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Unified theoretical description of out-of-equilibrium electron intraband dynamics
in gold induced by femtosecond laser pulses
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The modeling of the intraband dynamics of conduction electrons in gold induced by a femtosecond laser
pulse is addressed. Current approaches, based on the numerical resolution of the Boltzmann equation, are only
able to describe electron excitation or relaxation processes. In the present paper, within a single formalism,
our kinetic model accounts quantitatively for both excitation and relaxation processes, i.e., photon absorption,
thermal conductivity, and electron-phonon coupling coefficient. We suggest that such an approach can only be
built by including Umklapp processes in the description of electron collisions. In addition to normal electronic
collisional processes with phonons and other electrons, the present theoretical description further includes these
mechanisms: (i) a conduction electron can be scattered in the second Brillouin zone after a collision, contributing
significantly to the photon absorption, and (ii) the influence of the discrete and periodic nature of the lattice on
electron collisions is considered, enabling in particular the coupling between electron and transverse phonons. A
good agreement of predictions of this unified modeling with experimental observations for absorption and energy
transfer from electrons to the lattice is obtained. We have investigated the influence of the Umklapp processes
on the imaginary part of the dielectric function, the electron-phonon coupling parameter, and the transient shape
of the electron energy distribution.
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I. INTRODUCTION

The ultrafast out-of-equilibrium electron dynamics in gold
induced by femtosecond laser pulses has been studied for
several decades, see for instance [1–4]. Experimental obser-
vations based on femtosecond pump-probe experiments have
evidence a ∼100 fs out-of-equilibrium dynamics of photo-
excited conduction electrons due to intraband transitions
[3,5,6]. To understand this transient electron dynamics, kinetic
approaches based on solving the Boltzmann equation have
been developed [5,7]. By describing microscopic interaction
processes, such an approach also allows calculating macro-
scopic properties of materials including the electron-phonon
coupling constant (driving the energy transfer from electrons
to the lattice) and thermal conductivity used in the so-called
two-temperature model [8–10]. By providing an accurate de-
scription of the ultrafast out-of-equilibrium electron dynamics
in materials, this kinetic approach is also an efficient tool for
application purposes including photovoltaic devices and hot
carriers photocatalysis [11–15], which efficiency may depend
in general on both the time-dependent amplitude and shape of
the electron energy distribution.

For photon energies below ∼1.9 eV and moderate laser
intensities, the conduction electron dynamics mainly consists
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of excitation and relaxation processes through intraband tran-
sitions driven by electron collisions. For excitation, electrons
gain energy due to photon absorption (where a third particle,
a phonon or an electron, is involved for momentum conser-
vation). The absorption is related to the imaginary part of the
dielectric function. Regarding relaxation, it is due to electron
collisions with phonons or other electrons (photons are not
involved). Electron-electron collisions mainly leads the elec-
tron energy distribution to equilibrate towards the Fermi-Dirac
statistics. Electron-phonon collisions are responsible for the
energy transfer from electrons towards the lattice. Electron-
phonon collisions also mainly drive the electron transport and
heat transfer.

Various theoretical approaches have been developed to de-
scribe such a laser induced electron dynamics in gold. Models
based on ab initio calculations [2,9,11,16,17] and semian-
alytic free electrons models [18,19] have been developed.
Ab initio calculations give a very accurate and quantitative
description of electron dynamics but require a large com-
putational cost. Semianalytic approaches based on the free
electron approximation are much more efficient and due to
their relative simplicity, enable to get a good understanding
of physical processes at play. For instance, in the paper of
Blumenstein et al. based on a semianalytic approach [20], the
intraband absorption has been considered by using a Drude
model to compute optical properties accounting for elec-
tron temperature. However this approach considers electrons
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at equilibrium. Kinetic approaches, accounting for out-of-
equilibrium conditions, have been shown to be able to account
for results of 100-fs-resolution pump-probe experiments in
case of irradiation of nano objects [3,4,18,21]. Based solely
on normal scattering processes (in the first Brillouin zone),
electron relaxation including electron-electron scattering and
electron-phonon coupling were correctly described. It fol-
lows that electron thermalization (transition to equilibrium)
and electron energy transfer to the lattice (two-temperature
model), respectively, are well described and allow to make
comparisons to experimental data. However, such approaches
cannot in the same time account for laser absorption and
thermal conduction coefficients (which depends on electron-
phonon collision frequency), i.e., they do not quantitatively
account for both excitation and relaxation processes. In partic-
ular absorption is underestimated by one order of magnitude
compared with experimental data (see results below).

The present paper aims at providing an unified ki-
netic description of both excitation and relaxation processes,
including absorption, thermal conductivity, and electron-
phonon coupling parameter for energy transfer from electrons
to the lattice. We suggest that such an approach can only be
built by including Umklapp processes in the description of
electron collisions with another electron or phonon [electron
scattering out of the first Brillouin zone (BZ1)]. We show
that two kinds of Umklapp processes have to be included in
this unified theoretical description. (i) An electron can simply
be scattered by a phonon or an other electron in the second
Brillouin zone (BZ2), contributing significantly to the pho-
ton absorption. The latter (Umklapp photon-electron-photon
process) has been pointed out by [22] as being an important
photon absorption process at optical frequencies. (ii) The
second kind of Umklapp collision is due to the discrete and
periodic nature of the lattice. This process enables in partic-
ular the coupling between electron and transverse phonons
as shown for aluminum [10]. Such Umklapp processes are
implicitly taken into account in ab initio formalism but due
to its relative simplicity, our model highlights the specific role
of such processes in absorption and relaxation processes being
computationally efficient.

This paper is organized as follows. In Sec. II, the
Boltzmann equation, which enables to model the laser in-
duced femtosecond out-of-equilibrium electron dynamics is
presented. The general formalism describing the various
collisional processes (electron-electron and electron-phonon
collision within an external electric field) is provided. The
description of normal processes is recalled in Appendix A as
it is used as a support for Umklapp theoretical description.
The theoretical description of Umklapp processes requires
computationally expansive simulations. In order to provide
a relatively simple approach allowing fast and accurate de-
scription of the ultrafast out-of-equilibrium electron dynamics
in gold for above mentioned application purposes, and to
improve the understanding of the influence of Umklapp pro-
cesses on the electron dynamics, a simplified approach is
proposed. The latter is shown to capture the main influences of
Umklapp processes, which can be split into two contributions.
They are presented and the associated theoretical descriptions
are detailed. In Sec. III, the numerical results obtained with
the present approach are presented. Optical and thermal prop-

erties of gold (intraband optical permittivity, electron-phonon
coupling constant, and thermal conductivity) are calculated.
A good agreement with experimental values is obtained. The
influence of each Umklapp process on the macroscopic ob-
servables is discussed. The first kind of Umklapp process
is shown to mainly change the photon absorption efficiency,
whereas the second kind is shown to have an influence on
thermal conductivity and on the electron-phonon coupling
constant. This good agreement and understanding of contri-
bution of various processes to metal properties validate our
approach. Finally main conclusions of this paper are drawn
in Sec. IV. For the reader’s convenience, Appendices provide
some details on analytical calculations.

II. MODEL

The above mentioned unified theoretical approach aim-
ing at modeling the femtosecond out-of-equilibrium electron
dynamics in gold is presented in this section. The kinetic
formalism consisting in solving the Boltzmann equation for
electrons is introduced in Sec. II A, including a general de-
scription of collision operators. The collisional operators for
normal processes (electron scattering in BZ1), hereafter re-
ferred to as N processes, has been widely studied over the
past decades [5,10,18,23,24]. Nevertheless, as their descrip-
tion is the keystone for the understanding of our model for
Umklapp processes, they are recalled in Appendix A. The
Umklapp processes can be split into two classes pertaining to
different interaction mechanisms. The first class, described in
Sec. II B, corresponds to the electron scattering by a perturba-
tion (phonon or other electron) towards BZ2. This mechanism
is hereafter referred to as U1 process. The second class of
Umklapp process is presented in Sec. II C. It consists of a
description of the electron-phonon interaction accounting for
the discrete feature and periodicity of the lattice. The latter
mechanism is hereafter referred to as U2 process.

A. Kinetic description

1. Boltzmann equation

The description of the laser induced electron dynamics
is done by solving the Boltzmann equation, which provides
the evolution of the electron energy distribution, following a
procedure similar to [5,18]. Assuming that the photon energy
is below the interband threshold (h̄ω < 1.9 eV in gold), only
the dynamics of free carriers in the conduction band can be de-
scribed. This kinetic approach is reliable because the number
of considered particles N is large enough in metals. The char-
acteristic density of conduction electrons is ne ≈ 1022 cm−3,
the laser focal spot size is S ≈ 1 μm2, and the skin depth
is lp ≈ 10 nm, leading to N ≈ ne × S × lp ≈ 1012, which is
large enough to describe electrons by their energy distribu-
tion. Regarding the transport term of the Boltzmann equation,
which accounts for thermal diffusion, it is not included in
the present paper since we are only interested in deriving
the main physical quantities driving the electron dynamics as
presented in Sec. I (not to simulate the laser induced electron
transport). Note this approach is compatible with the deter-
mination of the transport coefficient, which is related to the
collision frequency and associated collision operators, which
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are introduced below. The Boltzmann equation thus reads

∂ f (k)

∂t
= ∂ f

∂t

∣∣∣∣
e−pt−phL

+ ∂ f

∂t

∣∣∣∣
e−pt−phT

+ ∂ f

∂t

∣∣∣∣∣
e−pt−e

(1)

where f (k) stands for electron distribution function. k is
the crystalline momentum of conduction electrons. The terms
of the right-hand side of Eq. (1) are the collision operators
including interactions between electrons (e), phonons (ph),
and photons (pt). ∂ f

∂t |e−pt−phL and ∂ f
∂t |e−pt−phT account for the

electron-photon-phonon interaction considering longitudinal
(L) and transverse (T) phonons, respectively. They describe
the absorption of photons assisted by a phonon (which ensures
the total momentum conservation) [16], and are calculated
with the usual procedure developed in [25]. When the laser
electric field is zero, these collision operators reduce to the
standard electron-phonon collision only leading to electron
relaxation (mainly phonon emission by electrons). Hereafter,
for the sake of conciseness, if the nature of phonons (L or
T) is not mentioned, they are implicitly only longitudinal for
normal processes and, longitudinal and transverse for Umk-
lapp processes. ∂ f

∂t |e−pt−e accounts for the possible absorption
of photons during an electron-electron collision. As shown
below, this mechanism is only possible by considering the
Umklapp process, and accounts for electron-electron relax-
ation when the laser electric field is zero.

2. Collision operators

The electron collision operators corresponds to the transi-
tion rate from a state k to a state k′ [26,27]. Their amplitude
is proportional to a matrix element, which depends on the
nature of colliding particles. In order to evaluate the various
matrix elements, the standard procedure considering a sin-

gle electron Hamiltonian is used. Since the e − pt − ph and
e − pt − e processes includes the e − ph and e − e collisions
(as shown below the formalism including the laser electric
field still stands when the latter vanishes), the Hamiltonian
describing a single-electron oscillating in the laser electric
field is considered. The total Hamiltonian reads in SI units

Ĥ = (P̂ − eA)2

2me
+ Ve−lattice(r) + Ve−e(R̂) (2)

where P̂ is the momentum operator, e is the electron charge,
me the electron mass, and A is the vector potential. Ve−lattice

and Ve−e are the interaction potentials with the lattice and
other electrons, respectively. The interaction potential of an
electron with the lattice reads Ve−lattice(r) = V 0

ei
(̂r) + Ve−ph (̂r)

where V 0
ei

is the interaction potential of an electron with ions
of the lattice in their equilibrium position, and Ve−ph the inter-
action with phonons [23]. The matrix elements are evaluated
by using the picture of laser-assisted electron collisions, i.e.,
the interaction Hamiltonian is used with laser dressed wave-
functions [25,28–32],

ψm(k, t ) = u(k)eik·r− i
h̄

∫ t
−∞ dt ′(p2+e2A2(t ′ )−2ep·A(t ′ ))2/2me (3)

where u(k) is the unperturbed Bloch term of the wavefunc-
tion. p is the eigenvalue of the momentum operator P̂ =
−ih̄∇. Since femtosecond laser pulses are considered, includ-
ing at least several optical cycles, the slowly varying envelope
approximation is used, i.e., A(t ) = A0(t ) cos(ωt ) where A0(t )
is the envelope, then simplifying the temporal integration of
transition amplitudes.

Regarding the e − pt − ph collision, the general expres-
sion of the collision operator, accounting for both normal and
Umklapp processes, then reads [18,25]

∂ f (k)

∂t

∣∣∣∣
e−pt−ph

= 1

4π2h̄

∑
l,±,L,T

∫
dk′J2

l

(
e�p · F
meh̄ω2

)
×

[
(1 − f (k)) f (k′)

(
1 ± 1

2
+ n(±k′ ∓ k)

)∣∣ML,T
k,k′

∣∣2

× δ
(
Ek ± EL,T

ph (±k′ ∓ k) − Ek′ + l h̄ω
) − f (k)(1 + f (k′))

(
1 ± 1

2
+ n(∓k′ ± k)

)∣∣ML,T
k,k′

∣∣2

× δ
(
Ek ∓ EL,T

ph (∓k′ ± k) − Ek′ + l h̄ω
)
]

(4)

where Ek stands for the electron kinetic energy in state k. Jl is the Bessel function of order l , where the index l stands for
absorption or emission of |l| photons. Note that without external electric field F (F = 0), all terms Jl with l �= 0 vanish and
J0 = 1, leading to the electron-phonon collision operator (only relaxation). The ± sum stands for emission and absorption of
phonon, and �p is the exchanged momentum during the collision i.e., �p = p(k′) − p(k). |ML,T

k,k′ |2 = |〈k′|V L,T
e−ph(k′ − k)|k〉|2 is

the matrix element for the electron-phonon (longitudinal or transverse) coupling. Eph is the phonon energy. nL and nT stand for
distribution functions of longitudinal and transverse acoustic phonons [also denoted n(q)], respectively. Both are assumed to be
equilibrium Bose-Einstein distributions at room temperature since their evolution is negligible on a femtosecond timescale [33].
The collision rate depends on the kind (longitudinal or transverse) of phonon as shown below.

Following a similar procedure, the collision operator for electron-electron interaction within the laser electric field reads
[18,25]

∂ f (k)

∂t

∣∣∣∣
e−pt−e

= 2π

h̄

1

(8π3)3

∑
l,�,↑↓

∫
dk1dk2 J2

l

(
e�p · F
meh̄ω2

)
δ
(
Ek + Ek2 − Ek1 − Ek3 + l h̄ω

)
× [

(1 − f (k))(1 − f (k1)) f (k2) f (k3)|G�,↑↓
k,k2,k1,k3

|2

− f (k) f (k1)(1 − f (k2))(1 − f (k3))|G�,↑↓
k1,k3,k,k2

|2]k3=k+k2−k1
, (5)
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where �p is total variation of momentum of the two-electron
system, i.e., in the case where the initial state is |k, k1〉 and the
final state is |k2, k3〉, �p = p(k3) + p(k2) − p(k) − p(k1).
Note that in the case of free electrons with a parabolic band,
since p = h̄k and �k = 0, �p = 0. Thus, since Jl �=0 = 0
and J0 = 1, the external electric field has no influence on
this electron collision operator. Photon absorption is thus
only possible through Umklapp processes for which �p �=
0. |G�,↑↓

k1,k3,k,k2
|2 stands for the electron-electron collision op-

erator for parallel spins (�) or antiparallel spins collisions
(↑ ↓) [34].

The two collision operators [Eqs. (4) and (5)] account
for all main processes leading to intraband transitions of
conduction electrons. They are based on integrations over
the vectorial wave-vector space. Such calculations are com-
putationally expansive. The goal of the present paper is
to provide an unified description of the out-of-equilibrium
femtosecond electron dynamics accounting for experimental
values of absorption, thermal conductivity, and electron-
phonon coupling coefficient, for possible future studies; and
highlight the role of Umklapp processes within this scope (by
switching on or off each process). Therefore, the following
approximations commonly made in the literature are used to
simplify the theoretical description of the present physical
system. (i) Since macroscopic quantities (optical absorption,
thermal conductivity, and electron-phonon coupling coeffi-
cient) will be evaluated, the averaged collision frequencies
of electrons with respect to the angle of k are considered.
Thus, a mean isotropic dispersion relation, Ek = h̄2k2/2me,
in BZ1 is considered. Such an approximation is known to
provide accurate value of free electron specific heat and
Fermi velocity [23]. (ii) Laser-induced small perturbations
of the distribution function are assumed (laser intensity is
low enough). The collision frequencies may thus be assumed
not to depend on the anisotropy of the perturbation, which
could be induced directly by anisotropic photon absorption
processes. Consistently with the approximation of isotropic
dispersion relations, we then assume that f (k) = f (k), with
k = ‖k‖. (iii) Because of the narrow photo-induced pertur-
bation (h̄ω < EF ) of the energy distribution function, we
assume that the exchanged energy during an electron-electron
collision is small, so that according to the results of [34],
collisions between electrons with parallel spin can be ne-
glected due to the exchange term. Consistently, we assume
that the matrix elements can be calculated within the approx-
imation of the static screening due to valence and conduction
electrons. The Thomas-Fermi formalism will then be used.
(iv) For the phonons, we use the sine dispersion relation
for both longitudinal and transverse phonons: EL,T

ph (k) =
h̄vsL,T sin(πk/K )K/π , where EL,T

ph (k) is the energy of
phonon, and vs is the sound speed. According to [35], vsL =
3240 m/s and vsT = 1200 m/s in gold. One should notice
that there is one longitudinal and two transverse branches. We
assume that the two transverse branches are degenerated. Such
description gives good values for the maximum energy of the
phonons [23].

As shown in forthcoming sections, these assumptions al-
lows one in particular to obtain simplified matrix elements.
For the sake of clarity, the collision operators can be split

TABLE I. Characteristic wave vectors involved in collisions for
gold.

K/2 kF q0

Wave vector reciprocal lattice Fermi screening

Values (1010 m−1) 1.5 1.2 0.9

into three parts since each process is independent from each
other,

∂ f (k)

∂t

∣∣∣∣
e−pt−ep

= ∂ f (k)

∂t

∣∣∣∣N

e−pt−ep

+ ∂ f (k)

∂t

∣∣∣∣U1

e−pt−ep

+∂ f (k)

∂t

∣∣∣∣U2

e−pt−ph

(6)

where ep denotes an electron or a phonon. These collision op-
erators are evaluated in Appendix A, Sec. II B, and Sec. II C,
respectively.

B. U1 process: Electron scattering out of the first Brillouin zone

1. Electron-photon-phonon collision

The importance of electron scattering out of BZ1 is demon-
strated by analyzing the matrix element (A6), which quantifies
the coupling between two electron states induced by a phonon.
This matrix element filters the spatial component of the lattice
potential larger than q0. The typical crystalline momentum
exchanged during an electron phonon collision is q0; such
transition being negligible if q0  K . Table I summarizes
the values of the three main wave vectors, which matter for
such collisions. One should notice that neglecting the energy
of a phonon, the minimum value of �k, for a transition
from state kF of BZ1 to state K − kF of BZ2, is K − 2kF =
0.6 1010 m−1 < q0. This shows that U1 processes should be
considered.

The contribution of U1 process is more complicated to eval-
uate compared with the N process due to two reasons: (i) First,
in the delta function accounting for the energy conservation
in Eq. (4); one should notice that (assuming parabolic band
in BZ1) E (k′ ∈ BZ2) = E (k′ − K) = h̄2(k′ − K)2/2me with
k′ − K ∈ BZ1. Then, the angular dependence in the integra-
tion is not only due to the angle between k and k′, but also
due to the angle between k′ and K, which makes the integra-
tion over angles more complicated. Analytic simplifications,
which enables to obtain electron-phonon collision operators
for the N process cannot be achieved for the U1 process. (ii)
Secondly, since k and k′ are not in the same Brillouin zone,
the approximation of free electrons is no longer appropriate
and one cannot assume in Eq. (A5) that

∫
druk(r)u†

k′ (r) = 1,
leading to Eq. (A6). As explained in the Sec. I, within the
framework of developing an unified modeling of the fem-
tosecond laser-induced electron dynamics while keeping a
computationally efficient approach, in order to provide a tool
allowing one to capture the main physical processes at play
and understand the role of each process, here we propose a
simplified description of Umklapp processes for the purpose
of evaluation of macroscopic observables. The Fermi liquid
theory considers Umklapp and N processes similarly. Since a
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narrow electron energy range is considered, i.e., |E − EF | �
h̄ω, the U1 e-pt-ph collision operator are thus considered to be
proportional to the N one, with a proportionality coefficient
αe−ph U1 . The only considered difference is in the argument
of the Bessel function accounting for momentum conserva-
tion, �p = p(k′) − p(k) = h̄(k′ − K − k) = h̄(q − K). The
operator for the U1 e-pt-ph process thus reads

∂ f (k)

∂t

∣∣∣∣U1

e−pt−ph

= 1

2π h̄3

me

k
αe−ph U1

∑
l,±

×
∫ K/2

0
dqq

∣∣ML
q

∣∣2
J2

l

(
e
√

(q2 + K2)F

meω2

)

×
(

(1 − f (k)) f (k′)
(

1

2
± 1

2
+ n(q)

)

− f (k) (1 − f (k′))
(

1

2
∓ 1

2
+ n(q)

))
	±

(7)

where |ML
q |2 is provided by Eq. (A6). 	± = 1 if (( h̄q

2me
±

Eph

h̄q ) + l ωl
q ) < h̄k

me
, and 	± = 0 other while. This approach

thus includes a single adjustable parameter αe−ph U1 , which is
set in Sec. III from a comparison to the measured imaginary
part of the dielectric function. This process provides a further
contribution to the optical absorption.

2. Electron-photon-electron collision

Electron-electron Umklapp processes are related to ex-
change crystalline momentum of the same order of magnitude
as kF [34], and thus should be introduced in the whole
description of the electron dynamics. Similarly as for electron-
phonon collisions (i.e., considering a narrow band of the
spectrum of electrons, i.e., |E − EF | � h̄ω), we assume that
the main influence of the Umklapp process can be captured
assuming there amplitude is proportional to the normal pro-
cess. The only difference also appears in the conservation of
energy, which has to account for photon absorption, and in the
Bessel function argument where �p �= h̄�k. This electron-
photon-electron Umklapp collision operator then reads

∂ f (k)

∂t

∣∣∣∣U1

e−pt−e

= π h̄

32me

e4

ε2
0

1

ET F

√
E

αe−e U1

∑
l �=0

∫
dE2dE1

D(E2 + l h̄ω)

k′
2

D(E1)

k1

[ √
Ẽ

(Ẽ + ET F )
+ 1√

ET F
tan−1(

√
Ẽ/ET F )

]Ẽup

Ẽlow

× J2
l

(
eKF

meω2

)
([1 − f (k)][1 − f (k1)] × f (k(E2 + l h̄ω)) f (k3)

+ f (k) f (k1)[1 − f (k(E2 + l h̄ω))] × [1 − f (k3)])|E3=E+E1−E2−l h̄ω (8)

with Ẽup = min((
√

E + √
E2 + l h̄ω)2; (

√
E1 + √

E3)2) and
Ẽlow = max((

√
E − √

E2 + l h̄ω)2; (
√

E1 − √
E3)2). Note

that the sum over l does not include the configuration
l = 0, i.e., the e-e relaxation. The latter does not contribute
significantly to the relaxation compared with the N process
because the Umklapp process involves larger exchanged
electron momentum and subsequently a smaller transition
matrix element as shown by Eq. (A9). The l = 0 relaxation
contribution has been removed within the above mentioned
scope of developing a simplified approach allowing one to
understand the main physical processes at play, and which
is computationally efficient. The parameter αe−e U1 is set in
Sec. III.

C. U2 process: Electron scattering by longitudinal
and transverse phonons

Because of the periodicity of the lattice and due to its
discrete nature, the electron-phonon potential does not only
exhibits a component in k = q, but also in all the components
k = q + K. In this section, we present an approach to evaluate
the contribution of this second kind of Umklapp process.

Considering Eq. (A3), three configurations may take place
depending on the orientation of eq: (i) eq is oriented along q.
In this configuration Eq. (A3) stands for electron-longitudinal-
phonon coupling. (ii) eq is orthogonal to the (q, K) plane,
which leads to Ve−ph(r) = 0. (iii) eq is into the (q, K) plane
and orthogonal to q, leading to a non zero contribution to

Ve−ph since eq · K �= 0. Equation (A3) can also be written as

Ve−ph(r) =
∑
q,n

V n
e−ph(q)ei q·r (9)

where the index n denotes the transverse and longitudinal
phonon bands. The longitudinal and transverse coupling are
represented schematically in Fig. 1 considering respectively
phonon with polarization vector eq‖ and eq⊥.

For the longitudinal N process, K = 0 and eq · q = q while
for the transverse N process, eq · q = 0. Noting that for Umk-
lapp processes, the angle between eq and K can take any
value, the longitudinal and transverse phonon-electron poten-
tial then reads

V L,U2
e−ph(q) =

∑
K �=0

δRqVq+K
(
q + eL

q · K
)
ei K·r, (10)

V T,U2
e−ph (q) =

∑
K �=0

δRqVq+KeT
q · K ei K·r. (11)

.
Equations (A5) and (A6) are two expressions for the

electron-phonon matrix element. The first is obtained from
the general expression (A3), which requires to have an ana-
lytic expression for (q + K) · δRq Vq. The second expression
is analytic but only accounts for normal coupling between
electrons and longitudinal phonons. By following the stan-
dard procedure of second quantization formalism [26,27],
the matrix element within deformation potential theory for
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FIG. 1. Schematic representation of the diffusion of an electron
by phonon Umklapp processes. An electron in the initial state k
absorbs a phonon with crystalline momentum q and reach the state
k′ = k + q. It is well known that such normal diffusion process is
possible only if the phonon has a longitudinal polarization. However,
phonons potential exhibits components in higher Brillouin zone than
the first one. Thus, diffusion with transverse phonons may occurs and
must be taken into account.

electron-phonon interaction (normal and Umklapp) has been
obtained in semiconductors [10]. By identifying the dielectric

deformation potential used in the matrix element to the matrix
element pertaining to free electrons in metals [i.e., identifying
general expression (A3) to expression (A6)], expression (A6)
can be evaluated in the case where K �= 0,

∣∣ML
q,K

∣∣2 = EL
ph(q)e2

2ε0ε0
c

(|q + K|2 + q2
0

) (
q + eL

q · K
)2

|K + q|2 . (12)

Note that according to the Bloch theorem, the final state of
the electron is ψ (k + q + K) = ψ (k + q). This will be taken
into account for the collision operators and for photon absorp-
tion processes.

Similarly, considering Eqs. (A3) and (11), the transverse
term reads∣∣MT

q,K

∣∣2 = ET
ph(q)e2

2ε0ε0
c |q + K|2 + q2

0

(
eT

q · K
)2

|K + q|2 . (13)

As for longitudinal phonons, if k + q ∈ BZ1, within the free
electrons approximation in BZ1, �p = h̄q. Note that half of
the transverse phonons have a polarization orthogonal to the
k, K plane while half have polarization into the plane. Thus
the mean matrix element should by twice smaller, which leads
to a factor 1/4 for |MT

q,K|2 instead of 1/2 for |ML
q,K|2. Thus,

defining θ the angle between q and K, the U2 matrix elements
read

∣∣ML
q,K

∣∣2 = EL
ph(q)e2

2ε0ε0
c

(
q2 + K2 + 2Kq cos θ + q2

0

) q2 + K2 cos2 θ + 2Kq cos θ

q2 + K2 + 2Kq cos θ
, (14)

∣∣MT
q,K

∣∣2 = 1

4

ET
ph(q)e2

ε0ε0
c

(
q2 + K2 + 2Kq cos θ + q2

0

) K2 sin2 θ

q2 + K2 + 2Kq cos θ
. (15)

We now assume that the total collision operators can
be obtained by considering mean angles, i.e., cos θ →
1
π

∫ π

0 cos θ sin θdθ = 0 and cos2 θ → 1
π

∫ π

0 cos2 θ sin θdθ =
1/3. Within this consideration, the matrix elements read

∣∣ML
q,K

∣∣2 = EL
ph(q)e2

2ε0ε0
c

(
q2 + K2 + q2

0

) q2 + K2/3

q2 + K2
, (16)

∣∣MT
q,K

∣∣2 = 1

6

ET
ph(q)e2

ε0ε0
c

(
q2 + K2 + q2

0

) K2

q2 + K2
. (17)

Note that with K = 0, Eq. (16) reduces to Eq. (A6), the matrix
element for the N process, while Eq. (17) reduces to zero.

III. RESULTS AND DISCUSSION

The previously presented developments aiming at account-
ing for the absorption, the thermal conduction coefficient,
and the electron-phonon coupling coefficient, include two ad-
justable parameters, αe−pt−ph U1 and αe−e U1 . Our method to
predict these three physical quantities consists of first setting
the value of αe−pt−ph U1 and αe−e U1 to account for the mea-
sured imaginary part of the dielectric function. Then, without
further procedure, both the thermal conductivity and electron-
phonon coupling coefficient are evaluated (obtained values of
αe−pt−ph U1 and αe−e U1 are not changed). Such an approach

also allows us to evaluate the contributions of various pro-
cesses.

A. Influence of Umklapp processes on photon absorption

To evaluate αe−pt−ph U1 and αe−e U1 , the experimental value
of the imaginary part of the dielectric function Im(ε) in the
intraband domain is considered. The experimental data of
[36] are chosen as a reference due to their relatively recent
publication and critical comparison to previously published
results in the literature. Im(ε) can be theoretically evaluated
from the kinetic approach by considering the variations in
the density of energy of the electron gas, 〈E〉, induced by the
external laser electric field [9,25],

∂〈E〉
∂t

= ωε0Im(ε)

2
F 2, (18)

where F is the laser electric field amplitude. The variations in
the density of energy also reads in terms of collision operators

∂〈E〉
∂t

=
∫

D(E )E

(
∂ f

∂t

∣∣∣∣
e−pt−ph

+ ∂ f

∂t

∣∣∣∣
e−pt−e

)
dE (19)

where the contribution of pure (without laser electric field)
relaxation processes is not included. Then, Eqs. (18), (19), and
previous modeling of collision operators allow us to calculate
Im(ε). Collision operators and Im(ε) are calculated numer-
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FIG. 2. Imaginary part of the intraband permittivity as a function
of the photon energy. The dashed-black curve corresponds to experi-
mental data of Babar and Weaver [36]. The other curves are obtained
with the present modeling where various processes are step-by-step
considered [Eqs. (18) and (19)]. The orange curve is obtained with N
processes only. The green curve further includes the U2 process. In
addition to previous processes, the U1 e-pt-ph is included to obtain
the red curve. The whole modeling is used for the blue curve.

ically with a discretization of electron distribution functions
with a 1-meV-energy step. The convergence has been verified.

Figure 2 shows the evolution of the imaginary part of
the dielectric function with respect to the photon energy as
theoretically predicted by our approach and as experimentally
obtained by Babar and Weaver [36]. The contributions of
various absorption mechanisms are depicted. Only consider-
ing the electron transitions in BZ1, Im(ε) is underestimated
by a factor of 5 and 10 in the low and high photon energy
domain, respectively. As shown in the Appendix B, Im(ε)
scales as ω−3, which corresponds to experimental observa-
tions at low photon energies. This region corresponds to a
classical interaction regime, which is correctly described by
the Drude model for ω � ν where ν stands for the total
electron collision frequency. By additionally accounting for
the U2 processes (green curve), Im(ε) is increased by a factor
of 2 and still behaves as ω−3. Indeed, the explanation, which
has been provided for N processes is still appropriate for these
processes and Im(ε) still follows the same scaling law as
classical Drude prediction with constant collision frequency.
The predicted value of Im(ε) still remain significantly lower
than experimental data.

The Drude model including a constant collision frequency
or only the e-ph collision frequency fails to describe Im(ε)
at optical frequencies because of the deviation from the ω−3

scaling law of Umklapp electron-photon-electron processes
[37]. Absorption induced by this process is expected to be
negligible at low h̄ω, and of the same order of magnitude
as e − pt − ph processes at optical frequencies [38]. Such a
behavior allows us to set the value of αe−pt−ph U1 and αe−e U1

independently. αe−pt−ph U1 has been set to fit the measured
imaginary part of the dielectric function [36] at low photon
energies (h̄ω � 0.6 eV). αe−e U1 has then been set to fit the
measured imaginary part of the dielectric function on the

whole spectrum. A very good agreement with experimental
observations is obtained with αe−pt−ph U1 = 0.2 and αe−e U1 =
0.75 as shown in Fig. 2.

Despite the relatively low contribution of 20% of the U1

process to the pure electron scattering (relaxation), the absorp-
tion is increased by a factor of 3. Such a different contribution
can be explained comparing N + U2 and N + U1 + U2 e −
pt − ph collision frequencies. According to Eq. (32), the
N e − pt − ph absorption process scales with J2

l ( eh̄qF
meh̄ω2 ) while

U1 processes scale as αe−ph U1 J2
l (

eh̄
√

q2+K2F
meh̄ω2 ). For a small

enough laser electric field (where absorption is mainly linear),
i.e., eKF

meω2  1, only the contribution of l = 1 should be kept,

which leads to J2
l ( eKF

meω2 ) = δl,0 + δl,1( eKE
2meω2 )2 [25] where δll ′

stands for the Kronecker symbol: δll ′ = 1 if l = l ′ and 0 other-
wise. The ratio of (N + U1 + U2) contribution processes over
the (N + U2) one reads 1 + αe−pt−ph U1 (1 + K2

q2 ). Considering
that typically q ∼ q0 and using the parameters summarized
in Table I, the e − pt − ph collisions including N + U1 + U2

processes are roughly 3 times more efficient than those only
including N + U2 processes. This further demonstrates the
importance of the distinction between the eigenvalue of the
momentum operator (which is essential to understand photon
absorption), and the crystalline momentum.

Regarding αe−e U1 , its value larger than the one of
αe−pt−ph U1 can be explained with two arguments: (i) e − e
Umklapp processes are due to a small part of ↑ ↓ and a
significant part of �, which are assumed to be negligible for
N processes. Such consideration of � or ↑ ↓ are not relevant
for e − ph collision processes. (ii) One should also consider
the case where two electrons reaches BZ2. In such a configu-
ration the variation of total momentum can be higher than h̄K
and the mean absorbed power should be much higher. This
argument is not relevant for e − pt − ph processes since only
one single electron is involved in the process. The fit of the
parameters implicitly account for this phenomenon.

B. Influence of Umklapp processes on collision frequencies
and electron-phonon coupling constant

By writing the collision operator as

∂ f (k)

∂t

∣∣∣∣
coll

= (1 − f (k)) S+(k) − f (k)S−(k) (20)

one obtains the standard Drude-Sommerfeld electric conduc-
tivity σ = nev

2
F /3νe−ph and associated thermal conductivity

κe = Cev
2
F /3νe−ph [39] with an effective electron-phonon col-

lision frequency νe−ph ≈ S+
e−ph(kF ) + S−

e−ph(kF ) when Te 
EF [9,23]. In our calculations, S+(k) and S−(k) are obtained
by identifying Eq. (20) to Eq. (4) with respect to (1 − f (k))
and f (k), respectively.. At 300 K, κe is of the order of
300 W m−1 K−1 with values slightly evolving depending on
the published studies [39–42].

Figure 3 shows the evolution of this effective electron-
phonon collision frequency as a function of the electron
energy at Te = Tph = 300 K. The contribution of various
processes (N , U1, or U2) is highlighted. When only N pro-
cesses are considered, S+(EF ) + S−(EF ) ≈ 20 ps−1 at the
Fermi level, which leads to a static electric and thermal
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FIG. 3. Total electron-phonon collision frequencies with respect
to electron energy accounting for N processes only (red line), N + U1

processes (green line), N + U2 processes (orange line), N + U1 + U2

processes (blue line). These collision frequencies have been calcu-
lated with F = 0 in Eq. (4). The inset shows the separate contribution
of S+ and S− for normal processes (units are the same as the main
graph).

conductivities twice larger than the experimental one (corre-
sponding to a collision frequency of ∼40 ps−1 [23]). When the
contribution of Umklapp processes is considered, S+(EF ) +
S−(EF ) = 40 ps−1, which is in a very good agreement with
standard electron-phonon collision frequencies and associated
electrical conductivity [23]. Regarding the thermal conductiv-
ity, with vF = 1.39 × 106 m/s and Ce = 1.9 × 104 J m−3 K−1

[39], we obtain κe ∼ 306 W m−1 K−1, which is in a good
agreement with values provided in the literature. The U1 pro-
cess increases the electron-phonon collision frequencies by
20%, which is consistent with the fact that the contribution
of the U1 processes is proportional to Normal processes with
a coefficient αe−ph U1 = 0.2 (as set in the previous section to
account for absorption properties of gold). The U2 process in-
creases electron-phonon collision frequencies by 50%, while
it is 100% for photon absorption. Indeed, the phase space,
which can be reached during an e − ph collision is mainly
limited by the maximum energy of a phonon while it is limited
by the energy of a photon for photon absorption (at opti-
cal frequencies, phonon energy is negligible with respect to
photon energy). Thus, the contribution of transverse phonons,
which have similar crystalline momentum but lower energy
than longitudinal phonons, is lower for e − ph processes than
for e − ph − pt one.

Note that the collision frequency exhibits a decrease with
respect to the electron energy with a local minimum at the
Fermi energy. This behavior can be explained with the Fermi
liquid theory: for E − EF > kBTe + kBθD, an electron, which
generates a phonon cannot loss more energy than kBθD, where
θD is the Debye temperature. Thus, the energy of the final state
is larger than EF + kBTe where states are completely empty.
The Pauli exclusion principle has no influence on the collision
frequency. On the other hand, for E − EF ≈ kBTe + kBθD,
the final state is partially occupied due to thermal smooth-
ness of the distribution function. When E − EF < −kBTe the

FIG. 4. Perturbations of electron distribution function with a
same total absorbed energy (associated to an increase of electron
temperature about 40 K) induced by an increase of the electron
temperature (green line), electron-photon-phonon processes (orange
line), and electron-photon-electron Umklapp processes (blue line).
Note that these perturbations are obtained just after the excitation
process, without any relaxation process.

final electron state due to the emission of a phonon is nec-
essary fully filled, and S− = 0. Thus the electron-phonon
collision frequency S− increases from zero to its maximum
value between EF − kBTe and EF + kB(Te + θD). Similarly,
S+ decreases to zero between E − EF = −kB(Te + θD) to
E − EF ≈ kBTe. Finally, S+ + S− exhibits a local minimum
at |E − EF | � kB(Te + θD). This analysis is supported by the
inset in Fig. 3.

Within the present formalism, the electron-phonon cou-
pling constant G of the two-temperature model can also be
evaluated owing to the following relation:

∂〈E〉
∂t

=
∫

E
∂ f

∂t

∣∣∣∣
e−ph

dE = G (Tl − Te), (21)

where Tl and Te denote the initial lattice and electron tempera-
tures used to define phonon and electron distribution functions
(Bose-Einstein and Fermi-Dirac, respectively). Setting Tph =
300 K and Te = 350 K, which accounts for conditions of
[5,24] for instance, numerical simulations lead to G = 3 ×
1016 W/m3/K. This result is in good agreement with [9].
Note that this result is found not to depend on the electron
temperature as long as Tph < θD and Te  EF as predicted in
[8]. We have checked that the same value of G is obtained with
various values of Te in a similar range.

C. Influence of the e-pt-e process on
the electron energy distribution

The e − pt − e process has been shown to contribute sig-
nificantly to the absorption for large enough photon energies,
i.e., it contributes significantly to the electron dynamics. How-
ever, models that do not include this collisional process are
able to account for some experimental observations [5,24].
The aim of the present section is to elucidate this contradictory
observations. For this purpose, the influence of the e − pt − e
process on the shape of the electron energy distribution is
first investigated. The perturbation of the distribution func-
tion � f for a same total absorbed energy 〈�E〉 induced by
e − pt − ph and e − pt − e processes is shown in Fig. 4. The
e − pt − ph perturbation exhibits the well known two-step
distribution on the energy range from EF − h̄ω to EF + h̄ω

[18,24,33] accounting for the fact that the electron energy
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variation cannot be larger than the photon energy. This shape
of the distribution is due to the fact that the photon absorption
probability assisted by a phonon is mainly driven by the initial
step-like Fermi-Dirac distribution [for kBTe (andθD)  h̄ω 
EF ], leading to a relatively constant excitation probability re-
gardless the final electron energy. The mean energy of excited

electrons is thus Ee−pt−ph =
∫ ∞

EF
dE D(E )E� fe−pt−ph∫ ∞

EF
dE D(E )� fe−pt−ph

≈ h̄ω/2.

Regarding the e − pt − e process, the mean energy of
carriers

∫ ∞
EF

� f D(E )EdE is h̄ω/4 as already pointed out
with qualitative arguments [38]. Indeed, the pair of excited
electrons, originating from the energy interval [EF − h̄ω; E f ]
due to the initial energy distribution, makes a transition to-
wards the energy range [EF ; EF + h̄ω] due to the absorption
of one photon. The mean energy of the pair of electrons is
thus h̄ω/2, and the mean energy of a single electron then is
h̄ω/4. An explanation of the shape of the energy distribution
perturbation can also be provided by considering the initial
step-like shape electron energy distribution. Considering two
electrons indexed 1 and 2, the energy conservation involves
E f

1 + E f
2 = Ei

1 + Ei
2 + h̄ω where superscripts i and f denote

the initial and final states, respectively. Due to the initial
Fermi-Dirac distribution, a transition is possible if Ei

1 and
Ei

2 are between EF − h̄ω and EF . More precisely, since the
final energy of both electrons must be larger than EF , if
Ei

1 = EF − αh̄ω, with α a parameter in between 0 and 1,
imposes Ei

2 > EF − (1 − α)h̄ω. Therefore, the larger α (or
smaller Ei

1), the smaller the number of configurations for
electron 2 satisfying transition rules. For instance in the limit
cases, electron 1 with energy Ei

1 = EF − h̄ω (α = 1) can col-
lide with electron 2 at energy Ei

2 = EF ; and electron 1 with
energy Ei

1 = EF (α = 0) can only collide with electron 2 with
energies Ei

2 in between EF and EF − h̄ω. Assuming a constant
density of states (because h̄ω  EF ), the e − pt − e collision
probability is proportional to the above mentioned number of
configurations, explaining the rather linear evolution of � f
on the intervall [EF − h̄ω; E f ]. The symmetric shape on the
energy intervall [EF ; E f + h̄ω] is explained with the same
arguments.

For e − pt − ph, since the photon energy is absorbed by
one single electron while it must be shared between two
electrons for e − pt − e collision, Ee−pt−ph ≈ 2Ee−pt−e. This
also explains why max(� fe−pt−e) ≈ 4 max(� fe−pt−ph). The
total energy 〈�E〉 associated to a distribution of carriers reads:
〈�E〉 ≈ E�ne, where �ne stands for the number of carriers,
�ne ≈ 2 D(EF )E� f . That leads to � f ∝ 〈E〉

D(EF ) E
2 .

Since phonon- and electron-assisted photon absorption
processes lead to different electron energy distribution, their
relaxation dynamics is also expected to be different because
the electron relaxation time depends on the electron energy
as 1/(E − EF )2 (due to e − e scattering). To exhibit the in-
fluence of a particular heating process on the dynamics of
the distribution function, the temporal evolution of the elec-
tron energy distribution is investigated by considering either
the e − pt − ph process for the laser heating, or only the
e − pt − e mechanism. For that purpose, we have carried out
numerical simulations based on the resolution of Boltzmann
equation (1) where only the electron-electron scattering has
been taken into consideration for the relaxation process. The

FIG. 5. Perturbations of the electronic distribution function for
a same total absorbed energy (100 J/cm3 deposited in 20 fs, see
text) as predicted by the present modeling. Solid lines stand for
the case where only e − pt − ph processes have been considered
for photon absorption while dashed lines stand for the case where
only e − pt − e processes have been considered for photon absorp-
tion. Only electron-electron relaxation processes has been considered
[electron-phonon relaxation takes place on longer time scales (t >

500 fs)]. Each color stands for a given simulation time.

laser pulse parameters are as follows. The laser intensity pro-
file is F 2(t ) = F 2

0 cos2(πt/�tFW HM ) with �tFW HM = 20 fs
(simulations start at t = −�tFW HM/2), and the photon energy
is 1.5 eV. F0 has been set to obtain the same total absorbed
energy in both cases, i.e., 100 J/cm3. The perturbation of the
electron distribution at various time in both cases is plotted in
Fig. 5 where the standard Euler method for time integration
of Eq. (1) is used, with time and energy steps of 1 fs and
5 meV, respectively. At t = 0, the same results as Fig. 4 is
obtained, accounting for the fact that electron relaxation is not
yet efficient on this timescale. The maximum amplitude of the
distribution perturbation induced by the e − pt − e heating
process is roughly four times larger than in the e − pt − ph
configuration. On a timescale of 100 fs, both distributions
become rather similar, with a relative difference smaller than
10%. Thus, both distribution functions cannot been distin-
guished on timescales longer than 100 fs. The e-pt-e process
thus contributes to absorption, but its influence on the shape
of the electron energy distribution is negligible for timescales
longer than 100 fs. This result explains why modeling not
including the e-pt-e process is able to account for pump-probe
experiments with a temporal resolution longer than 100 fs
[5,24].

Within this model, we have also performed a full numerical
resolution of Boltzmann equation in order check that our
approach is able to reproduce the out-of-equilibrium elec-
tron distribution dynamics, which was shown in the literature
to account for those experimental observables obtained with
pump-probe experiments [5,24]. For timescales longer than
100 fs, a very good agreement with published theoretical
results is obtained, further validating our approach.

IV. CONCLUSIONS

Earlier models proposed in the literature, based on solv-
ing the Boltzmann equation within the approximation of free
electrons, describe partially the ultrafast electron dynamics
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in gold induced by a femtosecond laser pulse. A correct
description of transient optical properties of nano objects
was achieved by evaluating accurately the electron-electron
scattering and electron-phonon coupling coefficient. However,
both electron-phonon collision frequency and optical absorp-
tion are underestimated, in particular the latter by one order of
magnitude.

By including collisional Umklapp processes, we reproduce
quantitatively all main experimental observables including
the femtosecond laser induced electron dynamics, optical
absorption, thermal conductivity, and electron-phonon cou-
pling coefficient. Two kinds of Umklapp electron-phonon
collision and one kind of Umklapp electron-electron inter-
action have been introduced. For the first kind of Umklapp
electron-phonon collision, the electron is scattered into BZ2.
The exchanged momentum can be much larger than the
momentum of the phonon, increasing significantly the laser
absorption (by a factor of 3) whereas the total electron-
phonon collision frequency is modified by only ≈20% (thus
weakly impacting the transport coefficient already accu-
rately predicted by earlier models). The second kind of
Umklapp electron-phonon collision is due to the periodic-
ity of the discrete lattice, leading to an electron coupling
with both longitudinal and transverse phonons. We have
found that those processes account for half of the to-
tal electron-phonon and electron-photon-phonon collision
frequencies.

Regarding electron-photon-electron collisions, they con-
tribute to half of the total laser absorption for large enough
photon energies. We have shown their significant influence
on the scaling law of the imaginary part of the dielec-
tric function (accounting for absorption) with respect to the
photon energy, which is in a good agreement with experimen-
tal observations. The electron energy distributions induced
by electron-photon-electron collisions and electron-photon-
phonon collisions exhibit different shapes. By including the
first process, the mean energy of electrons is twice smaller
while the number of carriers is four times larger. However, due
to electron-electron relaxation processes, both distributions
become similar on a timescale longer than ∼100 fs. This
result explains why earlier models neglecting the electron-
photon-electron process are able to account for pump-probe
experimental observations of the transient evolution of the
electron energy distribution with a temporal resolution of
the order of 100 fs. The signature of the electron-photon-
electron collisions on the distribution shape is removed on this
timescale.

The previous results have been obtained with a theoretical
description including two adjustable parameters. They are
sufficient to account for the values of the absorption with
two different scaling with the photon energy, the thermal
conductivity, and the electron-phonon coupling coefficient.
That makes strong the fitting constrains, providing an evi-
dence of the reliability of the present approach. The latter
thus appears suitable for application purposes involving the
ultrafast electron dynamics, e.g., the hot carrier photocatal-
ysis, the modifications of the electron energy distribution at
timescales shorter than 100 fs may play a significant role; they
may impact the hot-carrier generation efficiency for instance.
Pump-probe experiments with a 10-fs-temporal resolution are

likely able to highlight the contribution of electron-photon-
electron collisions.

APPENDIX A: N PROCESS: ELECTRON SCATTERING
IN THE FIRST BRILLOUIN ZONE

Collision operators for N electron-phonon and electron-
electron scattering can be found in [5,10,18,23,24,33]. They
are recalled in the this section as they stand for the keystone
for the development of Umklapp collision operators.

1. Electron-photon-phonon collision

The expression of the electron-phonon interaction potential
is first recalled. Because of thermal motion, the ions of the
lattice oscillate around their equilibrium position. Thus, the
total electron-lattice interaction potential can be split into two
terms through an expansion around the equilibrium position
[10,18,23],

Ve,lattice(r) =
∑

α

Ve−i
(
r − R0

α

) − δR0
α · ∇R0

α
Ve−i

(
r − R0

α

)
(A1)

where r denotes the position of the electron, R0
α the equi-

librium position of the ion denoted by the index α, δR0
α the

displacement of ion α, and Ve−i the electron-ion potential. The
second term in Eq. (A1) is a perturbation accounting for the
electron-phonon interaction. The matrix element associated
with an electron transition induced by the electron-phonon
potential involves a Fourier transform of the latter, which
reads

Ve−ph(r) =
∑

q

Ve−ph(q)ei q·r. (A2)

By using properties associated with the reciprocal lattice, the
previous expression transforms into [23]

Ve−ph(r) =
∑
K,q

δRqeq · (q + K)Vq+Kei (q+K)·r (A3)

where K are the reciprocal lattice wave vectors, Vq and δRq are
the Fourier components of the electron-ion potential and the
ion displacement with wave vector q, respectively. eq is the
polarization vector of phonons. Electron transitions in BZ1
only involve the component K = 0, leading to

Ve−ph(q) = qδRqVq. (A4)

When k′ remains in BZ1, within the approximation of
isotropic bands for phonons, |Mk,k′ |2 reads with q = k′ − k,

|Mk,k′ |2 = |〈ϕk′ |Ve−ph|ϕk〉|2

=
∣∣∣∣q · δRq Vq

∫
dr uk(r)u†

k′ (r)

∣∣∣∣2

. (A5)

For transverse phonons, qδRq = 0 so that they do not induce
any electron transition. To obtain an analytical expression
for the longitudinal matrix element (qδRq �= 0), the standard
procedure of considering dynamic screening for the ions and
static screening for the free electrons is used [5,18,23],∣∣ML

k,k′
∣∣2 = EL

ph(q)e2

2ε0ε0
c

(
q2 + q2

0

) (A6)
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where ε0
c is the contribution to the static permittivity of

the core electrons and q0 the static Thomas-Fermi screening
wave vector (the associated characteristic distance provides
an estimation above which the influence of other electrons is
negligible), which reads [5,23]

q0 = e2

ε0ε0
c

∑
k

f (Ek )

Ek
(A7)

with Ek = h̄2k2/2me in BZ1. εc
0 has been set to 6.7 for gold

[5]. Within the approximation of free electrons, isotropic
dispersion relations, and distribution functions, standard cal-
culations lead to [18]

∂ f (k)

∂t

∣∣∣∣N

e−pt−ph

= 1

2π h̄3

me

k

∑
l,±

∫ K/2

0
dq q

∣∣ML
q

∣∣2
J2

l

(
eqF

meω2

)

×
(

(1 − f (k)) f (k′)
(

1

2
± 1

2
+ n(q)

)
− f (k) (1 − f (k′))

(
1

2
∓ 1

2
+ n(q)

))
	±

(A8)

with 	± = 1 if (( h̄q
2me

± Eph

h̄q ) + l ωl
q ) < h̄k

me
and 0 other while.

E (k′) = E (k) ∓ Eph + l h̄ω. J2
l (a) = 1

2

∫ 1
−1 J2

l (ax)dx is the av-
eraged value of the squared Bessel function of order l [33].
The sum over l accounts for absorption and emission of
|l| photons depending on the sign of l . Note that when
| eqF

meω2 |  1, J2
0 ( eqF

meω2 ) ≈ 1, and the contribution of the l = 0
term corresponds to the electron-phonon collision operator for
relaxation [18].

2. Electron-electron collision

Assuming isotropic distribution functions and static
screening, the matrix element reads [5,18,23]

|Gk→k2,k1→k3 |2 = e4

ε4
0ε

0
c

4(q2 + q2
0

)2 (A9)

where q = k2 − k = k3 − k1. Assuming that electron-
electron collisions with parallel spins are negligible [34], a
standard procedure to calculate this collision operators leads
to [5,43]

∂ f (k)

∂t

∣∣∣∣N

e−e

= π h̄

32me

e4

ε2
0

1

ET F

√
E

∫
dE2dE1

D(E2)

k2

D(E1)

k1

[ √
Ẽ

(Ẽ + ET F )
+ 1√

ET F
tan−1(

√
Ẽ/ET F )

]Ẽup

Ẽlow

× ([1 − f (k)][1 − f (k1)] f (k2) f (k3) + f (k) f (k1)[1 − f (k2)][1 − f (k3)])|E3=E+E1−E2 (A10)

where ET F = h̄2q2
0/2/me, Ẽup = min((

√
E + √

E2)2; (
√

E1 + √
E3)2), and Ẽlow = max((

√
E − √

E2)2; (
√

E1 − √
E3)2).

D(E ) = me
√

2meE/π2h̄3 is the density of states. [ f (x)]x2
x1

= f (x2) − f (x1) comes from an integral calculation. Note that the
Bessel function accounting for the laser interaction is removed because of the conservation of the total crystalline momentum
(the argument of the Bessel function includes K , which is zero). For electron transitions in BZ1, the electron-electron collisions
can only induce the relaxation of the electron gas (no photon absorption).

APPENDIX B: SCALING LAW OF Im(ε) WITH THE PHOTON ENERGY

First considering only e − pt − ph normal processes, theoretically, Im(ε)N
e−pt−ph exhibits the same scaling law as the

Drude model, i.e., ∝1/ω3 with a constant collision frequency νe−ph when νe−ph  ω [23]. Such result was already explained
analytically with a Boltzmann formalism within the condition kBTe � h̄ω ≈ EF [44]. Here we show this result still stands for
kBTe  EF . Considering Eq. (32) for linear normal absorption only, the e − pt − ph collision operator reads

∂ f (k)

∂t

∣∣∣∣N

e−pt−ph

= 1

2π h̄3

me

k

∑
l=±1,±

∫ K/2

0
dq q × ∣∣ML

q

∣∣2 1

12

(
eh̄qF

meh̄ω2

)2

×
(

(1 − f (k)) f (k′)
(

1

2
± 1

2
+ n(q)

)
− f (k) (1 − f (k′))

(
1

2
∓ 1

2
+ n(q)

))
	± (B1)

with 	± = 1 if (( h̄q
2me

± Eph

h̄q ) + l ωl
q ) < h̄k

me
and 0 other while, E (k′) = E (k) ∓ Eph + l h̄ω. Considering Eph  h̄ω and Tph � θD

so that 1
2 ± 1

2 + n(q) = n(q), Eq. (B1) reads

∂ f (k)

∂t

∣∣∣∣N

e−pt−ph

=
∑
l=±1

νeff
e−ph(k, l h̄ω) × ((1 − f (k)) f (k′) − f (k) (1 − f (k′)))

1

12

(
eh̄KF

mh̄ω2

)2

(B2)

where νeff
e−ph(k, l h̄ω) = 1

π h̄3
me
k

∫ K/2
0 dq q × |ML

q |2 q2

K2 n(q)	 is a parameter with the dimension of a collision frequency, which

only depends on k, 	 = 1 if h̄q
2me

+ l ωl
q < h̄k

me
and 0 other while, and E (k′) = E (k) + l h̄ω. Note that collision processes are

134308-11



COUDERT, DILHAIRE, LALANNE, AND DUCHATEAU PHYSICAL REVIEW B 106, 134308 (2022)

mainly due to a phonon with the wave vector of the same order of magnitude as kF , and with energy of electrons in the vicinity
of EF . Thus, 	 = 1 if EF + l h̄ω < 2EF and 0 other while. As h̄ω ≈ 0.1EF , 	 = 1.

The mean power density absorbed by this process finally reads

∂〈E〉
∂t

∣∣∣∣N

e−pt−ph

=
(

eh̄KF

meh̄ω2

)2 ∫
dED(E )E × νeff

e−ph(E )((1 − f (E )) f (E + l h̄ω) − f (E )(1 − f (E + l h̄ω))) (B3)

For kBTe  EF , the product of the electron distribution functions is different from zero only if |E − EF | � h̄ω. Thus, since
h̄ω/EF ≈ 0.1, it is reasonable to assume that D(E ) × νeff

e−ph,l (E ) ≈ D(EF )νeff
e−ph(EF ).

Finally by doing appropriate change of variables, one finally obtains for kBTe  EF ,

∂〈E〉
∂t

∣∣∣∣N

e−pt−ph

=
(

eh̄KF

meh̄ω2

)2

νeff
e−ph(EF )D(EF )(h̄ω)2 ∝ F 2

ω2
(B4)

identifying Im(ε) in Eq (18), we obtain Im(ε)|Ne−pt−ph ∝ 1/ω3. That explains why despite quantum absorption processes take
place, Im(ε) follows the same scaling law as the classical Drude model with a constant collision frequency.
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