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Anderson and many-body localization in the presence of spatially correlated classical noise
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We study the effect of spatially correlated classical noise on both Anderson and many-body localization of
a disordered fermionic chain. By analyzing the evolution of the particle density imbalance following a quench
from an initial charge density wave state, we find prominent signatures of localization also in the presence
of the time-dependent noise, even though the system eventually relaxes to the infinite temperature state. In
particular, for sufficiently strong static disorder, we observe the onset of metastability, which becomes more
prominent the stronger the spatial correlations of the noise. In this regime, we find that the imbalance decays as
a stretched-exponential—a behavior characteristic of glassy systems. We identify a simple scaling behavior of
the relevant relaxation times in terms of the static disorder and of the noise correlation length. We discuss how
our results could be exploited to extract information about the localization length in experimental setups.
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I. INTRODUCTION

Understanding the dynamical behavior of closed many-
body quantum systems is a subject of intense research. In
particular, the problem of thermalization [1–5], and the lack
of it [6–24], has given rise to a whole host of experimental
and theoretical investigations over the past years. Among the
mechanisms that prevent thermalization, a lot of attention has
been devoted to many-body localization (MBL), that is the
generalization of Anderson localization (AL) [25] to disor-
dered systems with interactions. Both localization phenomena
have also been studied in the presence of periodically modu-
lated noise [26,27] and local dissipation [28–34].

Motivated by the potential for experimental realizations,
in this work we investigate the effects of spatially corre-
lated classical noise on AL and MBL. For our study, we
consider a fermionic chain with static disorder subjected to
dynamical noise (cf. Fig. 1). The quantum state of this sys-
tem, averaged over different realizations of the noise, evolves
according to a Markovian master equation of the Gorini-
Kossakovski-Sudarshan-Lindblad form [35,36]. We study the
temporal evolution of the occupation imbalance between odd
and even sites, after initializing the system in a charge density
wave (or Néel) state. This quantity has already been mea-
sured experimentally in cold atoms settings [14,15] and it is
intuitively related to localization: at long times in a delocal-
ized phase, the imbalance vanishes, while it remains finite in
a localized phase. In our dissipative setting, asymptotically
in time, the system relaxes to the infinite temperature state
and, therefore, to zero imbalance. However, for both AL and
MBL, we observe metastable localization which manifests in
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a slow decay of the imbalance. Similarly to previous works
studying MBL with local dephasing or different kinds of
dissipative effects [28–34], we find that this metastable lo-
calization relaxes in a stretched exponential manner, with a
timescale that increases with increasing correlation length in
the noise. Moreover, we show evidence of a scaling behavior
in the relaxation time that could be used to extract experi-
mentally a relative localization length of two systems with
different degrees of disorder, at least in the noninteracting
case.

II. THE MODEL

We study here the time evolution of a one-dimensional
fermionic chain subject to dephasing stochastic noise, as
sketched in Fig. 1. The coherent part of the dynamics of the
system is governed by the Hamiltonian

H0 =
L−1∑
k=1

J (c†
kck+1 + H.c.) + V

L−1∑
k=1

nknk+1+2
L∑

k=1

hknk, (1)

where L is the length of chain, ck and c†
k are fermionic anni-

hilation and creation operators, respectively, and nk = c†
kck is

the number operator at site k. The term proportional to the
rate J describes nearest-neighbor particle hopping. The re-
maining two terms, which are diagonal in the number-operator
basis, instead describe interactions between fermions (the
term proportional to V ) and a random longitudinal field, with
hk ∈ [−h, h], where the hk are uncorrelated and uniformly
distributed quenched random variables. This system under-
goes a MBL phase transition for large enough values of the
disorder strength h [37]. A similar phenomenon takes place
also in the absence of interactions, V = 0, where any amount
of disorder h is sufficient to produce AL. Features of these
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FIG. 1. Model. Sketch of the model of fermions on a lattice with
a random onsite potential uniformly distributed between −2h and
2h, hopping amplitude J , interaction between neighboring sites V
and spatially correlated noise with correlation matrix C�m.

models and of the related phase transition have been widely
investigated [7,10,18,37], and some results can also be found
in the presence of local dissipation [28–31,33,34].

Here, instead, we consider the experimentally relevant case
where the unitary evolution with the Hamiltonian H0 is af-
fected by classical dynamical noise in the local longitudinal
fields. This noise can describe experimental imperfections
or it can even be implemented experimentally on-demand
using, e.g., focused off-resonant light fields in quantum gas
microscopes or ion traps, or local biases in superconducting
circuits. To model such a dynamical noise, we make use
of classical Wiener processes dWk (t ) describing Markovian
zero-average Gaussian fluctuations of the random potentials.
While Markovianity states that the noise is not correlated in
time, we can still account for equal-time spatial correlations
by introducing a nondiagonal covariance matrix in the Ito
rules [38] describing the noise. Concretely, we consider the
stochastic Hamiltonian dynamics with infinitesimal unitary
evolution operator defined as Ut+dt,t = e−idHt with

dHt = H0 dt +
L∑

k=1

nk dWk (t ). (2)

We can model dynamical spatial correlations of the Wiener
processes dWk (t ) by the following Ito relations:

dWk (t )dWj (t ) = Ck j dt, (3)

where C � 0 is the covariance matrix of the classical noises.
To enforce the positivity of this matrix and to have a di-
rect control of the spatial correlation length of the noise,
we assume

Ck j = γ exp

(
−|k − j|

ξ

)
,

where ξ is what we call correlation length and γ is a coupling
constant. Limiting cases are ξ → 0 for which the noise is
spatially uncorrelated, Ck j = γ δk j , and ξ → ∞ for which the
noise is infinitely correlated, Ck j = γ for any pair (k, j).

The resulting dynamics is a unitary stochastic evolution for
the random vector |ψt 〉, described by the stochastic differential

equation [39,40]

d|ψt 〉 = −
(

iH0 + 1

2

L∑
k, j=1

Ck jnkn j

)
dt |ψt 〉

− i
L∑

k=1

nkdWk (t )|ψt 〉. (4)

A solution of the equation above represents a single dy-
namical realization (or trajectory) of the quantum time
evolution for a fixed random profile hk of the longitudinal
potential. However, typical order parameters for investigat-
ing localization phenomena can also be obtained from the
pure state projector |ψt 〉〈ψt | averaged over all realizations
ρt = E[|ψt 〉〈ψt |], where E[·] means expectation over the
Wiener processes.

One can obtain the evolution of ρt using the Ito product rule
d|ψt 〉〈ψt | = (d|ψt 〉)〈ψt | + |ψt 〉(d〈ψt |) + (d|ψt 〉)(d〈ψt |).
Exploiting the evolution equation above, Eq. (4), and the Ito
relations Eq. (3), one arrives at

ρ̇t = −i[H0, ρt ] + D[ρt ],

D[ρt ] =
L∑

k,h=1

Ck j

(
nkρt n j − 1

2
{n jnk, ρt }

)
. (5)

The resulting equation is in (nondiagonal) Lindblad form and
it implements the time evolution of the average quantum state.
The following analysis is based on the numerical study of
this master equation. Note that for V = 0 the dynamics above
maps the two-point functions c†

kc j onto two-point functions so
that their evolution can be simulated efficiently. Such informa-
tion is enough to investigate the density imbalance between
odd and even sites (see Sec. III).

III. CLASSICAL NOISE VERSUS LOCALIZATION

We start by investigating the effects of correlated classical
noise on the phenomenon of Anderson localization. In partic-
ular, we consider the fermionic chain described by H0, Eq. (1)
in the case of vanishing interactions between fermions, V = 0.
In this regime, the system is expected to be localized for any
strength of the disorder parameter h. Even though Anderson
localization is a single-particle effect, it shares many features
with MBL. Therefore, it is reasonable to expect that the im-
pact of classical dynamical noise may be similar in many
respects for AL and MBL.

A simple quantifier of localization is provided by the evo-
lution of the imbalance, I (t ), defined from observables as
follows:

I (t ) = 〈Nodd − Neven〉
〈Nodd + Neven〉 , (6)

where Nodd (Neven) is the number operator on odd (even) sites
of the lattice. In order to avoid a priori asymmetries between
even and odd sites, we always consider L even in the fol-
lowing. Starting from a staggered initial state ρ0 = |ψ0〉〈ψ0|
(Néel state), with |ψ0〉 = ∏L/2

k=1 c†
2k−1|0〉 and |0〉 the Fermi

vacuum, one has I (0) = 1. At later times, in the presence
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FIG. 2. Metastability of the imbalance. (a) Imbalance vs time (note a logarithmic scale on time axis), for a fixed dephasing rate (γ = 1), and
different values of h and ξ . The metastable plateau is due to localization effects and it is higher (i.e., more memory about the initial condition
is retained) for larger disorder strength. The correlation length ξ controls the duration of the plateau, with a longer plateau for larger ξ . The
Hamiltonian case (stable plateau) is recovered for ξ → ∞. (b) The quantity − ln(I (t )) is plotted for h = 10 in a log-log scale to highlight the
stretched exponential decay of the imbalance. For the different values of ξ , the exponent α is approximately the same, α ≈ 0.42. (Results for
L = 80, averaged over 80 disorder samples.)

of localization, we find that the imbalance after a transient
converges to a value different from zero. This indicates that
some memory of the initial state is preserved by the existence
of a characteristic localization length. In delocalized regimes
instead the imbalance goes to zero, since particles initially
trapped in odd sites travel freely in the system and, after some
time, there is no possibility of recovering any information
about the initial state.

We compute the imbalance using numerical diagonaliza-
tion of the dynamics, for a range of model parameters. In
the noninteracting case, even if the Lindblad equation (5)
is not quadratic in terms of fermionic creation/annihilation
operators, one can show that the evolution of two-point op-
erators c†

kc j is closed on two-point operators. This allows to
perform the diagonalization only in the subspace of two-point
operators and to access large system sizes L. All the following
plots related to the Anderson case (V = 0) are for L = 80. The
hopping parameter J is fixed to 1 in the rest of the manuscript,
or equivalently, all the other parameters in the generator are
expressed in units of J .

In Fig. 2(a), we plot the imbalance as computed in the
average state ρt evolving through the Lindblad dynamics in
Eq. (5), further averaged over 80 different realizations of the
random longitudinal fields {hk}L

0 . Each of the pictures rep-
resents the imbalance for different values of the correlation
length ξ and a fixed strength of the disorder h, while γ = 1 in
all the figures. For large enough disorder, a metastable plateau
emerges (note the log scale in time), reminiscent of the local-
ization effect in the corresponding Hamiltonian model. Higher
values of the disorder correspond to a higher plateau. The
length of the plateau is instead associated with the correlation
length of the noise ξ . In particular, this highlights how, for
increasing ξ , the nonergodic behavior of AL is preserved for
longer and longer times. This seems to be due to the fact
that, for correlation lengths that are larger or comparable to
the localization length, dephasing effects require more time
to become effective since the dynamics within the correlation
length of the noise is almost equivalent to the deterministic
localized dynamics.

In the noninteracting case that we are considering, this
effect can also be understood by looking at the action of
the dissipative part of the generator on two-point operators.
Coherences between site j and site k are in this case embodied
by the operator c†

kc j (and its Hermitian conjugate); the action
of the dissipative part of the Lindblad generator D on this is
given by a damping term

D[c†
kc j] ∝ −γk jc

†
kc j, γk j = Ckk + Cj j − 2Ck j . (7)

Therefore, when ξ 	 |k − j| one has that γk j 
 1, meaning
that the destructive interference effects leading to AL are
preserved for longer and longer times for spatially correlated
noise. In the ξ → ∞ limit, one recovers the Hamiltonian
behavior.

After the metastable plateau, the imbalance asymptotically
decays to zero, as the dynamics (5) has a unique asymptotic
state in each particle number sector, namely the infinite tem-
perature state. However, the effect of AL can be seen also at
this later stage, because the decay is slower than exponential
for high enough disorder. In particular, as in Ref. [28], the
imbalance follows a stretched exponential behavior I (t ) ∝
e−μtα

, with 0 < α < 1, μ > 0. Panel (b) in Fig. 2 shows the
stretched exponential decay for the case h = 10. The param-
eter μ depends on the correlation length, while the exponent
α in this case is approximately the same for all curves (α ≈
0.42). We note that the stretched exponential behavior of the
imbalance is also observed at the level of single realizations of
the random longitudinal field. This means that such nonexpo-
nential decay is not due to an average over different instances
of such disorder, rather it may be the result of a self-averaging
mechanism emerging in single realizations of the field, for
sufficiently large L.

We can further analyze the slow decay of the imbalance
by looking at the relaxation time t∗ needed to reach a certain
threshold value as a function of h and ξ . For small enough ξ ,
the noise is completely uncorrelated until a value comparable
to the lattice structure is reached. Then, the relaxation time
starts to increase and, for large enough ξ , it goes as a power
law.
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FIG. 3. (a) Scaling of the relaxation time (no interaction). Time t∗ to reach imbalance I = 0.05, plotted as a function of ξ for different
values of h. Rescaling t∗ by a factor h2 results in collapse onto a single curve. The behavior is flat for values of ξ too small to see the lattice
spacing, while it is power-law (∼ξ 0.9) for large ξ . The collapse of curves shows that one has t∗ ∼ h2ξ 0.9 at large ξ . (b) Metastability with
interactions. Imbalance vs time, for fixed dephasing rate (γ = 1), fixed disorder strength (h = 8), and interaction (V = 1), for different values
of ξ . (c) Relaxation time with interactions. The relaxation time t∗ (with threshold imbalance I = 0.25) is plotted against ξ for different values
of h and V = 1. All curves, after rescaling by h2, collapse onto a single one, thus showing that at large ξ one has t∗ ∼ h2ξ 0.9.

The curves look very similar for different values of h.
Indeed, as shown in Fig. 3(a) all the curves can be superim-
posed by means of a suitable rescaling, i.e., by dividing t∗
by h2. In the absence of dissipation, the Hamiltonian of the
noninteracting system presents exponentially localized eigen-
functions, each one with a characteristic localization length.
For a generic wave function or density matrix, one may try to
define an energy-averaged localization length. However, even
without specifying a precise value, for the range of disorder
we study, the localization lengths of the unitary system are
known to scale as ∝ h−2 (this can be shown with analytical
perturbative calculations for small disorder [41] but appears
to be valid numerically even for h ∼ 10 [42]). Therefore the
observed scaling can be used to extract the value of h2 by
measuring the relaxation time for different values of the cor-
relation length ξ . This can also provide relative information
about the localization length.

A similar analysis can be done in the presence of inter-
actions V = 0. The system sizes we can reach in this case
are much smaller, because the space of two point correlation
functions is not closed under the dynamics, so that one has to
diagonalize the full Lindbladian. However, already for L = 6,
averaging over 100 realizations of the static disorder, we can
see qualitatively that a similar situation emerges as in the AL
case. Figure 3(b) shows the behavior in time of the imbalance
for V = 1, h = 8 for different values of the correlation length
ξ . Just like in the AL case, our results show evidence that also
in the MBL case metastable localization persists for longer
times the larger the spatial correlations in the noise.

One can study also in the MBL case the relaxation time
towards stationarity, see Fig. 3(c). As in the AL case, the
behavior for large ξ is power law with almost the same power
for different values of h. The scaling of the curves with h2

works also in the MBL case.

IV. EXPERIMENTAL SETUP

In addition to help in understanding the effects of exper-
imental noise, the observed scaling also implies that adding

correlated dynamical noise and measuring t∗ as a function
of ξ can be used to infer information about the effective lo-
calization length of a disordered system. Experimentally, this
requires one to add well-characterized dynamical noise with
varying correlation lengths. This can be straightforwardly im-
plemented in most modern platforms. In the case of quantum
gas microscopes [43–46], for instance, one could use tightly
focused off-resonant laser beams and the correlation length of
the noise could be controlled by varying the focus size. One
possible implementation would be based on injecting acousto-
optical deflectors with multiple radio frequencies, similar
to techniques developed in the context of optical tweezer
arrays [47–51].

V. SUMMARY

We have studied the fate of disorder-induced localization
in the presence of spatially correlated classical noise. In the
noninteracting case, where large system sizes can be stud-
ied numerically, we found that the metastable localization
regime becomes longer in time with both disorder strength
and correlation length of the noise. In the interacting case,
a similar phenomenology is visible, even though only small
sizes can be studied numerically. In both cases, we found a
simple scaling form for the relaxation time to stationarity. The
physics studied could be readily investigated experimentally
with the proposed setup.
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[32] Z. Lenarčič, O. Alberton, A. Rosch, and E. Altman, Critical Be-
havior near the Many-Body Localization Transition in Driven
Open Systems, Phys. Rev. Lett. 125, 116601 (2020).

[33] J. Ren, Q. Li, W. Li, Z. Cai, and X. Wang, Noise-Driven Uni-
versal Dynamics towards an Infinite Temperature State, Phys.
Rev. Lett. 124, 130602 (2020).

[34] K. E. Khosla, A. Armin, and M. S. Kim, Quantum trajectories,
interference, and state localisation in dephasing assisted quan-
tum transport, arXiv:2111.02986.

[35] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely
positive dynamical semigroups of N-level systems, J. Math.
Phys. 17, 821 (1976).

[36] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

134211-5

https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1002/lapl.201110002
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevB.92.134204
https://doi.org/10.1103/PhysRevX.5.031032
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1038/nphys3783
https://doi.org/10.1126/science.aaf8834
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1098/rsta.2016.0422
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/RevModPhys.91.021001
https://doi.org/10.1103/PhysRevE.102.062144
https://doi.org/10.1103/PhysRevE.104.054105
https://doi.org/10.1038/s41567-021-01230-2
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.119.230404
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevB.93.094205
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevLett.125.116601
https://doi.org/10.1103/PhysRevLett.124.130602
http://arxiv.org/abs/arXiv:2111.02986
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499


STEFANO MARCANTONI et al. PHYSICAL REVIEW B 106, 134211 (2022)

[37] D. D. Vu, K. Huang, X. Li, and S. Das Sarma, Fermionic Many-
Body Localization for Random and Quasiperiodic Systems in
the Presence of Short- and Long-Range Interactions, Phys. Rev.
Lett. 128, 146601 (2022).

[38] B. Øksendal, Stochastic Differential Equations. An Introduction
with Applications, 5th edition, Springer 2000.

[39] V. Belavkin, A stochastic posterior Schrödinger equation for
counting nondemolition measurement, Lett. Math. Phys. 20, 85
(1990).

[40] A. Barchielli and M. Gregoratti, Quantum Trajectories and
Measurements in Continuous Time The Diffusive Case, Lecture
Notes in Physics, Vol. 782 (Springer, Berlin, Heidelberg, 2009).

[41] G. Casati, I. Guarneri, F. Izrailev, S. Fishman, and L. Molinari,
Scaling of the information length in 1D tight-binding models,
J. Phys.: Condens. Matter 4, 149 (1992).

[42] I. Varga and J. Pipek, Information length and localization in one
dimension, J. Phys.: Condens. Matter 6, L115 (1994).

[43] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
A quantum gas microscope for detecting single atoms in
a Hubbard-regime optical lattice, Nature (London) 462, 74
(2009).

[44] J. F. Sherson et al., Single-atom-resolved fluorescence imag-
ing of an atomic Mott insulator, Nature (London) 467, 68
(2010).

[45] L. W. Cheuk, M. A. Nichols, M. Okan, T. Gersdorf, V. V.
Ramasesh, W. S. Bakr, T. Lompe, and M. W. Zwierlein,
Quantum-Gas Microscope for Fermionic Atoms, Phys. Rev.
Lett. 114, 193001 (2015).

[46] C. Gross and W. S. Bakr, Quantum gas microscopy for single
atom and spin detection, Nat. Phys. 17, 1316 (2021).

[47] A. M. Kaufman and K.-K. Ni, Quantum science with optical
tweezer arrays of ultracold atoms and molecules, Nat. Phys. 17,
1324 (2021).

[48] N. Lorenz, L. Festa, L.-M. Steinert, and C. Gross, Raman side-
band cooling in optical tweezer arrays for Rydberg dressing,
SciPost Physics 10, 052 (2021).

[49] P. Scholl, M. Schuler, H. J. Williams, A. A. Eberharter, D.
Barredo, K.-N. Schymik, V. Lienhard, L.-P. Henry, T. C. Lang,
and T. Lahaye, Quantum simulation of 2D antiferromagnets
with hundreds of Rydberg atoms, Nature (London) 595, 233
(2021).

[50] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran,
H. Pichler, S. Choi, A. S. Zibrov, M. Endres, and M. Greiner,
Probing many-body dynamics on a 51-atom quantum simulator,
Nature (London) 551, 579 (2017).

[51] H. Kim, Y. J. Park, K. Kim, H.-S. Sim, and J. Ahn, Detailed Bal-
ance of Thermalization Dynamics in Rydberg-Atom Quantum
Simulators, Phys. Rev. Lett. 120, 180502 (2018).

134211-6

https://doi.org/10.1103/PhysRevLett.128.146601
https://doi.org/10.1007/BF00398273
https://doi.org/10.1088/0953-8984/4/1/024
https://doi.org/10.1088/0953-8984/6/9/002
https://doi.org/10.1038/nature08482
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.114.193001
https://doi.org/10.1038/s41567-021-01370-5
https://doi.org/10.1038/s41567-021-01357-2
https://doi.org/10.21468/SciPostPhys.10.3.052
https://doi.org/10.1038/s41586-021-03585-1
https://doi.org/10.1038/nature24622
https://doi.org/10.1103/PhysRevLett.120.180502

