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Localization of pairs in one-dimensional quasicrystals with power-law hopping
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Pair localization in one-dimensional quasicrystals with nearest-neighbor hopping is independent of whether
short-range interactions are repulsive or attractive. We numerically demonstrate that this symmetry is broken
when the hopping follows a power law 1/rα . In particular, for repulsively bound states, we find that the critical
quasiperiodicity that signals the transition to localization is always bounded by the standard Aubry-André critical
point, whereas attractively bound dimers get localized at larger quasiperiodic modulations as the range of the
hopping increases. Extensive numerical calculations establish the contrasting nature of the pair energy gap for
repulsive and attractive interactions, as well as the behavior of the algebraic localization of the pairs as a function
of quasiperiodicity, interaction strength, and power-law hops. The results here discussed are of direct relevance
to the study of the quantum dynamics of systems with power-law couplings.
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I. INTRODUCTION

Quasicrystals are intriguing structures that are character-
ized by having long-range order without spatial periodicity.
Such exotic states of matter constitute intermediate cases be-
tween disordered and periodic systems. Due to their particular
spatial arrangement, the localization of individual particles
in one-dimensional quasicrystals has been explored both the-
oretically [1–8] and experimentally [9–11]. In particular,
considerable attention has been given to the celebrated Aubry-
André (AA) model [1,12,13]. In this model, quasiperiodicity
emerges by superimposing two lattices with incommensurate
periods [14], and particles hop through nearest-neighbor sites
only. To enrich the localization problem in the AA model, one
can replace the nearest-neighbor tunneling with a hopping the
amplitude of which follows a power law. This modification
is of particular interest since power-law interactions arise in
many important systems [15], for instance, polar molecules
[16–18], Rydberg atoms [19,20], trapped ions [21–23], and
atoms in photonic crystal waveguides [24], among others.
Intriguing results, such as multifractal states [25,26] and alge-
braic localization [27], arise as a consequence of the interplay
between quasiperiodicity and power-law hops.

One of the fundamental questions in localization theory,
which has sparked intense debate [28–37], is the fate of
the Anderson transition in the presence of interactions at
finite particle density. This subject, called the many-body
localization problem [38], faces significant computational and
experimental challenges. From the numerical side, exact diag-
onalization methods are restricted to small-size systems due
to the exponential growth of the Hilbert space, and tensor net-
work algorithms [39–41] allow one to simulate the dynamics
of larger systems, but up to times limited by the amount of
entanglement in the many-body system. On the other hand,
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experiments are restricted to several hundred tunneling times
due to the coupling with the external environment [42–45].
This limitation makes it difficult to extrapolate the results
to the infinite time limit, where a slow decay regime can
be straightforwardly distinguished from the peculiar frozen
dynamics of many-body localization.

Because of the complexity of the many-body localization
problem, it is reasonable to focus our attention on the localiza-
tion properties of few-body systems. Although the collective
behavior of matter indeed demands the participation of a large
conglomerate of entities, the physics of two or few interact-
ing particles can contain the essence from which one can
understand the properties of a many-body system. In fact,
despite its apparent simplicity, the pair localization problem
already exhibits rich physics, for instance, the enhancement
of the pair localization length [46–49], the interaction effect
on the dimer localization [50–57], the presence or absence of
mobility edges [58,59], the fractal character of the two-body
spectrum [60], and exotic dynamical regimes [61], among
others. Furthermore, due to the high precision and tunability
achieved on several quantum simulation platforms, observing
few-body phenomena is within reach of current experiments
[62–64].

In this paper, we study a fundamental two-body model
that incorporates the essential ingredients discussed above:
short-range interactions, quasiperiodic potential, and power-
law hopping. To the best of our knowledge, there is no study
that discusses the interplay of the three former elements on
the pair localization transition. We numerically demonstrate
that, in stark contrast with quasicrystals with nearest-neighbor
hops [46,48,50,52,57], the mirror symmetry of the critical
quasiperiodicity, where localization occurs, breaks when the
hopping range is increased. That is, its value depends on
whether the interactions are attractive or repulsive. Our cal-
culations show that the critical quasiperiodic modulation for
repulsively bound states is always bounded by the usual
Aubry-André transition point [1,14], whereas attractively
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dimers localize at larger quasiperiodic modulations when the
range of the hopping increases. Through robust numerical
calculations, we study the pair energy gap and the alge-
braic decay of both repulsively and attractively bound dimers.
Furthermore, we introduce an effective Hamiltonian that de-
scribes the two-body system within the tightly bound regime
and compare its predictions with the full two-body prob-
lem. The results here discussed go beyond previous findings
[48,50,53], in the sense that they explore the consequences
of the range of the hopping on the two-body localization
transition. Furthermore, they are of main relevance for current
studies on the quantum dynamics of bound states in optical
lattices [61,65–67].

The paper is organized as follows. In Sec. II we introduce
the model considered and develop the Green’s function for-
malism used to address the two-body problem. To provide an
intuitive physical picture of our results, in Sec. III we summa-
rize the physics of a pair of particles in a periodic lattice with
power-law hopping. Subsequently, in Sec. IV we numerically
demonstrate the extended-localized transition and calculate
localization properties for both attractively and repulsively
dimers. Finally, in Sec. V, we summarize and conclude the
paper.

II. GREEN’S FUNCTION FORMALISM

We consider a pair of interacting particles moving in a
one-dimensional quasicrystal with power-law hopping. The
Hamiltonian of the two-body system can be written as Ĥ =
Ĥ0 + Û , with Ĥ0 the noninteracting component and Û the
interaction operator. The ideal part of Ĥ can be decomposed
as Ĥ0 = ĤGAA ⊗ I1 + I1 ⊗ ĤGAA, I1 being the one-body
identity operator and ĤGAA the single-particle generalized
Aubry-André (GAA) Hamiltonian:

ĤGAA = −J
∑
i, j �=i

1

|i − j|α |i〉〈 j|

+�
∑

j

cos(2πβ j + φ)| j〉〈 j|, (1)

where | j〉 stands for the state in which the particle is localized
at the site j, and J/|i − j|α is the hopping rate between the
sites i and j. The quasiperiodic modulation is characterized
by its strength �, the incommensurate parameter β = (

√
5 −

1)/2, and a random phase φ ∈ [0, 2π ). For α � 1, the GAA
model approaches to the celebrated AA model [1,12,13,68].
As it is well known, all the eigenstates of the Aubry-André
Hamiltonian are extended for �/J < 2, all are localized for
�/J > 2, and all are multifractal at the transition point �/J =
2 [69]. In contrast, the GAA model displays a plethora of
mobility edges that split extended and localized single-particle
states for α > 1 [25], whereas for long-range hops α < 1 the
single-particle states are extended or multifractal [25,26]. The
operator Û couples the two particles by an on-site interaction
of strength U :

Û = U
∑

j

| j, j〉〈 j, j|, (2)

| j, j〉 = | j〉 ⊗ | j〉 being the two-body state in which both
particles are in the lattice site j. It is important to mention

that the on-site interaction in Eq. (2) plays a role in spatially
symmetric wave functions, where the particles can be found
on the same site with nonzero probability. Thus, our results are
relevant when the particles are bosons or fermions with oppo-
site spins in the singlet state. The Schrödinger equation for the
two-particle state |�〉 can be written as (E − Ĥ0)|�〉 = Û |�〉
with E the energy. This equation can be numerically solved
with the aid of the noninteracting two-body Green’s function
operator Ĝ0(E ) = (E − Ĥ0)−1, which can be formally written
in terms of the eigenstates |ϕl〉 and eigenenergies εl of the
GAA Hamiltonian:

Ĝ0(E ) =
∑
n,m

1

E − εn − εm
|ϕn, ϕm〉〈ϕn, ϕm|. (3)

By applying Ĝ0 to both sides of the Schrödinger equation (E −
Ĥ0)|�〉 = Û |�〉, one can find |�〉 = Ĝ0Û |�〉. Projecting this
last expression over the state | j, j′〉, we obtain an equation for
the amplitudes �( j, j′) = 〈 j, j′|�〉 of the two-particle wave
function:

�( j, j′) = 〈 j, j′|Ĝ0Û |�〉
= U

∑
i

〈 j, j′|Ĝ0(E )|i, i〉�(i, i), (4)

where in the last equality we use the fact that the inter-
action operator Û is diagonal in the space representation.
Equation (4) shows that �( j, j′) is entirely determined by its
diagonal components �( j, j) which, for simplicity, we shall
denote by ψ ( j) = �( j, j). Setting j = j′ in Eq. (4) yields the
desired eigenvalue problem:

1

U
ψ ( j) =

∑
i

G0( j, i; E )ψ (i), (5)

G0( j, i; E ) being the matrix elements of the noninteracting
two-body Green’s function operator:

G0( j, i; E ) = 〈 j, j|Ĝ0(E )|i, i〉

=
∑
n,m

ϕn( j)ϕm( j)ϕ∗
n (i)ϕ∗

m(i)

E − εn − εm
. (6)

The computational complexity of the above equation is O(L4)
and, in contrast with tight-binding lattices, it cannot be re-
duced to O(L3) since ĤGAA does not have a tridiagonal
structure. For this reason, we restrict our calculations to a
moderate lattice size of L = 377. In the Appendix, we per-
form a concise analysis of the relevance of the system size.
Since the dimer motion is confined to one dimension, the
bound state exists for arbitrarily small interactions. Further-
more, the eigenvalue problem in Eq. (5) admits solutions for
negative and positive interaction strengths. The former states
are called attractively bound pairs and the latter are called
repulsively bound pairs. To solve for the attractively (repul-
sively) bound dimers, one starts by computing the matrix
G0(E ) with an ansatz for the energy E , which is smaller
(larger) than twice the lowest (highest) single-particle energy
E < 2ε1 (E > 2εL). Afterwards, one obtains the lowest (high-
est) eigenvalue of G0(E ) and compares it with 1/U : If these
values match, the lowest (highest) eigenvector of G0(E ) is the
desired state; otherwise, the energy E must be varied until the
lowest (highest) eigenvalue of the matrix G0(E ) equals 1/U .
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FIG. 1. Two-particle energies vs the center-of-mass momentum.
The continuum (scattering) spectrum corresponds to the energies
in green color. The lines above and below the scattering band are
the energies of the repulsively and the attractively bound dimer,
respectively.

In contrast to dimers bounded by an attractive interaction, a
repulsively bound pair is not the ground state of the two-body
system. However, due to energy constraints, the repulsively
bound dimer is unable to decay by converting the interaction
energy into kinetic energy and is therefore dynamically stable.
In this paper, we concentrate on the minimal and maximal
energy states of G0(E ); in the absence of quasiperiodic mod-
ulation, these states correspond to a pair of particles with zero
center-of-mass momentum. To avoid any inconvenience with
the thermodynamic limit of the pair energy, throughout the
paper we shall consider α > 1 only.

III. PERIODIC LATTICE

To provide an intuitive picture of the physics behind the
asymmetry in the localized transition, in this section, we
summarize the main characteristics of a pair of particles in
a periodic lattice with power-law hopping. In the absence of
quasiperiodicity �/J = 0, the two-body wave function can be
separated as �(i, j) = eiKR�K (r), where R = (i + j)/2 and
r = |i − j| are the center-of-mass and relative coordinates,
respectively. The relative coordinate wave function �K (r)
depends on the center-of-mass momentum K ∈ [−π/a, π/a]
with a the lattice constant. Using this ansatz, the eigenvalue
problem in Eq. (5) reduces to G0,K (E , 0)U = 1, where

G0,K (E , r) = a

2π

∫ π/a

−π/a
dq

eiqr

E − EKq
(7)

is the noninteracting two-body Green’s function and EKq is
the two-particle dispersion relation, which is given as follows:

EKq = −J[Liα (ei(K/2+q)a) + Liα (e−i(K/2+q)a)

+ Liα (ei(K/2−q)a) + Liα (e−i(K/2−q)a)], (8)

Liα (z) being the polylogarithm function and q the relative
momentum. In Fig. 1, we show the two-particle energies
as a function of the center-of-mass momentum for differ-
ent power-law hops. Scattering energies are colored green
whereas bound pair energies are above and below the scatter-

FIG. 2. Square modulus of the zero center-of-mass momentum
wave function �K=0(r) vs the relative distance r. Main panels corre-
spond to repulsively bound dimers with U/J = 4, whereas insets are
associated with attractively bound pairs with U/J = −4.

ing band. As one can notice, the spectrum for α = 6 resembles
the nearest-neighbor case, where if there is a state with energy
E there is also a two-particle state with energy −E . How-
ever, as the range of the hopping increases (α = 2 and 1.5),
the spectrum shows a clear asymmetry in both the scattering
and dimer states. Up to a normalization factor, the relative
wave function results proportional to the Green’s function,
that is, �K (r) ∝ G0,K (E , r). In Fig. 2, we illustrate the square
modulus of �K=0 as a function of the relative coordinate r
for several power-law hops. As one can notice, the spatial
extent of �K=0 for α = 6 is practically the same for repulsive
and attractive interactions. However, for α = 3, 1, and 1/2,
the relative wave function of the attractively bound dimers
is delocalized in comparison with the wave function of the
repulsively bound pairs. Due to the contrasting spatial behav-
ior of repulsively and attractively bound dimers for α = 3, 1,
and 1/2, one might intuitively expect that attractively bound
dimers require larger quasiperiodic strengths than repulsively
bound pairs to localize in space.

IV. QUASIPERIODIC CHAIN

A. Extended-localized transition

In one-dimensional quasicrystals with nearest-neighbor
tunneling, the wave function of a repulsively bound state
with energy E describes also an attractively bound state with
energy −E , provided the phase φ, belonging to the AA po-
tential, is shifted by π . In other words, while the attractively
bound state localizes at the minimum of the quasiperiodic
modulation, the repulsively bound state gets localized at the
maximum. The fact that the same spatial profile represents
both kinds of pairs implies that the two-body extended-
localized transition does not depend on the interaction sign
[50]. That is, the critical quasiperiodicity �c at which the
transition takes place is an even function of the interaction
strength �c(−U ) = �c(U ). This is no longer true for one-
dimensional quasicrystals with power-law hops; as illustrated
in Fig. 3 (notice the log scale on the vertical axis), the di-
agonal elements of the two-body wave functions can show
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FIG. 3. Diagonal elements of the two-body profile ψ ( j) =
�( j, j) as a function of the lattice index j; ψA and ψR correspond
to attractively and repulsively bound pairs, respectively. The strength
of the quasiperiodic modulation for all panels is �/J = 2.

contrasting spatial behaviors. In particular, while the attrac-
tively bound pair is extended for α = 2 and (U/J,�/J ) =
(−2, 2), the associated repulsively bound state for U/J = 2
is localized. For α = 6, the pair states are nearly identical, as
expected from quasicrystals with short-range hops. The local-
ized wave functions plotted in Fig. 3 correspond to phases φ

suitably chosen so that the site at which localization occurs
coincides with the center of the lattice.

A customary parameter that is used as a measure of lo-
calization is the inverse participation ratio (IPR); given a
normalized wave function ψ its IPR is defined as IPRψ =∑L

i=1 |ψ (i)|4. For extended states, the IPR vanishes in the
thermodynamic limit as ∝ L−1, whereas for spatial localized
profiles it is always finite. In Fig. 4, we plot in a density
color scheme the inverse participation ratio of attractively and
repulsively bound dimers as a function of α and �/J for
several interaction strengths. The noninteracting cases shown

FIG. 4. Inverse participation ratio as a function of the power hop
α and the quasiperiodicity �/J for several interaction strengths. The
noninteracting cases in panels (a) and (d) are associated with the
maximal and minimal energy states of the scattering band, respec-
tively. All the calculations were obtained from the average of 30
random uniformly distributed phases φ ∈ [0, 2π ).

FIG. 5. Critical quasiperiodicity of the two-body extended-
localized transition as a function of the interaction strength for
several power-law hops. All the calculations were obtained from the
average of 30 random uniformly distributed phases φ ∈ [0, 2π ).

in Figs. 4(a) and 4(d) correspond to the maximal and minimal
energy states of the scattering band, respectively. As one can
notice, the interaction between particles favors the localiza-
tion of both kinds of pairs. However, the IPR shows distinct
features for attractive and repulsive interactions. For instance,
as long as α � 2 attractively bound dimers are extended for
large quasiperiodic modulations �/J ≈ 8. In contrast, all re-
pulsively bound states are localized for these parameters. It
is interesting to note that for attractively bound pairs the ex-
tended region, where the IPR is null, enlarges as α decreases.
In contrast, the extended region for repulsively bound dimers
enlarges as α increases.

To determine the critical quasiperiodicity �c/J at which
the localization transition of the pairs takes place, we employ
the inflection point technique of the inverse participation ratio.
That is, for fixed values of U and α, we calculate the IPR of
the dimer state ψ as a function of �, then we find the point
where the second derivative of the obtained curve IPR(�)
vanishes. The inflection point technique has been success-
fully used in several previous works [50,56]. In addition, we
compute the critical quasiperiodicity using the crossing point
of the IPR and the normalized participation ratio, NPR =
L−1(

∑L
i=1 |ψ (i)|4)−1. We found that the deviations in �c/J

obtained with both methods are less than 0.05J .
In Fig. 5 we illustrate the critical quasiperiodicity �c/J

of the dimer localization transition as a function of the in-
teraction strength U/J for several values of the power hop
α. For α = 6, the critical quasiperiodic modulation is ap-
proximately an even function of the interaction strength, in
agreement with quasicrystals with short-range hops [50]. As α

decreases, the mirror symmetry of �c/J with respect to U/J is
completely broken, namely, �c(−U ) �= �c(U ). In particular,
attractively bound dimers get localized at larger quasiperiodic
modulations than repulsively bound states. Intuitively, one can
forecast the previous assertion from the spatial behavior of
repulsively and attractively dimers in the absence of quasiperi-
odic modulation (see Sec. III). To analyze the behavior of the
two-body localization transition with respect to the range of
the hopping, in Fig. 6, we illustrate the behavior of �c/J as
a function of α for several values of the interaction strength.
Notice that the critical quasiperiodicity for repulsively bound
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FIG. 6. Critical quasiperiodicity �c/J as a function of the hop-
ping range α for several interaction strengths U/J . Panels (a) and
(b) correspond to repulsively and attractively bound dimers, respec-
tively. All the calculations were obtained from the average of 30
random uniformly distributed phases φ ∈ [0, 2π ).

pairs is always bounded by the Aubry-André transition point
�c/J = 2. In contrast, for attractive interactions, �c/J ex-
ceeds the AA bound when the range of the hopping increases.

To provide a physical description of the two-particle sys-
tem within the strongly interacting regime |U | � J,�, we
introduce an effective Hamiltonian Ĥeff that describes tightly
bound pairs. In this regime, the noninteracting component Ĥ0

of the Hamiltonian Ĥ = Ĥ0 + Û can be treated as a perturba-
tion. To this end, we consider the operator P̂ = ∑

j | j, j〉〈 j, j|
that projects over the states in which both particles are in the
lattice site j. Then, the following effective Hamiltonian Heff is
obtained:

Ĥeff = P̂(Û + Ĥ0)P̂ + P̂Ĥ0Q̂
1

U − Q̂Û Q̂
Q̂Ĥ0P̂, (9)

where Q̂ = I − P̂. After some straightforward algebra, one
can write the effective Hamiltonian as Ĥeff = T̂eff + V̂eff,
where the effective mobility and on-site potential of the tightly
bound dimer are given as follows:

T̂eff = 2J2

U

∑
i, j �=i

1

|i − j|2α
|i, i〉〈 j, j|,

V̂eff = 2�
∑

i

cos(2πβi + φ)|i, i〉〈i, i|

+ 4�2

U

∑
i

cos2(2πβi + φ)|i, i〉〈i, i|. (10)

One can notice that the effective mobility of the dimer fol-
lows a power law 1/rσ , with σ = 2α, namely, it is of shorter
range than the hops of individual particles. As shown in Fig. 7,
for tightly bound pairs �c  1, hence one can safely neglect
the �2 term in Eq. (10); as a consequence, for sufficiently

FIG. 7. Critical quasiperiodicity �c/J as a function of the in-
teraction strength U/J for several power hops α. The solid line
corresponds to the full two-body prediction, whereas the dashed line
with markers is associated with the effective Hamiltonian Ĥeff.

large α, the critical quasiperiodicity follows �c ≈ 2/|U |, in
agreement with quasicrystals with nearest-neighbor hoppings
[50]. In Fig. 7, we compare the critical quasiperiodicity ob-
tained by solving the full two-body problem [see Eq. (5)] with
that estimated by the effective Hamiltonian [see Eq. (10)]. One
can notice that for α = 6 the effective Hamiltonian gives an
accurate prediction of the critical quasiperiodicity for |U |/J �
4. However, when the range of the hopping increases, the
accuracy of the effective model is highly dependent on the
interaction sign. In particular, Ĥeff begins to be a suitable
description of the attractively bound dimer for larger interac-
tion strengths than for the repulsively bound pair. As one can
notice from Fig. 7(d), the effective model poorly describes the
attractive branch whereas it gives reasonable predictions for
U/J > 0.

B. The pair energy gap

As it is well known, the total energy of repulsively and
attractively bound pairs lies above and below the two-body
scattering energies, respectively. The energy gap EG between
a bound state and the closest scattering state is a measure of
the required energy to dissociate the pair. We should mention
that the pair energy gap can be measured experimentally in
optical lattices using rf spectroscopy [70,71]. Mathematically,
EG is defined as follows:

ER
G = E − 2εL,

EA
G = 2ε1 − E ,

(11)

where the superscripts R and A are associated with repulsively
and attractively bound dimers, respectively; ε1 is the lowest
energy; and εL is the highest energy of the single-particle
spectrum. In Figs. 8(a)–8(d), we show the pair energy gap
EG as a function of the interaction strength for �/J = 0, 1, 2,
and 3, respectively. The values of the hopping power α are
indicated in different colors. As illustrated in Fig. 8(a), ER

G
corresponds to positive U , while EA

G is associated with nega-
tive interactions. For the periodic lattice �/J = 0, one can see
a very nearly mirror image between EA

G and ER
G when α = 6.
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FIG. 8. The pair energy gap as a function of the interaction
strength U for several values of the power-law hopping α. EA

G and ER
G

correspond to the attractive and repulsive branches, respectively. Pan-
els (a), (b), (c), and (d) are associated with a quasiperiodic strength
of �/J = 0, 1, 2, and 3, respectively.

However, as α decreases, the asymmetric behavior of the pair
energy gap is clearly seen. In particular, repulsively bound
states exhibit a larger EG than attractively bound pairs. As
shown in Sec. III, similar asymmetry behavior is found in the
absence of the quasiperiodic modulation. Because localized
profiles increase the interaction energy, one can recognize
from Figs. 8(b)–8(d) that the pair energy gap for both kinds
of dimers increases significantly when the quasiperiodic po-
tential localizes the two-particle wave function. Furthermore,

FIG. 9. Logarithm of |ψ |2 vs logarithm of the distance i from the
localization center i0. The arrows indicate the decay power |ψ |2 ∼
|i − i0|−γ of each wave function; ψA and ψR correspond to attrac-
tively and repulsively bound dimers, respectively. The parameters are
(U/J, �/J ) = (3, 4) for panel (a), whereas panel (b) is associated
with (U/J, �/J ) = (−3, 4).

FIG. 10. Decay power γ as a function of interaction U/J and
quasiperiodicity �/J for three different power-law hops. All the
calculations were obtained from the average of 30 random uniformly
distributed phases φ ∈ [0, 2π ).

due to a strong localization, the mobility of the pair ceases to
play a relevant role, and therefore the curves associated with
different values of α gradually collapse to a straight line.

C. Algebraic localization

As it is well known, localization in quasicrystals with
nearest-neighbor hopping is characterized by exponential tails
|ψ (i)|2 ∼ e−|i−i0|/ξ , ξ being the localization length. In con-
trast, power-law tunneling yields algebraic decay |ψ (i)|2 ∼
|i − i0|−γ , where γ is the decay power and i0 is the localiza-
tion center, which is placed at the maximum value of |ψ |2.
Recently, it has been found that algebraic single-particle states
can be either conducting or insulating in the thermodynamic
limit [72]. As illustrated in Fig. 9, the spatial distribution of
attractively and repulsively dimers is well fitted by the alge-
braic dependence |i − i0|−γ ; the arrows in each panel indicate
the corresponding value of γ . As one would expect, the decay
power for both kinds of pairs increases as the tunneling range
of the particles decreases. That is, |ψ |2 falls off more abruptly
in space when α increases. It is important to comment that for
α � 4 we found that the algebraic ansatz fits the profile poorly
because |ψ |2 gradually recovers its exponential tail.

To understand the values of γ shown in Fig. 9, one can em-
ploy the effective Hamiltonian and a perturbative argument.
Since we are interested in describing a localized profile, it is
thus natural to consider T̂eff as a perturbation and develop a
perturbative series for the eigenstates |ψ〉 of Ĥeff in powers of
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J . To first order, the Lippmann-Schwinger equation reads

|ψ j〉 = | j〉 − J
∑

j1

1

| j1 − j|2α

| j1〉
E − Veff( j1)

, (12)

thus the square modulus of the pair wave function decays
as |ψ |2 ∝ |i − j|−4α , which gives reasonable predictions of
the values of γ shown in Fig. 9. Figures 10(a)–10(f) show
the value of the decay power γ as a function of �/J and
U/J for repulsively and attractively bound pairs with three
different values of α. As one can notice, deep in the localized
regime γ is well described by the prediction of the effective
Hamiltonian, that is, γ = 4α. However, near the transition
point, the decay power γ deviates considerably from the per-
turbative result. Interestingly, we find that close to �c the
wave function of repulsively bound dimers decays faster in
space than attractively bound states.

V. CONCLUSION

We have investigated the localization properties of two
interacting particles moving in a one-dimensional quasicrystal
with an adjustable tunneling range. In the proposed model,
two identical bosons or fermions with opposite spins are cou-
pled via a short-range interaction and tunnel not just through
nearest-neighbor sites, but across the whole lattice with hop-
ping couplings that follow a power-law function 1/rα . By
using Green’s function techniques and numerical exact diag-
onalization, we have found that, in stark contrast with pair
localization in quasicrystals with nearest-neighbor hops [50],
the extended-localized transition of the dimer strongly de-
pends on whether the interaction is repulsive or attractive.
That is, the mirror symmetry of the critical quasiperiodicity
at which the transition takes place is broken. In particu-
lar, we showed that the critical quasiperiodic modulation
for repulsively bound states is always bounded by the usual
Aubry-André transition point, whereas attractively pairs lo-
calize at larger quasiperiodic strengths when the range of
the hopping increases. Furthermore, we numerically demon-
strated that as the hopping range is decreased the mirror
symmetry of the critical quasiperiodic modulation is restored,
in agreement with previous literature on quasicrystals with
nearest-neighbor hops. An extensive set of numerical calcu-
lations allowed us to determine the effects of interactions,
quasiperiodicity, and hopping range on both the pair energy
gap as well as the algebraic localization of the two-body
system.

We expect that our analysis will trigger further theoretical
work in determining both the fate and effects of dimer for-
mation in the transport properties of many-body systems with

FIG. 11. Critical quasiperiodic strength �c/J as a function of
the inverse lattice size 1/L for L = 144, 233, 377, 610, and 987. The
solid black line in each panel corresponds to the infinite size 1/L →
0 extrapolation.

power-law couplings. The model proposed in our paper is of
current relevance for several quantum simulation platforms
where power-law interactions emerge, for instance, trapped
ions, Rydberg atoms, polar molecules, and atoms in photonic
crystal waveguides among other systems.
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APPENDIX: FINITE-SIZE SCALING

As mentioned in the paper, we have considered a lattice
of size L = 377. However, it is particularly interesting to
get an estimate of the relevance of the system size. For this
reason, in this Appendix, as illustrated in Fig. 11 we show the
critical quasiperiodic strength for several lattice sizes and the
extrapolation of our finite size calculations to the infinite size.

As expected, finite-size errors are more noticeable as
the hopping range increases. However, one can notice that
L = 377 gives reasonable predictions for the critical
quasiperiodicity. Interestingly, repulsive interactions yield
smaller finite-size errors than attractive interactions.
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