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Pair localization in dipolar systems with tunable positional disorder
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Strongly interacting quantum systems subject to quenched disorder exhibit intriguing phenomena such as
glassiness and many-body localization. Theoretical studies have mainly focused on disorder in the form of
random potentials, while many experimental realizations naturally feature disorder in the interparticle inter-
actions. Inspired by cold Rydberg gases, where such disorder can be engineered using the dipole blockade
effect, we study a Heisenberg XXZ spin model where the disorder is exclusively due to random spin-spin
couplings, arising from power-law interactions between randomly positioned spins. Using established spectral
and eigenstate properties and entanglement entropy, we show that this system exhibits a localization crossover
and identify strongly interacting pairs as emergent local conserved quantities in the system, leading to an intuitive
physical picture consistent with our numerical results.
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I. INTRODUCTION

Understanding how an isolated quantum system prepared
out of equilibrium can exhibit thermal properties at late times,
i.e., how it thermalizes, has challenged quantum physicists
for almost a century. The eigenstate thermalization hypoth-
esis (ETH) [1,2] offers a generic mechanism to explain this
phenomenon but makes strong assumptions on the structure
of energy eigenstates in terms of the matrix elements of local
operators. Nonetheless, it has been shown numerically that
a large class of quantum systems complies with ETH and
thermalizes [3,4]. A notable exception are strongly disordered
systems in which transport is absent and the system retains
memory of the initial state at arbitrary times [5–8].

This phenomenon, called many-body localization (MBL),
has been verified for small systems including, but not limited
to, spin systems with random potentials [9–11], random near-
est [12–14], and next-nearest-neighbor interactions [15,16],
and power-law interactions [17–21] using a combination of
exact numerical approaches and heuristic arguments like the
strong disorder renormalization group (SDRG) [22–25] to
generalize to large systems.

Recently, claims have been made that this localization phe-
nomenology may not be stable in the thermodynamic limit due
to thermal inclusions [26–34]. These are small, more ordered
subregions thought to thermalize with their surroundings and
thus slowly pushing the system toward thermalization. Un-
fortunately, these regions are very rare and thus only start
appearing in large systems far beyond the reach of numerical
methods. This raises the question whether this instability is
relevant for quantum simulation experiments, being finite in
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size and limited by coherence time. In this paper, we only
focus on the phenomenology of localization in finite systems
and subsequently use the term localized regime instead of a
phase, following the terminology of Ref. [28].

Complementary to numerical works, there are a number
of experimental results falling into roughly two classes: Ex-
periments with single-particle resolution, including optical
lattices [35–38] and trapped ions [39], and experiments based
on macroscopic samples, like NV centers in diamond [40] or
NMR systems [41]. The former offer precise control, but are
rather limited in size, while the latter can realize much larger
systems at the expense of flexibility, in particular, lack of pro-
grammable disorder. Cold gases of Rydberg atoms implement
dipolar dynamics with random couplings (similar to NMR
systems or NV centers) and allow for control of the disorder
strength and even the power law of the interaction at rather
large particle numbers [42], which makes them a powerful
platform for studying localization phenomena.

Motivated by recent progress on quantum simulations with
Rydberg atoms [42–45], we consider a power-law interacting
spin system where the disorder is due to randomly positioned
spins respecting a blockade condition, which induces disor-
dered couplings. In this setup, the strength of the disorder can
be tuned by changing the density of particles or, equivalently,
the minimal distance between them. Starting in an ordered
system, where the blockade radius is of order of the mean
interparticle distance, we show numerically that this system
exhibits a crossover to a localized regime at small blockade
and apply a SDRG approach to derive a simple model based
on strongly interacting pairs, which captures the properties of
the eigenstates in the localized regime well. Our study thus
adds to the body of numerical works on MBL, focusing on
dipolar systems with tunable positional disorder, and is highly
relevant to experimental efforts, as a wide range of quantum
simulation platforms feature dipolar interactions.
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II. LOCALIZATION IN A RYDBERG GAS

A. System

We consider the Heisenberg XXZ spin model described by
the Hamiltonian (h̄ = 1)

Ĥ = 1

2

∑
i �= j

Ji j
(
Ŝ(i)

x Ŝ( j)
x + Ŝ(i)

y Ŝ( j)
y + �Ŝ(i)

z Ŝ( j)
z

)︸ ︷︷ ︸
≡H (i)( j)

pair

, (1)

where Ŝ(k)
α (with α ∈ {x, y, z}) denotes the spin- 1

2 operators
acting on the kth spin. The coupling Ji j between spins i and j
at positions xi and x j is given by Ji j = Cα

|xi−x j |α , where Cα is an
interaction coefficient which we set to Cα = 1. In experimen-
tal realizations of this model with Rydberg atoms, the values
of the anisotropy parameter � and interaction exponent α are
controllable via the choice of the Rydberg states encoding the
two spin states. The cases α = 3, � = 0 (dipolar exchange)
and α = 6, � ≈ −0.7 (van der Waals) have been realized
experimentally [42,44]. For typical cloud temperatures and
timescales of the spin dynamics, the atom positions can be
regarded as fixed (frozen gas approximation).

During the initial Rydberg excitation, the spins are sub-
jected to the Rydberg blockade [46], which means no two
spins can be closer than some distance rb, called the blockade
radius. This feature allows one to tune the strength of disorder
via the sample’s density: In a very dilute sample, the mean
interspin distance is much larger than the blockade radius rb

and thus positions are essentially uncorrelated. In the other
extreme, the spins are tightly packed and exhibit strong spatial
correlations.

We quantify the strength of disorder by the ratio W of the
system’s total volume V over total blocked volume Vblock or,
equivalently, by the ratio of Wigner-Seitz radius a0, which is
half of the mean interspin distance, to the blockade radius rb

to the power of the dimension d:

W = V

Vblock
=

(
a0

rb

)d

. (2)

For d = 1, the minimal value of Wmin = 1
2 is attained for a

translationally invariant chain with spacing 2a0 = rb, as illus-
trated in Fig. 1(a).

B. Effective pair description

This model differs from the random field Heisenberg
model, which has been studied extensively in the MBL lit-
erature, as no disordered potentials are considered. Thus it
may not be immediately apparent why this system features
localization and what constitutes the local conserved quanti-
ties akin to the l-bits [47] in the standard scenario. Here we
provide a phenomenological picture in the spirit of the SDRG,
suggesting that localization should appear due to strongly
interacting pairs.

Consider a strongly disordered cloud of N spins described
by Eq. (1) like the example depicted in Fig. 1(b). Due to
the power-law interactions, coupling strengths vary strongly
between different pairs of atoms, symbolized by the width and
brightness of the green lines. This motivates us to employ a
perturbative treatment, in which we single out the strongest

FIG. 1. Pair description. The blockade constraint (blue shadings)
enables tuning of disorder in the couplings (green lines) from fully
ordered (a) to disordered (b). In the latter case, a perturbative treat-
ment to first order yields a description in terms of strongly correlated
pairs (c) subject to an Ising-like interaction (not depicted). These
pairs constitute local integrals of motion (LIOM).

pair coupling and consider all other couplings as a perturba-
tion. In the example shown in Fig. 1(b), the two rightmost
spins share the strongest coupling and we can see that it is
much stronger than the other couplings of either one of the
spins to the rest of the system. Using perturbation theory to
first order, we find that the pair of spins almost decouples
from the rest of the system, leaving only an effective Ising-like
interaction, which is unimportant for the further procedure and
thus not shown in the figure. For details on the calculations
involved, see Appendix A.

We may now repeat this procedure of eliminating cou-
plings between the pairs and the rest of system by identifying
the next strongest interaction among the remaining spins
which, in this example, is the coupling between the second
and third spin. Eliminating the respective couplings as well
leaves us with the effective pairs shown in Fig. 1(c). Note that
in an ordered system, as shown in Fig. 1(a), this perturbative
treatment is not applicable as not all neglected couplings can
be considered small. We also note that the order of elimi-
nations is not important as long as each time the inner-pair
coupling is much larger than the couplings between the pair
and the rest. Concretely, for the given example, choosing the
coupling between spins 2 and 3 in Fig. 1(b) first in the pair
elimination process does not change the result.

The great advantage of this ansatz is that we can now
give a simple description of the whole many-body spectrum.
Diagonalizing Hpair [see Eq. (1)], we find two maximally
entangled eigenstates |±〉 = 1/

√
2(|↑↓〉 ± |↓↑〉) at energies

E± = ±2 − � and two degenerate states |↑↑〉, |↓↓〉 at energy
Ed = �, which we will refer to as |

〉. The Ising-like interac-
tion between pairs does not act on the entangled states |±〉 and
is diagonal with respect to |

〉. Thus, in the pair picture, the
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eigenstates of the full system are now given by tensor products
of these four pair eigenstates. We refer to this basis as the pair
basis.

In the many-body spectrum, the degeneracy between the
pair states |↑↑〉 and |↓↓〉 is lifted due to the emerging Ising-
like interaction. However, we note that this splitting is small
compared to the splitting between the other pair eigenstates as
it emerges from first-order perturbation theory.

The pair picture is analogous to the l-bit picture often
used in MBL, where strong local disorder potentials lead to
the emergence of quasilocal conserved quantities τ̂ (i) ∼ σ̂ (i)

z
[47,48]. Here, we see that each projector on a pair’s eigenstate
constitutes an approximately conserved quantity and hence
is a local integral of motion (LIOM). Thus, we established
a description akin to the l-bit picture of MBL for this disor-
dered Heisenberg model, where the role of LIOMs is taken by
strongly interacting pairs.

While this ansatz is heuristic and neglects all higher reso-
nances, that may play a crucial role in delocalizing the system,
it will nonetheless turn out to be useful for interpreting and
understanding the spectral and eigenstate properties reported
in the following.

III. NUMERICAL RESULTS

To minimize boundary effects, we consider a one-
dimensional system with periodic boundary conditions [49] of
up to N = 16 spins governed by Eq. (1) and perform exact di-
agonalisation on the sector of smallest positive magnetization.
We fix the interaction exponent to α = 6, corresponding to a
Van der Waals interactions, and set � = −0.73 (cf. Ref. [42]).
We do not expect a strong dependence of our results on the
precise value of � as long as one steers clear from regions
around points where additional symmetries emerge.

For each disorder strength W , we generate 2000 configura-
tions of random spin positions, perform a full diagonalization
and compute several well-established indicators for the lo-
calization transition from the spectrum. We always average
over all eigenstates/-values as restricting to the bulk of the
spectrum does not lead to qualitative changes in the observed
behavior. The statistical error resulting from disorder aver-
aging is smaller than the thickness of the lines in all figures
unless indicated otherwise. For a description of the algorithm
for choosing the configurations, we refer to Appendix C. All
code used for this paper can be found in Ref. [50].

The following sections discuss different indicators of lo-
calization with the aim to establish the localization crossover
in this model and employ the pair model for interpretation and
predictions. The last section directly compares the pair basis
to the eigenstates, thus demonstrating its validity.

A. Level spacing ratio

The spectral average of the level spacing ratio (LSR), de-
fined as [51]

〈r〉 = 1

|H|
∑

n

min

(
En+2 − En+1

En+1 − En
,

En+1 − En

En+2 − En+1

)
, (3)

is a simple way of characterizing the distribution of dif-
ferences between adjacent energy levels. For thermalizing

FIG. 2. Level-spacing ratio. With increasing disorder, the LSR
shows a crossover from an ergodic value to its Poissonian value and
below. We identify four major regions where the physics is governed
by (I) translational symmetry breaking, (II) thermal behavior, (III)
the localization crossover and (IV) localization. The horizontal lines
show random-matrix theory predictions.

(ergodic) systems, the Hamiltonian is expected to show a
mean LSR resembling a random matrix from the Gaussian
orthogonal ensemble because its eigenvectors essentially look
like random vectors. Thus one can use random matrix theory
to obtain 〈r〉thermal = 4 − 2

√
3 ≈ 0.536 [52].

On the other hand, in localized systems the eigenvalues
follow a Poisson distribution, since they are essentially sums
of randomly distributed energies from the l-bits the system
consists of. Computing the mean LSR in this case yields
〈r〉MBL = 2 ln 2 − 1 ≈ 0.386 [52].

Comparing with the numerical results in Fig. 2 and focus-
ing on the central parts first, we find the mean LSR reaches its
thermal value for large enough systems and weak disorder (II)
dropping toward the Poissonian value for stronger disorder
(III). With growing system size, the thermal plateau (II) broad-
ens, marking a parameter region where the system appears
ergodic. But while the plateau broadens, the drop-off (III)
for increasing disorder strength becomes steeper, meaning the
crossover becomes sharper as the system gets larger.

Considering very strong disorder (IV), the mean LSR drops
even below the Poissonian value, which indicates level attrac-
tion. This effect can be explained by the pair model: As stated
earlier, the |

〉 states’ degeneracy is lifted by the effective
Ising-like terms from first-order perturbation theory, which
means the split is of smaller magnitude compared to the intra-
pair interactions. For small systems with comparatively low
spectral density, this means that the small lifting likely fails
to mix the formerly degenerate states into their surrounding
spectrum. Thus, the LSR still reflects the near degeneracy
within the pairs, leading to level attraction. Based on this
interpretation, we expect this effect to diminish for larger
systems with the spectral density growing. In fact, this trend
is already visible in Fig. 2.

A similar argument can be made at very weak disorder
(I): Here the source of the degeneracy is the proximity to the
perfectly ordered case at W = 0.5, which has an additional
translation invariance. Weak disorder breaks that symmetry
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FIG. 3. Thouless parameter. Spectral and disorder averaged
G versus disorder strength W . Data shown uses local operator
V̂1 = 2Ŝ(1)

z

but couples the symmetry sectors only weakly, leading again
to a very small energetic splitting of degenerate states. We
want to emphasize the reason for level attraction being very
different in nature in (I) and (IV): Whereas in (I) the system
is close to a system with obvious conserved quantities due
to symmetries, in (IV) there is the emergent integrability of
the MBL regime [8]. Nevertheless, we expect region (I) to
become less pronounced for larger systems continuing the
trend visible in Fig. 2.

We conclude that, in analogy to standard MBL, we find a
crossover in the level spacing distribution from a regime with
level repulsion to Poissonian gaps indicating a localization
crossover. At very strong disorder, we even find a region with
level attraction, the source of which can be explained by the
effective pair model.

B. Thouless parameter

Complementary to eigenvalue statistics, we also probe
eigenstate properties by computing the Thouless parameter

Gn = ln
|〈n|V̂ |n + 1〉|

E ′
n+1 − E ′

n

, (4)

introduced by Serbyn et al. [53]. This quantity is akin to the
Thouless conductance in single particle systems and quanti-
fies how well two states |n〉, |n + 1〉 with perturbed energies
E ′

n = En + 〈n|V |n〉 are coupled by a local perturbation V̂ . In
the thermal phase, states of similar energy will have similar
spatial structures, whereas in the localized phase, eigenstates
are products of LIOM eigenstates and thus typically vary
drastically from one to the next. One can derive the scaling
of the average G in the thermal regime to be G ∝ log |H| and
in the localized regime to be G ∝ − log |H|, leading to the
natural definition of the location of the crossover to be the
point where G = const [53].

Figure 3 shows results using local operator V̂1 = 2Ŝ(1)
z .

Data for local operators V̂2 = 4Ŝ(1)
z Ŝ(2)

z and V̂3 = Ŝ(1)
+ Ŝ(2)

− +
H.c. is visually identical. There is a very clear point where all
curves intersect each other, indicating the crossover’s location.

To the right of the crossing point in the localized regime, the
curves are roughly evenly spaced, reflecting the expectation
of G ∝ − log |H|, clearly signaling the localized regime. The
apparent absence of a drift of the transition point with system
size is in contrast to observations in power-law interacting
models with on-site disorder and will be further discussed in
the next subsection.

C. Half-chain entropy

Having shown the presence of a localization crossover, we
now demonstrate that our effective pair model is indeed a good
approximation. We start by probing the half-chain entropy,
S = −TrρA log2 ρA, with ρA = TrB(ρ), i.e., the entanglement
entropy between two halves of the chain. For that, we select
�N

2 � consecutive spins and trace out the rest, resulting in two
cuts due to the periodic boundary conditions, and average
over all N possible choices of connected subsystems and all
eigenstates.

In an ergodic system, all bulk states should exhibit volume-
law entanglement, meaning S ∝ N . In contrast, in a localized
setting all states show area-law entanglement, which for d = 1
means S = const [3,54].

To compute the half-chain entropy predicted by the pair
model, we need to determine how many pairs are divided
by each cut and how often these pairs are found in one of
the entangled states |±〉 = 1/

√
2(|↑↓〉 ± |↓↑〉). Not all pairs

consist of adjacent spins [see Fig. 1(c)], so a cut can sepa-
rate more than one pair. The amount of cut bonds is easily
determined from the position data alone by adding up the
distances between paired spins. Respecting periodic boundary
conditions of the system yields an additional factor of 2, since
there are two cuts needed to divide the chain.

Considering the entropy contribution of a single bond, if
we were to average over all possible configurations of pair
states, each cut bond would contribute half a bit of entan-
glement on average, as half of the pair states are maximally
entangled and the other half not entangled at all. However,
here we consider the sector of smallest positive magnetization,
which yields a slightly larger entropy, because it favors the
entangled states |±〉 (which have zero net magnetization) over
the fully polarized ones. This modification can be computed
exactly (see Appendix B for details).

Taking into account both the effects of extended pairs and
of the fixed total magnetization, we can compute a prediction
for the entanglement entropy directly from the interaction
matrix Ji j . Figure 4 shows both the numerically computed
values for different system sizes (solid) and pair-model pre-
diction (dashed).

We clearly see the change between the ergodic and local-
ized regime for the numerically computed data. For strong
disorder, all lines collapse, confirming on one hand the area
law entanglement expected in the localized phase and, on the
other hand, validating the pair model as it predicts the strong-
disorder limit with high accuracy. Figure 4(b) magnifies the
strong-disorder regime showing that the pair-model prediction
in fact slightly overestimates the half-chain entropy for very
strong disorder. This might indicate that there are spins that
do not pair up perfectly, not forming a maximally entangled
Bell pair. It is plausible that this happens at late stages of the
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FIG. 4. Half-chain entropy. Average over possible cut locations
and over disorder realizations for different system sizes as a function
of disorder strength. Also shown is the prediction derived from a pair
description, computed from position data for N = 16 (red dashed
line), see B for details. Inset: Linear fits at fixed disorder strengths
indicated by the vertical dashed lines in the main panel. Shaded
areas indicate uncertainty from the fit; (b) magnifies the strongly
disordered regime of (a). Shaded areas indicate statistical uncertainty
from disorder averaging.

pair elimination procedure described in Sec. II B when the
spins of a pair can have couplings that are stronger than the
pair’s internal coupling but the spins associated with these
stronger couplings are already eliminated. We thus interpret
this feature as an indication of the limitations of a simple pair
description.

Another piece of information that we can readily access
via the half-chain entropy is the location of the crossover.
To determine it, we calculate the variance of the half-chain
entropy over different disorder realizations and extract the
maximum for each chain length N via a quadratic fit [15,55].
Figure 5 shows no strong dependence of the crossover point
on N in the range of accessible system sizes. Indeed, the
crossover does not seem to drift significantly, which is in con-
trast to models with onsite disorder, see, e.g., Refs. [18,55,56],
where finite-size drifts of the transition point are commonly
observed.

Interestingly, the crossover location is very close to the
density given by Rényi’s parking constant, or jamming limit,
which is the maximal density attainable by randomly placing
nonoverlapping unit intervals on the number line [57]. As in
experiments with Rydberg spins, atom positions result from
such a random process; this could imply that these experi-
ments might not be able to reach the densities required for
observing the fully ergodic regime. However, it is unclear how
the crossover location generalizes to higher dimensions and
larger systems.

FIG. 5. Standard deviation of half-chain entropy. The main plot
shows the standard deviation of the half-chain entropy across dis-
order realizations exhibiting a clear maximum around which a
quadratic polynomial is fitted. Shaded areas indicate statistical un-
certainty. Inset: Position of the maximum as extracted by the fits.
Errors shown are statistical errors from the fits.

D. Participation ratio

Now that we have seen that the pair model captures the
spatial entanglement structure of the exact eigenstates, we
compare the predicted eigenstates directly to the exact ones by
computing the participation ratio (PR). Intuitively, it measures
how many states of a reference basis B = {|b〉} contribute to a
given eigenstate |φn〉:

PRB(|φn〉) =
(∑

b∈B
|〈b|φn〉|4

)−1

. (5)

Usually, in the MBL context, one chooses a product basis
as reference because a low PR relative to product basis means
the eigenstates are close to product states. “Low” in this con-
text means a sublinear scaling of PR with the dimension of
the Hilbert space H: PR ∝ |H|τ , where τ < 1. In contrast, a
thermalizing system always has PR ∝ |H| with respect to any
product basis [58–60].

Here we compare two different reference bases, the z-basis
Z = {|↑〉, |↓〉}⊗N and the pair basis P = {|±〉, |

〉}⊗N/2,
introduced above, to determine how well the pair model de-
scribes the eigenstates. If the pair basis P was exactly equal
to the eigenbasis, its PR would be exactly 1. In this case, the
expected PR with respect to the z-basis, averaged over the
Hilbert space, Z will be 1.5N/2, because a single pair has an
average PR of 1.5. However, we only consider the sector of
smallest positive magnetization, which increases the expected
PR by a similar line of reasoning as for the entropy in the
previous section.

Figure 6(a) shows the PR relative to the two reference
bases as a fraction of the Hilbert space dimension |H|. We
see that the weakly disordered regime indeed has ergodic
eigenstates as the curves collapse onto each other. The small
offset between the two reference bases is plausible, since a
thermal systems eigenstates express volume law entanglement
and thus the overlap with a product basis like Z is minimal.
The states of the pair basis contain pairwise entanglement and
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FIG. 6. Participation ratio. (a) PR relative to Hilbert space di-
mension |H| for different reference bases: z-basis in blue, pair basis
in red. The inset shows a magnification of the region toward perfectly
ordered systems. (b) shows the growth in absolute PR with increasing
system size in the localized regime. The used value of W is indicated
by the dash-dotted line in (a).

are thus a bit closer, which manifest as slightly lower PR.
Around W = 0.6, the scaling with |H| starts to change to a
sublinear relation as we crossover to the localized regime.

Checking the PR deep in the localized phase (at W = 1.9)
in Fig. 6(b), we can see that the PR relative to the z-basis
(blue line) is slightly, but systematically, larger than the pair
model’s prediction (dashed green line). Consistent with this
observation, we see that the PR relative to the pair basis (red
line), while being much smaller, is still not constant across
system sizes.

We conclude that the pair states offer a good first-order
approximation of the true eigenstates, but there are higher
order resonances that lead to further hybridization for some
states. The exponent of the remaining dependence on system
size is close to N/4, which hints at effects stemming from
interactions between pairs.

IV. CONCLUSIONS

We analyzed a disordered Heisenberg XXZ spin model
with power-law interaction and positional disorder, which is
naturally realized by many quantum simulation platforms.
Among these, cold Rydberg gases allow for easy tuning of the

disorder via the sample’s density due to the Rydberg blockade.
By using standard MBL indicators, we showed numerically
that this system undergoes a localization crossover, which we
interpreted in terms of a simple physical model derived using
an SDRG ansatz. This model, consisting of an effective Ising
model of strongly interacting pairs of spins, was verified by
considering the PR of eigenstates with the conjectured basis,
which is drastically reduced compared to the PR relative to
the z-basis. Still, there was a weak dependence on system size
left, which means there are higher order corrections to our
model. Nonetheless, we also showed that this simple model
can already predict the entanglement entropy of the system
nearly perfectly.

With this model at hand, we can now make predictions
for large systems which may be tested in quantum simulation
experiments. Of course, one of the most interesting questions
will be whether the location of the crossover shifts toward
stronger disorder for large systems, indicating a transition at
infinite disorder strength in the thermodynamic limit. For this
purpose, the easy tunability of the disorder is a great advan-
tage as both sides of the crossover can be probed on the same
platform by changing the system parameters. Remarkably,
our small-scale numerical study showed almost no finite-size
drift. This could indicate that localization in this model is
more stable than in similar models against resonances. We
leave this investigation for future work.

Note that the pair model cannot be used to predict the
crossover itself as it essentially requires the assumption that
one can find strongly interacting pairs, which is only justified
in the strongly disordered regime. Recent arguments for the
absence of localization postulate the existence of rare ther-
mal subregions within the system [26,26–34]. This would
of course break the base assumption of the pair model. A
possible direction for future research would be to extend the
model to include not only pairs but also larger clusters, which
would require one to track all kinds of interactions between
clusters of different sizes.

Interestingly, the dimensionality of the system does not
directly influence the pair model. As long as the couplings
are sufficiently disordered, such that pairs can be defined,
it will be a good approximation. Thus, it suffices to study
how the distribution of couplings changes with respect to the
dimensionality d of the space and coupling power α. Similar
to resonance counting arguments [61], we conjecture the re-
quirement d < α for the pair model to be applicable. Hence,
we expect our results, while acquired in d = 1, to generalize
well to d > 1.
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TABLE I. Eigensystem of Hpair .

State k Energy Ek Vector |k〉

1 2 − �
√

2
−1

(|↑↓〉 + |↓↑〉)
2 � |↑↑〉
3 � |↓↓〉
4 −2 − �

√
2

−1
(|↑↓〉 − |↓↑〉)

Excellence Cluster) and under SFB 1225 ISOQUANT No.
273811115.

APPENDIX A: DERIVATION OF PAIR PICTURE

Here we derive the pair model of the main text by means
of Schrieffer-Wolff transformations [63]. Starting with the full
Hamiltonian of the system,

Ĥ = 1

2

∑
i �= j

Ji j
(
Ŝ(i)

x Ŝ( j)
x + Ŝ(i)

y Ŝ( j)
y + �Ŝ(i)

z Ŝ( j)
z

)︸ ︷︷ ︸
≡H (i)( j)

pair

. (A1)

Suppose without loss of generality that J12 � J1 j, J2 j and set
H0 = J12H (1)(2)

pair and V = HXXZ − H0. We label the eigenvec-
tors and eigenenergies of Hpair as shown in Table I.

The projectors on these states are consequently named
Pk = |k〉〈k| ⊗ 1, but since the middle two states are degen-
erate, we need to use the projector on the full eigenspace and
call it P23 = P2 + P3.

To first order, only diagonal terms PkV Pk contribute, which
in this case means the pair decouples and only an effective
Ising term remains:

Ĥ =
∑
i, j

Ji j Ĥ
(i)( j)
pair (A2)

≈ J12Ĥ (1)(2)
pair +

∑
i, j>2

Ji jĤ
(i)( j)
pair + Ŝ(1)(2)

z

∑
i>2

�̃iŜ
(i)
z + O(V̂ 2),

(A3)

where 2Ŝ(1)(2)
z = |↑↑〉〈↑↑| − |↓↓〉〈↓↓| is akin to a spin-1

magnetization operator and �̃i = �(J1i + J2i ) is the renor-
malized Ising coupling. Note that this first order term lifts
the apparent degeneracy of the |↑↑〉 and |↓↓〉 states. This
elimination is a good approximation if the interaction within
the pair is much stronger than any other interaction between a
spin of the pair and some other spin.

We can now repeat this elimination step with remaining
spins by incorporating the effective Ising terms into V . This is
justified because its coupling is small and is already first-order
perturbation theory, and thus including it into the zeroth order
of the next pair would mix expansion orders inconsistently.

Further eliminations now generate effective Ising terms
between the states |↑↑〉 and |↓↓〉 of the eliminated pairs. After
pairing up all spins, we find

Ĥ =
∑
i, j

Ji j Ĥ
(i)( j)
pair (A4)

≈
∑
〈i, j〉

Ji jĤ
(i)( j)
pair +

∑
〈i, j〉,〈i′, j′〉

�̃(i, j),(i′, j′ )Ŝ
(i)( j)
z Ŝ(i′ )( j′ )

z (A5)

where the sum over 〈i, j〉 denotes pairs of spins and
�̃(i, j),(i′, j′ ) = �(Ji,i′ + Jj,i′ + Ji, j′ + Jj, j′ ).

Also note that with each elimination step, the mean inter-
particle distance grows and thus the disorder in the system
increases [64,65] making it more likely for later elimination
steps to be good approximations.

APPENDIX B: PAIR ENTROPY IN A SPECIFIC
MAGNETIZATION SECTOR

Averaged over all states, each cut separating a pair gives an
average entropy of 1

2 , since two of the pair’s eigenstates are
fully entangled and the other two possess no entanglement.
However, when we consider a sector of fixed magnetiza-
tion, this simple argument no longer holds as there are now
dependencies among the eigenstates given by the external
constraint. Sectors around zero magnetization will have more
entropy on average and strongly magnetized sectors less, sim-
ply because the strongest magnetized eigenstates possess no
entropy.

Given N the number pairs of spins where N+, N−, and
N0 pairs occupy the states |↑↑〉, |↓↓〉, and |↑↓〉 ± |↓↑〉,
we find the number of possible configuration with these
amounts to be

C(N+, N−, N0) =
(

N

N0

)(
N − N0

N+

)
2N0 . (B1)

In the end, we need the number of configurations C(N, r) =∑
N0
C(N, r, N0) given a total amount of pairs N and a magne-

tization imbalance r = N+ − N−, where

C(N, r, N0) =
∑

0�N+,N−

C(N+, N−, N0)δN,N++N−+N0δr,N+−N− .

(B2)

To evaluate this expression, we compute the generating
function

Z (x, y, z) =
∑
N>0

xN
∑

−N�r�N

yr
∑
N0>0

zN0C(N, r, N0) (B3)

=
∑

0�N+,N0,N−

xN++N0+N−yN+−N−zN0C(N+, N−, N0) (B4)

=
∑

0�N−

(
x

y

)N− ∑
0�N+

(xy)N+

(
N+ + N−

N+

)

×
∑
N0

(
N

N0

)
(2z)N0 (B5)

= y

y − 2xyz − xy2 − x
, (B6)

where we used the fact that (1 − x)−k−1 = ∑
n

(n+k
k

)
xn twice

and then a geometric series.
From that, it follows directly that

Z (x, y, 1) =
∑
N>0

xN
∑

−N�r�N

yrC(N, r) (B7)

= y

y − 2xy − xy2 − x
(B8)
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= 1

1 − x (y+1)2

y

(B9)

=
∑
0�k

xk

(
(y + 1)2

y

)k

(B10)

=
∑
0�k

xk
∑

0�l�2k

yl−k

(
2k

l

)
, (B11)

and thus by identification of terms

C(N, r) =
(

2N

r + N

)
. (B12)

Singling out a specific pair and asking how often it is in one
of the entangled states given a set of configurations described
by values for (N+, N0, N−), we find that its the case in

S(N+, N−, N0) = 2C(N+, N−, N0 − 1) = N0

N
C(N+, N−, N0)

(B13)

configurations. Again we want to find this number for
a total amount of pairs N and an magnetization imbal-
ance r = N+ − N−. Fortunately, we can find the generat-
ing function ZS (x, y, z) of S (N, r, N0) = N0

N C(N, r, N0) by
means of Z:

ZS (x, y, z) =
∫

dx

x
z

∂

∂z
Z (x, y, z). (B14)

So, we compute

ZS (x, y, z = 1) =
∑

N

xN
∑

r

yrS (N, r) (B15)

=
∫

dx

x

2xy2

(y − x(y + 1))2
(B16)

= 2y2

(y + 1)2

1

y − x(y + 1)2
(B17)

= 2
∑

k

xk
∑

l

yl−k+1

(
2k − 2

l

)
(B18)

⇒ S (N, r) = 2

(
2N − 2

r + N − 1

)
. (B19)

Thus, cutting a single pair contributes

S̄(N, r) = S (N, r)

C(N, r)
(B20)

= 2
N2 − r2

4N2 − 2N
(B21)

bits of entropy, on average, over all states in a given magneti-
zation sector (cf. Fig. 7).

For the prediction of the average entropy in Fig. 4, we
extracted the size of the pairs from the position data, which di-
rectly determines how many times a pair is cut, when moving
along the chain. The number of cut pairs is then divided by the

FIG. 7. Entropy value of a single cut for different magnetization
sectors.

number of cuts made—which equal the number of spins—and
multiplied by the average entropy contributed by cutting a
pair, computed here.

APPENDIX C: DRAWING BLOCKADED POSITIONS

In the following, we restrict ourselves to N spins in d = 1
dimension and measure every distance in units of the blockade
radius rb. We define the density of spins 0 � ρ = 1

2W � 1,
the corresponding volume of the space L = N

ρ
, and set out

to construct a scheme to efficiently generate a set of in-
dependently drawn positions {xi}, that respect the blockade
condition

|xi − x j | � rb ∀i �= j. (C1)

A priori, all positions are drawn i.i.d. from a uniform
distribution over the full space U [0, L] and the naive way
would be to just draw N positions and reject the sample if
the blockade condition [Eq. (C1)] is violated. This is essen-
tially equivalent to a random sequential adsorption process
where the expected density in d = 1 is given by Renyi’s
parking constant m ≈ 0.748 [57]. It directly follows that
the rejection rate will become essentially 1 for any ρ > m
and we certainly will not get close to the fully ordered
regime.

To circumvent this problem, we parameterize the positions
like

xi = is + σi, (C2)

where s = 1
ρ

= 2W is the mean interspin distance and σi ∼
U [−σ, σ ] are i.i.d. random variables. For σ = L

2 , this ansatz
is certainly equivalent to the naive scheme.

Note that, in the highly ordered case ρ = 1 − ε, where
ε is small, each realization of the experiment looks es-
sentially like a regularly spaced chain with s = 1

1−ε
≈

rb(1 + ε) where each site has small fluctuations around
the mean. This means, in this limit, we get away with
choosing σ ≈ ε.

134212-8
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For our simulations, we used the just-described method in
the region W < 1.0 and chose σ = 1.5( 1

ρ
− 1). For W � 1.0,

we used the naive sampling strategy. One can see a slight jump
in all plots at W = 1.0 where the sampling method changes.
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