 2. The mean field Ansätze of the two possible U (1) spin
liquids, the (a) U (1)0 and (b) U (1)π states, in the antiferromagnetic
Heisenberg model. They contain N = 4 and N = 16 sites per unit
cell, respectively, which are labeled by s = 0, . . . ,N − 1. Green
(red) bonds on the down tetrahedra indicate χi j = +χ2 (χi j = −χ2).
All bonds on the up tetrahedra have χi j = +χ1 and they are colored
in green. In (b), the unit cell is enlarged in the a2 and a3 directions,
due to the projective realization of the translational symmetry.

unphysical. Equation (9) with X = σ yields

u10 = (iτ1)u01(−iτ1), (17)

or u01 = −u01 = 0, and by symmetry all ui j on the up tetrahe-
dra will be zero. We thus rule out all 8 PSGs that carry nσ = 1.

On the other hand, for nσ = 0, we show that only the PSGs
with pσC3 = 0 and pσT2 = 0 are relevant. Equation (9) with
X = σ yields

u23 = u23eipσC3 πτ3 . (18)

If pσC3 = 1, then u23 = −u23 = 0, and by symmetry all ui j on
the up tetrahedra will be zero. We thus discard pσC3 = 1. Next,
we consider the bond formed by sublattices 2 and 3 on a down
tetrahedron. Let u′

23 ≡ u(0,1,0;2)(0,0,1;3). By σ we have

u(−1,1,0;2)(−1,0,1;3) = eipσT2 πτ3 u′
23. (19)

By T1 we have

u(−1,1,0;2)(−1,0,1;3) = u′
23. (20)

If pσT2 = 1, then u′
23 = −u′

23 = 0, and by symmetry all ui j on
the down tetrahedra will be zero. We thus discard pσT2 = 1.

Out of the 16 PSGs for the U (1) spin liquids, we are
eventually left with only 2 PSGs with nσ = 0, pσT2 = 0, and
pσC3 = 0. They are distinguished by the value of θT2T1 = 0, π ,
so we call them the U (1)0 and U (1)π states, respectively.
Upon repeated applications of (9), they lead to the mean field
Ansätze depicted in Figs. 2(a) and 2(b).

B. Analytical solutions

The mean field theories of the U (1)0 and U (1)π states can
be solved analytically, owing to the existence of flat bands. It
also follows from the solutions that the degeneracy of these
spin liquids persists throughout the range of J2/J1 ∈ (0, 1).
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We will present the solution for the U (1)0 state in this subsec-
tion, while relegating that of the U (1)π state to Appendix E.

Before delving into the analysis, let us first examine the
structure of the Fourier transformed Hamiltonian. We use the
following convention for Fourier transform,

fksσ = 1√
N

∑
R

fRsσ eik·R, (21)

where N is the total number of unit cells, R is the unit cell
coordinate, s is the sublattice index, and σ ∈ {↑,↓}. Taking
as our basis �k = ( fk0↑, . . . , fk(N−1)↑, fk0↓, . . . , fk(N−1)↓),
where N is the number of sublattices per unit cell [4 and 16
for the U (1)0 and U (1)π states, respectively], the Hamiltonian
has the form

H =
∑

k

[
�

†
kDk�k + 3N

2

(
J1

4
χ2

1 + J2

4
χ2

2

)]
. (22)

Since the Hamiltonian contains only singlet hopping channels,
fermions with up and down spins do not mix, and the 2N ×
2N matrix Dk is block diagonal, consisting of two identical
copies of the N × N matrix dk. The energy eigenvalues of
Dk can thus be obtained by diagonalizing dk and imposing a
twofold degeneracy. The single occupancy constraint in real
space, in which each site is occupied by a fermion, is trans-
lated to a half filling constraint in momentum space, in which
the lower (upper) half of the energy eigenstates are occupied
(empty) in the ground state. Note that if we impose the half
filling constraint by hand, then we no longer have to explicitly
introduce the Lagrange multiplier λ

(3)
i .

Furthermore, we note that the global gauge transformation
iτ1 flips the signs of both χ1 and χ2 (which can be thought
of as a particle hole transformation), while leaving the total
energy invariant (as it should). We thus assume χ1 < 0 with-
out loss of generality. While the overall sign is not important,
we will see later that the relative sign between χ1 and χ2

does make a difference. Finally, we define χ̃1 = −J1χ1/4 > 0
and χ̃2 = −J2χ2/4 for convenience. We also require both χ1

and χ2 to be nonzero for the physical solutions that we are
interested in (see the discussion in Sec. IV A).

For the U (1)0 state, diagonalizing dk yields the four eigen-
values ε0, ε0, ε+, ε−, where

ε0(k) = −χ̃1 − χ̃2, (23a)

ε±(k) = χ̃1 + χ̃2 ±
√

4χ̃2
1 + 4χ̃2

2 − 2χ̃1χ̃2[2 − f (k)], (23b)

with

f (k) = cos(k1 − k2) + cos(k2 − k3) + cos(k3 − k1)

+ cos k1 + cos k2 + cos k3, ki ∈ [0, 2π ). (24)

The maximum and minimum of f (k) are 6 and −2, re-
spectively, information that will be useful later. The same
dispersions (23a) and (23b) have been obtained in different
contexts, namely as eigenvalues of (i) the interaction matrix in
the classical analysis of the breathing pyrochlore Heisenberg
model [23] and (ii) the tight binding model on the breathing
pyrochlore lattice with real hopping integrals [27].

We first assume that χ̃2 > 0; i.e., χ1 and χ2 have the same
sign. We see that ε+(k) > ε0(k) for all k, so the entire + band

is unoccupied. On the other hand,

min
k

ε−(k) = χ̃1 + χ̃2 −
√

4χ̃2
1 + 4χ̃2

2 + 8χ̃1χ̃2,

= −χ̃1 − χ̃2,

which implies ε0(k) � ε−(k) for all k (equality holds only
when k = 0). The ± bands are thus well separated from,
and higher in energy than, the two 0 bands throughout the
Brillouin zone except at k = 0. Then, filling the lower half of
the energy eigenstates, i.e., all the flat bands, the total energy
of a system with N × N sites is given by

ES =
∑

k

[
4ε0(k) + 6

(
J1

4
χ2

1 + J2

4
χ2

2

)]

=
∑

k

[
4

(
J1

4
χ1 + J2

4
χ2

)
+ 6

(
J1

4
χ2

1 + J2

4
χ2

2

)]
, (25)

where the factor of 4 instead of 2 in front of ε0(k) takes into
account the two spin flavors (recall that we have two copies
of dk).

Next, we show that if χ̃2 < 0, i.e., χ1 and χ2 have opposite
signs, then the total energy is always higher than the previ-
ously analyzed case of χ̃2 > 0. Without loss of generality, we
may assume |χ̃1| � |χ̃2|, for if it is otherwise, we can perform
the global gauge transformation iτ1 and interchange χ̃1 and
χ̃2. For clarity, we rewrite the eigenvalues (23a) and (23b) as

ε0(k) = −|χ̃1| + |χ̃2|,
ε±(k) = |χ̃1| − |χ̃2|

±
√

4|χ̃1|2 + 4|χ̃2|2 + 2|χ̃1||χ̃2|[2 − f (k)]. (26)

One can again see that ε+(k) > ε0(k) for all k, so the entire
+ band is unoccupied. On the other hand,

max
k

ε−(k) = |χ̃1| − |χ̃2| −
√

4|χ̃1|2 + 4|χ̃2|2 − 8|χ̃1||χ̃2|
= −|χ̃1| + |χ̃2|,

min
k

ε−(k) = |χ̃1| − |χ̃2| −
√

4|χ̃1|2 + 4|χ̃2|2 + 8|χ̃1||χ̃2|
= −|χ̃1| − 3|χ̃2|, (27)

which implies ε0 � ε−(k) for all k (equality holds only when
k = 0). The ± bands are thus well separated from the two 0
bands, with the + (−) band lying above (below) the flat bands.
Therefore, filling the lower half of the energy eigenstates
corresponds to filling the − band and one of the 0 bands. The
total energy for a system of N × N sites is given by

EA =
∑

k

[
2ε−(k) + 2ε0(k) + 6

(
J1

4
|χ1|2 + J2

4
|χ2|2

)]

>
∑

k

[
2 min

k
ε−(k) + 2

(
− J1

4
|χ1| + J2

4
|χ2|

)

+ 6

(
J1

4
|χ1|2 + J2

4
|χ2|2

)]

=
∑

k

[
− 4

(
J1

4
|χ1| + J2

4
|χ2|

)
+ 6

(
J1

4
|χ1|2 + J2

4
|χ2|2

)]

= ES.
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FIG. 3. (a)–(c) The spinon dispersion of the U (1)0 spin liquid, at (a) J2/J1 = 0.8, (b) J2/J1 = 0.5, and (c) J2/J1 = 0.2. The flat band
(indicated by darker color) is fourfold degenerate, while each of the two dispersing bands (indicated by lighter color) is doubly degenerate,
totaling eight bands (4 sublattices × 2 spins). At half filling, all flat (dispersing) bands are (un)occupied. (d)–(f) The spinon dispersion of the
U (1)π spin liquid, at (d) J2/J1 = 0.8, (e) J2/J1 = 0.5, and (f) J2/J1 = 0.2. The flat band (indicated by darker color) is 16-fold degenerate,
while each of the four dispersing bands (indicated by lighter color) is 4-fold degenerate, totaling 32 bands (16 sublattices × 2 spins). At half
filling, all flat (dispersing) bands are (un)occupied.

The inequality in the second line is strict because there is at
least one point, k = 0, that does not saturate the lower bound
of ε−(k). We have thus shown that ES < EA; i.e., the total
energy for χ̃2 < 0 is always higher than that for χ̃2 > 0, given
that χ̃1 > 0. We can therefore exclude the case where χ1 and
χ2 have opposite signs.

Finally, minimizing (25) with respect to χ1 and χ2,
∂ES/∂χ1,2 = 0, yields χ1,2 = −1/3, regardless of the values
of J1 and J2 as long as they are positive. The ground state
energy per site is thus −(J1 + J2)/24.

The solution for the U (1)π state proceeds along essentially
the same line of reasoning. Leaving the details of calculations
to Appendix E, upon the optimization we also have χ1 = χ2 =
±1/3 and the ground state energy per site is −(J1 + J2)/24,
as in the U (1)0 state. We have thus shown the robust “1/3
quantization” of the mean field parameters in the ground states
of the two U (1) spin liquids, and established their degeneracy,
independent of the ratio J2/J1 as long as both J1 and J2 are
positive.

The spinon spectra of the U (1)0,π spin liquids at several
values of J2/J1 along some high symmetry cuts in the Bril-
louin zone [84] are plotted in Figs. 3(a) to 3(f). In the U (1)0

spin liquid, the spinon gap closes at the � point, while in the
U (1)π spin liquid the spinons are always gapped; these hold
throughout the range J2/J1 ∈ (0, 1).

We remark that, in the isotropic limit J2/J1 = 1, our U (1)0

and U (1)π states respectively reduce to the uniform and
(π, π ) states of Ref. [85], where they are also found numer-

ically to be degenerate. Note that our energy is smaller by
an overall factor of 4 than that in Ref. [85] due to different
schemes of the mean field decoupling.

C. Low temperature heat capacity

Although the U (1)0 and U (1)π spin liquids are degenerate,
there is a qualitative distinction between their spinon spectra,
namely the presence or absence of an excitation gap. This al-
lows them to be differentiated by specific heat measurements,
for example. Considering the contribution from the spinons
alone, i.e., ignoring photons and visons, the heat capacity
C(T ) is expected to show a power law (exponential) depen-
dence on temperature T for the gapless (gapped) case at low
temperatures.

The spinon excitation spectrum of the U (1)0 spin liq-
uid becomes gapless at the � point (k = 0), where the flat
bands ε0(k) touch the dispersing bands ε−(k), as shown in
Sec. IV B. Assuming χ̃1,2 ≡ −J1,2χ1,2/4 > 0, so that the flat
(dispersing) bands are filled (empty), we perform a small k
expansion in the vicinity of the � point to the lowest nontrivial
order,

ε−(k ≈ 0) ≈ χ̃1 + χ̃2 −
√

4(χ̃1 + χ̃2)2 − χ̃1χ̃2|k|2

≈ −χ̃1 − χ̃2 + χ̃1χ̃2

4(χ̃1 + χ̃2)
|k|2, (28)
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where |k|2 = k2
x + k2

y + k2
z and we have used⎛

⎝k1

k2

k3

⎞
⎠ = 1

2

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠

⎛
⎝kx

ky

kz

⎞
⎠. (29)

Therefore, at low energies the spinon excitations follow a
quadratic dispersion, which gives rise to a heat capacity
C(T ) ∼ T 3/2 at low temperatures if we neglect the effects of
the U (1) gauge field.

However, gauge fluctuations may be important in a spin
liquid with gapless spinons and lead to a singular correction
to the heat capacity coefficient C(T )/T for small T . For
instance, it has been established that, if spinons in a U (1)
spin liquid form a sufficiently large Fermi surface, when their
coupling to the gauge field is taken into account, C(T ) scales
as T 2/3 and T ln(1/T ) in 2D [71,72,75] and 3D [70,86,87],
respectively, in contrast to T for bare spinons. Here, we do not
have a Fermi surface, but a flat-quadratic band touching. To
understand how gauge fluctuations may modify C(T ) in the
U (1)0 spin liquid, we construct an effective field theory that
includes the interaction between the low energy spinons and
the gauge field via minimal coupling. Going to the continuum
limit, the Lagrangian and the partition function are [74,75]

L = ψ̄σ (∂τ − ia0)ψσ + 1

2m
ψ̄σ (−i∇ − a)2ψσ , (30a)

Z =
∫

Dψ̄σ Dψσ Da e− ∫
dτ

∫
d3r L , (30b)

where τ is the imaginary time, ψσ and ψ̄σ are the spinon fields
with σ being the spin flavor, a0 and a are the temporal and
spatial components of the U (1) gauge field, respectively, and
a ≡ (a0, a). The effective mass m of the spinons is determined
by the coupling constants J1,2 and by the mean field parame-
ters χ1,2 through (28). Note the absence of the Maxwell term

Lg = 1

g
fμν f μν, fμν = ∂μaν − ∂νaμ (31)

in (30a) as g is proportional to the charge gap and we are
working in the insulating phase [74,75]. Furthermore, since
the flat bands are momentum independent, they contribute a
constant (taken to be zero here) to the total energy and act
as a reservoir of spinons that can be thermally excited to
the quadratic spectrum. Note that the fields are functions of
spacetime; for example ψσ in (30a) should be understood as
ψσ (r, τ ).

Integrating out the spinons in (30b) and using the random
phase approximation [73–75,88], we obtain an effective La-
grangian for the U (1) gauge field,

Leff = −
∑

i, j∈{x,y}
ai(−q)�i j (q)a j (q), (32a)

�i j (q; l = 0) = −c1

√
T |q|2δi j, (32b)

�i j (q; l �= 0) = δi j

(
−c2T 3/2 + c3T 5/2 |q|2

ν2
l

)
, (32c)

in the small |q| limit. Some remarks are in order. The first
one is about conventions and notations. We have chosen

the Coulomb gauge ∇ · a = 0 and labeled the two trans-
verse components of a by x and y. The inverse photon
propagator is identified as −�i j (q), where q = (q, νl ) is
the four-momentum, νl = 2π lT with l ∈ Z is the Matsubara
frequency, and q is the momentum, of the photon. The coef-
ficients ci are positive and depend only on m. The second one
is that, unlike the case of a spinon Fermi surface [70,74,88],
we do not have a Fermi wave vector kF relative to which the
smallness of |q| can be defined. The natural dimensionless
parameter that enables a small |q| expansion in our case is
|q|/√mT � 1. Finally, �i j (q) assumes one of the two forms,
either (32b) or (32c), according to whether l is zero or finite.
Details of the calculations as well as extended discussions can
be found in Appendix F.

In a U (1) spin liquid with a spinon Fermi surface, one finds
�i j (q) = δi j (−�|νl |/|q| − χ |q|2), with positive constants �

and χ that are determined by the details of the spinon disper-
sion [70]. This is in contrast with our �i j , (32b) and (32c),
where the coefficients ci are multiplied by powers of T so
that they vanish at T = 0, as expected because there is no
thermally excited spinon in the quadratic spectrum at absolute
zero.

From (32a) we can calculate the partition function and the
free energy as [70,74]

Z =
∫

Da e− ∑
ql Leff , (33a)

F = −T ln Z, (33b)

which yield, for the “static” (l = 0) and the “dynamic” (l �= 0)
contributions, respectively,

Fsta = T
∑

q

ln(c1

√
T |q|2), (34a)

Fdyn = T
∑

q

∑
l �=0

ln

(
c2T 3/2 − c3T 5/2 |q|2

ν2
l

)
. (34b)

To evaluate (34a) and (34b), we change the summation over
q to an integral, which has an upper limit of ∼√

mT in line
with the small q assumption, and regularize the summation
over nonzero l with the Riemann zeta function. Details of the
calculation are presented in Appendix F.

The heat capacity is then given by C(T ) = −T (∂2F/∂T 2).
In the low temperature limit, we find C(T ) ∼ T 3/2 to leading
order. We thus conclude that U (1) gauge fluctuations do not
modify the scaling of the bare spinon heat capacity with tem-
perature, unlike the case of a Fermi surface.

D. Effects of Dzyaloshinskii-Moriya interaction

For the pure AFM Heisenberg model, we have seen
in Sec. IV B that regardless of the strength of breathing
anisotropy, we are always able to obtain spatially connected
solutions from the mean field theories with the U (1)0 and
U (1)π Ansätze (even if we take J2/J1 −→ 0+, as long as J2 is
not strictly zero). Moreover, these two spin liquids are degen-
erate throughout the range J2/J1 ∈ (0, 1). In this subsection,
we investigate how the stability and degeneracy of the U (1)0

and U (1)π spin liquids are affected by a finite Dzyaloshinskii-
Moriya interaction.
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FIG. 4. (a) The stability of the U (1)0 and U (1)π spin liquids
in the presence of Dzyaloshinskii-Moriya interaction, with J1 > 0
and D1 < 0. At D1 = 0, these two spin liquids are degenerate, as
indicated by the dark colored thick line. When D1 becomes finite,
U (1)0 is preferred over U (1)π , as indicated by the light colored area.
The blank region labeled by “decoupled” is where the mean field
theory favors a solution of isolated tetrahedra, instead of a spatially
connected U (1) spin liquid. The red star indicates the parameters
of the candidate spin model for BYZO [39,40], where |D1|/J1 ≈
0.2 × √

2 = 0.28 and J2/J1 ≈ 0. (b) The spinon dispersion of the
U (1)0 spin liquid at J2/J1 = 0.8 and |D1|/

√
2J1 = 0.2 [cf. Fig. 3(a)].

Filled (empty) bands are indicated by darker (lighter) blue lines.

The spin Hamiltonian is now given by

H =
2∑

n=1

∑
〈i j〉∈n

(JnSi · S j + Dnd̂i j · Si × S j ), (35)

where, as before, the subscripts 1 or 2 on the interactions
indicate whether they belong to the up or down tetrahedra, and
d̂i j = d̂st are unit vectors that depend only on the sublattice
indices s and t of sites i and j [39,43],

d̂01 = −ŷ + ẑ√
2

, d̂02 = −ẑ + x̂√
2

, d̂03 = −x̂ + ŷ√
2

,

d̂12 = −x̂ − ŷ√
2

, d̂23 = −ŷ − ẑ√
2

, d̂31 = −ẑ − x̂√
2

. (36)

In line with the proposed spin models of BYZO in
Refs. [39,40], we choose D1 < 0. We further assume D2 =
(J2/J1)D1. Using the parton representation of spins (5), the
Dzyaloshinskii-Moriya interaction involves both the singlet
and triplet channels (see Appendix G). If we require the sin-
glet channels associated with the dominant AFM Heisenberg
interaction to be nonvanishing, we still have U (1)0 and U (1)π
as the only two U (1) spin liquid Ansätze to be considered
upon adding the Dzyaloshinskii-Moriya interaction.

For either Ansatz, the mean field theory of the model
(35) contains only two additional variational parameters, Ey

1
and Ey

2 , on top of χ1 and χ2 that are already present in the
Heisenberg limit (see Appendix G). The theory is no longer
analytically tractable, so we solve it computationally by iter-
ating the self consistency equations, e.g., χi j = ∑

σ 〈 f †
iσ f jσ 〉

(which is done in momentum space; see Ref. [80] for exam-
ple), until the mean field parameters converge. We study the
parameter region defined by J2/J1 ∈ (0, 1) and D1/

√
2J1 ∈

[−0.5, 0].
Our result, which is plotted in Fig. 4(a), has two main

features. First, in the presence of a sufficiently small

Dzyaloshinskii-Moriya interaction, the degeneracy between
the U (1)0 and U (1)π spin liquids is lifted, such that the U (1)0

spin liquid is lower in energy. The Dzyaloshinskii-Moriya in-
teraction also gaps out the spinon spectrum of the U (1)0 spin
liquid. In particular, the highest occupied band and the lowest
unoccupied band no longer touch at the � point; see Fig. 4(b).
Second, as the Dzyaloshinskii-Moriya interaction increases in
magnitude, there exists a critical value |D1|c above which the
mean field theory favors a solution of decoupled tetrahedra,
such that the mean field parameters χ2 and Ey

2 (χ1 and Ey
1 )

associated with the down (up) tetrahedra converge to zero
(finite values). Since the spatial connectivity is lost, we do
not call the resulting state a U (1) spin liquid. Moreover, |D1|c
increases as J2/J1 increases. It seems reasonable to speculate
|D1|c/J1 −→ ∞ as J2/J1 −→ 1; i.e., we expect that a spa-
tially connected solution is always favorable in the isotropic
limit.

V. DISCUSSION

In summary, we have investigated the possible quantum
spin liquids in the S = 1/2 breathing pyrochlore magnet using
the complex fermion mean field theory and the projective
symmetry group (PSG) analysis. We identify 40 Z2 spin liq-
uids and 16 U (1) spin liquids that are subjected to the F 4̄3m
space group of the breathing pyrochlore lattice as well as
the time reversal symmetry. As an application, we consider
the antiferromagnetic (AFM) Heisenberg model, and identify
the physical U (1) spin liquid Ansätze. Most of the 16 U (1)
states are constrained by PSG to have vanishing bond parame-
ters, leaving only two cases, which we label U (1)0 and U (1)π .
Their corresponding mean field theories admit analytical so-
lutions, as shown in the text. We find that the U (1)0 state has
gapless spinon excitations, while the U (1)π state exhibits a
spinon gap; these two states are however degenerate regard-
less of the ratio J2/J1 between the interactions on the large
and small tetrahedra. While the spinon contribution to the
heat capacity of the U (1)π state is exponentially suppressed
at low temperatures in the presence of an excitation gap, the
quadratically dispersing spinons in the U (1)0 state give rise to
a heat capacity contribution C(T ) ∼ T 3/2 at low temperatures.
Using an effective field theory, we demonstrate that such
power law dependence is unchanged by small momentum
gauge fluctuations within the random phase approximation.

The degeneracy between the U (1)0 and U (1)π states is
lifted by a finite Dzyaloshinskii-Moriya interaction, which
favors the U (1)0 state and gaps out its spectrum. It is also
found that when the DM interaction becomes sufficiently
large, neither U (1) spin liquids survive as the bond param-
eters on the large tetrahedra tend to zero upon solving the
self consistent mean field equations iteratively. The parame-
ter region that favors such a decoupled tetrahedron solution
contains the candidate spin model [39,40] for the material
Ba3Yb2Zn5O11 (BYZO), whose interactions on the large
tetrahedra appear to be orders of magnitude smaller than
those on the small tetrahedra. The U (1)0 and U (1)π spin
liquids are thus more relevant for spin models closer to
the Heisenberg limit or with a weaker breathing anisotropy.
While BYZO is the only S = 1/2 breathing pyrochlore mate-
rial discovered so far, similar materials with parameters that

134402-9



CHERN, KIM, AND CASTELNOVO PHYSICAL REVIEW B 106, 134402 (2022)

span the phase diagram in our work may be synthesized in
near future.

The AFM Heisenberg model on the breathing pyrochlore
lattice had been investigated in several prior works, first as
a route to understand the same model but on the regular
pyrochlore lattice, and later for its own sake when breathing
pyrochlore materials made their appearance in experimental
laboratories. It is therefore worth briefly discussing our work
in relation to the existing literature.

Starting from decoupled tetrahedra with one S = 1/2 mo-
ment per vertex, Refs. [89,90] treat the inter-tetrahedron
interaction perturbatively up to third order, and arrive at an
effective Hamiltonian with one pseudospin-1/2 degree of
freedom per tetrahedron and interactions that involve three
nearby pseudospins. A mean field approximation, which es-
sentially treats the pseudospins as classical vectors, yields
a partially dimerized ground state, leaving one disordered
pseudospin for every four pseudospins. This is different from
our approach, which is nonperturbative, and our spin liquid
Ansätze preserves the lattice symmetry, while the dimerized
state breaks it. Such a perturbative reconnection method first
appeared in Ref. [91] (see also Ref. [92]) for S = 1/2, and it
was also extended to S = 1 and S = 3/2 in Ref. [25].

Reference [24] uses gauge mean field theory [15,16] to
study the S = 1/2 XXZ model on the breathing pyrochlore
lattice. While gauge mean field theory provides an excellent
description of the quantum spin ice state near the Ising limit,
it is unclear how accurately the theory captures other types
of quantum spin liquid in a more generic parameter region.
For example, it predicts an antiferromagnetically ordered
state in the AFM Heisenberg limit, where the strong frus-
tration warrants the consideration of possible quantum spin
liquid candidates, which can be systematically classified by
PSG.

Reference [23] studies the Heisenberg model on the breath-
ing pyrochlore lattice in the classical limit, where the signs of
J1 and J2 are allowed to be different. Interestingly, the classical
ground state depends only on the signs of the interactions but
not on their relative magnitude. In particular, for J1 > 0 and
J2 > 0, the ground state is a Coulombic spin liquid [93] sub-
ject to the divergenceless condition that the vector summation
of the four spins on every tetrahedron is zero, which is the
continuous version of the 2-in-2-out ice rule. This gives us
reason to look for quantum spin liquids in the corresponding
S = 1/2 model.

More interestingly, a recent SU (2) density matrix renor-
malization group study [94] of the S = 1/2 AFM Heisenberg
model on the regular pyrochlore lattice suggests a disordered
ground state with spontaneously broken inversion symme-
try, as evidenced by a difference in energy between the two
species of tetrahedra. Assuming that none of the remaining
symmetries is broken, the quantum spin liquids classified in
this work may even be considered as candidate ground states
of the regular pyrochlore lattice.

We close by mentioning several potentially interesting fu-
ture directions. While we have focused on the U (1) spin
liquids in this work, it will also be useful to conduct a thor-
ough examination of the Z2 spin liquids, though they are
greater in number. Besides, we have only considered here
time reversal symmetric spin liquid Ansätze. It may be worth-

while to study Ansätze that break time reversal symmetry, like
the monopole flux state in Ref. [85], as they may give rise
to stable chiral spin liquids. Moreover, it is known that mean
field theory does not give highly accurate energetics, and ad-
vanced numerical techniques, specifically variational Monte
Carlo with Gutzwiller projection, may be employed to obtain
more reliable estimates of the energies of the various spin
liquids, magnetic orders, and other candidate ground states.
Our PSG analysis lays the foundation on which the variational
wave functions of the quantum spin liquids can be constructed
for such comparisons.
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APPENDIX A: ALGEBRAIC IDENTITIES

In this Appendix, we list the algebraic identities of the
breathing pyrochlore lattice:

T −1
2 T −1

1 T2T1 = e, (A1a)

T −1
3 T −1

2 T3T2 = e, (A1b)

T −1
1 T −1

3 T1T3 = e, (A1c)

C−1
3 T −1

2 C3T1 = e, (A1d)

C−1
3 T −1

3 C3T2 = e, (A1e)

C−1
3 T −1

1 C3T3 = e, (A1f)

σ−1T1σT1 = e, (A1g)

σ−1T −1
2 T1σT2 = e, (A1h)

σ−1T −1
3 T1σT3 = e, (A1i)

C3
3 = e, (A1j)

σ 2 = e, (A1k)

(σC3)4 = e, (A1l)

O−1T −1OT = e, (A1m)

T 2 = e, (A1n)

where O in (A1m) denotes any space group generator, and e
is the identity element.

APPENDIX B: COMPLEX FERMION
MEAN FIELD THEORY

Using the parton representation (5), the antiferromagnetic
Heisenberg model (6) can be written as, up to some constant,

H = −
∑

i j

Ji j

4
(χ̂†

i j χ̂i j + 	̂
†
i j	̂i j ), (B1)

134402-10



COMPETING QUANTUM SPIN LIQUIDS, GAUGE … PHYSICAL REVIEW B 106, 134402 (2022)

where

χ̂i j = f †
i↑ f j↑ + f †

i↓ f j↓, (B2a)

	̂i j = fi↑ f j↓ − fi↓ f j↑ (B2b)

are the singlet hopping and pairing operators, respectively. A
mean field decoupling then leads to (7).

Reference [60] first noted an alternative form of (5),

Si = 1

4
Tr[�†

i �σ�i], �i =
(

fi↑ f †
i↓

fi↓ − f †
i↑

)
, (B3)

from which it is easy to see that an SU (2) gauge transfor-
mation Gi, such that �i −→ �iGi, leaves the spin operator
invariant. Note that Gi preserves the anticommutation relation
of fermions. On the other hand, the mean field Hamiltonian
(7) can be written as

HMF =
∑

i j

Tr[�iui j�
†
j ], (B4)

where ui j is defined in (8) and the on-site uii is given by

uii = −1

2

(
λ

(3)
i λ

(1)
i + iλ(2)

i

λ
(1)
i − iλ(2)

i −λ
(3)
i

)
. (B5)

As stated in the main text, due to the SU (2) gauge redundancy,
the mean field Hamiltonian is invariant under a symmetry X
of the system only up to a gauge transformation GX ∈ SU (2).
From Ref. [54],

HMF X−→
∑

i j

�X (i)ui j�
†
X ( j)

GX−→
∑

i j

�X (i)GX (X (i))ui jG
†
X (X ( j))�†

X ( j), (B6)

we see that the mean field Ansatz should obey (9).

APPENDIX C: CLASSIFICATION OF Z2 SPIN LIQUIDS

We solve

G†
T2

(
T −1

1 (i)
)
G†

T1
(i)GT2 (i)GT1

(
T −1

2 (i)
) = ηT2T1 , (C1a)

G†
T3

(
T −1

2 (i)
)
G†

T2
(i)GT3 (i)GT2

(
T −1

3 (i)
) = ηT3T2 , (C1b)

G†
T1

(
T −1

3 (i)
)
G†

T3
(i)GT1 (i)GT3

(
T −1

1 (i)
) = ηT1T3 , (C1c)

G†
C3

(
T −1

2 (i)
)
G†

T2
(i)GC3 (i)GT1

(
C−1

3 (i)
) = ηC3T1 , (C1d)

G†
C3

(
T −1

3 (i)
)
G†

T3
(i)GC3 (i)GT2

(
C−1

3 (i)
) = ηC3T2 , (C1e)

G†
C3

(
T −1

1 (i)
)
G†

T1
(i)GC3 (i)GT3

(
C−1

3 (i)
) = ηC3T3 , (C1f)

G†
σ (i)GT1 (i)Gσ

(
T −1

1 (i)
)
GT1

(
σ−1T −1

1 (i)
) = ησT1, (C1g)

G†
σ

(
T −1

2 (i)
)
G†

T2
(i)GT1 (i)

Gσ

(
T −1

1 (i)
)
GT2

(
σ−1T −1

1 (i)
) = ησT2 , (C1h)

G†
σ

(
T −1

3 (i)
)
G†

T3
(i)GT1 (i)

Gσ

(
T −1

1 (i)
)
GT3

(
σ−1T −1

1 (i)
) = ησT3, (C1i)

GC3 (C3(i))GC3 (i)GC3

(
C−1

3 (i)
) = ηC3 , (C1j)

Gσ (σ (i))Gσ (i) = ησ , (C1k)

Gσ ((σC3)3(i))GC3 (C3(σC3)2(i))

Gσ ((σC3)2(i))GC3 (C3σC3(i))Gσ (σC3(i))

GC3 (C3(i))Gσ (i)GC3 (σ−1(i)) = ησC3, (C1l)

G†
O(i)G†

T (i)GO(i)GT (O−1(i)) = ηOT , (C1m)

[GT (i)]2 = ηT , (C1n)

for GX (r1, r2, r3; s), where each η... on the right hand side is
either +1 or −1.

First, notice that for a given X we are free to multiply GX

by an element of IGG. We exploit this IGG freedom of GT1 to
fix ησT3 = 1, of GT2 to fix ηC3T2 = 1, of GT3 to fix ηC3T3 = 1,
and of GC3 to fix ηC3 = 1. Then, using

GX (i) −→ W (i)GX (i)W †(X −1(i)), W (i) ∈ SU (2), (C2)

we fix

GT1 (r1, r2, r3; s) = 1, (C3a)

GT2 (0, r2, r3; s) = 1, (C3b)

GT3 (0, 0, r3; s) = 1. (C3c)

Then, (C1a) yields G†
T2

(r1 − 1, r2, r3; s)GT2 (r1, r2, r3; s) =
ηT2T1 , or

GT2 (r1, r2, r3; s) = η
r1
T2T1

. (C4)

Equations (C1b) and (C1c) yield GT3 (r1, r2, r3; s) =
η

r2
T3T2

GT3 (r1, 0, r3; s) and GT3 (r1, r2, r3; s) = η
r1
T1T3

GT3 (0,

r2, r3; s), respectively, so

GT3 (r1, r2, r3; s) = η
r1
T1T3

η
r2
T3T2

. (C5)

Equations (C1d), (C1e), and (C1f) yield

GC3 (r1, r2, r3; s) = η
r2
C3T1

η
r1r2
T2T1

GC3 (r1, 0, r3; s), (C6a)

GC3 (r1, r2, r3; s) = η
r1r3
T1T3

η
r2r3
T3T2

η
r2r3
T2T1

GC3 (r1, r2, 0; s), (C6b)

GC3 (r1, r2, r3; s) = η
r2r1
T1T3

η
r3r1
T3T2

GC3 (0, r2, r3; s), (C6c)

which further lead to

GC3 (r1, r2, r3; s) = η
r2
C3T1

η
r1r2
T2T1

η
r1r3
T1T3

gC3 (s), (C7a)

GC3 (r1, r2, r3; s) = η
r2r1
T1T3

η
r3(r1+r2 )
T3T2

η
r2r3
T2T1

η
r2
C3T2

gC3 (s), (C7b)

GC3 (r1, r2, r3; s) = η
r2r1
T1T3

η
r3r1
T3T2

η
r2
C3T1

gC3 (s), (C7c)

GC3 (r1, r2, r3; s) = η
r2
C3T1

η
r1r2
T2T1

η
r3r1
T3T2

gC3 (s), (C7d)

GC3 (r1, r2, r3; s) = η
r1(r2+r3 )
T1T3

η
r2r3
T3T2

η
r2r3
T2T1

η
r2
C3T1

gC3 (s), (C7e)

GC3 (r1, r2, r3; s) = η
r1r3
T1T3

η
r2r3
T3T2

η
r2(r3+r1 )
T2T1

η
r2
C3T1

gC3 (s), (C7f)

where gX (s) ≡ GX (0, 0, 0; s). The right hand sides of these six
equations must be equal to each other, which forces ηT1T3 =
ηT3T2 = ηT2T1 . It follows that

GC3 (r1, r2, r3; s) = η
r2
C3T1

η
r1(r2+r3 )
T2T1

gC3 (s). (C8)

Equation (C1j), with i = (r1, r2, r3; 0), yields

η
r3+r1+r2
C3T1

[gC3 (0)]3 = 1. (C9)

Since the right hand side has no coordinate dependence, we
must have ηC3T1 = 1, which is anticipated since (A1d) is
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implied by (A1e) and (A1f). On the other hand, with i =
(r1, r2, r3; s = 1, 2, 3), we get

gC3 (3)gC3 (2)gC3 (1) = 1. (C10)

Equation (C1g) yields

Gσ (r1, r2, r3; s) = η
r1
σT1

Gσ (0, r2, r3; s). (C11)

Subsequently, (C1h) and (C1i) yield

Gσ (0, r2, r3; s) = η
r2
σT2

η
r2
σT1

η
r2(r2+1)/2+r2(r3+1)
T2T1

Gσ (0, 0, r3; s),

Gσ (0, r2, r3; s) = η
r3
σT1

η
r3(r3+1)/2+r3(r2+1)
T2T1

Gσ (0, r2, 0; s),
(C12)

which together imply

Gσ (r1, r2, r3; s) = η
r1+r2+r3
σT1

η
r2
σT2

η
r2(r2−1)/2+r3(r3−1)/2+r2r3
T2T1

gσ (s) .

Equation (C1k), with i = (r1, r2, r3; 0), yields

η
r2+r3
σT1

gσ (1)gσ (0) = ησ , (C13)

which implies ησT1 = 0. We also have

[gσ (2)]2 = ησ , [gσ (3)]2 = ησ , (C14)

with i = (r1, r2, r3; s = 2, 3). Finally, (C1l) yields

gσ (0)gC3 (1)gσ (3)gC3 (3)gσ (2)gC3 (2)gσ (1)gC3 (0) = ησC3 .

We now proceed to the parts that involve the time reversal
symmetry. Equation (C1m) with O = T1, T2, T3 yields

GT (r1, r2, r3; s) = η
r1
T1T GT (0, r2, r3; s), (C15a)

GT (r1, r2, r3; s) = η
r2
T2T GT (r1, 0, r3; s), (C15b)

GT (r1, r2, r3; s) = η
r3
T3T GT (r1, r2, 0; s), (C15c)

which together imply

GT (r1, r2, r3; s) = η
r1
T1T η

r2
T2T η

r3
T3T gT (s). (C16)

Equation (C1m) with O = C3 and i = (r1, r2, r3; 0) yields

η
r1+r2
T1T η

r2+r3
T2T η

r3+r1
T3T g†

C3
(0)g†

T (0)gC3 (0)gT (0) = ηC3T , (C17)

which implies ηT1T = ηT2T = ηT3T . We also have

g†
C3

(2)g†
T (2)gC3 (2)gT (1) = ηC3T , (C18a)

g†
C3

(3)g†
T (3)gC3 (3)gT (2) = ηC3T , (C18b)

g†
C3

(1)g†
T (1)gC3 (1)gT (3) = ηC3T , (C18c)

with i = (r1, r2, r3; s = 1, 2, 3). Equation (C1m) with O = σ

and i = (r1, r2, r3; 0) yields

η
r2+r3
T1T g†

σ (0)g†
T (0)gσ (0)gT (1) = ησT , (C19)

which implies ηT1T = 1. We also have

g†
σ (1)g†

T (1)gσ (1)gT (0) = ησT , (C20a)

g†
σ (2)g†

T (2)gσ (2)gT (2) = ησT , (C20b)

g†
σ (3)g†

T (3)gσ (3)gT (3) = ησT , (C20c)

with i = (r1, r2, r3; s = 1, 2, 3). Equation (C1n) yields

[gT (s)]2 = ηT . (C21)

1. Grand summary

Before we proceed to gauge fixing, it is worthwhile to
recollect the results obtained thus far. They are (12a)–(12f)
shown in the main text, together with the “sublattice con-
straints”:

[gC3 (0)]3 = 1, (C22a)

gC3 (3)gC3 (2)gC3 (1) = 1, (C22b)

gσ (1)gσ (0) = ησ , (C22c)

[gσ (2)]2 = ησ , (C22d)

[gσ (3)]2 = ησ , (C22e)

gσ (0)gC3 (1)gσ (3)gC3 (3)

gσ (2)gC3 (2)gσ (1)gC3 (0) = ησC3, (C22f)

g†
C3

(0)g†
T (0)gC3 (0)gT (0) = ηC3T , (C22g)

g†
C3

(2)g†
T (2)gC3 (2)gT (1) = ηC3T , (C22h)

g†
C3

(3)g†
T (3)gC3 (3)gT (2) = ηC3T , (C22i)

g†
C3

(1)g†
T (1)gC3 (1)gT (3) = ηC3T , (C22j)

g†
σ (0)g†

T (0)gσ (0)gT (1) = ησT , (C22k)

g†
σ (1)g†

T (1)gσ (1)gT (0) = ησT , (C22l)

g†
σ (2)g†

T (2)gσ (2)gT (2) = ησT , (C22m)

g†
σ (3)g†

T (3)gσ (3)gT (3) = ησT , (C22n)

[gT (s)]2 = ηT . (C22o)

2. Gauge fixing

We now gauge fix gX (s) ≡ GX (0, 0, 0; s), s = 0, 1, 2, 3,
subject to the constraints (C22a)–(C22o). By virtue of (C2)
and (C22b), we perform a sublattice dependent gauge trans-
formation, Ws, such that

W0,3 = 1, W1 = g†
C3

(1), W2 = g†
C3

(1)g†
C3

(2), (C23)

to fix gC3 (1, 2, 3) = 1. Then, (C22h)–(C22j) yield

η3
C3T = [g†

T (1)gT (3)][g†
T (3)gT (2)][g†

T (2)gT (1)] (C24)

or ηC3T = 1. It also follows that gT (1) = gT (2) = gT (3).
Case 1. ηT = +1. Equation (C22o) implies gT (0) = ξ0,

gT (1, 2, 3) = ξ1, where ξ0,1 ∈ {+1,−1}. Equation (C22m)
or (C22n) implies ησT = 1. Equation (C22k) or (C22l) then
implies ξ0 = ξ1. We thus have gT (s) = ξ0 for all s, which is
further fixed to 1 by the IGG freedom of GT .

Case 1.1. ησ = +1. Equations (C22d) and (C22e) im-
ply gσ (2) = ξ2 and gσ (3) = ξ3, respectively, with ξ2,3 ∈
{+1,−1}. Perform a sublattice gauge transformation W0 =
ξ2g†

σ (0), W1,2,3 = 1 to fix gσ (0) = ξ2, without affecting the
previously fixed gauges. It follows from (C22c) that gσ (1) =
ξ2. We use the IGG freedom of Gσ to fix gσ (0, 1, 2) = 1 and
gσ (3) = ξ2ξ3. Since the product ξ2ξ3 = ±1, let us just call it ξ3

for simplicity. Equation (C22f) yields gC3 (0) = ξ3ησC3 , which
together with (C22a) implies gC3 (0) = 1 and ξ3 = ησC3 .

Case 1.2. ησ = −1. First, we perform a sublattice de-
pendent gauge transformation W0 = g†

σ (0), W1,2,3 = 1 to fix
gσ (0) = 1. It follows from (C22c) that gσ (1) = −1. Equa-
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tions (C22d) and (C22e) imply gσ (2) = in̂2 · �τ and gσ (3) =
in̂3 · �τ , where n̂2,3 are unit vectors and �τ = (τ1, τ2, τ3) is the
vector of Pauli matrices. We can rotate n̂2 to (0,1,0), such that
gσ (2) = iτ2, by a global gauge transformation [think about
the relation between SU (2) transformations and SO(3) rota-
tions], without changing any previously fixed gauge which is
proportional to identity. On the other hand, the most generic
solution to (C22a) is gC3 (0) = exp[i(2πq0/3)n̂0 · �τ ], where
q0 ∈ {0, 1, 2} and n̂0 is a unit vector. Equation (C22f) leads
to gσ (3) = −ησC3 g†

C3
(0)g†

σ (2). Equation (C22e) then gives

g†
C3

(0)τ2 = τ2gC3 (0), which implies that gC3 (0) cannot have
a finite τ2 component. We further rotate n̂0 to (0,0,1) via a
global gauge transformation of the form eiθτ2 , i.e., a uniform
gauge rotation about the τ2 axis, which does not affect any of
the previously fixed gauges. Thus gC3 (0) = exp[i(2πq0/3)τ3]
and gσ (3) = ησC3 (iτ2) exp[i(2πq0/3)τ3].

Case 2. ηT = −1. Equation (C22o) implies gT (0) =
in̂0 · �τ and gT (1, 2, 3) = in̂1 · �τ , where n̂0,1 are unit vec-
tors and �τ = (τ1, τ2, τ3). We rotate n̂1 to (0,1,0), such that
gT (1, 2, 3) = iτ2, by a global gauge transformation, without
changing any previously fixed gauge which is proportional to
identity. (Note: n̂0 here is unrelated to that defined in 1.2.
We merely recycle the notation. As this is quite clear from
the context, we will not give such warnings should similar
situations arise later.)

Case 2.1. ησ = +1. Equations (C22d) and (C22e) im-
ply gσ (2) = ξ2 and gσ (3) = ξ3, respectively, with ξ2,3 ∈
{+1,−1}. We perform a sublattice gauge transformation
W0 = ξ2g†

σ (0), W1,2,3 = 1 to fix gσ (0) = ξ2, without affect-
ing the previously fixed gauges. It follows from (C22c)
that gσ (1) = ξ2. We use the IGG freedom of Gσ to fix
gσ (0, 1, 2) = 1 and gσ (3) = ξ2ξ3. Since the product ξ2ξ3 =
±1, let us just call it ξ3 for simplicity. Equation (C22f)
yields gC3 (0) = ξ3ησC3 , which together with (C22a) implies
gC3 (0) = 1 and ξ3 = ησC3 . (Note that the procedures outlined
above are exactly same as those in case 1.1.) Finally, (C22m)
or (C22n) implies ησT = 1, which together with (C22k) or
(C22l) implies gT (0) = iτ2.

Case 2.2. ησ = −1. Equations (C22d) and (C22e) imply
gσ (2) = in̂2 · �τ and gσ (3) = in̂3 · �τ , respectively, where n̂2,3

are unit vectors.
Case 2.2.1. ησT = +1. From (C22m), we see that gσ (2)

commutes with τ2, so gσ (2) = ξ2(iτ2), ξ2 = ±1. Similarly,
from (C22n) we have gσ (3) = ξ3(iτ2), ξ3 = ±1. We then
perform a sublattice dependent gauge transformation W0 =
ξ2g†

σ (0), W1,2,3 = 1 to fix gσ (0) = ξ2. It follows from (C22c)
that gσ (1) = −ξ2. Using the IGG freedom of Gσ , we can
eliminate ξ2 and redefine ξ2ξ3 −→ ξ3 as in case 2.1. Equa-
tion (C22f) yields gC3 (0) = ξ3ησC3 , which together with
(C22a) implies gC3 (0) = 1 and ξ3 = ησC3 . Finally, (C22k) im-
plies gT (0) = iτ2. To render the solutions in a neater form, we
further perform a sublattice dependent gauge transformation
W0 = iτ2, W1,2,3 = 1 such that gσ (0, 1) −→ iτ2, while others
are unaffected.

Case 2.2.2. ησT = −1. We first perform a sublattice de-
pendent gauge transformation, W0 = g†

σ (0), W1,2,3 = 1 to fix
gσ (0) = 1. It follows from (C22c) that gσ (1) = −1. Equa-
tion (C22k) or (C22l) then implies gT (0) = −iτ2. From
(C22m), we see that gσ (2) anticommutes with τ2, which

implies that n̂2 cannot have a finite τ2 component; i.e.,
it has the form (sin θ, 0, cos θ ). We further rotate n̂2 to
(0,0,1) via a global gauge transformation exp(−iθτ2/2),
which does not affect any of the previously fixed gauges.
Thus gσ (2) = iτ3. The most generic solution to (C22a) is
gC3 (0) = exp[i(2πq0/3)n̂0 · �τ ], where q0 = 0, 1, 2 and n̂0

is a unit vector. But (C22g) requires gC3 (0) to commute
with iτ2, so n̂0 = (0,±1, 0), and we can further special-
ize to the plus sign without loss of generality. Finally,
(C22f) yields gσ (3) = ησC3 (iτ3) exp[i(2πq0/3)τ2], which an-
ticommutes with τ2 as required by (C22n). To render the
solutions in a neater form, we further perform a sublat-
tice dependent gauge transformation W0 = iτ3, W1,2,3 = 1,
such that gC3 (0) −→ exp[−i(2πq0/3)τ2], gσ (0, 1) −→ iτ3,
and gT (0) −→ iτ2, while others are unaffected.

We will exclude the solutions with ηT = +1 (case 1) be-
cause they have GT (i) = 1 for all sites i, which forces ui j = 0
for any pair of sites i and j by (10). These solutions, which
lead to vanishing mean field Ansätze and thus a zero Hamil-
tonian, are unphysical. Let us count the remaining solutions
(case 2). Each of 2.1, 2.2.1, 2.2.2 has three Z2 variables ηT2T1 ,
ησT2 , and ησC3 . For 2.2.2, there is an additional Z3 variable q0.
There are in total 23 × (1 + 1 + 3) = 40 gauge inequivalent
solutions, i.e., 40 possible Z2 spin liquids. They are listed in
Table I.

APPENDIX D: CLASSIFICATION OF U (1) SPIN LIQUIDS

We solve

G†
T2

(
T −1

1 (i)
)
G†

T1
(i)GT2 (i)GT1

(
T −1

2 (i)
) = eiθT2T1 τ3 , (D1a)

G†
T3

(
T −1

2 (i)
)
G†

T2
(i)GT3 (i)GT2

(
T −1

3 (i)
) = eiθT3T2 τ3 , (D1b)

G†
T1

(
T −1

3 (i)
)
G†

T3
(i)GT1 (i)GT3

(
T −1

1 (i)
) = eiθT1T3 τ3, (D1c)

G†
C3

(
T −1

2 (i)
)
G†

T2
(i)GC3 (i)GT1

(
C−1

3 (i)
) = eiθC3T1 τ3 , (D1d)

G†
C3

(
T −1

3 (i)
)
G†

T3
(i)GC3 (i)GT2

(
C−1

3 (i)
) = eiθC3T2 τ3 , (D1e)

G†
C3

(
T −1

1 (i)
)
G†

T1
(i)GC3 (i)GT3

(
C−1

3 (i)
) = eiθC3T3 τ3 , (D1f)

G†
σ (i)GT1 (i)Gσ

(
T −1

1 (i)
)
GT1

(
σ−1T −1

1 (i)
) = eiθσT1 τ3 , (D1g)

G†
σ

(
T −1

2 (i)
)
G†

T2
(i)

GT1 (i)Gσ

(
T −1

1 (i)
)
GT2

(
σ−1T −1

1 (i)
) = eiθσT2 τ3 , (D1h)

G†
σ

(
T −1

3 (i)
)
G†

T3
(i)GT1 (i)Gσ

(
T −1

1 (i)
)

GT3

(
σ−1T −1

1 (i)
) = eiθσT3 τ3 , (D1i)

GC3 (C3(i))GC3 (i)GC3

(
C−1

3 (i)
) = eiθC3 τ3 , (D1j)

Gσ (σ (i))Gσ (i) = eiθσ τ3 , (D1k)

Gσ ((σC3)3(i))GC3 (C3(σC3)2(i))

Gσ ((σC3)2(i))GC3 (C3σC3(i))Gσ (σC3(i))

GC3 (C3(i))Gσ (i)GC3 (σ−1(i)) = eiθσC3 τ3 , (D1l)

G†
O(i)G†

T (i)GO(i)GT (O−1(i)) = eiθOT τ3 , (D1m)

[GT (i)]2 = eiθT τ3 , (D1n)

for GX (r1, r2, r3; s), where each θ... on the right hand side is
a continuous variable in the interval [0, 2π ). For U (1) spin
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liquids, the gauge transformations have the specific form (13).
For a symmetry operator X that appears an odd number of
times in an algebraic identity, if any other symmetry operators
appear an even number of times in the same algebraic identity,
we must have nX = 0; otherwise the equality of the corre-
sponding equation in (D1a)–(D1n) will not hold. Therefore,
(D1h) or (D1i) force nT1 = 0, and (D1j) forces nC3 = 0. Since
GT1 and GC3 do not carry iτ1 with them, (D1d) and (D1f)
then force nT2 = 0 and nT3 = 0, respectively. Next, we use the
IGG freedoms (see Appendix C) of GT1 , GT2 , and GT3 to fix
θC3T2 = 0, θC3T3 = 0, and θσT3 = 0. Notice that equalities in-
volving U (1) variables, which are abundant in this Appendix,
are defined modulo 2π .

Through (C2) we fix

φT1 (r1, r2, r3; s) = 0, (D2a)

φT2 (0, r2, r3; s) = 0, (D2b)

φT3 (0, 0, r3; s) = 0. (D2c)

Equation (D1a) yields −φT2 (r1 − 1, r2, r3; s) +
φT2 (r1, r2, r3; s) = θT2T1 , or

φT2T1 (r1, r2, r3; s) = r1θT2T1 . (D3)

Equations (D1b) and (D1c) respectively yield

φT3 (r1, r2, r3; s) = −r1θT1T3 + φT3 (0, r2, r3; s),

φT3 (r1, r2, r3; s) = r2θT3T2 + φT3 (r1, 0, r3; s), (D4)

so

φT3 (r1, r2, r3; s) = r2θT3T2 − r1θT1T3 . (D5)

Equations (D1d), (D1e), and (D1f) yield

φC3 (r1, r2, r3; s) = r2θC3T1 + r1r2θT2T1 + φC3 (r1, 0, r3; s),

φC3 (r1, r2, r3; s) = − r3r1θT1T3 + r2r3(θT3T2 − θT2T1 )

+ φC3 (r1, r2, 0; s),

φC3 (r1, r2, r3; s) = r1r2θT1T3 − r3r1θT3T2 + φC3 (0, r2, r3; s),
(D6)

which further lead to

φC3 (r1, r2, r3; s) = r2θC3T1 + r1r2θT2T1 − r3r1θT1T3 + ϕC3 (s),

φC3 (r1, r2, r3; s) = r2θC3T1 + r1r2θT2T1 − r3r1θT3T2 + ϕC3 (s),

φC3 (r1, r2, r3; s) = − r3r1θT1T3 + r2r3(θT3T2 − θT2T1 )

+ r2θC3T1 + r1r2θT2T1 + ϕC3 (s),

φC3 (r1, r2, r3; s) = − r3r1θT1T3 + r2r3(θT3T2 − θT2T1 )

+ r1r2θT1T3 + r2θC3T1 + ϕC3 (s),

φC3 (r1, r2, r3; s) = r1r2θT1T3 − r3r1θT3T2 + r2θC3T1 + ϕC3 (s),

φC3 (r1, r2, r3; s) = r1r2θT1T3 − r3r1θT3T2 + r2r3(θT3T2 − θT2T1 )

+ r2θC3T1 + ϕC3 (s), (D7)

where ϕX (s) ≡ φX (0, 0, 0; s). The right hand sides of these six
equations must be equal to each other, which forces θT1T3 =
θT3T2 = θT2T1 .

Equation (D1j) with i = (r1, r2, r3; 0) yields

(r1 + r2 + r3)θC3T1 + 3ϕC3 (0) = θC3 . (D8)

Since the right hand side has no coordinate dependence, we
must have θC3T1 = 0, which is anticipated since (A1d) is im-
plied by (A1e) and by (A1f). We also have

ϕC3 (3) + ϕC3 (2) + ϕC3 (1) = θC3 , (D9)

with i = (r1, r2, r3; s = 1, 2, 3).
We now proceed to the parts that involve σ .
Case 1. nσ = 0. Equation (D1g) yields

φσ (r1, r2, r3; s) = −r1θσT1 + φσ (0, r2, r3; s). (D10)

Subsequently, (D1h) and (D1i) yield

φσ (0, r2, r3; s) =
[

r2(r2 + 1)

2
+ r2(2r1 + r3 + 1)

]
θT2T1

+ r2(θσT2 − θσT1 ) + φσ (0, 0, r3; s),

φσ (0, r2, r3; s) = −
[

r3(r3 + 1)

2
+ r3(2r1 + r2 + 1)

]
θT2T1

− r3θσT1 + φσ (0, r2, 0; s), (D11)

which further lead to

φσ (r1, r2, r3; s) =
[

r2(r2 + 1)

2
− r3(r3 + 1)

2

+ (2r1 + 1)(r2 − r3) + r2r3

]
θT2T1

− (r1 + r2 + r3)θσT1 + r2θσT2 + ϕσ (s),

φσ (r1, r2, r3; s) =
[

r2(r2 + 1)

2
− r3(r3 + 1)

2

+ (2r1 + 1)(r2 − r3) − r2r3

]
θT2T1

− (r1 + r2 + r3)θσT1 + r2θσT2 + ϕσ (s).
(D12)

The right hand sides of these two equations must be equal to
each other, which forces θT2T1 = pT2T1π , pT2T1 ∈ {0, 1}.

Equation (D1k) with i = (r1, r2, r3; 0) yields

−(r2 + r3)θσT1 + 2r2θσT2 + ϕσ (1) + ϕσ (0) = θσ , (D13)

which implies θσT1 = 0, θσT2 = pσT2π , pσT2 ∈ {0, 1}. We also
have

2ϕσ (2) = θσ , 2ϕσ (3) = θσ , (D14)

with i = (r1, r2, r3; s = 2, 3).
Equation (D1l) yields

ϕσ (0) + ϕC3 (1) + ϕσ (3) + ϕC3 (3) + ϕσ (2) + ϕC3 (2)

+ϕσ (1) + ϕC3 (0) = θσC3 . (D15)

Case 2. nσ = 1. Equation (D1g) yields

φσ (r1, r2, r3; s) = −r1θσT1 + φσ (0, r2, r3; s). (D16)

Subsequently, (D1h) and (D1i) yield

φσ (0, r2, r3; s) =
[

r2(r2 + 1)

2
+ r2(r3 − 1)

]
θT2T1

+ r2(θσT2 − θσT1 ) + φσ (0, 0, r3; s),
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φσ (0, r2, r3; s) = −
[

r3(r3 + 1)

2
+ r3(3r2 − 1)

]
θT2T1

− r3θσT1 + φσ (0, r2, 0; s), (D17)

which further lead to

φσ (r1, r2, r3; s) =
[

r2(r2 + 1)

2
− r3(r3 + 1)

2

− r2 + r3 + r2r3

]
θT2T1

− (r1 + r2 + r3)θσT1 + r2θσT2 + ϕσ (s),

φσ (r1, r2, r3; s) =
[

r2(r2 + 1)

2
− r3(r3 + 1)

2

− r2 + r3 − 3r2r3

]
θT2T1

− (r1 + r2 + r3)θσT1 + r2θσT2 + ϕσ (s).
(D18)

The right hand sides of these two equations must be
equal to each other, which forces θT2T1 = 2pT2T1π/4, pT2T1 ∈
{0, 1, 2, 3}.

Equation (D1k) with i = (r1, r2, r3; 0) yields

−(2r1 + r2 + r3)θσT1 − ϕσ (1) + ϕσ (0) = θσ + π, (D19)

which implies θσT1 = 0. The additive factor of π on the right
hand side comes from (iτ1)2 = −1. We also have

−ϕσ (2) + ϕσ (2) = θσ + π (D20)

with i = (r1, r2, r3; 2), which implies θσ = π .
Equation (D1l) with σ−1(i) = (r1, r2, r3; 0) yields

2(r1 + r2)θσT2 − ϕσ (0) − ϕC3 (1) + ϕσ (3) + ϕC3 (3)

−ϕσ (2) − ϕC3 (2) + ϕσ (1) + ϕC3 (0) = θσC3 , (D21)

which implies θσT2 = pσT2π , pσT2 ∈ {0, 1}. We also have

−ϕσ (3) − ϕC3 (3) + ϕσ (2) + ϕC3 (2)

−ϕσ (1) − ϕC3 (0) + ϕσ (0) + ϕC3 (1) = θσC3 (D22)

with σ−1(i) = (r1, r2, r3; 1), which implies θσC3 = pσC3π ,
pσC3 ∈ {0, 1}.

We now proceed to consider the parts that involve T .
Case x.1. nT = 0. Equation (D1m) with O = T1, T2, T3

yields

φT (r1, r2, r3; s) = −r1θT1T + φT (0, r2, r3; s), (D23a)

φT (r1, r2, r3; s) = −r2θT2T + φT (r1, 0, r3; s), (D23b)

φT (r1, r2, r3; s) = −r3θT3T + φT (r1, r2, 0; s), (D23c)

which together imply

φT (r1, r2, r3; s) = −r1θT1T − r2θT2T − r3θT3T + ϕT (s).
(D24)

Equation (D1m) with O = C3 and C−1
3 (i) = (r1, r2, r3; 0)

yields

(r3 − r1)θT1T + (r1 − r2)θT2T + (r2 − r3)θT3T = θC3T ,

(D25)

which implies θT1T = θT2T = θT3T , and subsequently θC3T =
0. We also have

−ϕT (2) + ϕT (1) = 0, (D26a)

−ϕT (3) + ϕT (2) = 0, (D26b)

−ϕT (1) + ϕT (3) = 0, (D26c)

with C−1
3 (i) = (r1, r2, r3; s = 1, 2, 3).

Case 1.1. nσ = 0. Equation (D1m) with O = σ and
σ−1(i) = (r1, r2, r3; 0) yields

−(2r1 + r2 + r3)θT1T − ϕT (1) + ϕT (0) = θσT , (D27)

which implies θT1T = 0. We also have

−ϕT (2) + ϕT (2) = θσT , (D28)

with σ−1(i) = (r1, r2, r3; 2), which implies θσT = 0.
Equation (D1n) then yields

2ϕT (s) = θT . (D29)

Case 2.1. nσ = 1. Equation (D1m) with O = σ and
σ−1(i) = (r1, r2, r3; 0) yields

−(r2 + r3)θT1T + ϕT (1) + ϕT (0) = θσT , (D30)

which forces θT1T = 0. We also have

2ϕT (2) = θσT , (D31a)

2ϕT (3) = θσT , (D31b)

with σ−1(i) = (r1, r2, r3; s = 2, 3).
Equation (D1n) then yields

2ϕT (s) = θT . (D32)

Case x.2. nT = 1.
Case 1.2. nσ = 0. Equation (D1m) with O = T1, T2, T3

yields

φT (r1, r2, r3; s) = −r1θT1T + φT (0, r2, r3; s), (D33a)

φT (r1, r2, r3; s) = −r2θT2T + φT (r1, 0, r3; s), (D33b)

φT (r1, r2, r3; s) = −r3θT3T + φT (r1, r2, 0; s), (D33c)

which together imply

φT (r1, r2, r3; s) = −r1θT1T − r2θT2T − r3θT3T + ϕT (s).
(D34)

Equation (D1m) with O = C3 and i = (r1, r2, r3; 0) yields

(r1 − r2)θT1T + (r2 − r3)θT2T + (r3 − r1)θT3T

− 2ϕC3 (0) = θC3T ,
(D35)

which implies θT1T = θT2T = θT3T . We also have

−2ϕC3 (1) − ϕT (1) + ϕT (3) = θC3T , (D36a)

−2ϕC3 (2) − ϕT (2) + ϕT (1) = θC3T , (D36b)

−2ϕC3 (3) − ϕT (3) + ϕT (2) = θC3T , (D36c)

with i = (r1, r2, r3; s = 1, 2, 3).
Equation (D1m) with O = σ and i = (r1, r2, r3; 0) yields

(2r1 + r2 + r3)θT1T − 2ϕσ (0) − ϕT (0) + ϕT (1) = θσT ,

(D37)
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which implies θT1T = 0. We also have

−2ϕσ (1) − ϕT (1) + ϕT (0) = θσT , (D38a)

−2ϕσ (2) − ϕT (2) + ϕT (2) = θσT , (D38b)

−2ϕσ (3) − ϕT (3) + ϕT (3) = θσT , (D38c)

with i = (r1, r2, r3; s = 1, 2, 3).
Equation (D1n) then yields

π = θT , (D39)

where π comes from (iτ1)2 = −1.
Case 2.2. nσ = 1. Equation (D1m) with O = T1, T2, T3

yields

φT (r1, r2, r3; s) = − r1θT1T + φT (0, r2, r3; s),

φT (r1, r2, r3; s) = − 2r1r2θT2T1 − r2θT2T + φT (r1, 0, r3; s),

φT (r1, r2, r3; s) = 2r3(r1 − r2)θT2T1 − r3θT3T

+ φT (r1, r2, 0; s), (D40)

which further lead to

φT (r1, r2, r3; s) = − r1θT1T − r2θT2T − r3θT3T + ϕT (s),

φT (r1, r2, r3; s) = − r1θT1T − r2θT2T − r3θT3T + ϕT (s)

− 2r2r3θT2T1 ,

φT (r1, r2, r3; s) = − r1θT1T − r2θT2T − r3θT3T + ϕT (s)

− 2r1r2θT2T1 ,

φT (r1, r2, r3; s) = − r1θT1T − r2θT2T − r3θT3T + ϕT (s)

− 2r1(r2 − r3)θT2T1 ,

φT (r1, r2, r3; s) = − r1θT1T − r2θT2T − r3θT3T + ϕT (s)

+ 2(r3r1 − r1r2 − r2r3)θT2T1 ,

φT (r1, r2, r3; s) = − r1θT1T − r2θT2T − r3θT3T + ϕT (s)

+ 2r3(r1 − r2)θT2T1 . (D41)

The right hand sides of these six equations must be equal
to each other, which only allows pT2T1 = 0, 2 in θT2T1 =
2pT2T1π/4. We redefine pT2T1 such that θT2T1 = pT2T1π , pT2T1 ∈
{0, 1}.

Equation (D1m) with O = C3 and i = (r1, r2, r3; 0) yields

(r1 − r2)θT1T + (r2 − r3)θT2T + (r3 − r1)θT3T − 2ϕC3 (0)

= θC3T , (D42)

which implies θT1T = θT2T = θT3T . We also have

−2ϕC3 (1) − ϕT (1) + ϕT (3) = θC3T , (D43a)

−2ϕC3 (2) − ϕT (2) + ϕT (1) = θC3T , (D43b)

−2ϕC3 (3) − ϕT (3) + ϕT (2) = θC3T , (D43c)

with i = (r1, r2, r3; s = 1, 2, 3).
Equation (D1m) with O = σ and i = (r1, r2, r3; 0) yields

−(r2 + r3)θT1T − 2ϕσ (0) + ϕT (0) + ϕT (1) = θσT , (D44)

which forces θT1T = 0. We also have

−2ϕσ (1) + ϕT (1) + ϕT (0) = θσT , (D45a)

−2ϕσ (2) + 2ϕT (2) = θσT , (D45b)

−2ϕσ (3) + 2ϕT (3) = θσT , (D45c)

with i = (r1, r2, r3; s = 1, 2, 3).
Equation (D1n) then yields

π = θT , (D46)

where π comes from (iτ1)2 = −1.

1. Grand summary

It is worthwhile to recollect the results obtained thus far
before we proceed to gauge fixings. They are (14a)–(14f)
shown in the main text and the “sublattice constraints” listed
below in a case by case manner.

3ϕC3 (0) = θC3 , (D47a)

3∑
s=1

ϕC3 (s) = θC3 . (D47b)

Case 1. nσ = 0.

θT2T1 = pT2T1π, pT2T1 ∈ {0, 1}, (D48a)

θσT2 = pσT2π, pσT2 ∈ {0, 1}, (D48b)

ϕσ (1) + ϕσ (0) = θσ , (D48c)

2ϕσ (2) = θσ , (D48d)

2ϕσ (3) = θσ , (D48e)
3∑

s=0

[ϕσ (s) + ϕC3 (s)] = θσC3 . (D48f)

Case 1.1. nT = 0.

ϕT (0) = ϕT (1) = ϕT (2) = ϕT (3), (D49a)

2ϕT (s) = θT . (D49b)

Case 1.2. nT = 1.

−2ϕC3 (0) = θC3T , (D50a)

−2ϕC3 (1) − ϕT (1) + ϕT (3) = θC3T , (D50b)

−2ϕC3 (2) − ϕT (2) + ϕT (1) = θC3T , (D50c)

−2ϕC3 (3) − ϕT (3) + ϕT (2) = θC3T , (D50d)

−2ϕσ (0) − ϕT (0) + ϕT (1) = θσT , (D50e)

−2ϕσ (1) − ϕT (1) + ϕT (0) = θσT , (D50f)

−2ϕσ (2) = θσT , (D50g)

−2ϕσ (3) = θσT . (D50h)

Case 2. nσ = 1.

θσT2 = pσT2π, pσT2 ∈ {0, 1}, (D51a)

ϕσ (0) = ϕσ (1), (D51b)

−ϕσ (0) − ϕC3 (1) + ϕσ (3) + ϕC3 (3)

−ϕσ (2) − ϕC3 (2) + ϕσ (1) + ϕC3 (0)

= pσC3π, pσC3 ∈ {0, 1}. (D51c)
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Case 2.1. nT = 0.

θT2T1 = 2pT2T1π

4
, pT2T1 ∈ {0, 1, 2, 3}, (D52a)

ϕT (1) + ϕT (0) = θσT , (D52b)

2ϕT (2) = θσT , (D52c)

2ϕT (3) = θσT , (D52d)

ϕT (1) = ϕT (2) = ϕT (3), (D52e)

2ϕT (s) = θT . (D52f)

Case 2.2. nT = 1.

θT2T1 = pT2T1π, pT2T1 ∈ {0, 1}, (D53a)

−2ϕC3 (0) = θC3T , (D53b)

−2ϕC3 (1) − ϕT (1) + ϕT (3) = θC3T , (D53c)

−2ϕC3 (2) − ϕT (2) + ϕT (1) = θC3T , (D53d)

−2ϕC3 (3) − ϕT (3) + ϕT (2) = θC3T , (D53e)

−2ϕσ (0) + ϕT (0) + ϕT (1) = θσT , (D53f)

−2ϕσ (1) + ϕT (1) + ϕT (0) = θσT , (D53g)

−2ϕσ (2) + 2ϕT (2) = θσT , (D53h)

−2ϕσ (3) + 2ϕT (3) = θσT . (D53i)

2. Gauge fixing

We now gauge fix ϕX (s) ≡ φX (0, 0, 0; s), s = 0, 1, 2, 3,
subject to the constraints listed above. First and foremost, we
use the IGG freedom of GC3 to fix ϕC3 (0) = 0. It follows from
(D47a) that θC3 = 0. Using (C2) and (D47b), we perform a
sublattice dependent gauge transformation Ws,

W0,3 = 1, W1 = e−iϕC3 (1)τ3 , W2 = e−i[ϕC3 (1)+ϕC3 (2)]τ3 ,

to fix ϕC3 (1, 2, 3) = 0.
Case 1. nσ = 0. We use the IGG freedom of Gσ to

fix ϕσ (2) = 0. Equation (D48d) then implies θσ = 0, and
(D48e) subsequently implies ϕσ (3) = q3π , q3 ∈ {0, 1}. We
perform a sublattice dependent gauge transformation W0 =
exp[−iϕσ (0)τ3], W1,2,3 = 1 to fix ϕσ (0, 1) = 0, without af-
fecting any previously fixed gauge. Equation (D48f) then
yields θσC3 = q3π , so we rename q3 as pσC3 .

Case 1.1. nT = 0. We use the IGG freedom of GT to fix
ϕT (0) = 0. By (D49a), we also have ϕT (1, 2, 3) = 0.

Case 1.2. nT = 1. Equations (D50a)–(D50d) yield θC3T =
0 and

−ϕT (1) + ϕT (3) = 0, (D54a)

−ϕT (2) + ϕT (1) = 0, (D54b)

−ϕT (3) + ϕT (2) = 0, (D54c)

or ϕT (1) = ϕT (2) = ϕT (3). Equation (D50g) or (D50h) im-
plies θσT = 0, which together with (D50e) or (D50f) implies
ϕT (0) = ϕT (1). We use the IGG freedom of GT to fix
ϕT (0) = 0, and it follows that ϕT (1, 2, 3) = 0.

Case 2. nσ = 1. We perform a sublattice dependent gauge
transformation W0 = exp[−i(ϕσ (2) − ϕσ (0))τ3], W1,2,3 = 1,
such that ϕσ (0, 1) = ϕσ (2), without affecting any previously
fixed gauge. Then, we use the IGG freedom of Gσ to

fix ϕσ (2) = 0, and rename ϕσ (3) − ϕσ (2) as ϕσ (3). Equa-
tion (D51c) implies ϕσ (3) = pσC3π , pσC3 ∈ {0, 1}.

Case 2.1. nT = 0. We use the IGG freedom of GT to fix
ϕT (1) = 0. It follows from (D52e) that ϕT (2, 3) = 0. We also
have θσT = 0 and θT = 0 from (D52c) and (D52f), respec-
tively. Equation (D52b) then implies ϕT (0) = 0.

Case 2.2. nT = 1. Equations (D53b)–(D53e) yield θC3T =
0 and

−ϕT (1) + ϕT (3) = 0, (D55a)

−ϕT (2) + ϕT (1) = 0, (D55b)

−ϕT (3) + ϕT (2) = 0, (D55c)

or ϕT (1) = ϕT (2) = ϕT (3). We use the IGG freedom of GT
to fix ϕT (1) = 0, and it follows that ϕT (2, 3) = 0. Equa-
tion (D53h) or (D53i) implies θσT = 0, and (D53f) or (D53g)
subsequently implies ϕT (0) = 0.

We will exclude the solutions with nT = 0 (cases 1.1 and
2.1) because they have GT (i) = 1 for all sites i, which force
ui j = 0 for any pair of sites i and j by (10). These solutions,
which lead to vanishing mean field Ansätze and thus a zero
Hamiltonian, are unphysical. Let us count the remaining solu-
tions. Each of 1.2 and 2.2 has three Z2 variables pT2T1 , pσT2 ,
and pσC3 . Therefore, we have in total 2 × 23 = 16 gauge in-
equivalent solutions, i.e., 16 possible U (1) spin liquids. They
are listed in Table I.

3. Relation to isotropic lattice

We first note that Ref. [48] (see also Ref. [47]) has cho-
sen a coordinate system in which the unit cell at the origin,
(r1, r2, r3) = (0, 0, 0), is associated with a down tetrahedron,
whereas in our coordinate system it is associated with an up
tetrahedron. However, it can be straightforwardly shown that
if we instead choose a down tetrahedron at the origin and
adopt the primitive translation vectors and sublattice labelings
of Ref. [48], the expressions (4a)–(4e) of the action of the
five space group generators remain invariant, so exactly the
same PSG solutions (see Table I) for the breathing pyrochlore
lattice will follow. This observation allows us to assume the
coordinate system of Ref. [48] in this Appendix and directly
compare our PSG solutions to those of Ref. [48].

The sixfold rotoinversion C6 = IC3 and the twofold non-
symmorphic screw S act on a generic site with coordinates
(r1, r2, r3; s) as [47,48]

C6 : (r1, r2, r3; s) −→ (−r3 − δs,3,−r1 − δs,1,

−r2 − δs,2; C̄6(s)), (D56a)

S : (r1, r2, r3; s) −→ (−r1 − δs,1,−r2 − δs,2,

r1 + r2 + r3 + 1 − δs,0; S(s)). (D56b)

When s = 0, 1, 2, 3, C6(s) = 0, 2, 3, 1 and S(s) = 3, 1, 2, 0.
Recall that, for U (1) spin liquids, the gauge transformation
GX associated with a symmetry operator X has the specific
form (13). The distinct U (1) spin liquids that respect both
the Fd 3̄m space group of the regular pyrochlore lattice and
the time reversal symmetry are characterized by the PSGs in
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(20a)–(20c), (21a)–(21e), and Table I of Ref. [48], which we
quote below,

φT1 (r1, r2, r3; s) = 0, nT1 = 0, (D57a)

φT2 (r1, r2, r3; s) = −χ1r1, nT2 = 0, (D57b)

φT3 (r1, r2, r3; s) = χ1(r1 − r2), nT3 = 0, (D57c)

φC6
(r1, r2, r3; s) = −χ1r1(r2 − r3) − [2 + (δs,2 − δs,3)]χ1r1

+ δs,2χ1r3 + ϕC6
(s), (D57d)

φS (r1, r2, r3; s) = χ1

[
r1(r1 + 1)

2
− r2(r2 + 1)

2
− r1r2

]
+ (2 + δs,1 − δs,2)χ1(r3 + r1) + (2δs,1

− δs,2)χ1r2 + ϕS (s), (D57e)

φT = 0, nT = 1, (D57f)

with

ϕC6
(0, 1, 2) = 0, ϕC6

(3) = χ1,

ϕS (0, 2) = 0, ϕS (1) = χC6S, ϕS (3) = χ1,

χ1, χC6S ∈ {0, π}. (D58)

The two choices in each of nC6
, nS , χ1, and χC6S give rise to

24 = 16 U (1) spin liquids. Notice that every φX is an integer
multiple of π , which is invariant under a sign change.

The point group generators of the breathing pyrochlore
lattice are related to the regular one by C3 = C

4
6 and σ =

C3�C−1
3 , where � ≡ SI is a reflection across the plane

perpendicular to [110] (cf. σ ). For convenience of later cal-
culations, we note that

I : (r1, r2, r3; s) −→ (−r1 − δs,1,−r2 − δs,2,−r3 − δs,3; s),

(D59a)

� : (r1, r2, r3; s) −→ (r1, r2,−r1 − r2 − r3; �(s)), (D59b)

where �(s) = 3, 1, 2, 0 for s = 0, 1, 2, 3. We also note that
C

3
6 = I [47,48].

From (14a)–(14f), Table I, and from (D57a)–(D57f), and
(D58), we see that GT of both PSGs agree, while GT1 , GT2 ,
and GT3 agree upon the identification of θT2T1 with χ1. For
the point group generators, let the gauge transformation parts
of (GC6

C6)4 and (GC6
C6)4(GSS)(GC6

C6)−1 be G′
C3

and G′
σ

[which are expressed in terms of φ′
C3,σ

and n′
C3,σ

according
to (13)], respectively.

Let i = (r1, r2, r3; s). We start with

φ
C

2
6
(i) = φC6

(i) + φC6

(
C

−1
6 (i)

) + nC6
π

= χ1r3(r1 − r2) + χ1(δs,1 + δs,3) + nC6
π, (D60)

which further yields

φ′
C3

(i) = φ
C

2
6
(i) + φ

C
2
6

(
C

−2
6 (i)

)

= −χ1r1(r2 − r3) + χ1(δs,1 + δs,2),

n′
C3

= 0. (D61)

The uniform additive factor nC6
π in (D60) can be further

dropped without penalty. We proceed to calculate

φI (i) = φC6
(i) + φ

C
2
6

(
C

−1
6 (i)

)
, nI = nC6

∈ {0, 1},
(D62)

which gives

φI (r1, r2, r3; 0) = 0, (D63a)

φI (r1, r2, r3; 1) = χ1(r2 − r3 + 1), (D63b)

φI (r1, r2, r3; 2) = χ1(r3 + 1), (D63c)

φI (r1, r2, r3; 3) = χ1. (D63d)

Then, we calculate

φ� (i) = φS (i) + φI (S−1(i))

= χ1

[
r1(r1 + 1)

2
− r2(r2 + 1)

2
− r1r2

]
+χ1 + χC6Sδs,1,

n� = (nS + nI ) mod 2 ∈ {0, 1}. (D64)

Finally, we calculate

φ′
σ (i) = φ′

C3
(i) + φ�

(
C−1

3 (i)
) − φ′

C3
(σ−1(i))

= −χ1

[
r2(r2 − 1)

2
− r3(r3 − 1)

2
+ r2r3

]
+χ1(δs,2 + δs,3) + χC6Sδs,2,

n′
σ = n� ∈ {0, 1}. (D65)

We further add χC6S − χ1 to φ′
σ (i) uniformly, and then

perform a sublattice dependent gauge transformation W0 =
exp(iχC6Sτ3), W1 = exp(iχ1τ3), W2,3 = 1 so that

φ′
C3

(r1, r2, r3; s) = −χ1r1(r2 − r3), n′
C3

= 0, (D66a)

φ′
σ (r1, r2, r3; s) = −χ1

[
r2(r2 − 1)

2
− r3(r3 − 1)

2
+ r2r3

]
+χC6Sδs,3, n′

σ ∈ {0, 1}, (D66b)

without affecting other gauges.
We can now compare (14d) and (14e) with (D66a) and

(D66b), respectively, and identify χC6S with pσC3 in Table I.
We conclude that the 16 U (1) spin liquids of the regular
pyrochlore lattice [48] are continuously connected to the 8
U (1) spin liquids of the breathing pyrochlore lattice with
θσT2 = 0, in the fashion of a two-to-one mapping defined by
nσ = (nC6

+ nS ) mod 2. We see that the additional symme-
tries of the regular pyrochlore lattice, on the one hand force
θσT2 = 0, on the other hand give rise to two Z2 variables nC6

and nS instead of the sole nσ in the breathing pyrochlore
lattice. Therefore, while the numbers of U (1) spin liquids
are the same in both lattices, they are not in a one-to-one
correspondence.

APPENDIX E: ANALYTICAL SOLUTION OF
MEAN FIELD THEORY

For the U (1)π state, diagonalizing dk yields the 16 eigen-
values ε0(k) {8}, ε++(k) {2}, ε+−(k) {2}, ε−+(k) {2},
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ε−−(k) {2}, where each curly bracket indicates the number
of times that the corresponding eigenvalue appears,

ε0(k) = −χ̃1 − χ̃2, (E1a)

ε+±(k) = χ̃1 + χ̃2 + [
4χ̃2

1 + 4χ̃2
2

− 4χ̃1χ̃2 ± |χ̃1χ̃2|
√

12 + 2 f (k)
]1/2

, (E1b)

ε−±(k) = χ̃1 + χ̃2 − [
4χ̃2

1 + 4χ̃2
2

− 4χ̃1χ̃2 ± |χ̃1χ̃2|
√

12 + 2 f (k)
]1/2

, (E1c)

and

f (k) = − cos(2k1 − k2) − cos(k2 − k3) − cos(k3 − 2k1)

+ cos(2k1) + cos k2 + cos k3, ki ∈ [0, 2π ).
(E2)

Note that the function f (k) defined here has nothing to do
with that in Sec. IV B. We merely recycled the notation. f (k)
has maximum and minimum of 2 and −6, respectively.

The analysis proceeds very much along the same lines as
in Sec. IV B, so we will only outline the steps and omit the de-
tails. Let us choose χ̃1 > 0 without loss of generality. We first
assume that χ̃2 > 0. One can show that ε+±(k), ε−±(k) >

ε0(k) for all k, so the dispersing bands are well separated
from, and higher in energy than, the flat bands throughout
the Brillouin zone. Then, filling the lower half of the energy
eigenstates, i.e., all the flat bands, the total energy of a system
with N × N sites is given by

ES =
∑

k

[
16ε0(k) + 24

(
J1

4
χ2

1 + J2

4
χ2

2

)]

=
∑

k

[
16

(
J1

4
χ1 + J2

4
χ2

)
+ 24

(
J1

4
χ2

1 + J2

4
χ2

2

)]
.

(E3)

Next, we assume that χ̃2 < 0, and without loss of gener-
ality |χ1| > |χ2|. In this case, the dispersing bands are well
separated from the flat bands, with the +± (−±) bands lying
above (below) the flat bands. One can show that, by filling half
of the lower energy eigenstates, i.e., 4 −+ bands, 4 −− bands,
and 8 of the flat bands, the total energy EA thus obtained is
strictly greater than ES in (E3). Therefore, we can exclude the
case with χ̃2 < 0.

Finally, minimizing (E3) with respect to χ1 and χ2 yields
χ1,2 = −1/3 and the ground state energy per site −(J1 +
J2)/24.

APPENDIX F: LOW ENERGY EFFECTIVE FIELD THEORY

In this Appendix, we provide details of the field theoretic
treatment of the U (1)0 state, from which we derive the low
temperature heat capacity. Starting from (30a) and (30b), we
integrate out the spinons to obtain an effective action (of the
gauge field),

Z =
∫

Da exp

{
2 ln det

[
∂τ − ia0 + 1

2m
(−i∇ − a)2

]}

≡
∫

Da e−Seff (a). (F1)

Using the random phase approximation (RPA), we expand the
logarithm up to one loop order [73–75,88]. RPA is formally
justified by introducing N species of fermions for large N , so
that terms beyond one loop order and two external legs carry
higher powers of 1/N [63,65,66]. We merely assume here that
such a large N formulation can be extended to our case of
N = 1 [48].

RPA can be treated with the standard diagrammatic per-
turbation technique [88], as follows. Going back to (30a),
using the Coulomb gauge ∇ · a = 0, and performing a Fourier
transform,

ψσ (r, τ ) = 1√
βV

∑
kn

ψσ (k, ωn)ei(−ωnτ+k·r), (F2a)

a(r, τ ) = 1√
βV

∑
ql

a(q, νl )e
i(−νl τ+q·r), (F2b)

where β = 1/T is the inverse temperature, V is the volume of
the system, and ωn = 2π (n + 1)/β and νl = 2π l/β are the
fermionic and bosonic Matsubara frequencies respectively,
the interaction Lagrangian in momentum space reads

Lint = 1√
βV

∑
kq

ψ̄σ (k + q)
(k − k‖) · a(q)

m
ψσ (k)

+ 1

βV

∑
kqq′

ψ̄σ (k + q + q′)
a(q) · a(q′)

m
ψσ (k), (F3)

where k = (k, ωn), etc., are the four-momenta, and k‖ is the
component of k parallel to q. The interaction vertices, as well
as the two diagrams that contribute at one loop level, are
depicted in Figs. 5(a)–(d). We also assume that the temporal
component a0 of the gauge field is screened out by spinon
density fluctuations [65,67,74] so that it can be neglected.

We first calculate the diagram in Fig. 5(c), which we call
�a. Let us choose a coordinate system in which q aligns in
the z direction, so that az = 0 by the Coulomb gauge. For the
transverse components of the gauge field, �a

i j is nonzero only
when i j = xx and yy,

�a
xx(q) = −2

m2βV

∑
kn

G(k + q)G(k)k2
x

= −2

m2β

∑
n

∫
k

1

i(ωn + νl ) − εk+q

1

iωn − εk
k2

x , (F4)

where the minus sign comes from the fermion loop, the factor
of 2 is due to the two spin species, G(k) is the free fermion
Green function,

∫
k is the shorthand notation for

∫
d3k/(2π )3,

and εk ≡ |k|2/2m. The corresponding expression for �a
yy(q)

is obtained with the replacement x −→ y. Using the contour
integral method [88,95,96] to perform the sum over ωn,

�a
xx(q) = − 2

m2

∫
k

[ f (εk+q) − f (εk )]k2
x

−iνl + (2k · q + |q|2)/2m
,

= − 2

m2

∫
k

[ f (εk+q/2) − f (εk−q/2)]k2
x

−iνl + k · q/m
, (F5)

where f (ε) = 1/[exp(βε) + 1] is the Fermi Dirac distribu-
tion, and we have shifted k by −q/2 in the second line to
obtain a more symmetric expression. It is very difficult if not
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FIG. 5. (a), (b) The two interaction vertices in the low energy
effective field theory of the U (1)0 spin liquid, in which quadratically
dispersing spinon excitations are coupled to a U (1) gauge field.
Straight (wavy) lines represent spinon (gauge) fields. (c), (d) The two
diagrams that contribute to, or, more precisely, generate the photon
propagator within the random phase approximation. These are gen-
erated by (a) and (b), respectively. In each diagram, the momentum
of the photon is labeled such that it flows into the vertex.

impossible to evaluate the integral, so we study the small |q|
limit. More precisely, we expand

f (εk±q/2) =
∞∑

n=0

1

n!

∂n f (εk )

∂εn
k

(
±k · q

2m
+ |q|2

8m

)n

(F6)

with |q|/√mT � 1 as the small parameter. The inclusion of
T in defining the small parameter is important because each
derivative of f (ε) with respect to ε brings down a factor of
1/T , so we require higher powers of |q|/√mT to be less
important than lower powers to justify a truncation of the
expansion (F6) at finite n. (There should also be a constraint
|k| � √

mT . Nevertheless, large momentum modes are ther-
mally suppressed by the Fermi Dirac distribution function, so
we will take the upper limits of the |k| integrals below to infin-
ity.) Note that this is unlike the case of a spinon Fermi surface,
where one can expand q against the Fermi wave vector kF,
i.e., taking |q|/kF � 1 as the small parameter, without a direct
comparison with T , and use a zero temperature approximation
for f (ε) which is effectively a step function [74,88].

Let us first examine the case when l �= 0. Expanding the
numerator in (F5) to the lowest nontrivial order in q,

�a
xx(q) ≈ − 2

m2

∫
k

∂ f (εk )/∂εk × k · q/m × k2
x

−iνl + k · q/m

= − 2

m2

∫
k

∂ f (εk )

∂εk

(k · q/m)2

ν2
l + (k · q/m)2

k2
x . (F7)

Since νl ≡ 2π lT and k · q/mT � 1, we have k · q/m � νl

for l �= 0, which allows us to approximate

�a
xx(q, νl �= 0)

≈ −2

m2

∫
k

∂ f (εk )

∂εk

(
k · q
mνl

)2

k2
x

= −2/m4

(2π )3

∫ 2π

0
dφ cos2 φ

∫ +1

−1
d (cos θ ) sin2 θ cos2 θ

×
∫ ∞

0
d|k| |k|6 ∂ f (εk )

∂εk

|q|2
ν2

l

= 64π
√

2/m

15(2π )3
T 5/2 |q|2

ν2
l

∫ ∞

0
dx

x6ex2

(ex2 + 1)2

≡ c3T 5/2 |q|2
ν2

l

. (F8)

The dimensionless x integral evaluates to 1.44 (to three signif-
icant figures).

On the other hand, the diagram in Fig. 5(d), which we call
�b, is much easier to evaluate than �a. As before, �b

i j is
nonzero only when i j = xx and yy. Contracting the fermion
lines forces q′ = −q, so

�b
xx(q) = −2

mβV

∑
nk

G(k) = − 2

m

∫
k

f (k)

= −8π
√

8m

(2π )3
T 3/2

∫ ∞

0
dx

x2

ex2 + 1
≡ −c2T 3/2, (F9)

which is independent of q. The dimensionless x integral eval-
uates to 0.339 (to three significant figures). Adding up (F8)
and (F9) then yields (32c).

Next, we examine the case when l = 0. Expanding the
numerator in (F5) to the lowest nontrivial order in q,

�a
xx(q, νl = 0)

= − 2

m2

∫
k

[ f (εk+q/2) − f (εk−q/2)]k2
x

k · q/m

≈ − 2

m2

∫
k

[
∂ f (εk )

∂εk
+ ∂2 f (εk )

∂ε2
k

|q|2
8m

+ ∂3 f (εk )

∂ε3
k

(k · q)2

24m2

]
k2

x . (F10)

To evaluate the terms in the square brackets, we note that

ε
∂ f (ε)

∂ε
= −T

∂ f (ε)

∂T
, (F11)

which allows us to replace the derivative with respect to
energy by one with respect to temperature, and pull the
temperature derivative out of the integral over k. The first
derivative term evaluates to

− 2

m2

∫
k

∂ f (εk )

∂εk
|k|2 sin2 θ cos2 φ

= − 4

m

4π/3

(2π )3

∫ ∞

0
d|k| |k|2εk

∂ f (εk )

∂εk

= 16π/3

(2π )3m
T

∂

∂T
(2mT )3/2

∫ ∞

0
dx

x2

ex2 + 1

= 8π
√

8m

(2π )3
T 3/2

∫ ∞

0
dx

x2

ex2 + 1
= c2T 3/2, (F12)
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which is the same as (F9) apart from a minus sign. The second
derivative term evaluates to

− 2

m2

∫
k

∂2 f (εk )

∂ε2
k

|q|2
8m

|k|2 sin2 θ cos2 φ

= −|q|2
m

4π/3

(2π )3

∫ ∞

0
d|k| ε2

k
∂2 f (εk )

∂ε2
k

= −|q|2
m

4π/3

(2π )3

(
2T

∂

∂T
+ T 2 ∂2

∂T 2

) ∫ ∞

0

√
2mT dx

ex2 + 1

= −
√

2/m

8π2

√
T |q|2

∫ ∞

0

dx

ex2 + 1
. (F13)

The dimensionless x integral evaluates to 0.536 (to three sig-
nificant figures). Similarly, the third derivative term evaluates
to

− 2

m2

∫
k

∂3 f (εk )

∂ε3
k

|q|2
24m2

|k|4 cos2 θ sin2 θ cos2 φ

=
√

2/m

24π2

√
T |q|2

∫ ∞

0

dx

ex2 + 1
. (F14)

On the other hand, �b(q) is still given by (F9), which
cancels out (F12). We are left with (F13) and (F14), and
adding them up yields (32b).

We can then write down the effective Lagrangian of the
U (1) gauge field (32a), the corresponding partition function
(33a), and the free energy (33b). We now calculate the free
energy contribution (34b) from the l �= 0 modes, as follows.
Changing the summation over q to an integral, the free energy
density reads

fdyn ≡ Fdyn

V
= T

∑
l �=0

∫
q

ln

(
c2T 3/2 − c3T 5/2 |q|2

ν2
l

)

≈ T
∑
l �=0

∫
q

[
ln

(
c2T 3/2

) − c′
3T

|q|2
ν2

l

]
, (F15)

where c′
3 ≡ c3/c2. Since we have assumed |q| � √

mT from
the beginning, the q integral should have an upper limit of
the form x0

√
mT [65], where x0 < 1 is some small number,

whose precise value is not important for the current analysis.
Performing the integration over q yields

fdyn = 8πT

(2π )3

∑
l∈N

[
(x0

√
mT )3

3
ln(c2T 3/2)

− c′
3T

(x0

√
mT )5

5ν2
l

]
. (F16)

The first term is independent of νl , so the summation over
natural numbers yields a divergence, which can be regularized
using the Riemann zeta function [97],

ζ (s) =
∞∑

n=1

n−s = 1

�(s)

∫ ∞

0
dx

xs−1

ex − 1
, (F17)

where

�(s) =
∫ ∞

0
dx xs−1e−x (F18)

is the gamma function. In particular, we use ζ (0) = −1/2
and ζ (2) = π2/6 for the first and second terms in (F16),
respectively, and we obtain

fdyn = − 8πT

(2π )3

[
(x0

√
mT )3 ln(c2T 3/2)

6
+ c′

3(x0

√
mT )5

120T

]
.

(F19)

We then calculate the free energy contribution (34a) from
the l = 0 mode. The free energy density reads

fsta ≡ Fsta

V
= T

∫
q

ln(c1

√
T |q|2)

= 4πT

(2π )3

(x0

√
mT )3

3

[
ln

(
c1x2

0mT 3/2
) − 2

3

]
. (F20)

Adding up (F19) and (F20) yields

f ≡ fsta + fdyn

= (x0
√

m)3

6π2

[
ln

(
0.0659x2

0

) − 0.0567x2
0 − 2

3

]
T 5/2.

(F21)

With x0 � 1, the square brackets in (F21) evaluate to a nega-
tive number. The volumetric heat capacity is readily obtained
as

C(T )

V
= −T

∂2 f

∂T 2
∼ T 3/2. (F22)

APPENDIX G: PARTON REPRESENTATION OF
DZYALOSHINSKII-MORIYA INTERACTION

We first introduce the triplet hopping and pairing channels,
Êi j and D̂i j [78–81],

Êλ
i j =

∑
αβ

f †
iα[σλ]αβ f jβ, (G1a)

D̂λ
i j =

∑
αβ

fiα[iσ yσλ]αβ f jβ. (G1b)

Let (λ,μ, ν) be a cyclic permutation of (x, y, z). The
Dzyaloshinskii-Moriya interaction in (35) involves spin prod-
ucts in the combination

±|D|√
2

(
Sμ

i Sν
j − Sν

i Sμ
j

)
, (G2)

which, with the parton representation of spins (5), can be
expressed in terms of products of bond operators,

− |D|
8
√

2

[(
χ̂i j ± iÊλ

i j

)†(
χ̂i j ± iÊλ

i j

)
+ (

	̂i j ± iD̂λ
i j

)†(
	̂i j ± iD̂λ

i j

) + Êμ†
i j Êμ

i j

+ Ê ν†
i j Ê ν

i j + D̂μ†
i j D̂μ

i j + D̂ν†
i j D̂ν

i j

]
, (G3)

where we have used the identity

χ̂
†
i jχ̂i j + 	̂

†
i j	̂i j = −Ê†

i j · Êi j − D̂†
i j · D̂i j (G4)
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(up to some constant) to ensure stability of the resulting mean
field Hamiltonian [81]. From (G3), a mean field decoupling
(or, more formally, a Hubbard-Stratonovich transformation)
Ô†Ô ≈ 〈Ô†〉Ô + Ô†〈Ô〉 − 〈Ô†〉〈Ô〉 is now straightforward.
For U (1) spin liquids, we set the pairing terms 	i j and Di j

to be zero.
Similar to (B4), the mean field Hamiltonian for the triplet

channels can be written in terms of a trace [54],

HMF
triplet =

∑
i j

∑
λ∈x,y,z

Tr
[
σλ�iu

λ
i j�

†
j

]
, (G5)

where the 2 × 2 matrix uλ
i j contains the coefficients of Êλ

i j and
D̂λ

i j . For a space group element X , PSG constrains the triplet
Ansätze via

uμ
X (i)X ( j) =

∑
ν

Oμν
X GX (X (i))uν

i jG
†
X (X ( j)), (G6)

where OX ∈ SO(3) encodes the SU (2) spin rotation associ-
ated with X [54]. There are only two nontrivial OX in our
problem,

OC3 =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, Oσ =

⎛
⎝−1 0 0

0 0 1
0 1 0

⎞
⎠. (G7)

On the other hand, for the time reversal symmetry,

uλ
i j = −GT (i)uλ

i jG
†
T ( j). (G8)

An excellent account of the treatment of triplet Ansätze can

TABLE II. The relation between triplet hopping parameters Ei j ,
which are purely imaginary if nonzero, in the U (1)0 state. s and t are
the sublattice indices of sites i and j, respectively. The correspond-
ing relation for the U (1)π state can be obtained from this table in
conjunction with Fig. 2(b).

s t Up tetrahedron Down tetrahedron

0 1 (0,+Ey
1 ,−Ey

1 ) (0,+Ey
2 , −Ey

2 )

0 2 (−Ey
1 , 0, +Ey

1 ) (−Ey
2 , 0, +Ey

2 )

0 3 (+Ey
1 ,−Ey

1 , 0) (+Ey
2 , −Ey

2 , 0)

1 2 (+Ey
1 ,+Ey

1 , 0) (+Ey
2 , +Ey

2 , 0)

2 3 (0,+Ey
1 ,+Ey

1 ) (0,+Ey
2 , +Ey

2 )

3 1 (+Ey
1 , 0, +Ey

1 ) (+Ey
2 , 0, +Ey

2 )

be found in Ref. [54], to which interested readers can refer
for more information. See also Ref. [81]. Let Ey

1 (Ey
2 ) be the

y component of the triplet hopping parameter on the bond
connecting sublattices 0 and 1 on an up (down) tetrahedron.
Omitting the details of the calculation, we summarize the
relation between the triplet Ansätze Ei j = (Ex

i j, Ey
i j, Ez

i j ) for
the U (1)0 state in Table II, which can be extended to the
U (1)π state by enlarging the unit cell and multiplying by ±1
as prescribed in Fig. 2(b). In both states, a nonzero Eλ

i j is
purely imaginary due to time reversal symmetry. The relations
between the singlet Ansätze χi j remain the same as before.
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