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Ground-state interface exponents of the diluted Sherrington-Kirkpatrick spin glass
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We present a large-scale simulation of the ground state interface properties of the diluted Sherrington-
Kirkpatrick spin glass of Gaussian disorder for a broad range of the bond occupation probability p using the
strong disorder renormalization group and the population annealing Monte Carlo methods. The model is studied
in the framework of the diluted one-dimensional Kotliar-Anderson-Stein spin glass with power-law interactions
in the mean-field regime. We find that the interface is space-filling independent of p, i.e., the fractal dimension
ds = 1. The stiffness exponent θ is likely also independent of p, despite that the energy finite-size correction
exponent ω varies with p as recently found. The energy finite-size scaling is also analyzed and compared with
that of the ±J disorder, finding that the thermodynamic energy is universal in both p and the disorder, and the
exponent ω varies with p but is universal in the disorder.
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I. INTRODUCTION

Spin glasses are disordered and frustrated magnets with
numerous intriguing properties, e.g., the unusual replica
symmetry breaking (RSB) [1–3], equilibrium temperature
and bond chaos [4–8], and various exotic nonequilibrium
dynamics such as hysteresis, memory and rejuvenation ef-
fects [9–12]. While the short-range Edwards-Anderson (EA)
spin glass [13] in finite dimensions remains controversial,
spin glass physics has already found applications in diverse
fields such as optimization problems [14,15], neural net-
works [15,16], and structural glasses [17,18]. As such, spin
glass is frequently referred to as a prototypical complex sys-
tem, a theme of the 2021 Nobel prize.

A central question in spin glass physics is what prop-
erties of the mean-field Sherrington-Kirkpatrick (SK) spin
glass [19] are inherited by the short-range EA spin glass. The
RSB picture [20,21] assumes that the mean-field description
is qualitatively correct for the EA model, there are many pure
states and droplet interfaces are space-filling. On the other
hand, the droplet picture [22–26] based on the domain-wall
renormalization group method predicts only a single pair of
pure states like a ferromagnet and the interfaces are fractals
below an upper critical dimension; see, e.g., [27,28]. The two
pictures also disagree on the existence of a spin-glass phase
in a weak external magnetic field [29], and there are other
pictures as well [15]. Numerical results suggest many pure
states but a fractal dimension in three dimensions, but the
interpretations remain unsettled due to the limited range of
sizes; see, e.g., [30] for a recent discussion.

To gain more insight on the EA spin glass, it is helpful
to study spin glass models that deviate from the SK model
but not as dramatically as that of the EA model. The most
intensively studied model towards this direction is arguably
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the so-called Bethe lattice [31], where each spin has a finite
connectivity or degree z, either fixed or on average, on a
random graph. The one-dimensional Kotliar-Anderson-Stein
(KAS) spin glass [32] with power-law interactions, and the
p-spin models [33] have also attracted considerable attention.
Recently, the bond-diluted SK model was studied [34]. This
model differs from the Bethe lattice in that z = pN for N
spins, where p is the bond occupation probability. Interest-
ingly, this model had received little attention, presumably
because at first sight this model should behave similarly as
the SK model since z eventually diverges. However, it was
recently found that the energy finite-size correction exponent
ω varies nontrivially with p [34]. This naturally raises an
important question when and how is this parameter p rele-
vant. Particularly, it is highly interesting whether the interface
exponents, i.e., the stiffness exponent θ and the fractal dimen-
sion ds depend on p. These two exponents are of paramount
importance for understanding the interface properties [27,35].
In addition, they are also used in characterizing the spin-glass
chaos [4,5].

Our motivation is that the energy finite-size correction
exponent ω [see Eq. (9)] appears to be correlated with the
stiffness exponent θ for some models, e.g., ω = 1 − θ/d was
proposed for the EA model [36]. For the diluted SK model, the
exponent ω appears to increase rather violently as p → 0, sug-
gesting that θ may decrease with decreasing p. If ω diverges to
infinity in the p = 0 limit, then the formula ω = 1 − θ seems
to suggest that θ < 0 for a sufficiently small p if a similar
argument is applied to the diluted SK model. It was found that
ω � 1 when p � 0.03, e.g., ω = 1.32(1) at p = 0.01 [34].
However, θ < 0 is unreasonable, as it would imply an absence
of the spin-glass phase when p is small. Therefore, the strong
dependence of θ on p may not exist, contrary to the expo-
nent ω. Nevertheless, it is still interesting whether a weak
correlation exists. It is important to note that it was argued
the relation may no longer hold above the upper critical di-
mension d = 6, where ω = 0.91(5) and 1 − θ/d = 0.823(7)
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are found to overlap rather marginally in d = 7 [36]. Here we
investigate this intriguing question directly in the mean-field
SK regime in both the full and diluted settings. On the other
hand, it seems likely that the interfaces are space-filling, i.e.,
ds = 1 for the diluted SK model independent of p because this
is a mean-field model on a random graph.

The main purpose of this work is to systematically study
the interface exponents θ and ds as a function of p for the
diluted SK spin glass. Here the interface of the SK model is
studied as the long-range limit of the one-dimensional KAS
model. While there is no guarantee that the diluted KAS
model in the mean-field regime should replicate the diluted
SK behavior to discuss them together, it is likely that it does
from the extensive theoretical and computational studies of
the full KAS model and also its diluted version with a finite
connectivity [27,35,37,38]. Nevertheless, we also investigate
the diluted KAS model directly at the infinite range limit,
where it becomes exactly the diluted SK model. The inter-
face exponents are studied using two different methods for a
more coherent understanding. The ds exponent is studied to
very large sizes to reduce systematic errors using the strong
disorder renormalization group (SDRG) method, which is
a heuristic but remarkably effective method for estimating
ds [27,28]. This method, however, cannot reliably estimate
θ . To this end, we find numerically exact ground states using
population annealing Monte Carlo (PAMC) simulations. Both
the ds and θ exponents are analyzed in this framework. Our
result suggests that the interfaces are all space-filling, and θ

has no or alternatively very weak dependence on p.
An additional purpose of this work is to compare the

scaling of the ground-state energy per spin with [34] as we
used Gaussian disorder instead of the ±J disorder. First, it is
theoretically expected that the thermodynamic energy per spin
is independent of the specific types of disorder [39], likely
also independent of p. Indeed, our work suggests that the
thermodynamic average energy per spin is universal in both p
and the disorder. The exponent ω is universal in the disorder,
but not in p as mentioned earlier. Finally, the scaling prefactor
has no universality.

This work is organized as follows. In Sec. II we introduce
the model and the numerical setup. Next, we present our nu-
merical results in Sec. III. Finally, our conclusions and some
future considerations are summarized in Sec. IV.

II. COMPUTATIONAL SETUP

The SK model has no geometric structure, therefore, the
SK interface is frequently viewed as the infinite-range limit
of the one-dimensional KAS model with power-law interac-
tions [32]. In the KAS model, the interaction strength between
two spins separated by a distance r decreases proportional to
1/rσ where σ > 0 is an exponent controlling the interaction
range. The KAS model has attracted considerable attention in
its own right because it effectively interpolates between the
d = 1 and d = ∞ of the EA model [26,37,38,40–42]. Renor-
malization group arguments deduce that the model is expected
to behave like the infinite-range SK model for 0 � σ < 1/2,
and for 1/2 < σ < 2/3 the critical exponents at the spin-glass
transition are mean-field-like, and this corresponds to the EA
model with space dimensions above six. Above σ = 2/3, the

model deviates from the mean-field regime. Both θ and ds

are expected to be independent of σ in the entire mean-field
regime σ < 2/3, and numerical works have confirmed this
independence in the regime σ � 0.2 [27,35,37] due to finite-
size effects. Here we focus on this regime σ � 0.2. Next we
introduce bond dilution to the KAS model.

The one-dimensional KAS model with a bond occupation
probability p is described by the Hamiltonian:

H = − 1√
p

∑

i< j

εi jJi jSiS j, (1)

where L Ising spins Si = ±1 lie on a ring, and the exchange
interaction Ji j is occupied when εi j = 1 with probability p
or otherwise the bond is unoccupied when εi j = 0, Ji j is
defined as

Ji j = c(σ, L)
ζi j

rσ
i j

, (2)

where ri j = min(| j − i|, L − | j − i|) is the shorter distance
between sites i and j. The disorder ζi j is chosen from
the standard Gaussian distribution n(0, 1). The exponent
σ � 0 controls the range of interactions, and the constant
c(σ, L) is fixed such that the mean-field transition tem-
perature T MF

c = (
∑

j[(εi j/
√

p)2J2
i j]av)1/2 = 1, where [· · · ]av

represents a disorder average. As εi j and Ji j are independent, it
is straightforward to show that 1/c2 = ∑

j �=i 1/r2σ
i j . The sum

is independent of i due to the symmetry of the lattice, and
interestingly the normalization constant c here is identical to
that of the full KAS model without dilution, as the dilution
effect has already been compensated in the Hamiltonian by
the factor 1/

√
p. When p = 1, the model restores the full

KAS model. When σ = 0, the model becomes the diluted
SK model studied in [34]. To reduce finite-size effects, we
demand that the spins are almost surely connected by requir-
ing pL � 20, therefore, as p decreases, the minimum size
should appropriately increase to avoid disconnected samples.
Assuming a Poisson distribution for the number of bonds
per spin with mean p(L − 1) ≈ pL, the probability that a
sample is disconnected is approximately L exp(−pL), which
is 2.06 × 10−7 for pL = 20 and L = 100. In our work, we
have indeed encountered no disconnected sample for both
the SDRG and PAMC simulations at the level of O(3000)
samples. Having defined the diluted KAS model, we introduce
the domain-wall interface in the next.

To generate an interface, we run each disorder sample
twice one with the periodic boundary condition (PBC, π ) and
the other with the antiperiodic boundary condition (APBC,
π ). The APBC is produced by flipping the sign of the bonds
when the shorter paths go through the boundary in the middle
of S1 and SL [27,35]. We primarily focus on the interface of
the ground states S(π )

i and S(π )
i . We employ two methods for

finding ground states, the SDRG method for finding approxi-
mate solutions and the PAMC method for finding numerically
exact solutions.

The SDRG is a remarkably effective method for estimating
the exponent ds, despite that it only finds approximate ground
states [27,28,43]. The SDRG result is not exact, but it is highly
accurate. The main advantage of this method is that one can
simulate very large system sizes to significantly suppress the
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finite-size effect, essentially removing the systematic error
of small sizes. This is particularly important here as the SK
or KAS models frequently have considerable finite-size ef-
fects [35]. The SDRG runs a spin elimination process [27,44].
First, a criterion is used to find two spins which interact most
strongly and also which spin of this pair should be eliminated.
In this step, the relative orientations of these two spins are
determined, and a spin and the bond between them is deleted.
Next, the remaining bonds of the eliminated spin are trans-
ferred to the survival spin, and these bonds are suitably scaled
by the sign of the removed bond. This process is then repeated
until only two spins are left, where the ground state can be
readily found. As the relative orientations of the spins are
recorded, the full ground state up to the Z2 symmetry can be
constructed. A technical description of this algorithm is pretty
elaborated and considering also that the discussion below
does not require a detailed understanding of the algorithm,
we refer readers to the references for details [27,44]. The
SDRG method, however, cannot reliably estimate θ . This is
because the SDRG is accurate for the large length scales of the
interface determined in the early stage of the renormalization,
but it becomes less accurate for the small length scales. This
is, however, sufficient for estimating ds because the interface
is self-similar, but not for estimating θ ; see [28] for details.
To this end, we find numerically exact ground states using
PAMC simulations. This also allows us to benchmark our
SDRG result, and also provides more detailed data such as
the overlap distribution at finite temperatures.

Population annealing is an efficient sequential Monte Carlo
method for equilibrium sampling glassy systems with rugged
energy landscapes [45–51]. This method has been extensively
applied recently in large-scale spin glass simulations because
it has several attractive features, e.g., it has several intrinsic
equilibration measures, it is efficient, and massively parallel.
Finding spin glass ground states with a good confidence us-
ing PAMC was studied in [52]. The criteria simultaneously
require that a population of replicas maintains thermal equi-
librium throughout the annealing process and also that the
number of replicas with the minimum energy is sufficiently
large, e.g., at least 10 at the lowest temperature [52]. Then,
the miminum energy state naturally is almost surely the true
ground state.

Population annealing slowly cools a population of R repli-
cas starting from, e.g., random states at β = 0 with alternating
resampling and Metropolis sweeps until reaching the lowest
temperature following an annealing schedule. In a resampling
step from β to β ′, a replica i is copied ni times according to
its energy Ei with the expectation number τi = exp[−(β ′ −
β )Ei]/Q. Here Q = (1/R)

∑
i exp[−(β ′ − β )Ei] is a normal-

ization factor to maintain the population size approximately
R. In our simulation, ni is chosen as either the floor or the
ceiling of τi with suitable probabilities. After a resampling
step, NS Monte Carlo sweeps are applied to each replica at
the new temperature β ′ to reequilibrate the population. Our
equilibrium criterion is based on the replica family entropy
S f = −∑

i fi log( fi ), where fi is the fraction of replicas de-
scended from replica i of the initial population. We require
S f � log(100) at the lowest temperature for each individual
sample [47,52]. As mentioned above, we also require that the
number of replicas with the minimum energy is at least 10 to

find the ground state. If these criteria are not satisfied for a
sample, we increase the amount of work, e.g., the population
size or number of sweeps until they are satisfied. To bench-
mark our solver, we also compared our ground states with
exact solutions by the exact enumeration, and the Branch and
Bound algorithm using the spin glass server [53,54] for small
sizes L � 30 and L � 50, respectively.

Next, we introduce several observables defined from the
ground states S(π )

i and S(π )
i , and their scaling properties with

respect to the system size. These observables closely fol-
low their full KAS model counterparts, but here they are
systematically generalized to the diluted system. The link
overlap [55,56] is defined as

q
 =
∑

i< j εi jwi jS
(π )
i S(π )

j S(π )
i S(π )

j

(
2δJπ

i j ,J
π
i j

− 1
)

∑
i< j εi jwi j

, (3)

where wi j = 1/r2σ
i j is proportional to the variance of the

bond [35,56]. We mention in passing that we also imple-
mented a simper version replacing the denominator with the
disorder-averaged expectation value p

∑
i< j wi j = pL/(2c2),

and found this version can have significant fluctuations and
therefore should be avoided. By contrast, the weights of
links in Eq. (3) are properly normalized for each individual
sample.

The exponents θ and ds are then extracted from the follow-
ing scaling relations:

|�EGS| = ∣∣E (π )
GS − E (π )

GS

∣∣ ∼ Lθ , (4)


 ≡ 1 − q
 ∼ 2�DW

pL(L − 1)/2
∼ Lds−1, (5)

NI ∼ Lds , (6)

where the number of islands

NI = 1

4

L∑

i=1

(τi+1 − τi )
2, (7)

where τi = S(π )
i S(π )

i and τL+1 = τ1. Here an island is a se-
quence in which the τi are of the same sign. In the RSB
region where ds = d = 1, the typical island size L0 = L/NI

is of O(1) independent of the system size, a result which we
obtained previously in the SK limit without dilution [35]. For
a fractal domain wall, ds < 1, and in general 0 � ds � 1 [35].
The scaling of 
 is quite abstract, and it is motivated by the
short-range EA model, the �DW is the interface size or the
number of affected bonds when the boundary condition is
flipped, each spin has O(Lds ) flipped bonds, therefore �DW ∼
Lds+1 and 
 ∼ Lds−1.

It is helpful to discuss the nature of the interfaces further
to gain more insights. If ds = d = 1, �DW ∼ L2 which is the
same order as the total number of bonds, i.e., the interface is
system size in terms of bonds and is therefore space-filling.
If ds = d − 1 = 0, �DW ∼ L, the fraction of flipped bonds is
therefore O(1/L), which is analogous to a planar interface of
the Ising ferromagnet. In the latter, the domain-wall size and
the total number of bonds are O(Ld−1) and O(Ld ) in d dimen-
sions, respectively. For the intermediate cases 0 < ds < 1, the
interface is a fractal. The islands picture focuses on spin con-
figurations rather than the bonds, it is essentially studying the
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FIG. 1. The SDRG results for the diluted SK model (a–c) and also the diluted KAS model (d). Panel (a) illustrates the scaling of both
NI and 
 for a typical case p = 0.01 along with the linear fits using the five largest sizes. Both statistics yield approximately ds = 1. Panel
(b) shows data at a few more values of p, and other data (not shown) also fall very well on the two lines, suggesting that the scaling functions
are universal independent of p. Panel (c) summarizes the extracted ds exponents from both statistics using the five largest sizes. The deviation
of ds for 
 at small values of p is likely due to finite-size effect; see the slight bending of 
 at small sizes in (a). The SDRG results suggest
that the interface is space-filling independent of p. Panel (d) suggests that both the scaling functions of NI and 
 are universal in p not only at
σ = 0, but extends further into the mean-field regime, here up to σ = 0.2.

overlap configuration of the two ground states S(π )
i and S(π )

i ,
and the interface is characterized by the number of islands.
If ds = 1, we expect the interface to occupy the full system,
i.e., it is homogeneous, leading to a total fragmentation of the
overlap configuration and consequently O(L) islands. In the
other limit ds = 0, the interface is highly localized and we
expect only two islands independent of L, similar to a 1d sys-
tem with short-range interactions. Therefore, the number of
islands NI provides a geometric measure of the interface size.
For the intermediate cases 0 < ds < 1, the interface is again a
fractal with O(Lds ) islands. Finally, it is worth mentioning that
the full KAS model indeed interpolates between the two limits
and the two ways of estimating ds are fortunately consistent;
see [27] for details. The interface is space-filling, i.e., ds = 1
in the entire mean-field regime of 0 � σ � 2/3. The exponent
ds then monotonically decreases with increasing σ and be-
comes ds = 0 at about σ = 1.75. It remains 0 thereafter, i.e.,
the interface is planar, like that of a 1d chain with short-range
interactions.

Finally, the energy finite-size scaling is also studied:

eL = EGS/L, (8)

eL = e∞ + A

Lω
. (9)

Here either periodic or antiperiodic boundary conditions can
be used. We compare the Gaussian disorder results with the
±J disorder ones [34] and therefore study the universality
properties of e∞, A, and ω with respect to p and the disorder.

III. RESULTS

A. Space-filling interface ds = 1

The SDRG results coherently suggest that the interfaces
are space-filling independent of p and this also holds when
σ slightly departs from the SK limit σ � 0.2, as shown
in Fig. 1. We first discuss the diluted SK model in detail.
Figure 1(a) depicts the scaling of both NI and 
 for a typical

134209-4



GROUND-STATE INTERFACE EXPONENTS OF THE … PHYSICAL REVIEW B 106, 134209 (2022)

TABLE I. Simulation parameters of the SDRG runs for the
diluted SK and KAS models. Here σ is the power-law exponent of
the KAS model, p is the bond occupation probability, L = 2K is the
system size, and M is the number of disorder realizations.

σ p K M

0 {1, 0.95, 0.9, 0.8} {8, 9, 10, 11, 12, 13} 5000
0 {0.7, 0.6, 0.5, . . . , 0.1} {9, 10, 11, 12, 13, 14} 5000
0 0.05 {10, 11, 12, 13, 14, 15, 16} 5000
0 0.01 {11, 12, 13, 14, 15, 16, 17} 5000
0 0.01 {18} 145
0 0.005 {12, 13, 14, 15, 16, 17} 5000
0 0.005 {18} 1000
0 0.001 {15, 16, 17, 18} 5000
0 0.001 {19} 1670
0.1 0.1 {9, 10, 11, 12, 13, 14} 5000
0.1 0.01 {11, 12, 13, 14, 15, 16} 5000
0.1 0.01 {17} 1728
0.1 0.01 {18} 250
0.2 0.1 {9, 10, 11, 12, 13, 14} 5000
0.2 0.01 {11, 12, 13, 14, 15, 16} 5000
0.2 0.01 {17} 1475
0.2 0.01 {18} 87

case p = 0.01 along with the linear fits using the five largest
sizes. Both statistics yield approximately ds = 1; the estimates
are 1.00015(4) and 1.002973(3) from NI and 
, respectively.
The errorbars here are only statistical errorbars, and the tiny
residual errors are largely systematic errors partly from the
finite-size effect. Note that the 
 curve slightly bends at small
sizes. This downward curving at small sizes means that results
from small systems tend to overestimate ds. Indeed, if we had
included the smaller sizes, the estimate would be yet slightly
larger. This illustrates the major advantage of the SDRG ap-
proach, as one can reach very large sizes to suppress the
finite-size effect. It is worth mentioning that this type of finite-
size effect also exists for exact solutions, and the smallest size
here L = 2048 is a pretty daunting size for any exact method.
The finite-size effect appears to be smaller for NI than for

, in line with [27]. The results strongly suggest that ds = 1
for p = 0.01. The simulation parameters are summarized in
Table I.

The scaling functions appear to be universal in p, as il-
lustrated in Fig. 1(b). Here the data are shown for a few
typical values of p, and they all fall approximately on the
same lines independent of p. In particular, the parameter p
here spans three orders of magnitude. The extracted exponents
from both NI and 
 are summarized in Fig. 1(c) using again
the five largest sizes for each fit. The exponents are essentially
independent of p as expected, and the slight drifting of the
exponent estimated from 
 at small p is mainly due to the
finite-size effect. The finite-size effect appears to become
stronger as p is lowered, presumably because the fluctuation
of the graph becomes larger as p is decreased.

The space-filling property and the universal scaling func-
tions are also relevant for the diluted KAS model in the
mean-field regime, some typical results are shown in Fig. 1(d).
Here the results are extended to σ = 0.2. It might be tempting
to view that the space-filling interface of the diluted SK model

is merely a consequence of the random graph; however, this
perspective is not fully appropriate because the space-filling
property is not limited to σ = 0, in line with the full KAS
model [27]. The space-filling property is therefore a result
of the sufficiently long-range nature of the interactions, or
an effective high dimension of the model. However, stronger
finite-size effect may arise, e.g., the finite-size correction
appears to be noticeably stronger for σ = 0.2 than that of
σ = 0 at p = 0.01. This makes sense as the former model
has stronger bond strength variations than the latter model.
Nevertheless, the space-filling feature remains robust. We
conclude from our SDRG results that the diluted KAS model
has space-filling interfaces in the mean-field regime at least
for 0 � σ � 0.2. A space-filling interface is also found for
the diluted KAS model in the mean-field regime (equivalent
to σ = 5/8 herein) with a finite mean connectivity [38].

Because the SDRG method is not exact, we analyze our
Monte Carlo data to further validate our SDRG results. This is
important for gaining confidence in the SDRG results, despite
that the Monte Carlo estimates themselves are not particularly
accurate due to the limited sizes. The corresponding scalings
of NI and 
 are shown in Fig. 2(a) and the estimates of ds using
all sizes are depicted in Fig. 2(c). The NI estimates are approx-
imately in the range from 1.0176 to 1.0278. The 
 estimates
are again somewhat worse ranging from 1.0170 to 1.0734. In
both cases, using the four largest sizes slightly improve the
results. But the improvement is rather marginal due to the
small sizes available. Nevertheless, the results are important
suggesting that the interfaces are space-filling and the validity
of the SDRG results as the data have a qualitatively similar
behavior. The PAMC parameters are summarized in Table II.

Monte Carlo simulations also provide a compelling evi-
dence of the space-filling nature of the interfaces by studying
the off-diagonal overlap distribution. To this end, we introduce
the off-diagonal spin overlap as

q(π,π ) = 1

L

∑

i

S(π )
i S(π )

i . (10)

This is just the regular spin overlap, except that here two
microstates of the PBC and APBC are paired. Note that this
works at both T = 0 and finite temperatures. In our work, we
have collected this overlap distribution at two low tempera-
tures T = 0.2 and T = 0.1, both are deep in the spin-glass
phase. One important consequence of the space-filling in-
terface is that the off-diagonal overlap distribution should
become a delta function P(q) = δ(q) in the thermodynamic
limit. This is because the islands are O(1) in size when ds = 1,
and the off-diagonal spin overlap is an average of the spins
of all the islands; see Eq. (10). Consequently, its distribution
should evolve towards a Gaussian distribution which becomes
sharper as the number of islands increases, according to the
central limit theorem. Therefore, we expect the standard devi-
ation of the off-diagonal spin overlap distribution in the limit
of large L to scale as

std([q(π,π )]) ∼ 1√
L

. (11)

Our data support this sharpening of the disorder-averaged
off-diagonal overlap distribution, as illustrated in Fig. 2(d).

134209-5



WENLONG WANG PHYSICAL REVIEW B 106, 134209 (2022)

FIG. 2. Panel (a) is similar to Fig. 1(b) but for the PAMC data, and panel (b) shows the scaling of the domain-wall energy of Eq. (4). The
model has strong finite-size effect, but universality appears to exist in p. The solid red lines are fits of the p = 1 data as a guide using all sizes
and other fits are omitted here for clarity. The Monte Carlo estimates of ds and θ using all sizes are depicted in panel (c). The finite-size effect
for ds is considerably larger, but the behavior is quite similar to that of the SDRG, suggesting that ds is genuinely a constant. This is further
confirmed in the off-diagonal overlap distribution in panel (d). The scaling of Eq. (11) is illustrated at T = 0 in the main panel, and the fit here
uses the four largest sizes. The inset panel depicts that the distribution gets progressively sharper as the system size is increased at T = 0.2.
Panel (c) also suggests that the stiffness exponent θ is approximately independent of p.

TABLE II. Simulation parameters of PAMC for the diluted SK
model, i.e., at σ = 0. Here p is the bond occupation fraction, L
is the system size, R is the population size, NT is the number of
temperatures in the annealing schedule, NS is the number of Monte
Carlo sweeps per replica per temperature, and M is the number of
samples. We simulate each sample with both the PBC and the APBC,
and the lowest temperature is T = 0.1.

p L R NT NS M

{1, 0.5, 0.2} 100 2 × 104 101 10 3000
{1, 0.5, 0.2, 0.1} 200 5 × 104 101 10 3000
{1, 0.5, 0.2, 0.1, 0.05} 400 1 × 105 101 20 3000
{1, 0.5, 0.2, 0.1, 0.05} 800 2 × 105 151 20 3000
1 1200 2 × 105 251 20 1034
0.5 1200 2 × 105 251 20 1195
{0.2, 0.1, 0.05} 1200 2 × 105 251 20 1000
0.1 300 5 × 104 101 10 3000
{0.1, 0.05} 500 1 × 105 101 20 3000
0.05 600 2 × 105 151 20 3000
0.2 1000 2 × 105 201 20 1444
{0.1, 0.05} 1000 2 × 105 201 20 3000

We can calculate this function and therefore the standard
deviation at T = 0 by pairing the ground states, and we find
the slope is −0.462(15) for p = 0.05. The deviation is likely
due to the smallest sizes, and by dropping the two smallest
sizes, we estimate a slope of −0.496(29), in good agreement
with Eq. (11). The disorder-averaged distribution function is
not so smooth, as each sample only contributes one value
by pairing the ground states. Therefore, we illustrate here
instead the distribution function at a finite but very low tem-
perature T = 0.2 in the inset panel. In fact, the temperature
here is so low, there is essentially no difference between
the T = 0.2 and T = 0.1 distributions, except that the latter
has stronger fluctuations, the T = 0 has even stronger fluc-
tuations. It can be seen that the peaks are clearly getting
progressively sharper as L is increased, and the distribution
of larger sizes starts to take a Gaussian shape. The results
are largely similar for T = 0.2, T = 0.1, and T = 0, and for
other p values, and therefore they are omitted here for clarity.
By contrast, if ds < 1, the winding domain wall will not be
system size, and the variance will level off to a finite constant
value [35,57].
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TABLE III. Fits of Eq. (9) using our data, and the comparison with the ±J results of [34]. Our e∞ fits are fully compatible with the universal
value e�

∞ = −0.7631667265(6). Therefore, we also estimate ω� and A� by fixing e∞ = e�
∞ to improve the accuracy. The results herein suggest

that e∞ is fully universal, the exponent ω depends on p but not on the disorder, while the numerical factor A depends on both.

p 1 0.5 0.2 0.1 0.05 Disorder

e∞ −0.76323(5) −0.762(1) −0.762(1) −0.762(1) −0.761(1) ±J
e∞ −0.7639(6) −0.7637(5) −0.7628(2) −0.7629(5) −0.7625(9) Gaussian
ω 0.666(3) 0.69(1) 0.73(1) 0.79(1) 0.86(1) ±J
ω 0.63(3) 0.66(2) 0.76(1) 0.80(2) 0.86(4) Gaussian
ω� 0.666(4) 0.690(4) 0.740(4) 0.784(5) 0.835(7) Gaussian
A 0.71(1) 0.80(4) 1.04(7) 1.7(1) 3.3(5) ±J
A 0.58(6) 0.75(8) 1.53(7) 2.6(3) 5.6(12) Gaussian
A� 0.67(2) 0.84(2) 1.42(3) 2.42(7) 4.9(2) Gaussian

In summary, our direct SDRG estimates and Monte Carlo
estimates of ds and also the sharpening of the off-diagonal
spin overlap distribution strongly suggest that the interfaces
of the diluted SK model are space-filling independent of p.
In addition, the interfaces are likely also space-filling for the
diluted KAS model in the mean-field regime independent of
both p and σ at least for σ � 0.2.

B. Stiffness exponent θ and ω

The scaling of the ground-state domain-wall energy is
shown in Fig. 2(b). The finite-size effect is quite strong, but
all data appear to collapse together, suggesting the existence
of a universality in p. The θ estimates using all sizes are also
approximately a constant, ranging from 0.2437 to 0.2832 as
illustrated in Fig. 2(c). Assuming that θ is indeed independent
of p, we estimate that θ = 0.263(5) by combining these esti-
mates. If we again using only the four largest sizes, the data
are statistically well compatible with a constant but naturally
with larger errorbars. It is theoretically expected that θ is inde-
pendent of σ for the full KAS model in the mean-field regime,
the averaged estimate here is close to the result θ = 0.261(7)
found at σ = 0.1 with similar ranges of system size [35].

The fluctuation in θ is much smaller than the change in
ω as discussed below, and there is no monotonic trend. Our
result therefore suggests that there is not necessarily a strong
correlation between θ and ω, and the formula ω = 1 − θ is
likely not correct. As mentioned earlier, it was argued that the
relation ω = 1 − θ/d fails exactly in the mean-field regime
above d = 6 for the EA model [36]. Our results of the diluted
SK model are in line with this conclusion, e.g., the relation
appears to be invalid even for the full SK model. Future work
should find a theoretical explanation why the relation fails
in the mean-field regime, as the derivation therein appears to
be quite general. Nevertheless, this conclusion does avoid the
disturbing consequence θ < 0 even if ω diverges in the p → 0
limit. Considering that the KAS model and the SK model have
strong finite-size effect for the exponent θ [35], we conclude
that θ is likely independent of p, or alternatively it depends
very weakly on p and is approximately independent of p.

Finally, we study the energy scaling. For the full SK model,
the average energy per spin is remarkably universal indepen-
dent of the specific disorder, and the energy is known to great
accuracy e�

∞ = −0.7631667265(6) [58]. To check whether it
is also universal in p, we do the power-law fit of Eq. (9), and

the results are summarized in Table III. Here we averaged
over the PBC and APBC data for each sample for the fit
to suppress the statistical error. The result suggests that the
fitted e∞ agrees well with the above “exact” result. There
is no evidence of a systematic drifting with decreasing p.
This strongly suggests that the average ground-state energy
per spin is universal independent of p. This is meaningful
as the number of bonds diverges and the bond strength is
properly normalized, therefore, it is reasonable to expect e∞
to converge to that of the SK model. The increasing of the
fitted e∞ at very small values of p found in [34] is very likely
due to that the data therein are affected by including the very
small sizes which generate disconnected samples. Here our
minimum size grows with decreasing p, such that there are
essentially no disconnected samples.

Establishing the universal e∞ allows us to do a linear fit
of log(eL − e�

∞) and log(L) to estimate ω and A with better
accuracy. These estimates are also listed in Table III as ω� and
A�. The two fits are well compatible, and the linear fit yields
much more accurate results. Our data are also compatible
with the results of the ±J model, except for A, showing that
e∞ is universal in both p and the disorder, ω is universal
in the disorder but not in p, and the prefactor A has no
universality.

We comment that ω does not change very dramatically
down to p = 0.05, it is interesting whether the rapid diver-
gence at yet smaller p values [34] is a genuine divergence or
a finite-size effect. The sizes in the pioneering work [34] are
quite small for the small p values, the samples are likely quite
disconnected without suitably tuning the minimum L as p is
lowered. Future work should double check this at yet smaller
p values.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we studied the interface properties of the
diluted SK model using SDRG and PAMC simulations. We
find that the interfaces are space-filling with ds = 1 and the
stiffness exponent θ is also approximately a constant indepen-
dent of p. These are also likely true for the diluted KAS model
up to at least σ = 0.2. The energy finite-size scaling is also
studied and compared with that of the ±J disorder, finding
that the thermodynamic energy is universal in both p and the
disorder, the exponent ω is universal in the disorder but not in
p, while the prefactor has no universality.
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Assuming the diluted SK model and the full SK model
have the same properties of interest, this work provides an
opportunity to accelerate simulating mean-field spin glasses.
This is because it can be much faster to update a sample if the
connectivity is considerably lowered, e.g., p = 0.1. However,
one also needs to consider that the minimum size grows and
the fluctuation can also grow at small p, therefore, a balance
should be kept between the two effects.

Our work can be extended in a number of directions.
First, it should be interesting to study these exponents more
systematically in the full range of σ including the droplet
regime [27]. As mentioned earlier, a large-scale simulation
at yet smaller p values to check the divergence of ω is also
interesting. It is also natural to extend the work to the diluted
KAS model with a finite connectivity [38] to investigate the
universality of the various exponents in a yet broader set-
ting. Another related research direction in our setup is the

study of the SK model or the diluted SK model in thermal
boundary conditions and examine the quantity of the sample
stiffness [59]. This is of paramount importance for determin-
ing whether the three-dimensional Edwards-Anderson model
has a single pair or many pairs of pure states. Research efforts
along these research directions are currently in progress and
will be reported in future publications.
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