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Spreading of a local excitation in a quantum hierarchical model
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We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase. An initial state
made by a local excitation of the paramagnetic ground state is considered. We provide analytical predictions for
its time evolution, solving the single-particle dynamics on a hierarchical network. A localization mechanism is
found, and the excitation remains close to its initial position at arbitrary times. Furthermore, a universal scaling
among space and time is found that is related to the algebraic decay of the interactions as r−1−σ . We compare
our predictions to numerics, employing tensor network techniques, for large magnetic fields, discussing the
robustness of the mechanism in the full many-body dynamics.
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I. INTRODUCTION

Long-range-interacting systems, characterized by slow-
decaying power-law potentials, are known to exhibit a
plethora of peculiar behaviors [1], including dynamical phase
transitions [2,3], long-lived metastable states [1,4,5], time
crystalline phases [2,6–9], peculiar critical properties in low
dimensions [10,11], exotic defect scaling [12,13], and slow
entanglement propagation [14–18]. This phenomenology
stimulated impressive theoretical activity aimed at under-
standing the equilibrium and nonequilibrium behavior of such
systems [19–21]. Examples of long-range physics can be
observed across several fields of physics from astrophysics
[1,22,23] to plasma physics [24] and fluid dynamics [25]; they
also have been engineered in experimental setups based on
atomic, molecular and optical systems (AMO) [21], trapped
ions [19,26], Rydberg gases [27], and optical cavities [20,28].

In this context, the classical hierarchical model was origi-
nally introduced by Dyson in his seminal paper [29] as a tool
for understanding the critical properties of one-dimensional
long-range spin systems. Here the usual translational-invariant
adjacency matrix of the couplings is replaced by those of a
hierarchical network, allowing us to explicitly carry out the
renormalization group procedure [30]. A quantum counterpart
of the hierarchical Ising model, in which the classic spin
variables are replaced with noncommuting spin operators, has
been proposed in [31]. The strong disorder renormalization
group (SDRG) [32] can be used to understand the ground-
state properties of the hierarchical quantum Ising model in a
transverse magnetic field [33] and its entanglement content
[34].

We also mention that a relation between the hierarchical
models and a field theoretical formulation in fractal spaces
has been proposed, and it is still a current topic of research in
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the context of high-energy physics. In particular, we refer to
the characterization of adelic string amplitudes [35] together
with a p-adic formulation of the anti-de Sitter/conformal field
theory AdS/CFT correspondence [36–38], where the complex
field C is replaced by the p-adic field Qp.

In this work, we focus on the dynamics of the hierarchical
quantum Ising model in the paramagnetic regime. We con-
sider an initial state made by a localized excitation, and we
study its time evolution. We find that the lack of translational
invariance, replaced here by a hierarchical tree structure, re-
sults in the localization of the excitation around its initial
position. In addition, thanks to the presence of a self-similar
structure of the Hamiltonian, a scaling relation between space
and time (t ∼ xz) is found which differs from the one at
criticality [31].

This paper is organized as follows: in Sec. II we introduce
the model as a quantum chain with tree-structured long-range
interactions. In Sec. III we focus on the dynamics of the
localized excitation in the paramagnetic phase, which turns
out to be equivalent to a Schrödinger equation in the presence
of a hierarchical long-range hopping. The evolution of the
single-particle wave function is thus constructed explicitly,
and its properties of localization are discussed rigorously. In
Sec. IV we compare our analytical predictions, which are
exact in a proper scaling limit, with the evolution of a finite
chain, obtained via numerical techniques, and we find very
good agreement. Finally, we draw our conclusions in Sec. V
and report some additional details in the Appendixes.

II. MODEL

We consider a one-dimensional spin-1/2 lattice of length
L = 2N . We can arrange the spins in N + 1 possible
binary partitions πp whose elements are composed of col-
lections of consecutive and adjacent 2p spins. We may
define by ( j, . . . , j′) an element of a certain partition πp

which contains all the spins from position j to j′. In
particular, at the lowest level p = 0, the partition π0 con-
tains L elements (1), (2), . . . , (L). Then, π1 contains L/2
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FIG. 1. Schematic representation of the hierarchical Dyson
model for N = 3, where the branches of the binary tree highlight
the structure of the interactions. We show the hierarchical distances
from the first site r ≡ r(1, j).

blocks (1, 2), (3, 4), . . . , (L − 1, L), π2 contains L/4 blocks
(1, 2, 3, 4), (5, 6, 7, 8), . . . , (L − 3, L − 2, L − 1, L), and so
on, up to the final partition πN , whose only element is the
whole chain (1, 2, 3, . . . , L).

We can distinguish an element of a partition by a pair
(p, q), where p identifies the partitioning level while q, q =
1, . . . , 2N−p, runs over the elements of πp. For each element
(p, q) we identify the collective spin

S(p,q) ≡
∑

j

σ j, (q − 1)2p + 1 � j � q2p, (1)

where σ j = (σ x
j , σ

y
j , σ

z
j ) is the vector of the Pauli matrices at

position j ∈ {1, . . . , L}.
We can now define the Hamiltonian of the quantum hierar-

chical Dyson model as

H = −
N−1∑
p=0

2N−p−1∑
q=1

Jp Sx
(p,2q−1)S

x
(p,2q) − hSz

(N,1), (2)

where Jp = J/2(1+σ )p represents the interaction term at level
p. A sketch of the model is schematically represented in
Fig. 1. Let us notice that the term proportional to h represents
the coupling with a uniform transverse magnetic field since
Sz

(N,1) = ∑2N

j=1 σ z
j , while the longitudinal interaction along the

x axis among distinct spins is introduced so that it displays a
hierarchical structure. For the sake of convenience, we define
a hierarchical distance r(i, j) as the minimum level p for
which sites i and j belong to the same element of the partition
πp [e.g., r(1, 1) = 0, r(1, 2) = 1, r(1, 3) = r(1, 4) = 2, and
so on]. In this way, we can rewrite the Hamiltonian (2) as

H = −
∑
i< j

Jr(i, j)−1 σ x
i σ x

j − h
∑

i

σ z
i , (3)

explicitly showing how the interaction among different spins
depends on the distance r(i, j), instead of the Euclidean one
|i − j|. To relate these two quantities, we may roughly esti-
mate |i − j| ≈ 2r(i, j), which means that the coupling strength
of the model scales as

Jr(i, j)−1 = J

2(1+σ )(r(i, j)−1)
≈ J

|i − j|1+σ
. (4)

From now on we will restrict the analysis of the model to
σ > 0.

III. LOCALIZATION

In this section, we investigate the dynamics of the model
in the paramagnetic phase, in particular in the limit of a large
magnetic field h � J . Due to the separation of scales, states
with distinct values of the total magnetization along z are
effectively decoupled, and thus, we may refer to Sz

(N,1) as a
quasiconserved charge. Above the fully polarized paramag-
netic state, namely, |↑ . . . ↑〉, we can create excitations via
local spin flips. We interpret these excitations as states with
particles localized at some points along the chain. In this
regime, the dynamics is equivalent to the one induced by the
following hard-core boson (effective) Hamiltonian:

H = −
∑
i< j

Jr(i, j)−1(b†
i b j + b†

jbi ), (5)

where b†
i and bi are the creation and annihilation operators of

hardcore bosons, satisfying [bi, b j] = [b†
i , b†

j] = 0, [bi, b†
j] =

δi, j , with the additional constraint b2
j = (b†

j )
2 = 0. Notice that,

even if this description is exact only for h/J → +∞, the
qualitative picture is kept unchanged as long as h/J is large
enough to ensure that the system is sufficiently deep in the
paramagnetic phase (see [39] for further details).

We are interested in the dynamics induced by a strongly
paramagnetic Hamiltonian after a local excitation (spin flip)
has been created on top of the fully polarized state. Namely,
we prepare the system in the initial configuration |ψ (0)〉 =
|↓↑↑ . . . ↑〉, and then we let it evolve in time and thus analyze
the spreading of a single particle initially localized in the first
lattice site. Let us mention that the position of the initial spin
flip is unimportant since the chain is homogeneous: indeed,
despite the lack of translational symmetry, the Hamiltonian is
invariant under permutations of sites that keep the hierarchical
distance r(i, j) fixed.

The protocol under consideration is simple enough to be
exactly solvable, and the thermodynamic limit can be ana-
lyzed. We expect that the resulting picture is able to capture
the salient features of the whole paramagnetic phase, and it
should be predictive if the particles are diluted enough. More-
over, some crucial properties, which depend mostly on the tree
structure of the Hamiltonian, are highlighted, and possibly,
they are shared by any hierarchical model, irrespective of the
microscopic details. In this regime, the dynamics remains in
the single-particle sector, and the projected Hamiltonian (5)
can be exactly diagonalized.

In the following, to simplify the notation, we introduce
r ≡ r(1, j) as the hierarchical distance between the jth state
and the first site. Moreover, we describe a generic one-particle
state |�(t )〉 = ∑L

x=1 ψ (x, t ) |x〉 via its associated wave func-
tion ψ (x, t ) = 〈x〉 �(t ), where |x〉 represents a state with a
single particle (spin flip) localized at position x on the chain.
As a consequence, the initial state |�(0)〉 is simply charac-
terized by the δ-peaked wave function ψ (x, 0) = δx,1. We can
decompose further the initial wave function in terms of the
eigenfunctions of the single-particle Hamiltonian (see Ap-
pendix A), obtaining

ψ (x, 0) = 1

L
χ[1,L](x) (6)
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+ 1

L

N∑
k=1

2k−1[χ[1,L/2k ](x) − χ[1+L/2k ,L/2k−1](x)],

(7)

where χ[a,b](x) is the characteristic function of the interval
[a, b] and is defined as

χ[a,b](x) =
⎧⎨
⎩

1 x ∈ [a, b],

0 otherwise.
(8)

Through the previous decomposition, we can easily express
the time-evolved state as

ψ (x, t ) = 1

L
χ[1,L](x)e−iε0t + 1

L

N∑
k=1

e−iεkt 2k−1

× [χ[1,L/2k ](x) − χ[1+L/2k ,L/2k−1](x)], (9)

with εk being the single-particle energies,

εk = − J

1 − 2−σ

(
1 − 2kσ

Lσ

)
+ J

2kσ

Lσ
(1 − δk,0). (10)

Here k = 0, . . . , N labels, in ascending order, only the distinct
eigenvalues of the coupling matrix, whose dimension is 2N .
Apart from the first two nondegenerate eigenvalues, it can be
seen (see Appendix A) that all the others have degeneracy
2k−1, such that 1 + ∑N

k=1 2k−1 = 2N .
Since the value of the wave function at position x de-

pends only on the hierarchical distance r = �log2(x)�, it is
convenient to write it explicitly as a function of only r and
t , denoting it as ψ (r, t ) (with a slight abuse of notation). For
r > 0 its expression reads

ψ (r, t ) = 1

L
e−iε0t + 1

L

N−r∑
k=1

2k−1 e−iεkt − 2−re−iεN−r+1t , (11)

while for r = 0 we have

ψ (0, t ) = 1

L
e−iε0t + 1

L

N∑
k=1

2k−1 e−iεkt . (12)

A. Scaling limit with r fixed and N → +∞
So far, we have derived an expression for the evolution of

the state localized at the first position [see Eqs. (11) and (12)],
which is exact for any length L = 2N of the chain as long
as h/J → +∞. Now, we want to understand what happens
in the thermodynamic limit N → ∞. It should be clear from
the explicit expression of the sum in Eq. (12) that the domi-
nant contributions come from the large values of k, namely,
the high-energy (single-particle) modes. For this reason, it
is rather natural to change the variable k → N − k, so that
the first terms of the sum become the relevant ones, and we
can thus approximate the sum as series in the large-N limit.
Under this change in variable, the single-particle spectrum
can be parameterized for large N (up to an irrelevant additive
constant) as

εk = J̃σ 2−σk + const, J̃σ ≡ J
2σ+1 − 1

2σ − 1
. (13)

We remark explicitly that εk = εN−k , and we use a distinct
symbol to avoid confusion. We now keep r fixed, send N →
+∞, and analyze how ψ (r, t ) behaves in time as a function of
Jt . We first consider r = 0, for which we have

ψ (0, t ) = e−iε0t

L
+

N−1∑
k=0

2−k−1e−iεkt . (14)

The sum above converges exponentially fast as N → ∞ to a
finite value that we write as

ψ (0, t ) �
∞∑

k=0

2−k−1e−itεk =
∞∑

k=0

2−k−1e−iJ̃σ t2−σk
. (15)

Similarly, for r � 1 we get

ψ (r, t ) =
∞∑

k=r

2−k−1e−itεk − 2−re−itεr−1

= 2−r[ψ (0, 2−σ rt ) − e−iJ̃σ t2−σ (r−1)
]. (16)

The above analytical expressions are one of the main findings
of our work, which in turn result in the localization of the
initial spin flip around its original position.

We show this in Fig. 2, where we plot, for the represen-
tative values σ = 0.5, 1, 2, the time evolution of the absolute
square of the single-particle wave function in the thermody-
namic limit for a few lattice positions.

We notice that the exponential convergence of the series
defining ψ (0, t ) is a feature that does not rely on the explicit
expression of the single-particle energies εk , only on the shape
of the single-particle eigenfunctions. The latter are distinct
from plane waves, which typically occur in translationally in-
variant systems, and they are a feature of hierarchical models
(displaying the symmetries of a Bruhat-Tits tree). A striking
consequence is that |ψ (0, t )|2, which is the return probability,
oscillates on a typical timescale ∼J−1 independent of the
system size: this mechanism is already a feature of a localized
system.

If we keep track of the precise details of the interactions,
using εk in Eq. (13) as single-particle spectrum, the dynamics
additionally shows scale invariance. More precisely, we have,
for r > 0,

ψ (r, t ) = 2−rF (t2−σ r ), (17)

with F (t ) = ψ (0, t ) − e−iJ̃σ 2σ t being a universal function
which depends on only σ and Jt . The scaling in Eq. (17) can
be better understood if the hierarchical distance r is compared
to the Euclidean one. Restricting the analysis to a position x
on the chain which is an integer power of 2, say, x = 2r , we
find that the hierarchical distance between x and the first site
is exactly r. This means that we can write Eq. (17) as

ψ (x, t ) ∼ 1

x
F (tx−σ ). (18)

The scaling above makes transparent the presence of a dy-
namical exponent z ≡ σ , which relates time and space as
t ∼ xz. Finally, it is worth mentioning that the value of z we
observe is eventually related to the paramagnetic phase of the
model (we are assuming h � J) and it differs explicitly from
the dynamical exponent at the critical point (investigated in
Ref. [39]).
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FIG. 2. Analytical prediction for the single-particle probability distribution as a function of time t and site x, given by Eqs. (15) and (16).
We show (a) σ = 2, (b) σ = 1, and (c) σ = 0.5.

B. Time averages and upper bound

In the previous section, we did not use the specific details
of the universal function F in Eq. (17), except that it is limited
and it oscillates in time with a typical timescale ∼J−1. This
section aims to investigate exactly some features related to
the time averages and the upper bounds of the probability
distribution to better quantify the localization properties of our
dynamical protocol.

For any site j of the lattice at hierarchical distance r =
r(1, j) from the first one, the probability that the particle is
found at position j at time t is |ψ (r, t )|2. A straightforward
computation shows that for r � 1 the number of lattice sites at
hierarchical distance r from the first site is exactly 2r−1. This
means that the probability of finding the defect in a generic
site at distance r is given by

P(r, t ) ≡
⎧⎨
⎩

2r−1|ψ (r, t )|2 r � 1,

|ψ (0, t )|2 r = 0.

(19)

Let us now consider the long-time average of the probabil-
ity P(r, t ), defined as

〈P(r, t )〉 ≡ lim
T →∞

1

T

∫ T

0
P(r, t )dt . (20)

We will show that for any given r and in particular for r =
0, this long-time average is finite in the thermodynamic limit
L → ∞. Let us first compute 〈P(0, t )〉, for which we have

〈P(0, t )〉 = 1

4

∑
k,k′

2−k−k′ 〈e−iJ̃σ t (2−kσ −2−k′σ )〉. (21)

Since the single-particle energies εk differ for different k, the
coherence terms vanish in the long-time average, and we get
〈e−iJ̃σ t (2−kσ −2−k′σ )〉 = δk,k′ . This results in

〈P(0, t )〉 = 1

4

∞∑
k=0

2−2k = 1

3
. (22)

A similar calculation shows

〈P(r, t )〉 = 21−r

3
, r � 1. (23)

As a consistency check, we can easily verify
∑∞

r=0〈P(r, t )〉 =
1. From the results in Eqs. (22) and (23), we learn that the
particle can be found, on average, with probability 1/3 in both

the first and second sites (represented by r = 0 and r = 1, re-
spectively), which is also the average probability of finding it
at hierarchical distance r � 2. More generally, the probability
of finding the particle at hierarchical distance r greater than
R is

〈P(r > R, t )〉 ≡
∞∑

r=R+1

〈P(r, t )〉 = 21−R

3
, (24)

which is exactly the average probability that it is at distance
r = R [see (23)]. We comment explicitly that if the time T ,
appearing in the definition of the time average in Eq. (20), is
kept finite, then the agreement with our predictions [Eqs. (22)
and (23)] is expected to hold only up to a hierarchical distance
r such that 2rσ � JT . As a consequence, the more distant
the position is from the first site, the slower the relaxation
is (on average). This observation explains why the long-time
averages do not depend explicitly on the parameter σ , which
may look like a counterintuitive property at first sight.

Beyond the probability averages, we also provide some
upper bounds on P(r, t ) valid for any t . Indeed, for r > 0 we
have |ψ (r, t )| � 2−r[1 + |ψ (0, t )|] � 21−r, where the trian-
gular inequality has been used, together with |ψ (0, t )| � 1.
Finally, we can show the probability of being at a hierarchical
distance r > R can be bounded by

P(r > R, t ) � 21−R. (25)

As a matter of fact, the local excitation is localized around the
first sites, not only on average but also for any time t no matter
how large it is.

C. Singular limit σ → 0

The predictions provided so far refer to any finite value of
σ > 0. Here we investigate the limit σ → 0, which has to be
handled carefully due to divergence at the level of the single-
particle energies εk in Eq. (13). Despite this divergence, we
show that |ψ (r, t )|2 has a well-defined limit for σ → 0 and
fixed Jt .

By expanding εk for small σ , we get

εk = J

(
1

σ ln 2
+ 3

2
− k

)
+ O(σ ), (26)

where the diverging term for σ → 0 enters only as an additive
constant and it contributes as an irrelevant global phase on the
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wave function ψ (r, t ). By getting rid of it, we find

ψ (0, t )|σ=0 = 1

2 − eiJt
, (27)

while for r � 1

ψ (r, t )|σ=0 = 21−reiJrt 1 − e−iJt

2 − eiJt
. (28)

Similarly, the probability reads

P(r, t )|σ=0 =
⎧⎨
⎩

1
5−4 cos Jt r = 0,

2−r 4−4 cos Jt
5−4 cos Jt r � 1.

(29)

The latter results show that in this limit the evolution of P(r, t )
is periodic with a period 2π/J , which does not depend on r.
This is compatible with the rough estimation of the recurrence
time ∼J−12rσ from scaling arguments.

We finally emphasize that the finite value we get relies
on the fact that J has been kept fixed in the thermodynamic
limit N → ∞ and σ → 0. As a matter of fact, it turns out
that the critical value of h/J , above which the model is in
the paramagnetic phase, goes to infinity as σ → 0 (see [39]).
This means, in practice, that for small σ we need huge values
of the magnetic field in order to observe the single-particle
regime we have described so far. We could, in principle, over-
come this issue by a redefinition J → Jσ (Kac’s rescaling).
However, with the latter prescription the typical relaxation
time would be ∼σ−1J−1, thus diverging for σ → 0. As a
consequence, the system would be frozen forever in the initial
state for σ → 0. These observations indicate that, despite the
finite value of P(r, t )|σ=0 in Eq. (29), the limit σ → 0 remains
somehow pathological.

IV. NUMERICAL RESULTS

In order to explore the effects of finite h we used a
suitable matrix product state (MPS) representation of the
many-body wave function, combined with the corresponding
matrix product operator (MPO) representation of the Hamil-
tonian [40]. The nonequilibrium dynamics has been computed
via the time-dependent variational principle (TDVP) algo-
rithm [41–43].

In particular, we considered the two-site TDVP algorithm
with dt = 0.01; the long-range MPO is constructed through
a finite-state machine [44]. Then, we compressed the MPO’s
bond dimension with singular-value decompositions [45];
thanks to the hierarchical structure of the interactions, the
resulting bond dimension after the compression is less than
10, and thus it is greatly reduced. In our simulation we used
the MPS’s max bond dimension χ = 64, which in the worst
case produced a truncation error of order 10−6.

Thanks to the symmetries of the model and the quasi-
conserved charge Sz

(N,1), the entanglement produced during
our dynamical protocol grows quite slowly, and the MPS
description allows us to reach very large times. In addition,
to make a connection to the full many-body dynamics at finite
h, we notice that the expectation value of the local number
of excitations can be related to the local magnetization as
follows:

n(x, t ) = 1
2 [1 − 〈�(t )|σ z(x)|�(t )〉], (30)

FIG. 3. TDVP simulations of the average number of particles
at position x and time t . A chain of length L = 26 = 64 has been
chosen, and the parameters are σ = 1 and h = 40J .

while the many-body equivalent of the definition of P(r, t ) is

P(r, t ) =
⎧⎨
⎩

2r−1n(r, t ) r � 1,

n(0, t ) r = 0.

(31)

As h � J , the single-particle picture is justified, and we have
n(x, t ) ≈ |ψ (x, t )|2. This is the case in Fig. 3, in which we
show the evolution of n(x, t ) for h = 40J and σ = 1. In
agreement with Eq. (18), the dynamics is localized in the first
few sites, and the defect is unable to spread along the tree.
Moreover, since h is pretty large, Sz

(N,1) is well conserved. The
sites which are farther from the initial position of the defect,
along the branches of the binary tree, show exponentially slow
dynamics and a suppressed wave-function modulus.

In Fig. 4 we show the evolution of the time-averaged prob-
ability 〈P(r, t )〉 as a function of JT for some values of h and
σ = 1, 2. The dashed horizontal lines mark the theoretical
predictions for strong field given in Eq. (23). In addition, in
Fig. 5 we plot 〈P(r, t )〉 as a function of r for some values
of h for large enough values of JT that the average number
of particles is settled to a stationary value. As expected, for
decreasing values of h, the number of defects along the chain
is no longer a conserved quantity, i.e.,

L∑
x=1

1

2
[1 − 〈�(t )|σ z(x)|�(t )〉] �= 1. (32)

Thus, pair production becomes important, and the full many-
body state starts to leave the single spin-flip manifold. We
note that for small values of r < 3 the prediction also holds
for values of h not that far from the critical value hc, i.e.,
hc(σ = 2) ≈ 0.52J and hc(σ = 1) ≈ 1.28J [39]. On the other
hand, at large distances and for small values of the transverse
field h, the agreement with the single-particle approximation
gets worse since the pair production becomes the relevant
mechanism in generating defects.

Finally, in Fig. 6, we inspect how the universality relation
in Eq. (17) gets violated by varying the magnetic field h and
the hierarchical distance r. Again, we find good agreement
with the single-particle prediction for small values of r (apart
from small deviations due to finite-size effects) up to larger
rescaled times 2−rσ Jt , as long as we keep h sufficiently large.
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(a) (b)

FIG. 4. The average number of particles at hierarchical distance r from the first site, averaged in a time window t ∈ [0, T ]. Distinct values
of r are shown for a chain of length L = 64. The values of σ are (a) σ = 2 and (b) σ = 1. The TDVP results (solid lines) approach the
analytical prediction for large h/J and small r. Notice how the scale of the plots is linear for r � 4, while it is logarithmic for r > 4, in order
to enhance the small values of 〈P(r, t )〉.

V. CONCLUSIONS AND OUTLOOKS

In this work, we analyzed a localization phenomenon in
a hierarchical long-range model. We were able to construct
analytically the single-particle wave function, describing the
evolution of a defect in the deep paramagnetic phase, and we
provided some bounds, together with the long-time averages,
to give a quantitative description of the localization mecha-
nism. Moreover, the universal scaling property in Eq. (18)
was found and was traced back to the self-similarity of the
hierarchical tree structure.

This work paves the way to further possible investiga-
tions. There are still some open questions to be addressed.
In particular, from our derivation, it is not clear whether the
localization is just a single-particle effect [46]—completely

FIG. 5. As in Fig. 4 for large JT . The green line is the theoretical
prediction obtained in the single-particle picture. The number of
defects increases for a decreasing value of h, thus showing deviations
from the single-particle picture. (a) σ = 2 and (b) σ = 1.

characterized by the eigenfunctions of the hopping matrix—or
a true many-body localization (MBL) effect [47–49].

We believe that the symmetry of the hierarchical tree is
a key ingredient for these phenomena, and a systematic in-
vestigation of its consequences at the level of the many-body
spectrum deserves more attention. For instance, it is reason-
able that the Hilbert space of this model is fragmented and
a huge number of Krylov spaces are present [50]. Moreover,
another consequence of the tree symmetry could be the pres-
ence of many local integrals of motion, which prevent the
thermalization of the system, making the hierarchical model
more similar to a disordered system than a translationally
invariant long-range one.

Another interesting direction could be the investigation
of the dynamics after a global (or local) quench, near the
critical point. That would be a way to probe the properties
of the system in the middle of the spectrum, not just in the
single-particle low-energy band. However, this is a much more
difficult protocol for which we do not expect to find exact
analytical predictions. One possibility to overcome this prob-
lem could be the application of SDRG techniques: however,
it is still unclear how to adapt the formalism of [33] besides
the ground state to tackle systematically higher-energy states.
Another possibility relies on the relation between this model
and a p-adic field theory [37,38], which could be a way to
tackle directly the scaling limit at criticality.

Last, but not least, it could be interesting to study the
free-fermionic counterpart of the hierarchical Ising model.
We think that beyond the single-particle localization, which
should show identical features for both models, some
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(a)

(b)

FIG. 6. The behavior of 22rn(r, t ), which is expected to be a
universal function for large h/J , large N , and fixed r. The dashed
line marks the theoretical prediction of the universal function, while
the solid lines refer to the numerical data for distinct values of r. We
consider the parameters (a) σ = 2, h = 20J and (b) σ = 1, h = 40J .
Generally good agreement is found for small r, while bigger devia-
tions are found at r > 4, probably due mostly to finite-size effects.

many-body properties could also be similar and eventually
could be related to the same tree symmetry. The advantage
of this approach is the presence of well-established free-
fermionic techniques [51] which could shed some light on the
quantitative characterization of the conjectured MBL phase
of this model. Still, it is not clear which techniques can be
successfully applied to make up for the lack of translational
symmetry. In conclusion, we believe that a large class of
hierarchical quantum models could actually show properties
that are similar to those of disordered systems, and a better
understanding of their common features may be a huge step
toward the solution of some open questions regarding MBL
[52].

The data that support the plots within this paper and other
findings of this study are available from the authors upon
request. The code is available at [53].
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APPENDIX A: DIAGONALIZATION OF THE HOPPING
MATRIX

In this Appendix, we analyze the spectrum of the hopping
matrix whose matrix elements read

Ji j =

⎧⎪⎨
⎪⎩

− J

2(1+σ )(r(i, j)−1)
i �= j,

0 otherwise,

(A1)

for a finite value of the length L = 2N . Here we follow closely
Ref. [54], where a similar matrix was considered and the set
of eigenvectors and eigenvalues was provided. A remarkable
consequence of the hierarchical structure of the hopping is that
the set of eigenvectors does not depend explicitly on the values
of the interaction terms at distinct levels, and it is completely
fixed by symmetry arguments. This mechanism is somehow
analogous to translationally invariant systems, in which the
single-particle spectrum is diagonalized in Fourier space.

The lowest-energy eigenstate, identified by an index k = 0,
is given by the wave function

1√
L

χ[1,L](x), (A2)

which represents single-particle state completely invariant un-
der the symmetries of the tree. Similarly, the wave function

1√
L

[χ[1,L/2](x) − χ[L/2+1,L](x)], (A3)

associated with the index k = 1, is an eigenstate which is
invariant under the symmetries of the tree which do not mix
the left and right half chains, and it is odd under the following
permutation of sites:

1 ↔ L + 1, . . . ,
L

2
↔ L. (A4)

Beyond the previous eigenstates, there are multiplets of wave
functions that generate degenerates eigenspaces of the hop-
ping matrix. For instance, we can show that the states

√
2

L
[χ[1,L/4](x) − χ[L/2+1,L/2](x)],

√
2

L
[χ[L/2+1,3L/4](x) − χ[3L/4+1,L](x)], (A5)

associated with k = 2, are exactly degenerate. Despite the
fact that it is a matter of convention to choose them as a
basis of the associated eigenspace, for practical applications
it is convenient to do so. Indeed, whenever a single-particle
state is localized in the first half chain, its projection over
χ[L/2+1,3L/4](x) − χ[3L/4+1,L](x) vanishes identically, which
means that the latter state does not participate explicitly in the
dynamical evolution. Similarly, we can show that a multiplet
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of the four states (k = 3)√
4

L
[χ[1,L/8](x) − χ[L/8+1,L/4](x)],

√
4

L
[χ[L/4+1,3L/8](x) − χ[3L/8+1,L/2](x)],

√
4

L
[χ[L/2+1,5L/8](x) − χ[5L/8+1,3L/4](x)],

√
4

L
[χ[3L/4+1,7L/8](x) − χ[7L/8+1,L](x)]

(A6)

generates an eigenspace. The discussion can be straightfor-
wardly generalized, showing that for k � 1 the kth eigenspace
has degeneracy

2k−1, k = 1, . . . , N. (A7)

Given the eigenstates of −Ji j , the computation of its eigenval-
ues εk in (10) is just a matter of algebra. Indeed, for k = 0 we
can show that the associated single-particle energy ε0 is just
the interaction energy between the first site and the rest of the
chain, namely,

ε0 = −
L∑

j=2

J

2(1+σ )(r(1, j)−1)
, (A8)

which can be rewritten as a sum over sites at hierarchical
distance r as follows:

ε0 = −
L∑

j=2

2r−1 J

2(1+σ )(r−1)
= − J

1 − 2−σ
(1 − L−σ ). (A9)

Similarly, for k = 1 we have to compute the interaction term
between the first site and the other ones belonging to the left
chain, adding to this quantity the interactions with the sites of
the right half chain with the opposite sign. In other words,

ε1 = −
L/2∑
j=2

2r−1 J

2(1+σ )(r−1)
+ L

2

J

2(1+σ )(N−1)

= − J

1 − 2−σ
(1 − 2σ

Lσ
) + 2σ

Lσ
. (A10)

Similar arguments can be applied for k � 2, and in the end the
eigenvalues can be compactly written as

εk = − J

1 − 2−σ

(
1 − 2kσ

Lσ

)
+ J

2kσ

Lσ
(1 − δk,0) (A11)

for k = 1, . . . , N . From the explicit expression of εk we notice
that (at least for σ �= 0) whenever k �= k′,

εk �= εk′ , (A12)

which means that distinct multiplets previously identified are
not degenerate among each other. We emphasize that this is
not a direct consequence of the tree structure of the hopping
matrix, although it can be regarded as a generic property in
the absence of a fine tuning of the parameters Jp in (2).

To conclude this Appendix we observe that the decompo-
sition of the delta function

δx,1 (A13)

FIG. 7. Color plots: Entanglement entropy S(x, t ) of the bipar-
tition [1, x] ∪ [x + 1, L] as a function of x and time t . Line plot:
Entanglement entropy for fixed Jt = 200. The value σ = 2 and
different values of h/J are plotted. The localization of the particle
is manifest for large h/J , while the creation of pairs along the whole
chain is enhanced as h/J approaches its critical value.

in terms of the eigenvectors [see (7)] contains exactly one
basis element for each multiplet. This is the crucial property
at the origin of this single-body localization. Indeed, as k ap-
proaches N , the eigenstates become more and more localized,
and their overlap with the δ function become nonvanishing in
the thermodynamic limit

N → ∞, N − k fixed. (A14)

For this reason, the contribution of the localized eigenstates is
the relevant one, while the one from the completely delocal-
ized eigenfunctions (say, k = 0, 1) is negligible.

APPENDIX B: ENTANGLEMENT ENTROPY

In this Appendix, we briefly discuss how the mechanism of
localization affects the dynamics of the entanglement. To do
that, we start from the prediction single-particle wave function
in (9), and we express the entanglement entropy in terms of it.

More precisely, let us consider a spatial subsystem A made
by a subset of the chain and a state |�〉. The entanglement
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entropy is defined as

S(A) = −Tr(ρA log ρA), (B1)

with ρA ≡ TrĀ(|�〉 〈�|) being the reduced density matrix of
the state |�〉 and log being the natural logarithm. We now
assume that the state |�〉 is a superposition of states of the
form

|↑ . . . ↑↓↑ . . . ↑〉 , (B2)

describing a single defect at the position j = 1, . . . , L of the
chain. It is possible to show that in this case the entanglement
entropy is precisely

S(A) = −PA log PA − (1 − PA) log(1 − PA), (B3)

where PA is the probability to find the defect inside region A.
In other words, in terms of the single-particle wave function
ψ (x, t ) we express PA as follows:

PA ≡
∑
x∈A

|ψ (x, t )|2. (B4)

Taking A = [1, . . . , x] and using the scaling relation (18), we
get

PA =
x∑

x′=1

|ψ (x′, t )|2 �
x∑

x′=1

C

x′2 (B5)

for a certain constant C which does not depend on the time.
This upper bound for the probability PA goes to zero as x
grows, with similar behavior for entanglement entropy. In
particular a rough estimation gives the following scaling:

1 − PA ∼ 1

x
, SA ∼ log x

x
(B6)

for large values of x.
Here we stress explicitly that the conclusion we made is

based on the assumption that the one-particle effects are the
only relevant ones and that the one-particle wave function
shows localization properties at an arbitrary time.

In Fig. 7 we plot the evolution of the entanglement entropy
obtained with TDVP for some values of the magnetic field h
and σ = 2. We observe that while for large values of h the
entanglement growth at large x is suppressed, for smaller h
this is not the case. Indeed, for these values of h entanglement
is generated suddenly at arbitrary distances, which is due to
pair productions.
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