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Metastable discrete time-crystal resonances in a dissipative central spin system
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We consider the nonequilibrium behavior of a central spin system where the central spin is periodically reset to
its ground state. The quantum-mechanical evolution under this effectively dissipative dynamics is described by a
discrete-time quantum map. Despite its simplicity this problem shows surprisingly complex dynamical features.
In particular, we identify several metastable time-crystal resonances. Here the system does not relax rapidly to a
stationary state but undergoes long-lived oscillations with a period that is an integer multiple of the reset period.
At these resonances the evolution becomes restricted to a low-dimensional state space within which the system
undergoes a periodic motion. Generalizing the theory of metastability in open quantum systems, we develop an
effective description for the evolution within this long-lived metastable subspace and show that in the long-time
limit a nonequilibrium stationary state is approached. Our study links to timely questions concerning emergent
collective behavior in the “prethermal” stage of a dissipative quantum many-body evolution and may establish
an intriguing link to the phenomenon of quantum synchronization.
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I. INTRODUCTION

The interplay of coherent and incoherent processes in
interacting driven-dissipative quantum systems can lead to
nonequilibrium phases and symmetry breaking [1–7], the
emergence of long relaxation timescales [8–10], or dynamical
hysteresis [11]. Time crystals are an example of a genuine
nonequilibrium phase [12–14], in which discrete or continu-
ous time-translation symmetry is spontaneously broken. Such
phases were initially reported for Hamiltonian systems subject
to periodic driving [15–17], and later also found in driven-
dissipative scenarios [18–24]. They have also been reported
in a prethermal [25–28] or in a prestationary [29–33] regime,
manifesting in long-lived subharmonic collective oscillations.
Emergent long timescales are also common in the dynamics of
open quantum systems [9,34–39]. They occur typically in the
vicinity of dissipative phase transitions (DPTs), as a finite-size
manifestation of the closure of the Liouvillian spectral gap
[40–42]. Similarly, the emergence of multistability and sym-
metry broken phases can be accompanied by such long-lived
dynamical response [42]. Metastable dynamics, i.e., presta-
tionary regimes characterized by relaxation into long-lived
states [9], may also emerge independently of any stationary
phase transition, as a purely dynamical phenomenon. This is,
e.g., the case in constrained spin models [43,44]. Such long-
lived excitations can impose their frequency to the system,
leading to quantum synchronization phenomena [37,45–47].

In this paper, we consider an open quantum dynamics
realized by interrupting the coherent evolution of a system
with the periodic resetting of some of its degrees of freedom
[see Fig. 1(a)]. By focusing on a central spin system, we
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show that this dissipative discrete dynamics can give rise
to novel nonequilibrium phenomena. In particular, we ob-
serve the emergence of metastable resonances, in which the
system displays long-lived oscillations, with a period that is
locked to a multiple of the reset period [see Figs. 1(b) and
2], and in which “heating” towards an infinite-temperature
state is avoided. To describe the dynamics at these resonances,
we develop an effective theory in which the time-translation
symmetry breaking is decoupled from an emergent classical
nonequilibrium dynamics accounting for the (slow) eventual
decay towards the stationary state. Our results demonstrate the
emergence of nonequilibrium behavior that is substantially
different from conventional phase transitions and “prether-
mal” or metastable time-crystalline phases. The observed
behavior is metastable in the sense that its manifestation re-
quires large system sizes, and is seemingly not related to a
(standard) nonequilibrium phase transition. Upon varying the
system size, the metastable resonances can become weaker
or stronger, and do not smoothly approach a well-determined
thermodynamic limit.

II. DISSIPATIVE CENTRAL SPIN MODEL

We consider a central spin model in which N system spins
interact with a central one. Such models are relevant in the
description of hyperfine interactions between quantum dots
[48] or nitrogen-vacancy centers in diamond [49] and their
environment. Moreover, they are known to display interesting
dynamical phenomena both in closed and driven-dissipative
scenarios [8,50–53]. Our starting point is an XX Hamiltonian
(h̄ = 1) where all system spins are resonantly driven with a
Rabi frequency ω and coupled with the same strength g to the
central spin [see Fig. 1(a)]:

Ĥ = ωĴx + g(Ĵ+σ̂− + Ĵ−σ̂+). (1)
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FIG. 1. Dissipative central spin model. (a) N system spins inter-
act with a central spin for a time period τ after which the latter is reset
to the ground state. (b) Long-time dynamics of the magnetization of
the central spin, 〈σ̂z〉, and of the system spins, 〈Ĵz〉. In the normal
response, both the system spins and the central spin approach a
steady state that oscillates with the reset period τ (upper panels).
In the metastable time-crystal regime, the spins display long-lived
oscillations whose period is a multiple of τ ; in the present case 3τ

(lower panels). Parameters: N = 30, gτ = 0.2, and ωτ = 1.5 (upper
panels) or ωτ = 2π/3 (lower panels).

Here Ĵα = 1
2

∑N
j=1 σ̂

( j)
α and Ĵ± = Ĵx ± iĴy are collective spin

operators and raising/lowering operators, respectively, repre-
senting the ensemble of system spins. They are constructed
from the Pauli matrices σ̂α (α = x, y, z). The central spin
is represented through the raising/lowering operators σ̂± =
(σ̂x ± iσ̂y)/2. The dissipative dynamics emerges from period-
ically (period τ ) resetting to the ground state (|↓〉 〈↓|c) the
central spin, as illustrated in Fig. 1(a). The reduced density
matrix ρ̂ for the collective spin at multiples of τ is then given
by [54]

ρ̂n+1 = E ρ̂n = Trc[Û ρ̂n⊗ |↓〉〈↓|c Û †]. (2)

Here Û = e−iĤτ and ρ̂n is the shorthand notation for ρ̂(nτ ).
The map E is a trace-preserving and completely positive
quantum map. This kind of discrete quantum dynamics also
occurs in so-called collision models [54], which in the short
interaction time limit provide a dynamics that is equivalent to
a Lindblad master equation.

The action of the map E is conveniently studied in terms
of its right and left eigenmatrices, i.e., R̂ j and L̂ j , and the
corresponding eigenvalues λ j [9]:

ρ̂n = Enρ̂0 = ρ̂ss +
∑
j�1

Tr[L̂ j ρ̂0]R̂ jλ
n
j . (3)

The eigenvalues satisfy |λ j | � 1, and we arrange them in
order of decreasing absolute value |λ0| � |λ1| � |λ2| � . . . .
Those with unit absolute value correspond to nondecaying
modes, while there is at least one stationary state that we
denote as ρ̂ss = R̂0/Tr[R̂0] with λ0 = 1. It is also useful
to define the frequencies and decay rates of the system as
γ jτ = −ln[|λ j |], ν jτ = arg[λ j], in analogy to the Liouvillian
formalism [9,42]. Additionally, we will make use of spin
coherent states, which provide the basis for a phase-
space representation of the system state and operators. This
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FIG. 2. Dynamical regimes and metastable resonances. (a) Pu-
rity of the stationary state as a function of g and ω. Three (p, q)
resonances are marked. (b) Initial relaxation dynamics of the system
magnetization with initial state |J, J〉, as a function of ω for gτ = 0.2.
(c) Red solid line: decay rate γ1 of the leading excitation mode of the
map E [see Eq. (2)] as a function of ω at gτ = 0.2. Blue dashed-
dotted line: ratio of the leading decay rate and the next (different)
one, γ∗ [for the (p, q) = (2, 3) resonance this is γ∗ = γ3]. Inset:
leading frequency, ν1τ , of the metastable resonance. The dotted
purple line corresponds to ν1τ = 2π/3. (d)–(f) Aitoff projection of
the Husimi Q function for ρ̂ss and for the parameters indicated by the
markers in (a): (d) gτ = 0.25, ωτ = 0.1; (e) gτ = 0.3, ωτ = 0.5; (f)
gτ = 0.2, ωτ = 2π/3. North to south pole: θ = π to θ = 0. West to
east: φ = 0 to φ = 2π . In all cases N = 30.

representation provides important insight on the different dy-
namical regimes of the model. For a spin J , coherent states are
defined as |θ, φ〉 = exp[iθ (Ĵx sin φ − Ĵy cos φ)]|J, J〉, where
θ ∈ [0, π ] and φ ∈ [0, 2π ] define the polar and azimuthal
angle, respectively [55]. Following [56], we will make use
of the spin analogous of the Husimi Q function, defined for
a spin operator Ô as Q(θ, φ) = J 〈θ, φ|Ô|θ, φ〉, where J =
(2J + 1)/4π is a normalization constant.

III. RESULTS

A. Dynamical regimes and stationary purity

We find that for the study of the stationary state ρ̂ss the
purity is actually a good order parameter, noting that the mag-
netization, which appears to be the natural order parameter, is
not sensitive to all dynamical regimes. The stationary purity
is shown in Fig. 2(a) as a function of the Rabi frequency
and interaction strength. For small ωτ , ρ̂ss is almost pure,
which follows from the interaction term dominating over the
coherent driving, the former enforcing a stationary state close
to |J,−J〉 [Fig. 2(d)]. In contrast, increasing ωτ above a
certain threshold makes the Rabi term dominate over the inter-
action one, changing qualitatively the stationary state. In this
region, ρ̂ss is a highly entropic mixed state, close to the infinite
temperature state, and thus spreading out (quasi-)uniformly
over the entire phase space [Fig. 2(e)]. For even larger ωτ ,
the interplay of coherent dynamics and periodic interruptions
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FIG. 3. Metastable dynamics. (a) Ratio of the leading decay rate, 1, and the next (different) one, ∗, for the period-tripled stroboscopic
map �. (b) Ratio of the leading decay rate and its corresponding detuning, δ1, in the region in which the leading mode is complex. The regions
in which 1/|δ1| <

√
3 are colored in red. (c) and (d) Stroboscopic dynamics of the z and y components in the metastable regime considering

the exact time evolution ρ̂3n (blue solid line), the projection on the metastable manifold P ρ̂3n (yellow dashed line), and the classical stochastic
model of Eq. (11) (red dotted line). Initial condition |J, J〉, ωτ = 2π/3, and gτ = 0.25. Gray inset: the blue squares show the exact value of
〈Ĵz(nτ )〉/N , while the orange dashed lines show the values obtained from Eq. (10). Aitoff projection of the Husimi Q function for (e) μ̂1/3; (f)
μ̂2/3; (g) μ̂3/3; (h) P̂1; (i) P̂2; (j) P̂3. Parameters: N = 30, ωτ = 2π/3, gτ = 0.2.

gives rise to yet another kind of dynamics: for ωτ close to
certain fractions of π , i.e., pπ/q, purity islands emerge in
which Tr[ρ̂2

ss] ∼ 1/q. In panel (a) these (p, q) resonances can
be observed around 2π/5, 2π/3, and 4π/5, the most promi-
nent one being the one with q = 3. Near these metastable
resonances the stationary state is a mixture of just q almost
disjoint and highly pure states. This is to be contrasted with
what happens generically outside these regions, where the
system actually converges to an almost fully mixed (infi-
nite temperature) stationary state. This suggests that in the
metastable islands, due to a mechanism akin to ergodicity
breaking, the system avoids heating up to infinite temperature.
This is illustrated in Fig. 2(f) for q = 3 and in Appendix B
for q = 5. In order to get an impression of the dynamics,
we show in Fig. 2(b) the time evolution of the system spin
magnetization 〈Ĵz〉 for gτ = 0.2. Here one finds that the purity
islands labeled by (p, q) in panel (a) indeed correspond to
metastable states, which display long-lived oscillations with a
period that is approximately given by T ≈ qτ . This behavior
is most evident around (p, q) = (2, 3), although it can also be
recognized near the other resonances [(2,5) and (4,5)]. In the
following, we focus on the case (p, q) = (2, 3), as the most
prominent resonance in Fig. 2.

B. Metastable period-locking resonances

The observed long-lived oscillations can be characterized
studying the leading eigenvalues of E . In Fig. 2(c) we plot
the leading decay rate of the system γ1τ (red solid lines),
observing that for the resonance around ωτ = 2π/3 this be-
comes several orders of magnitude smaller than anywhere
else. At this resonance the eigenvalue λ1 is complex and
its corresponding frequency is plotted in the inset. This re-
veals a frequency locking to ν1τ ≈ 2π/3 across the entire
(2,3) resonance, a behavior that is reminiscent of the syn-
chronization phenomenon of frequency entrainment. Here,
the dominant frequency of a system also locks to a given

one in a whole dynamical regime, which has been observed
both in classical [57] and quantum systems in [37,58,59]. In
Fig. 2(c) we also plot the ratio of the dominant decay rate
with the next (different) leading one (blue dotted line) [60].
This ratio increases by several orders of magnitude at the
(2,3) resonance, indicating the emergence of a huge separa-
tion of timescales: the long-time dynamics is thus dominated
only by the two complex conjugated modes with frequency
|ν1|τ ≈ 2π/3. This separation of timescales is characteristic
of the emergence of metastability in open quantum systems
[9]. Moreover, we find it to be present in the whole purity
island, as shown in Fig. 3(a), giving rise to what we term as
metastable period-locking resonances. Similar results can be
found for resonances with higher q and different system sizes,
in which more than two long-lived modes can be involved (see
Appendix B).

This huge separation of timescales allows the metastable
dynamics in the (2,3) resonance to be approximated by [9]

ρ̂n ≈ ρ̂ss + (c1R̂1eiν1nτ + H.c.)e−γ1nτ = P ρ̂n, (4)

with c1 = Tr[L̂1ρ̂0]. The stationary state and these two
longest-lived modes define the metastable manifold (MM),
denoted by P ρ̂n, to which the state of the system rapidly con-
verges on a timescale given by γ −1

3 . Crucially, while γ1τ � 1,
ν1τ is of order one. Therefore, in order to unveil the structure
of the MM, it is more convenient to consider the period-tripled
stroboscopic map � = E3, which displays the same eigen-
matrices but with eigenvalues δ j = 3ν j − 2π and  j = 3γ j .
Thus, by switching to �, we have 1τ ∼ δ1τ � 1, as can be
readily appreciated in Fig. 3(b). The metastable dynamics in
this stroboscopic picture is exemplified in Figs. 3(c) and 3(d),
in which its multistep character is evident: the system rapidly
relaxes to the MM, in which the state appears to settle to
ρ̂3n ≈ P ρ̂0 displaying a metastable plateau for intermediate
times −1

3 � t � −1
1 , |δ−1

1 |, until eventually reaching the
true stationary state, described by Eq. (4).
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C. Metastable symmetry broken states

The smallness of both 1 and δ1 shows that the metastable
resonance manifests in the map � as a (quasi-)closure of the
spectral gap, similarly to what is observed for finite sizes
with the Liouvillian gap in DPTs [8,42]. As a consequence,
the structure of the MM is analogous to that of the emerging
stationary manifold for DPTs, analyzed in Ref. [42]. In fact, to
a good approximation, the stationary state and the Hermitian
partners of the leading eigenmodes [61] decompose in terms
of the same three extremal metastable states (EMSs) [9], that
allow us to write any state in the MM as a convex combination
of them [see Eq. (8)]. These EMSs are denoted by μ̂1,2,3 and
given by

ρ̂ss ≈ 1

3
(μ̂1 + μ̂2 + μ̂3), (5)

R̂A ≈ cA

2
(2μ̂1 − μ̂2 − μ̂3), R̂B = cB(μ̂3 − μ̂2). (6)

Here cA,B are real constants corresponding to the sum of
positive eigenvalues of R̂A,B, and in the whole metastable
resonance their ratio is well approximated by cA/cB ≈ 2/

√
3

(see Appendix A). In Figs. 3(e)–3(g) we show these EMSs,
finding that they correspond to the different lobes making up
the stationary state. The accuracy of these approximations is
characterized in detail in Appendix A. Moreover, we observe
the EMSs to be almost disjoint, as they are tightly focused
in nonoverlapping phase-space regions. This can be better
understood considering their left partners:

P̂1 = 1

3
+ cAL̂A,

P̂2 = 1

3
− cA

2
L̂A − cBL̂B,

P̂3 = 1

3
− cA

2
L̂A + cBL̂B. (7)

These Hermitian operators satisfy the following properties
(see Appendix A): (i) P̂1 + P̂2 + P̂3 = 1; (ii) they are to a
good approximation positive; and (iii) they satisfy to a good
approximation Tr[P̂jμ̂k] = δ jk . Accordingly, we can rewrite
the projection of ρ̂0 in the MM as a probabilistic mixture of
μ̂1,2,3:

P ρ̂0 ≈ p0
1μ̂1 + p0

2μ̂2 + p0
3μ̂3, (8)

with p0
j = Tr[P̂j ρ̂0] which can be approximately regarded as

classical probabilities. Inspecting the Husimi representation
of P̂j , we find them to partition the phase space in three al-
most disjoint regions [Figs. 3(h)–3(j)]. These different regions
correspond to the basin of attraction of each of the EMSs;
any initial state contained in them will rapidly converge to
the corresponding EMS and remain trapped in it for the long
intermediate timescale.

The action of E on the EMSs unveils one of their most
interesting features: they break (approximately) the discrete
time-translation symmetry imposed by the periodic resetting
of the central spin. Indeed, they are connected by E forming a
period-tripled cyclic evolution:

Eμ̂1 ≈ μ̂2, Eμ̂2 ≈ μ̂3, Eμ̂3 ≈ μ̂1. (9)

These relations can be derived using Eqs. (5) and (6),
and making the approximation cA/cB ≈ 2/

√
3, 1 = δ1 ≈ 0

valid in the metastable resonance and for times t � −1
1 ∼

|δ1|−1 (i.e., in the metastable plateau) (see Appendix A).
Remarkably, the structure of Eq. (9) is analogous to that
of conventional symmetry breaking DPTs [42] replacing the
superoperator describing the symmetry, as, e.g., parity, by E
[see Appendix B for an example with (p, q) = (4, 5)]. Finally,
combining Eqs. (8) and (9), we see that in the metastable
plateau the period-tripled dynamics is approximated by

ρ̂3n+ j ≈ p0
1μ̂1+ j + p0

2μ̂2+ j + p0
3μ̂3+ j, (10)

where j = 0, 1, 2 and the index of the metastable states fol-
lows periodic boundary conditions, i.e., μ̂4 = μ̂1. In the inset
of Fig. 3(c) we consider the exact magnetization dynamics
(blue squares) in the plateau and compare it with the three
values predicted by this approximation (orange dashed lines),
finding excellent agreement.

D. Effective nonequilibrium classical relaxation

The period-tripled oscillation eventually fades away due
to the slow residual dynamics associated with the small but
nonvanishing values of 1 and δ1. By rewriting Eq. (4) in
terms of the EMSs, we find that this final relaxation (in the
stroboscopic picture) follows a classical stochastic process,
i.e., not only P ρ̂0 can be written as a classical probabilistic
mixture of the EMSs, but also P ρ̂3n. Hence, we can promote
Eq. (8) to P ρ̂3n ≈ ∑3

j=1 p j (nτ )μ̂ j , where the probabilities
p j (t ) obey (see Appendix A)

d

dt
p j = −21

3
p j +

(
1

3
− δ1√

3

)
p j+1 +

(
1

3
+ δ1√

3

)
p j−1,

(11)
with initial condition p0

j and where the index j in (11) follows
periodic boundary conditions. For the process (11) to be phys-
ical we need 1/|δ1| �

√
3, which is satisfied in most of the

metastable regime, except for the boundary regions indicated
in red in Fig. 3(b). In Figs. 3(c) and 3(d) we exemplify these
dynamics (red dotted lines), finding excellent agreement with
the exact ones both in the plateau and in the final decay.
An inspection of Eq. (11) reveals the stationary state to be
p1 = p2 = p3 = 1/3 as expected from Eq. (3). Interestingly,
we find that stationary probability currents, given by Jj, j+1 =
2δ1/(3

√
2) (see Appendix A), are generally present. This indi-

cates the nonequilibrium nature of the final relaxation process
of the metastable time-translation symmetry broken states,
that contrasts with what was found for other quantum systems
effectively governed in the long-time by infinite-temperature
classical equilibrium process [9,34,37].

E. Dependence on the system size

We now analyze what happens to the metastable reso-
nances when the size of the system is increased. As we shall
see, these are also resonances in the system size, since their
emergence strongly depends on the number of spins and their
position in the phase diagram does not show a smooth behav-
ior when this number is varied. This is illustrated in Fig. 4
in two different ways: first, by analyzing how the shape and
the number of purity islands (associated with the metastable
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FIG. 4. Dependence on the system size. (a) Stationary purity
Tr[ρ̂2

ss] varying gτ and ωτ for N = 70. (b) Decay rate of the dom-
inant oscillatory mode in the (2,3) metastable resonance varying the
system size and for gτ = 0.2 (blue circles) or gτ = 0.15 (orange
squares) and ωτ = 2π/3.

resonances) change with system size, and then by studying
the behavior of the lifetime of the dominant oscillatory mode
when N is increased. In particular, in Fig. 4(a) we plot the
same map as in Fig. 2(a) but considering a larger system size,
i.e., N = 70. Comparing both figures, we observe that the
number of islands as well as their shape change with N in
a nontrivial way: for N = 70 we observe an increased number
of purity islands, which, however, seem to shrink with increas-
ing N (see Appendix C for other sizes). When considering
the decay rate of the dominant oscillatory mode [Fig. 4(b)],
i.e., that responsible for the main oscillations, we observe a
nonmonotonic behavior with strong dependence on N . Such a
nonmonotonic behavior is also observed for other metastable
resonances with different p and q (see Appendix C). Thus, in
contrast to dissipative phase transitions [42], there is no evi-
dence for a closure of the spectral gap in the thermodynamic
limit. The results of Fig. 4 rather suggest that these metastable
resonances should be considered as many-body resonances,
whose emergence necessitates a large enough system size, and
which may move in the phase diagram or even disappear when
increasing further the number of particles.

IV. CONCLUSION

We have reported on an intrinsically metastable counter-
part of discrete time crystals, emerging in a dissipative spin
model that may be regarded as the discrete-time general-
ization of the boundary time crystal of Ref. [18]. Similarly
to prethermal [25–28] and metastable time crystals [29–33],
these oscillations emerge in a prestationary regime, while their
lifetime surpasses any intrinsic timescale of the model by or-
ders of magnitude. Compared to other many-body ergodicity
breaking dynamics, as due to dynamical symmetries [23] or
quantum scars [62], the reported dynamics is largely indepen-
dent on the initial conditions, as the EMSs act as effective
attractors with a combined basin of attraction that spans all
phase space. A further peculiarity is their nontrivial depen-
dence on system size, as the largest lifetimes are attained for
intermediate sizes resulting in a nonmonotonic behavior as
the thermodynamic limit is approached. In fact, each of these
resonances seem to display an optimal system size, as based
on the smallness of dominant decay rate and on the extension
of the purity island (see Figs. 4, 9, and 10), which suggests
that they they do not develop into a standard nonequilibrium
phase in the thermodynamic limit. Nevertheless, the fact that
this spectral gap does not actually close does not preclude the
emergence of a robust MM with a structure analogous to the

stationary one found in symmetry-breaking DPTs [42]. This
points to a connection between time-translation symmetry
breaking and other types of spontaneous symmetry breaking
in driven-dissipative systems.
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APPENDIX A: PERIOD-TRIPLED METASTABLE
OSCILLATIONS

1. Long-time dynamics

We begin this section by writing down the long-
time approximation for the dynamics in the period-tripled
resonance:

ρ̂n ≈ ρ̂ss + Tr[L̂1ρ̂0]R̂1eiν1nτ−γ1nτ + H.c. = P ρ̂n. (A1)

Notice that we stick to the following criteria for the definition
of the eigenvalues and eigenmatrices: ν1 > 0 and Tr[L̂1R̂1] =
1. We want to rewrite Eq. (A1) in terms of the following
Hermitian combinations of the long-lived eigenmodes:

R̂A = R̂1 + R̂†
1

2
, R̂B = R̂1 − R̂†

1

2i
,

L̂A = L̂1 + L̂†
1, L̂B = i(L̂1 − L̂†

1 ),

(A2)

which satisfy Tr[L̂ j R̂k] = δ jk with j, k = A, B. We then ob-
tain

P ρ̂n = ρ̂ss + [A cos(ν1nτ ) + B sin(ν1nτ )]R̂Ae−γ1nτ

+ [B cos(ν1nτ ) − A sin(ν1nτ )]R̂Be−γ1nτ , (A3)

where A = Tr[L̂Aρ̂0] and B = Tr[L̂Bρ̂0]. The advantage of
R̂A,B comes from the fact that they can be easily decomposed
in terms of physical states as they are both Hermitian and
traceless. Therefore, they are bound to satisfy

R̂A =
2J+1∑
j=1

a j |Aj〉〈Aj |,
2J+1∑
j=1

a j = 0,

R̂B =
2J+1∑
j=1

b j |Bj〉〈Bj |,
2J+1∑
j=1

b j = 0,

(A4)

where 2J + 1 is the dimension of the Hilbert space in which
the collective spin J resides. It is also useful to write the time
evolution every three steps, i.e., in the stroboscopic period-
tripled picture:

P ρ̂3n = ρ̂ss + [A cos(δ1nτ ) + B sin(δ1nτ )]R̂Ae−1nτ

+ [B cos(δ1nτ ) − A sin(δ1nτ )]R̂Be−1nτ , (A5)

where δ1 = 3ν1 − 2π and 1 = 3γ1.
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2. Formal decomposition in stationary period-tripled lobes

In this section we will suppose that R̂1 and R̂†
1 actually

become eigenmodes with unit eigenvalue of the period-tripled
map and explore the consequences of this. More precisely, we
are assuming that �R̂1 = R̂1, �R̂†

1 = R̂†
1 and thus �R̂A,B =

R̂A,B (recall � = E3). Then, ρ̂ss and R̂A,B all belong to the now
degenerate stationary subspace of �. Notice that while ρ̂ss and
R̂A,B need not to be orthogonal, they are required to be lin-
early independent (in the vectorized representation). The other
constraints to be satisfied are their unit or null trace, their Her-
miticity, and the positivity of the stationary state. A possible
way to satisfy these constraints is that they are all different
linear combinations of a set of three stationary states. This
crucial idea is one of the core results of Ref. [42]. Indeed,
based on our numerical observations, we propose the follow-
ing decomposition:

R̂A = cA

2
(2μ̂1 − μ̂2 − μ̂3), R̂B = cB(μ̂3 − μ̂2),

ρ̂ss = 1

3
(μ̂1 + μ̂2 + μ̂3), (A6)

where cA,B are real constants. Hence, μ̂1,2,3 are stationary
states of � and linearly independent. This last property is
better appreciated inverting (A6):

μ̂1 = ρ̂ss + 2R̂A

3cA
,

μ̂2 = ρ̂ss − R̂A

3cA
− R̂B

2cB
,

μ̂3 = ρ̂ss − R̂A

3cA
+ R̂B

2cB
, (A7)

which shows that they are an independent linear combination
(nonzero determinant of the coefficients arranged in columns)
of linearly independent vectors (the linear independence of
ρ̂ss, R̂A/cA, and R̂B/cB is guaranteed by the assumption that
they are eigenmatrices of �). We can proceed in the same line
for the left eigenmatrices, obtaining

P̂1 = 1

3
+ cAL̂A, P̂2 = 1

3
− cAL̂A

2
− cBL̂B,

P̂3 = 1

3
− cAL̂A

2
+ cBL̂B, (A8)

which satisfy

P̂1 + P̂2 + P̂3 = 1, Tr[P̂jμ̂k] = δ jk ∀ j, k, (A9)

as follows by definition. Moreover, they must satisfy

P̂j � 0 ∀ j (A10)

to guarantee that, whatever is the initial condition, P ρ̂0 will be
a positive semidefinite matrix. Indeed, from properties (A9)
and (A10), it follows that

P ρ̂0 = p0
1μ̂1 + p0

2μ̂2 + p0
3μ̂3, (A11)

with p0
j = Tr[P̂j ρ̂0], and thus p j � 0 and p0

1 + p0
2 + p0

3 = 1.
Therefore, P ρ̂0 is a probability mixture of three stationary
states, which motivates the term extreme metastable states
(EMSs) [9]. We now address the question of whether μ̂1,2,3

actually break the discrete time-translation symmetry of E .
Indeed, the result is that, if

r = cA

cB
= 2√

3
, (A12)

then

Eμ̂1 = μ̂2, Eμ̂2 = μ̂3, Eμ̂3 = μ̂1. (A13)

Notice that our initial assumption that �R̂1 = R̂1 implies that
ν1 = 2π/3. Then ER1 = (−1/2 + i

√
3/2)R̂1, and together

with (A12) we obtain

E
[

R̂A

cA

]
= − R̂A

2cA
− 3R̂B

4cB
,

E
[

R̂B

cB

]
= R̂A

cA
− R̂B

2cB
,

(A14)

which can be used to obtain the cyclic relation (A13).

3. Approximate decomposition in metastable period-tripled
lobes

In our system δ1τ � 1, 1τ � 1, although they are
nonzero. This means that the results of the previous section do
not apply exactly but only in an approximate way. The most
straightforward way to obtain an approximation for μ̂1,2,3 is to
use the spectral decomposition of R̂A,B. Indeed, we can choose

μ̂2 = 1

cB

∑
b j<0

b j |Bj〉〈Bj |, cB =
∑
b j>0

b j,

μ̂3 = 1

cB

∑
b j>0

b j |Bj〉〈Bj |, (A15)

μ̂1 = 1

cA

∑
a j>0

a j |Aj〉〈Aj |, cA =
∑
a j>0

a j, (A16)

which ensures that μ̂1,2,3 are bona fide density matrices. How-
ever, then we have that some of the following relations hold
under the approximation sign:

R̂A ≈ cA

2
(2μ̂1 − μ̂2 − μ̂3), R̂B = cB(μ̂3 − μ̂2),

ρ̂ss ≈ 1

3
(μ̂1 + μ̂2 + μ̂3) = ξ, (A17)

and their accuracy needs to be checked. Moreover, we will
also find that Eqs. (A11) and (A12) also apply only approxi-
mately, while Tr[P̂jμ̂k] ≈ δ jk and they are only approximately
positive. Therefore, the accuracy of such approximations
needs to be characterized for the metastable region. This is
done in Fig. 5, in which we characterize the main approxi-
mations: (a) the trace distance between the actual stationary
state and its approximation; (b) the trace distance betweeen
Eμ̂1 and μ̂2; (c) the largest negative eigenvalue of P̂1 denoted
by λN ; and (d) the deviation of r from 2/

√
3, denoted by �r.

Comparing these results with those of Fig. 3(a) of the main
text, we observe that the larger is ∗/1, the better are these
approximations. We conclude that these approximate results
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FIG. 5. Characterization of the main approximations in the
metastable period-tripled regime for N = 30. The plots are restricted
to the region in which the dominant eigenmodes are the complex
conjugate ones leading to period tripling. All plots are in logarithmic
scale. (a) Trace distance between the actual stationary state and its
approximation given by Eq. (A17). (b) Trace distance between Eμ̂1

and μ̂2. (c) Absolute value of the largest negative eigenvalue of P̂1,
denoted by λN . (d) Absolute value of the difference between the
actual value of r and the theoretical one, i.e., 2/

√
3. Here �r =

r − 2/
√

3.

are in good agreement with the exact ones for the relevant
metastable region.

4. Classical relaxation dynamics

A remarkable result is that not only P ρ̂0 can be approx-
imated as a probabilistic mixture of three metastable states,
but the entire relaxation dynamics of P ρ̂3n can be described
by a classical three-state stochastic process. In order to show
this, we will make use of the rescaled Hermitian modes and
their left partners which we define as

R̂′
A,B = R̂A,B

cA,B
, L̂′

A,B = cA,BL̂A,B. (A18)

Rewriting the stroboscopic dynamics given by Eq. (A5) in
terms of the rescaled Hermitian modes we obtain

P ρ̂3n = ρ̂ss + [A′ cos(δ1nτ ) + rB′ sin(δ1nτ )]R̂′
Ae−1nτ

+ [B′ cos(δ1nτ ) − A′

r
sin(δ1nτ )]R̂′

Be−1nτ , (A19)

where A′ = Tr[L̂′
Aρ̂0] and B′ = Tr[L̂′

Bρ̂0]. Then, we make use
of the expression of the eigenmodes in terms of the EMSs
given in Eq. (A17) to obtain

P ρ̂(3nτ ) ≈ p1(nτ )μ̂1 + p2(nτ )μ̂2 + p3(nτ )μ̂3, (A20)

where the p j (nτ ) are given in terms of only the initial condi-
tions p0

j and the rates 1 and δ1:

p1(nτ ) = p0
1

3
[1 + 2 cos(δ1nτ )e−1nτ ]

+ p0
3

3
(1 − [cos(δ1nτ ) −

√
3 sin(δ1nτ )]e−1nτ )

+ p0
2

3
(1 − [cos(δ1nτ ) +

√
3 sin(δ1nτ )]e−1nτ ),

(A21)

p2(nτ ) = p0
2

3
[1 + 2 cos(δ1nτ )e−1nτ ]

+ p0
1

3
(1 − [cos(δ1nτ ) −

√
3 sin(δ1nτ )]e−1nτ )

+ p0
3

3
(1 − [cos(δ1nτ ) +

√
3 sin(δ1nτ )]e−1nτ ),

(A22)

p3(nτ ) = p0
3

3
[1 + 2 cos(δ1nτ )e−1nτ ]

+ p0
2

3
(1 − [cos(δ1nτ ) −

√
3 sin(δ1nτ )]e−1nτ )

+ p0
1

3
(1 − [cos(δ1nτ ) +

√
3 sin(δ1nτ )]e−1nτ ).

(A23)

Notice that here we have used the approximations cA/cB ≈
2/

√
3, Eq. (A17), and the expression of p0

j in terms of A′ and
B′, which can be obtained from their definition p0

j = Tr[P̂j ρ̂0]
and read

p0
1 = 1

3
+ A′, p0

2 = 1

3
− A′

2
− B′, p0

3 = 1

3
− A′

2
+ B′.
(A24)

The use of these approximations is the reason why we write
Eq. (A20) under the approximate sign. Finally, we recognize
(i.e., we can check) that Eqs. (A21)–(A23) are indeed the so-
lution at discrete time steps t = nτ of the classical stochastic
process given by

d

dt
p1 = −21

3
p1 +

(
1

3
− δ1√

3

)
p2 +

(
1

3
+ δ1√

3

)
p3,

(A25)
d

dt
p2 = −21

3
p2 +

(
1

3
− δ1√

3

)
p3 +

(
1

3
+ δ1√

3

)
p1,

(A26)
d

dt
p3 = −21

3
p3 +

(
1

3
− δ1√

3

)
p1 +

(
1

3
+ δ1√

3

)
p2,

(A27)

with initial conditions p0
j . Notice that the condition for these

equations to represent a classical stochastic process is that

1

|δ1| �
√

3, (A28)

134311-7



CABOT, CAROLLO, AND LESANOVSKY PHYSICAL REVIEW B 106, 134311 (2022)

since the off-diagonal rates need to be positive. From Fig. 3(b)
of the main text, we see that this condition is widely sat-
isfied. Then, Eqs. (A25)–(A27) guarantee that p j (t ) can be
regarded as probabilities at all times. This process generalizes
to three states the effective classical dynamics disclosed in
Refs. [9,34]. We observe that when considering three states,
there is the possibility to have a very slow oscillation in the
long-time relaxation as described by the terms proportional to
δ1.

5. Stationary current

The classical stochastic process given by Eqs. (A25)–
(A27) can be written in matrix form:

d

dt
�p = W �p, (A29)

where �p = (p1, p2, p3)T and

W =

⎛
⎜⎝

− 21
3

1
3 − δ1√

3
1
3 + δ1√

3
1
3 + δ1√

3
− 21

3
1
3 − δ1√

3
1
3 − δ1√

3
1
3 + δ1√

3
− 21

3

⎞
⎟⎠. (A30)

The matrix W satisfies the following properties that guarantee
it to be a classical stochastic process: (i) the sum of each of
the columns is zero, i.e.,

∑3
i=1 Wi j = 0 ∀ j, which guarantees

conservation of probability; (ii) the off-diagonal elements are
positive semidefinite (if 1 �

√
3|δ1|), i.e., Wi j � 0 if i �= j,

which guarantees the p j’s to remain positive. Moreover, a
third property (iii) is that the sum of the elements of the
same row is zero, i.e.,

∑3
j=1 Wi j = 0 ∀i, which indicates that

the stationary state is uniform, i.e., p∞
1 = p∞

2 = p∞
3 = 1/3.

Despite the stationary state is uniform, it displays nonzero
currents and thus it is a nonequilibrium stationary state. The
stationary current from state i to state j is given by

Ji j = p∞
i Wji − p∞

j Wi j, (A31)

from which we find that

J = J12 = J23 = J31 = 2δ1

3
√

3
. (A32)

Thus if δ1 > 0, there is a stationary clockwise probability
current, while if δ1 < 0 there is a stationary anticlockwise
probability current.

APPENDIX B: PERIOD-5 METASTABLE OSCILLATIONS

1. Long-time dynamics

Besides the prominent p = 2, q = 3 region in which we
have focused, we can also find other types of metastable
resonances. In particular, a second important one is that occur-
ring for p = 4 and q = 5. While signatures of this resonance
in the stationary state are already evident for N = 30, i.e.,
Tr[ρ̂2

ss] ∼ 1/5 and ρ̂ss made of five disjoint lobes, this becomes
more important in systems with larger sizes. For instance, in
Fig. 6(a), we exemplify the dynamics for N = 70 varying ωτ

and for a cut at gτ = 0.18, similarly to what we have done
in the main text. We can appreciate both the transition from
overdamped to underdamped dynamics as well as the presence
of metastable resonances for several combinations of (p, q),

(2,5)(2,7) (4,7) (2,3) (4,5)

FIG. 6. (a) Magnetization dynamics varying the Rabi frequency
and for an exemplary cut at gτ = 0.18, with the initial condition
|J, J〉 and system size N = 70. In the horizontal axis we have marked
the most prominent metastable resonances, where the notation (p, q)
resonance stands for a resonance around the frequency ω = pπ/q.
(b) Aitoff projection of the Husimi Q function for the stationary state
in the (4,5) resonance. The parameters are ωτ = 4π/5, gτ = 0.18,
and N = 70.

the (4,5) resonance being particularly clear. In panel (b) we
plot the stationary state for a point inside the (4,5) resonance,
finding that it displays five almost disjoint lobes, as anticipated
in the main text.

In the (4,5) resonance we find the long-time dynamics to
be accurately described by

ρ̂n ≈ ρ̂ss + Tr[L̂1ρ̂0]R̂1eiν1nτ−γ1nτ

+ Tr[L̂2ρ̂0]R̂2eiν2nτ−γ2nτ + H.c. = P5ρ̂n. (B1)

Notice that we stick to the following criteria for the defini-
tion of the eigenvalues and eigenmatrices: ν1 > 0, ν2 > 0,
Tr[L̂1R̂1] = 1, and Tr[L̂2R̂2] = 1. Moreover, in this resonance,
we typically find that γ1 ∼ γ2, while ν1τ ∼ 4π/5 and ν2τ ∼
2π/5. As in the period-tripled case, we will work with the
Hermitian counterparts of the long-lived eigenmodes:

R̂A = R̂1 + R̂†
1

2
, R̂B = R̂1 − R̂†

1

2i
,

R̂C = R̂2 + R̂†
2

2
, R̂D = R̂2 − R̂†

2

2i
,

(B2)

L̂A = L̂1 + L̂†
1, L̂B = i(L̂1 − L̂†

1 ),

L̂C = L̂2 + L̂†
2, L̂D = i(L̂2 − L̂†

2 ),
(B3)

which satisfy Tr[L̂ j R̂k] = δ jk with j, k ∈ {A, B, C, D}. Since
they are Hermitian and traceless, we can decompose them as
the subtraction of two physical states:

R̂X =
2J+1∑
j=1

x j |Xj〉〈Xj |,
2J+1∑
j=1

x j = 0, with x = a, b, c, d.

(B4)
Importantly, this decomposition allows us to define the fol-
lowing constants:

cX =
∑
x j>0

x j, with x = a, b, c, d. (B5)

2. Formal decomposition in period-5 lobes

We consider now the period-5 map �5 = E5, which dis-
plays the same eigenmatrices but whose eigenvalues are a
factor 5 those of E . We suppose that this map displays a gap
closure in the region p = 4, q = 5, in which 1,2 = 0 and
δ1,2 = 0, and we propose a decomposition of the involved
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(a) (b) (c) (d)

(f) (h) (i)(g) (j)

(e)

FIG. 7. Aitoff projection of the Husimi Q function of the period-5 lobes and their left partners for N = 70, gτ = 0.18, and ωτ = 4π/5.
(a)–(e) Metastable lobes: μ̂1/5 to μ̂5/5, respectively. (f)–(j) Left projectors: P̂1 to P̂5, respectively. For these parameters the leading decay rates
and frequencies are given by γ1τ = 1.3 × 10−5, ν1τ = 2.5133; γ2τ = 3.2 × 10−5, ν2τ = 1.2566; while the next mode has γ∗τ = 3.9 × 10−4,
ν∗τ = 0, with ∗ = 5 as there are two pairs of long-lived metastable modes. In this case we have a ratio of γ∗/γ2 = 12.2 between the largest rate
of the metastable manifold and the next one. Moreover, we obtain the following values for the figures of merit: T (Eμ̂ j, μ̂ j+2) ≈ 0.033, while
the smallest eigenvalue of P̂j takes values around λN ≈ −0.02. Finally, due to the way in which we have defined the metastable lobes and
projectors, we have that the definitions in Eqs. (B6)–(B10) and Tr[P̂jμ̂k] = δ jk are satisfied exactly (and thus the corresponding trace distances
are zero).

modes in terms of a set of period-5 states. Numerical observa-
tion leads us to propose the following decomposition:

ρ̂ss = 1

5
(μ̂1 + μ̂2 + μ̂3 + μ̂4 + μ̂5), (B6)

R̂A = cA

5
(3μ̂1 + μ̂2 + μ̂5) − cA

2
(μ̂3 + μ̂4), (B7)

R̂B = cB

5
(3μ̂5 + 2μ̂4 − 3μ̂2 − 2μ̂3), (B8)

R̂C = cC

5
(3μ̂1 + μ̂3 + μ̂4) − cC

2
(μ̂2 + μ̂5), (B9)

R̂D = cD

5
(2μ̂2 + 3μ̂4 − 3μ̂3 − 2μ̂5). (B10)

We then obtain the following expressions for the different
lobes:

μ̂1 = ρ̂ss + 2

3
(R̂′

A + R̂′
C), (B11)

μ̂2 = ρ̂ss + 1

546
(104R̂′

A − 315R̂′
B − 286R̂′

C + 210R̂′
D),

(B12)

μ̂3 = ρ̂ss + 1

546
(−286R̂′

A − 210R̂′
B + 104R̂′

C − 315R̂′
D),

(B13)

μ̂4 = ρ̂ss + 1

546
(−286R̂′

A + 210R̂′
B + 104R̂′

C + 315R̂′
D),

(B14)

μ̂5 = ρ̂ss + 1

546
(104R̂′

A + 315R̂′
B − 286R̂′

C − 210R̂′
D),

(B15)

where we have defined R̂′
X = R̂X/cX, with X = A, B, C, D.

Similarly as in the period-tripled case, we also define their
left partners as

P̂1 = 1

5
(1 + 3L̂′

A + 3L̂′
C), (B16)

P̂2 = 1

5
(1 + L̂′

A − 3L̂′
B + 2L̂′

D) − L̂′
C

2
, (B17)

P̂3 = 1

5
(1 − 2L̂′

B + L̂′
C − 3L̂′

D) − L̂′
A

2
, (B18)

P̂4 = 1

5
(1 + 2L̂′

B + L̂′
C + 3L̂′

D) − L̂′
A

2
, (B19)

P̂5 = 1

5
(1 + L̂′

A + 3L̂′
B − 2L̂′

D) − L̂′
C

2
, (B20)

where we have defined L̂′
X = cXL̂X, with X = A, B, C, D.

These operators satisfy

5∑
j=1

P̂j = 1, Tr[P̂iμ̂ j] = δi j . (B21)

Here we notice that the positivity of P̂i and μ̂i is interrelated.
If there was an actual gap closure and thus μ̂i were true
stationary states we would necessarily have P̂i � 0.

3. Approximate decomposition in period-5 lobes

For the period-5 case we follow a slightly different strategy
to define the approximate EMSs than in the period-tripled
case. Instead of defining them from the spectral decomposi-
tion of the Hermitian partners of the eigenmodes, we define
them through the relations given in Eqs. (B6)–(B10). In prin-
ciple, if there was an actual gap closure both ways would
provide equivalent results. However, in practice this means
that instead of μ̂ j being bona fide states and Eqs. (A17)
holding approximately, we now have it the other way around:
Eqs. (B6)–(B10) hold exactly; however, μ̂ j and their left
partners display small corrections to positivity. The reason
why here we proceed in this different way is that, due to the
increased complexity of the MM, this is the most straightfor-
ward manner of isolating the metastable lobes. Nevertheless,
we recall that if the approximation is good, such differences
remain small. As we will show now, these metastable approx-
imations also work well for the period-5 case.

In Fig. 7 we exemplify this lobe decomposition, from
which we can appreciate that the EMSs correspond to the
lobes making up the stationary state shown in Fig. 6(b). Here,
we also check for the period-5 cyclic relation connecting the
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EMSs, which we numerically find to be

Eμ̂1 ≈ μ̂3, Eμ̂2 ≈ μ̂4, Eμ̂3 ≈ μ̂5,

Eμ̂4 ≈ μ̂1, Eμ̂5 ≈ μ̂2. (B22)

Regarding the corrections to these approximations, we find
the smallest eigenvalue of the P̂j to take values around λN ≈
−0.02, while trace distances for the cyclic relation take val-
ues around T (Eμ̂ j, μ̂ j+2) ≈ 0.033. Comparing this with the
results for the period-tripled case shown in Fig. 5, we see that
the corrections in the period-5 case are generally larger. This
is in agreement with the fact that the spectral gap between
the eigenvalues of the MM and the smallest ones outside it is
smaller compared to the period-tripled case, taking the value
γ∗/γ2 = 12.2 for the chosen parameters. As we shall see, al-
though the corrections for these approximations are larger, we
still find good agreement when looking at the dynamics (see
next section). This good agreement can be in part attributed
to the immediate leading eigenmodes outside the MM not
playing an important role for the z and y components of the
magnetization dynamics.

4. Approximate metastable dynamics

In this section we want to compare the exact dynamics with
the approximate ones for the (4,5) resonance. In particular, a
first level of approximation is given by Eq. (B1), in which we
have neglected the contributions of modes outside the MM for
long times. In Figs. 8(a)–8(d) we compare this approximation
(in gold dashed lines and triangles) with the exact dynamics
(blue solid lines and circles), finding that after a short initial
transient both display excellent agreement. A further level
of approximation consists in approximating the state of the
system in the metastable plateau by the initial probabilistic
mixture of EMSs:

P5ρ̂0 ≈ p0
1μ̂1 + p0

2μ̂2 + p0
3μ̂3 + p0

4μ̂4 + p0
5μ̂5, (B23)

where p0
j = Tr[P̂j ρ̂0]. Indeed, the z and y components of the

magnetization according to Eq. (B23) are shown in Figs. 8(a)
and 8(b) in red dotted lines, finding excellent agreement
within the metastable plateau; that is, after an initial short
transient and before the final decay takes place. Moreover,
making use of Eq. (B22) we can approximate the period-5
dynamics inside the plateau as

ρ̂5n+ j ≈ p0
1μ̂1+2 j + p0

2μ̂2+2 j + p0
3μ̂3+2 j

+ p0
4μ̂4+2 j + p0

5μ̂5+2 j, (B24)

where j = 0, 1, 2, 3, 4 and the index of the metastable states
follows periodic boundary conditions, i.e., μ̂5+k = μ̂mod(5+k,5)

with k � 1. In Figs. 8(e) and 8(f) we compare the exact oscil-
latory dynamics (blue circles) with the approximation given
in Eq. (B24) (red triangles). We notice that the agreement
is not so good as for the same approximation done in the
period-tripled case (main text), although differences between
exact dynamics and this approximation are still reasonably
small. The fact that this kind of approximation does not work
so well as in the period-tripled case can be traced back to
Eq. (B22) also not working so well (see also caption of Fig. 7),

FIG. 8. (a), (b) Stroboscopic period-5 dynamics for the magne-
tization in the z and y directions. Exact results in blue solid lines.
In gold dashed lines, results according to the projection onto the
MM as given by Eq. (B1). In red dotted lines, initial incoherent
mixture as given by Eq. (B23). Initial condition |J, J〉. Parameters:
N = 70, gτ = 0.18, and ωτ = 4π/5. (c)–(f) Zoom in of the oscilla-
tory dynamics for an interval of time in the metastable plateau. (c),
(d) Comparison of the approximation given by Eq. (B1) (gold down
triangles) with the exact results (blue circles). (e), (f) Comparison
of the approximation given by Eq. (B24) (red up triangles) with the
exact results (blue circles). Same parameters and initial condition as
in (a) and (b).

which as we have already commented it can in turn be traced
back to the spectral gap between the MM and the rest of the
eigenmodes being not so accentuated as in the (2,3) resonance
studied in the main text.

In conclusion, besides quantitative differences in the level
of precision of these approximations, we find our main results
to apply also for this case. The only result that we have
not generalized to this higher-order resonance is a (possible)
classical stochastic process describing the final relaxation in a
stroboscopic picture.
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FIG. 9. Decay rate of the dominant oscillatory mode in the (p, q)
metastable resonance, γp,q, varying the system size and for gτ =
0.2 (blue circles) or gτ = 0.15 (orange squares). (a) ωτ = 2π/5.
(b) ωτ = 4π/5.
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FIG. 10. Comparison of the stationary purity Tr[ρ̂2
ss] varying gτ and ωτ for different system sizes: (a) N = 10, (b) N = 30, (c) N = 50,

and (d) N = 70.

APPENDIX C: ADDITIONAL RESULTS FOR DIFFERENT
SYSTEM SIZES

In this Appendix we present additional results comple-
menting those of the main text regarding the effect of
increasing the system size. In particular, in Fig. 9 we consider
two values of gτ and we plot γp,q for a Rabi frequency ω in
(a) the (2,5) resonance and (b) the (4,5) resonance. In both the
cases the results are qualitatively the same as those displayed
in the main text: the decay rate of the dominant oscillatory
mode displays a nonmonotonic behavior and oscillations with
system size. As a second complementary result, in Fig. 10 we
reproduce in the same plot the purity maps for (a) N = 10, (b)

N = 30, (c) N = 50, and (d) N = 70, in order to ease the vi-
sualization of how the purity islands change with system size.
Notice how the background color becomes clearer progres-
sively, as the minimum attainable purity is 1/N . For N = 10,
we can observe that the region for larger Rabi frequencies is
almost uniform, not displaying purity islands. In the rest of
the cases, purity islands are clearly visible. As commented in
the main text, the number of islands increases with system
size while at the same time they change position and seem
to shrink or span smaller regions of parameter space. These
results further illustrate how the metastable resonances do not
smoothly approach a thermodynamic limit, but that they rather
are also resonances in system size.
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