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Static and dynamical Stark many-body localization transition in a linear potential
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We investigate hard-core bosons filled in a lattice chain in the presence of a weak linear potential. In the
single-particle case, we find that the critical point of dynamical Stark localization is different from that of static
Stark localization. This suggests an intermediate phase in which the eigenstates are Stark-localized, but the
dynamic wave functions are extended after quenching. In the many-body case, by comparing the dynamical
critical point with the static critical point, we find a many-body intermediate phase that is analogous to the
single-particle intermediate phase. Furthermore, we also study the static transition for the ground state and the
dynamical transition for domain-wall states. In the ground state, we find that the localization transition point
is at V ≈ 2(U + W ) for half-filling (U is the nearest-neighbor interaction strength, W is the half-bandwidth).
For the typical domain-wall state |111 . . . 000〉, its dynamical transition points are at V ≈ 4(U + W ) and V ≈
4(U − W ). By analyzing the distribution of the occupation, we also offer a phenomenological way to estimate
the above transition points.
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I. INTRODUCTION

The phenomenon of many-body localization (MBL),
strong disorder breaking ergodicity in the isolated quantum
system, has received extensive attention in the past few years
[1–6]. This topic has forged many interesting directions in
quantum information [7–10] and out-of-equilibrium statistical
mechanics [2–4,11–18]. Although a great deal of fundamental
work has been explored [2–5], limited by the computational
ability, many issues are still under debate, e.g., the many-body
mobility edge (MBE) [19–21] and the many-body interme-
diate phase (MBI) [22–25], and even MBL itself has been
questioned in the past two years [26–28]. Nonetheless, it
is undeniable that MBE, MBI, and MBL have indeed been
observed in finite-size systems [19–28].

Recently, it has been shown that disorder is not necessary
for MBL [29–31], i.e., it can be generated in disorder-free
systems. Typically, the strong linear potential can cause MBL,
dubbed as Stark many-body localization (SMBL) [30,31].
SMBL can be considered as a generalization of Wannier-Stark
localization to the many-body case [32], which has a different
mechanism from MBL. Although the origins are different,
the similarity between SMBL and MBL allows several the-
oretical methods used in disordered systems to be applied to
study SMBL, e.g., level statistics [30,31], dynamical behavior
[33–35], entanglement entropy [34–38], and so on. In addition
to theoretical investigations, there are a lot of experimental
studies on SMBL [39–43]. In particular, recent experiments
show that SMBL can be realized using quantum simulations
[39–42].

*zhuwei@westlake.edu.cn

Previous studies have shown that an ergodic-SMBL tran-
sition occurs when the amplitude of the ordered potential
increases [30,31,44], which is similar to the ergodic-MBL
transition in disordered systems. This ergodicity was con-
sidered as a “strong” one [30,31,44]. Here, “strong” means
that the ergodic phase satisfies the eigenstate thermalization
hypothesis (ETH) [45–47], which implies that the long-time
behavior of the local observation does not depend on the
choice of the initial state. However, in their latest work,
Doggen et al. found that the ergodicity in the system with a
linear potential is not a “strong” one [48]. They found that
the domain-wall states keep local information after long-time
evolution even for a weak linear potential. This manifests
that, although most initial states lose memory after time
evolution, a small part of the initial states can retain local
information without approaching thermalization. Meanwhile,
it also means that the local constraints make the Hilbert space
fragment into disconnected sectors, and the Hilbert space is
shattering [49,50].

In a single-particle system with a strong linear potential
Vi, where V is the slope and i is the site index, the amplitude
of the potential �V = Vmax − Vmin = V L increases with size.
It is well known that all states are Wannier-Stark localized
states for any finite V in the thermodynamic limit for L → ∞
[31,51]. However, it also shows that there are extended states
in a system with a weak linear potential [52]. The transi-
tion from extended states to Wannier-Stark localized (bound)
states is dubbed the transition from the classically allowed
region to the classically forbidden region [53], which is de-
termined by the eigenvalue and the amplitude of the linear
potential �V , as shown in Fig. 1(a). Thus, it is necessary
to use a weak linear potential with a finite �V to study the
localization transition. Note that the localization here, which
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FIG. 1. (a) Schematic plot of hard-core bosons in a linear po-
tential. The minimum value of the linear potential is Vmin = 0, and
the maximum value is Vmax = V , so the gap between two nearest-
neighbor sites is V/(L − 1). When the eigenvalue E is larger than
the maximum value of the linear potential E > V , the corresponding
eigenstate behaves as a scattering extended state. On the contrary, the
eigenstate is a Stark-localized state when E < V . (b) Schematic plot
of the intermediate phase in the single-particle case. The blue, yellow,
and red regions represent static and dynamical extended (extended),
static localized but dynamical extended (intermediate), and static
and dynamical localized (localized) phases, respectively. (c) Typical
occupation ni and the lengthscale ξ denoting the width of the region
0 < ni < 1.

is defined as the Wannier-Stark localization length ξloc, is
smaller than the system size L [52,54–56]. Different from the
localization length in the disordered system, the localization
length in a system with an ordered potential characterizes the
distribution width of the wave function [54,55]. For ξloc < L,
the wave function is localized (bound). On the contrary, the
wave function is extended for ξloc > L [52,54–56]. In the
many-body case, our results below show that the weak lin-
ear potential is especially important for the ground state and
domain-wall states. In this paper, we determine that there is
an intermediate phase in the process of the SMBL transi-
tion by comparing critical points in the static and dynamical
cases. To the best of our knowledge, it has not been studied
before. Furthermore, we also study the static transition for
the ground state and the dynamical transition for domain-
wall states. Due to the interaction, the analytical solution
becomes difficult. However, interestingly, we find that the
specific formulas of the lengthscale ξ denoting the width of
the region 0 < ni < 1, as shown in Fig. 1(c), can be obtained
by analyzing the occupation distribution. The lengthscale ξ

is proposed to distinguish Stark many-body localization for
domain-wall initial states in Refs. [48,62]. Our results shown
in Appendix C indicate that it is suitable for distinguishing not
only the localization of domain-wall initial states but also the

localization of the ground state. The criterion of localization
and delocalization is that the state is in the localization phase
for ξ < L, whereas the state is in the delocalization phase
for ξ > L [48,62]. In this work, we systematically study the
effects of the linear potential and the interaction on ξ , and we
obtain the transition points.

The paper is organized as follows. In Sec. II, we intro-
duce a one-dimensional hard-core-boson model with a linear
potential. In Sec. III, we study the static and dynamical lo-
calization in the single-particle case. In Sec. IV, we map the
single-particle to many-body states and study the static and
dynamical localization in the middle of the spectrum. Further-
more, we also investigate the static localization in the ground
state and the dynamical localization of different domain-wall
initial states in this section. Finally, we summarize our con-
clusions in Sec. V.

II. MODEL

We consider a one-dimensional hard-core boson model
with L sites, which reads

Ĥ = −t
∑
〈i, j〉

(b̂†
i b̂ j + H.c.) + U

∑
i

n̂in̂i+1 +
L−1∑
i=0

Vin̂i, (1)

where b̂†
i (b̂i ) creates (eliminates) a hard-core boson at the site

i, (b̂†
i )2 = 0. n̂i = b̂†

i b̂i is the occupation number operator, t ≡
1 denotes the hopping energy, U represents the strength of
the nearest-neighbor interaction, and Vi is the amplitude of the
potential. Here we use a linear potential Vi = V i

L−1 , which has
a minimum value Vmin = 0.0 and a maximum value Vmax = V .

For Eq. (1), it is well known that all states are Wannier-
Stark localized states in the thermodynamic limit when the
potential is shown as Vi = Fi [31]. It should be emphasized
that F in Ref. [31] is equivalent to V

L−1 in our paper. In the
absence of the linear potential, the ground state of the model
can be solved by using the Bethe ansatz, and it shows a
gapped phase separation (PS) for U/t � −2.0 [57]. Further-
more, Eq. (1) maps to the isotropic Heisenberg model via a
Matsubara-Matsuda mapping for U/t = 2 and Vi/t = 0 [58],
showing as an integrable system [45,59].

III. SINGLE-PARTICLE CASE

We first consider the single-particle case with the particle
number N = 1. To obtain the single-particle localization tran-
sition point, one may regard the ordered potential as a barrier
as shown in Fig. 1(a). When the eigenvalue is smaller than
the energy of the barrier, the eigenstate is a Stark-localized
state (bound state). On the contrary, the eigenstate appears as
a scattering extended state when the eigenvalue is larger than
the energy of the barrier. Thus, we can easily obtain energies
of mobility edges as

Ec1/t = − W/t + Vmax/t,

Ec2/t =W/t + Vmin/t,
(2)

where W = 2t is the half-width of a band with the particle-
hole symmetry. Vmin (Vmax) is the minimum (maximum)
value of the ordered potential. Considering Vi = V i

L−1 , one
can see that mobility edges are at Ec1/t = −2.0 + V/t
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FIG. 2. The phase diagram of static Stark localization in (a) and
that of dynamical Stark localization in (b). Parts (c) and (d) show
the eigenstates for V/t = 4.0 and 8.0, respectively. Here we use L =
4000 in (a), (b) and L = 100 in (c), (d). The boundary condition is
the periodic boundary condition. In the left panels, ε = n/(L − 1) in
(a) is the energy level density, where n represents the nth eigenstate,
and ε̃ = j/(L − 1) in (b) is the energy level density of dynamics,
where j represents the initial position of the boson in the initial state.
In the right panels, the right ordinate represents the site i, and the
corresponding local potential energy Vi = V i

L−1 is shown on the left.
The color stands for ln (IPR(n) ) in (a) and ln (IPRT =10 000.5Tb ) with
the Bloch period Tb = 2π (L−1)

V in (b), where IPR(n) = ∑
i |cn

i |4 and
IPRT = ∑

i |ψi( j,T )|4. The color in (c), (d) is |cn
i |.

and Ec2/t = 2.0. In Fig. 2(a), we adopt the inverse par-
ticipation ratio IPR(n) = ∑

i |cn
i |4 to indicate the transition,

where cn
i = 〈i|n〉 is the coefficient obtained by expanding

eigenstates |n〉 with basis vectors |i〉. The color represents
ln(IPR(n) ), which changes significantly on the mobility edges.
By examining eigenstates, we confirm that eigenstates with
eigenvalues Ec1 < E < Ec2 are scattering extended states,
whereas eigenstates with eigenvalues E < Ec1 and E > Ec2

are Stark-localized states. Furthermore, one can also obtain
that the Stark localization transition point is at V/t = 4.0
with Ec1/t = Ec2/t . When the amplitude V/t > 4.0, all states
are Stark-localized states in the spectrum. The distribution of
eigenstates |cn

i | for V/t = 4.0 is shown in Fig. 2(c), in which
the abscissa En represents the nth eigenvalue, the ordinate
i on the right is the site index, and the corresponding local
potential energy Vi = Vi/(L − 1) is on the left ordinate. The
distribution of eigenstates has a center with local potential
energy Vi = En [the yellow dotted line in Fig. 2(c)] with a
half-width W/t = 2 [the green dotted line in Fig. 2(c)].

Next we turn to investigate the dynamical Stark localiza-
tion transition. We consider an initial state |ψ ( j, T = 0)〉,
where j represents the local position of the single particle
at the time T = 0. The energy of the initial state is Vj =
V j/(L − 1), which is j-dependent. This initial state can be
expanded by eigenstates |n〉 as |ψ ( j, T = 0)〉 = ∑

n cn
j |n〉.

Meanwhile, |n〉 can also be expanded by basis vectors |i〉 as
|n〉 = ∑

i cn
i |i〉. Thus the wave function after time evolution

reads

|ψ ( j, T )〉 = e−iĤT |ψ ( j, T = 0)〉
=

∑
i

∑
n

cn
i cn

j e
−iEnT |i〉 ≡

∑
i

ψi( j, T )|i〉, (3)

where En is from Ĥ |n〉 = En|n〉. ψi( j, T ) = ∑
n cn

i cn
j e

−iEnT

indicates that once cn
i cn

j = 0 for any n, the coefficient
ψi( j, T ) = 0. Meanwhile, it also implies that the dynamical
localization transition point could be obtained by analyzing
the distribution of eigenstates. We show typical eigenstates
|cn

i | for V/t = 8.0 in Fig. 2(d), and we choose an initial state
with j = L/2 and Vj ≈ 4.0. The red dotted line represents that
the initial state is expanded by eigenstates |ψ ( j, T = 0)〉 =∑

n cn
j |n〉, and the white dotted line as an example denotes that

the eigenstate with the eigenvalue En/t = 4.0 is expanded by
basis vectors |n〉 = ∑

i cn
i |i〉. By expanding the initial state and

eigenstates, one can find a region with cn
i cn

j �= 0 surrounded
by yellow lines in Fig. 2(d), and the remaining region with
cn

i cn
j = 0. The vertical width of the region of cn

i cn
j �= 0 is

2W/t = 4, which is equal to the width of the band. Obviously,
all basis vectors are exactly covered in the region enclosed
by yellow lines for V/t = 8.0, thus one may expect that all
basis vectors can be populated after quenching. Tuning the
local potential energy of the initial state Ed = Vj/t by shifting
the red dotted line in Fig. 2(d), we can obtain that the wave
function after time evolution can just touch the boundary of
the ordered potential when the energy of the initial state satis-
fies Ed/t + 2W/t = Vmax/t or Ed/t − 2W/t = Vmin/t , which
yields dynamical mobility edges

Ed1/t =Vmax/t − 2W/t,

Ed2/t =Vmin/t + 2W/t .
(4)

In our typical case, dynamical mobility edges are at Ed1/t =
V/t − 4.0 and Ed2/t = 4.0 as shown in Fig. 2(b), in which the
wave function is localized for Ed/t < V/t − 4 and Ed/t > 4,
whereas it is extended for V/t − 4 < Ed/t < 4. Similar to the
static case, we can also get that the dynamical localization
transition point is at Vd/t = 8.0 with Ed1/t = Ed2/t . Interest-
ingly, this dynamical localization transition point is not the
same as the static one, indicating that there is an intermediate
phase. The schematic plot of this phase is shown in Fig. 1(b),
and more details are shown in Appendix A. In this intermedi-
ate phase, eigenstates are Stark-localized states, but quenched
wave functions are extended. Furthermore, one can also find
that an arbitrary initial state can (cannot) populate all the basis
vectors after quenching for V/t < 4.0 (V/t > 8.0), whereas
the long-time behavior depends on the choice of the initial
state for 4.0 < V/t < 8.0.

Before entering the many-body section, we investigate a
noninteracting system with N = L/2 hard-core bosons. Due
to the interaction U/t = 0, this system is essentially a single-
particle system. In Fig. 3(a), we show a schematic extracted
from the probability density |cn

i |2 for V/t = 16 and L = 1000,
which is similar to |cn

i | in Figs. 2(c) and 2(d), but the ab-
scissa and ordinate are exchanged. The region surrounded
by yellow lines represents |cn

i |2 �= 0, which has a center at
Vi = En (the yellow dotted line) with a half-width W/t = 2.0
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FIG. 3. (a) A schematic extracted from the probability density
|cn

i |2. (b) The ground-state density ni. (c) A schematic extracted from
wave function |ψi( j,T )|2. (d) The density ni(T ) for T /t = 10 000.
The red and black dotted lines in the upper panel correspond to those
in the lower panel one-to-one. L = 1000, U/t = 0, and V/t = 16.

(the green dotted line), and the remaining region is |cn
i |2 = 0.

In the ground state with half-filling, states with energy E/t �
En/t ≈ 8 are filled, which is covered by the teal shadow. The
eigenstates are unitary, UU † = U †U = 1, thus one can obtain∑

n |cn
i |2 = 1. The density of N hard-core bosons is ni =∑N−1

n=0 |cn
i |2, which is equal to 1 when the teal shadow covers

all |cn
i |2 �= 0. On the contrary, ni = 0 when the teal shadow

only covers |cn
i |2 = 0. This is confirmed by Fig. 3(b), in which

we show the density ni in the ground state for half-filling. The
red and black dotted lines correspond to those in Fig. 3(a)
one-to-one. The local potential energy of the red dotted line at
i = 375 is Vi/t ≈ 6 and that of the black dotted line at i = 624
is Vi/t ≈ 10. Then we study the dynamical behavior of the
domain-wall state |111 . . . 000〉 with half-filling, N = L/2. In
the initial state, sites for 0 � j � N − 1 are occupied. We
show a schematic extracted from |ψi( j, T )|2 in Fig. 3(c).
The ordinate Vj is the local potential energy of the boson
at the site j in the domain-wall state. Similar to Fig. 3(a),
the yellow lines surround |ψi( j, T )|2 �= 0 and the remaining
region is |ψi( j, T )|2 = 0, and the distribution of |ψi( j, T )|2
has a center at Vi = Vj with a half-width 2W . Here, the half-
width in the dynamical case in Fig. 3(c) is twice that in the
static case in Fig. 3(a), which is the same as the cases shown
in Figs. 2(c) and 2(d). The teal shadow covers |ψi( j, T )|2
for 0 � j � N − 1 with energy Vj/t � Vj=N−1/t ≈ 8 due to
sites for 0 � j � N − 1 being occupied in the domain-wall
initial state. Since

∑
j |ψi( j, T )|2 = 1 obtained from the uni-

tarity, one can obtain that the density after time evolution
ni(T ) = ∑N−1

j=0 |ψi( j, T )|2 = 1 when the teal shadow covers
all |ψi( j, T )|2 �= 0. On the contrary, ni(T ) = 0 when the teal
shadow only covers |ψi( j, T )|2 = 0. This is evidenced by
Fig. 3(d), in which the density corresponding to Fig. 3(c)
shows that ni = 1 for i < 250 and ni = 0 for i > 750.

FIG. 4. Color plot of (a) static SPE/ lnN and (b) dynamical
SPE(T )/ lnN . In (a), (b), L = 16. (c) SPE for ε ≈ 0.5 and (d) SPE(T )
for ε̃ ≈ 0.5 as a function of V . (e) SPE for ε ≈ 0.5 and (f) SPE(T )
for ε̃ ≈ 0.5 as a function of h, by fixing U/t = 1.0. In (b), (d), (f),
T /t = 10 000 and initial states are arranged in ascending order of
potential energy. In (c), (d), (e), (f), error bars are from the different
samples by adding a weakly disordered perturbation to the linear
potential.

IV. MANY-BODY CASE

In the previous section, we studied the properties of the
noninteracting system. Now let us consider an interacting case
U �= 0 with N hard-core bosons. First, we study the static and
dynamical transitions in the middle of the spectrum by using
exact diagonalization (ED). Secondly, we study the transition
in the ground state by means of the density matrix renormal-
ization group (DMRG) algorithm [60,61]. Finally, we also
investigate the dynamical transition for different domain-wall
initial states by ED. The criterion of the localization for the
ground-state and domain-wall states is ξ < L [48,62], i.e., the
lengthscale denoting the width of the region 0 < ni < 1 is
smaller than the system size, as shown in Fig. 1(c). On the
contrary, the state is in the delocalization phase for ξ > L.
The lengthscale ξ is an important quantity in Refs. [48,62],
but it still lacks quantitative analysis. In this section, we sys-
tematically study the effects of the linear potential and the
interaction on ξ , and we seek transition points.

A. Many-body intermediate phase

In Figs. 4(a) and 4(b), we adopt the participation entropies
SPE = −∑

i |cn
i |2 ln |cn

i |2 [12] and time-dependent partici-
pation entropies SPE(T ) = −∑

i |ψi( j, T )|2 ln |ψi( j, T )|2 to
study the static and dynamical transitions, respectively. In the
calculation, we arrange the basis vectors in ascending order
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of potential energy, and j in ψi( j, T ) indicates that we use
the jth basis vector as the initial state. It is expected that, for
static (dynamical) perfectly delocalized states SPE/ lnN =
1.0 [SPE(T )/ lnN = 1.0], where N is the dimension of the
Hilbert space. In contrast, SPE(SPE(T )) = const for localized
states. In Figs. 4(a) and 4(b), both static and dynamical phase
diagrams exhibit that the ergodicity region has a “D” shape,
suggesting the existence of many-body mobility edges in
finite-size systems [35,63]. Using the same color bar, one
can find that the ergodicity region in (b) is slightly larger
than that in (a). To show more details, we fix ε ≈ 0.5 and
ε̃ ≈ 0.5 to study SPE and SPE(T ) for different V in Figs. 4(c)
and 4(d), in which SPE(T ) > SPE for the same parameters,
indicating that the dynamical wave function is closer to the
perfectly delocalized state. Note that the curves for different
sizes do not form intersections as V increases in Figs. 4(c)
and 4(d) due to the fact that the transition point shifts with
the size [64]. Following the work with strong linear poten-
tials [31], we rewrite the potential amplitude by defining h =
V/(L − 1). In Fig. 4(e), different curves intersect at h/t ≈ 2.2,
which is slightly smaller than the intersection at h/t ≈ 2.5 in
Fig. 4(f). This difference indicates the existence of a many-
body intermediate phase within 2.2 < h < 2.5 in the middle
of the spectrum. In the insets of Figs. 4(e) and 4(f), we
employ the ansatz f [(h − hc)L1/ν] to scale finite-size data.
The exponents ν ≈ 2.17 in (e) and ν ≈ 3.09 in (f) obey the
Harris-Chayes-Chayes-Fisher-Spencer (Harris-CCFS) bound
ν � 2/d [38,65,66], where d is the dimension of the system.
Importantly, different from the many-body intermediate phase
with nonergodic delocalized many-body states [22–25], the
many-body intermediate phase here shows the dynamical ex-
tension but static localization.

B. Ground state

In Fig. 5(a), we show the distribution of δni(N ) = ni(N +
1) − ni(N ) for U/t = 1 and V/t = 14, where ni(N ) is the
ground-state density of N hard-core bosons. Here we also
introduce the gap as δE (N ) = E0(N + 1) − E0(N ), where
E0(N ) is ground-state energy. The ordinate δE (N ) − U rep-
resents the energy excluding the interaction. The added
hard-core boson tends to form double occupation with two
nearest-neighbor sites in the ground state, thus the interaction
term provides energy U . For convenience, we define Ecenter =
δE (N ) − U . The distribution of δni(N ) is similar to |cn

i |2 in
the noninteracting case in Fig. 3(a), which has a center at
δE (N ) − U = Vi (the yellow dotted line) with a half-width
(W + U )/t = 3 (the white dotted line). This half-width is
larger than that in Fig. 3(a) due to the fact that the interaction
sets in an additional energy cost for double occupation two
nearest-neighbor sites. We fix the filling factor ρ = N/L =
0.5 (other filling cases are shown in Appendix B). Similar to
the analysis in Fig. 3(a), the states with energy lower than
Ecenter/t = [δE (L/2) − U ]/t ≈ 7 (the cyan dotted line) are
filled for half-filling, thus one can obtain that sites with local
potential energy Vi/t < [Ecenter/t − (W + U )/t] = 4 are fully
occupied, whereas those with local potential energy Vi/t >

[Ecenter/t + (W + U )/t] = 10 are empty. The corresponding
density is shown in Fig. 5(b), in which the red and black dotted
lines indicate critical values i ≈ 17 and i ≈ 42, respectively.

FIG. 5. (a) The distribution of δni(N ) for U/t = 1 and V/t = 14.
(b) ni for U/t = 1 and V/t = 14. (c) Scan of ni as a function of V/t
for U/t = 1. (d) The ni=L−1 for different U/t and V/t . Here we use
the open boundary condition and set L = 60. The red and black lines
in (a) correspond to those in (b). In (b)–(d), the filling factor is ρ =
0.5. The abscissa in (b) and the ordinate in (c) indicate the site i.
The color represents the value of δni(N ) in (a) and ni in (c), (d). To
indicate transition points clearly, we control the range of the color
bar from 0.0 to 0.05 in (d).

Then we consider more general cases for different V . Based
on the distribution in Fig. 5(a) and the analysis in Fig. 3, one
can obtain that the site i is fully occupied when it satisfies
Ecenter − (W + U ) � V i

L−1 and it is empty when it satisfies
Ecenter + (W + U ) � V i

L−1 , namely

ni =
{

1, i � Ecenter−U−W
V (L − 1),

0, i � Ecenter+U+W
V (L − 1).

(5)

For half-filling, Ecenter ≈ V/2 as shown in Fig. 5(a), thus we
obtain

ni =
{

1, i �
(

1
2 − U+W

V

)
(L − 1),

0, i �
(

1
2 + U+W

V

)
(L − 1).

(6)

From Eq. (6), one can obtain that the lengthscale of the
ground state is ξ = 2(U + W )(L − 1)/V , indicating the dif-
ference between two critical values ( 1

2 − U+W
V )(L − 1) and

( 1
2 + U+W

V )(L − 1). In Fig. 5(c), we show the scan of ni

for U/t = 1.0 and different V/t , in which Eq. (6) is well-
confirmed. The width between different markers indicates
the V -dependent lengthscale ξ = ξ (V ). It is larger than the
system size ξ > L for V/t < 6.0, whereas it is smaller than
the system size ξ < L for V/t > 6.0. The ground-state en-
ergy in Appendix C shows that this transition is a continuous
phase transition. By varying U/t , we also study the effect of
the interaction on the transition point. Intuitively, ni=0 = 1
or ni=L−1 = 0 as V increases, and the localization transition
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occurs as shown in Fig. 5(c), thus the transition point should
satisfy ( 1

2 − U+W
V )(L − 1) = 0 or ( 1

2 + U+W
V )(L − 1) = L −

1, which derives

Vc = 2(U + W ). (7)

In Fig. 5(d), we show ni=L−1 for different U/t and V/t , which
indicates that the transition points are well captured by Eq. (7).
It is worth pointing out that the localization transition point of
the many-body system for U/t = 0 is at Vc/t = 4, whereas
the single-particle transition point in the ground state is at
Vc/t = 0 as shown in Fig. 2(a). This is due to the fact that
the eigenstate of the many-body system is the superposition
of that of the single particle, which causes the transition point
to be determined by the single-particle state with the largest
expansion. Furthermore, we find that the system is in the
localization region for U/t < −2.0 with any V/t . It can be un-
derstood that the energy provided by the attractive interaction
for U/t < −2.0 is greater than that provided by the hopping
term, resulting in the halt of extension.

C. Dynamical localization of different domain-wall initial states

Now let us study the dynamical localization transition
of the many-body system. We first consider the initial state
|100 . . . 000〉, and then we add bosons one by one in order
until all sites are filled, |111 . . . 111〉. We define that, at time
T , the density distribution is ni(N, T ), where i is the site and
N denotes the number of bosons in the initial state. By cal-
culating the density difference δni(N, T ) = ni(N + 1, T ) −
ni(N, T ), we can obtain the distribution of the added boson. In
Fig. 6(a), we show the distribution of δni(N, T ) for U/t = 1,
V/t = 24, and T /t = 10 000, in which the ordinate Vj is the
local potential energy of the added boson at the site j. The
distribution of δni(N, T ) has a center at Vi ≈ Vj (the yellow
dotted line), which is similar to |ψi( j, T )|2 in Fig. 3(c). The
half-width 2(W + U ) (the white dotted line) is extracted from
Fig. 5(a), which is confirmed by δni(N, T ) in Fig. 6(a). We set
the initial state as |111 . . . 000〉 with half-filling, i.e., the dis-
tributions with energy Vj � V/2t = 12 are filled (the region
below the cyan dotted line). Due to the number of bosons N
being fixed for half-filling, we abbreviate ni(N, T ) to ni(T ).
By analogy with Figs. 3(c) and 3(d), we can obtain that the site
i is fully occupied when it satisfies V/2 − 2(W + U ) � V i

L−1 ,
and it is empty when it satisfies V/2 + 2(W + U ) � V i

L−1 ,
namely

ni(T ) =
⎧⎨
⎩

1, i �
[

1
2 − 2(U+W )

V

]
(L − 1),

0, i �
[

1
2 + 2(U+W )

V

]
(L − 1).

(8)

Thus the dynamical lengthscale of |111 . . . 000〉 is ξ = 4(U +
W )(L − 1)/V . The typical density for U/t = 1, V/t = 24,
L = 18, and T /t = 10 000 is shown in Fig. 6(b), in which the
red (black) dotted line indicates i = 4.25 (i = 12.75), corre-
sponding to that at Vi/t = 6 (Vi/t = 18) in Fig. 6(a). We also
show ni(T ) for different V/t in Fig. 6(c), where Eq. (8) gives
a nice indication. Similar to the ground state, ni=0(T ) = 1 or
ni=L−1(T ) = 0 indicates that the transition occurs. Thus we
can obtain that the dynamical transition point is at

Vd = 4(U + W ). (9)

FIG. 6. (a) The distribution of δni(N,T ) for V/t = 24. (b) ni(T )
for V/t = 24. (c) Scan of ni(T ) as a function of V/t . (d) ni=L−1(T )
as a function of V/t . Here we use the open boundary condition and
set L = 18, U/t = 1, and time T /t = 10 000. In (a), the yellow
dotted line and yellow solid lines indicate the center and edges of
δni(N,T ) �= 0, respectively. In (b)–(d), the filling factor ρ = 0.5.
The color represents the value of δni(N,T ) in (a) and ni(T ) in (c).
In (d), the inset shows ln(ni=L−1(T )) and error bars are from 10 000
time samples.

In Fig. 6(d), we fix the object as i = L − 1 and study
ni=L−1(T ) for U/t = 1 and different V . ni=L−1(T ) decreases
gradually as V increases, and ni=L−1(T ) ≈ 0 for about V/t >

12. An analysis of the size effect can be found in the inset,
where the curves for different L intersect at Vd/t ≈ 12.

To further study the effect of the interaction, we fix the
initial state |111 . . . 000〉 and vary the interaction to seek tran-
sition points. Intuitively, the critical amplitude should increase
with the repulsive interaction from Eq. (9). However, inter-
estingly, we find that the diffusion of bosons is suppressed
when the repulsive interaction is strong, as demonstrated
in Fig. 7(a). Typical examples for U/t > 0 are shown in
Fig. 7(b), in which the interaction first promotes the exten-
sion, and then suppresses it as U/t increases. To clarify the
competition between the interaction and the linear potential,
we show a whole phase diagram in Fig. 7(c), in which the
parameters (V,U ) and (−V,−U ) have a nice symmetry [the
details are given in Fig. 7(d)]. This is consistent with Ref. [67],
and by this symmetry one may get that another critical point
of the dynamical transition is at

Vd = 4(U − W ), (10)

which is evidenced in Fig. 7(c). In particular, we notice that
the system is in the localization region for about |U/t | > 4.0
and any V/t . A simple understanding is that the maximum
energy that the hopping term can provide in the dynamical
case is 4t , thus the extension is completely suppressed for
U/t < −4.0. By the symmetry of the parameters (V,U ) and
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FIG. 7. (a) Scan of ni(T ) for different U ’s and typical examples
are shown in (b). (c) ni(T ) for a fixed site i = L − 1 and different U ’s
and V ’s. (d) ni(T ) for (U,V ) and (−U,−V ). Here we use the open
boundary condition and set L = 18, T /t = 10 000. In (a), V/t = 4.0
and the black (red) dotted line marks U/t = −1.0 (U/t = 3.0). The
color in (a) and (c) represents ni(T ) and ni=L−1(T ), respectively.

(−V,−U ), one can obtain that |111 . . . 000〉 exhibits dynami-
cal localization for |U/t | > 4.0.

In addition to |111 . . . 000〉, we also study the dynamical
localization transition of |000 . . . 111〉. To obtain the distri-
bution of δni(N, T ), we fill the bosons in reverse order, i.e.,
starting from |000 . . . 001〉 to |111 . . . 111〉. In Fig. 8(a), we
show the distribution of δni(N, T ) for V/t = 8, which is
similar to that in Fig. 6(a), but the half-width changes to
2(W − U ). Here, the sign of the interaction changes in order
to keep the conservation of energy [48,68]. In Fig. 8(b), we
show the scan of ni(T ) for U/t = 1 and different V , where
Eqs. (8) and (9) still work with the sign change of the interac-
tion, and the transition point is at Vd/t = 4(−U + W )/t = 4.
Compared with |111 . . . 000〉 and |000 . . . 111〉, it might be
more interesting to study a general domain-wall initial state,
e.g., |00 . . . 111 . . . 000〉. We choose a general domain-wall
initial state as an example in which we set bosons local
between i = 4 and 12. In Fig. 8(c), we show ni(T ) for dif-
ferent initial states, in which the two wings of ni(T ) of
|00 . . . 111 . . . 000〉 can be obtained approximately by shifting
that of |111 . . . 000〉 and |000 . . . 111〉. This is in agreement
with Ref. [48], and the slight difference comes from the
boundary effect. In Fig. 8(d), we show the scan of ni(T ) of
|00 . . . 111 . . . 000〉 for different V . The red and black markers
are obtained by shifting those in Figs. 6(c) and 8(b), respec-
tively. Obviously, the markers identify the critical positions
well.

Our starting point of the dynamics of domain-wall states is
Ref. [48], thus it is necessary to show the difference between
our paper and Ref. [48]. First, we adopt a weak linear po-
tential to study the localization and show more details of the

FIG. 8. (a) The distribution of δni(N,T ) for V/t = 8. (b) Scan
of ni(T ) as a function of V/t for |000 . . . 111〉. (c) ni(T ) for different
domain-wall initial states and V/t = 35. (d) Scan of ni(T ) as a
function of V/t for |00 . . . 111 . . . 000〉. Here we use the open bound-
ary condition and set L = 18, U/t = 1, and time T /t = 10 000. In
(b)–(d), the filling factor ρ = 0.5. The color represents the value of
δni(N,T ) in (a) and ni(T ) in (c), (d).

transition. Second, in our paper, we obtain the specific formula
of the lengthscale ξ = 4(U + W )(L − 1)/V and clarify how
parameters of the linear potential V and the interaction U
affect ξ . In particular, we find that the strong repulsive interac-
tion suppresses ξ and promotes dynamical localization. Third,
we also consider the nonlinear potential case in Appendix D to
show that our analysis is general for dynamics of domain-wall
states in systems with ordered potentials.

Then we proceed to investigate the imbalance I = (n• −
n◦)/(n• + n◦), where • (◦) marks the occupied (not occupied)
sites in the initial state [8,20]. Here, we still fix |111 . . . 000〉
as an initial state. In Fig. 9(a), we show I between T /t =
10 250 and 10 550. Time T /t ≈ 104 is long enough to char-
acterize the long-time behavior [48]. The parameters of the
interaction and the potential are U/t = 1 and V/t = 12, which
is the critical point indicated by Eq. (9). Interestingly, I
has an approximate periodic oscillation, and the period is
�T /t ≈ 11.6. The corresponding densities as a function of
T are shown in Fig. 9(b), where the density oscillates period-
ically, dubbed many-body Bloch oscillations [44]. When the
oscillation amplitude is maximum, the bosons are distributed
in the whole chain. The typical densities ni(T ) of maximum
and minimum oscillation amplitudes are shown in Fig. 9(c).
When T/t = 10 399, ni(T ) ≈ 1 − i/(L − 1) is approximately
linearly distributed. This is in agreement with Ref. [48], in
which densities are not uniformly distributed. Generally, the
imbalance I = 0.0 or not is an important indicator for the
transition [8]. However, the imbalance of the distribution
ni(T ) = 1 − i/(L − 1) should be I ≈ 0.5 instead of I ≈ 0.0,
as shown in Fig. 9(a). This means that the transition point
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FIG. 9. Imbalance I for the long-time evolution in (a). The scan
of density ni(T ) for 10 390 < T /t < 10 420 in (b). ni(T ) for T /t =
10 399 and 10 405 in (c), which corresponds to the points of the
same color in (a). Long-time imbalance IT →∞ for different sizes
in (d). Here we use the open boundary condition and set ρ = 0.5,
U/t = 1. In (a)–(c), L = 18, V/t = 12.0. The red dashed lines in
(a),(c) represent ideal I and ni(T ). The error bars are from 10 000
time samples in (d).

indicated by the imbalance I ≈ 0.0 is different from Eq. (9).
In Fig. 9(d), we show the long-time imbalance for different
V , in which the transition point indicated by I ≈ 0.0 is much
smaller than that indicated by ni=L−1(T ) in Fig. 6(d). This can
be attributed to the inability of the domain-wall configuration
to evolve into a uniform configuration [31].

V. CONCLUSION

To summarize, we have studied hard-core bosons in a lat-
tice chain with a linear potential. In the present work, we have
carefully studied both the single-particle and the many-body
cases.

In the single-particle case, we find that the dynamical local-
ization transition point is different from the static localization
transition point, indicating the presence of an intermediate
phase. In this intermediate phase, the eigenstates behave as
static localization, but dynamic wave functions after quench-
ing are extended. By analyzing the distribution of eigenstates,
we have clarified the reason for the occurrence of this inter-
mediate phase.

In the many-body case, we find a many-body interme-
diate phase by comparing the static critical point with the
dynamical critical point. This many-body intermediate phase
is analogous to the single-particle intermediate phase, but
different from the many-body intermediate phase with noner-
godic delocalized states [22–25]. In addition to the many-body
intermediate phase, we also study the ground-state transi-
tion by DMRG. Interestingly, we find that the distribution
of δni(N ) of the many-body state is similar to |cn

i |2 of the
single-particle state, and they can both be described by the

conservation of energy. By numerical verification, we find that
the static transition occurs at Vc ≈ 2(U + W ) for half-filling
in the ground state. Then we turn to study the dynamical tran-
sition for different initial states. For the typical domain-wall
state |111 . . . 000〉, its dynamical transition points are at Vd ≈
4(U + W ) and Vd ≈ 4(U − W ). For another typical domain-
wall state |000 . . . 111〉, its dynamical transition points are at
Vd ≈ 4(−U + W ) and Vd ≈ 4(−U − W ). The critical points
of other domain-wall states can be obtained by shifting those
of the above two states. Finally, we study the imbalance I to
reveal how domain-wall states retain local information after
quenching.
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APPENDIX A: EIGENSTATES AND WAVE FUNCTIONS
FOR DIFFERENT PHASES

In Fig. 10, we show the typical eigenstates |cn
i |2 and wave

functions |ψi( j, T )|2 for extended, intermediate, localized
phases. In the extended phase in (a),(b), the eigenstate and
wave function populate the whole chain. In the intermediate
phase in (c),(d), the eigenstate is bounded but the wave func-
tion still populates the whole chain. In the localized phase in
(e),(f), they both localized in the chain.

FIG. 10. Left panels: Eigenstates |cn
i |2 with n = L/2 for different

V/t . Right panels: wave functions |ψi( j,T )|2 with j = L/2 and
T = 10 000.5Tb for different V/t . L = 1000. Parts (c) and (d) show
the typical eigenstate and wave function in the intermediate phase,
respectively.
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FIG. 11. (a) Ecenter = δE (N ) − U as a function of V/t for ρ =
1/6. (b) Scan of ni as a function of V/t for ρ = 1/6. (c)Ecenter =
δE (N ) − U as a function of V/t for ρ = 1/3. (d) Scan of ni as a
function of V/t for ρ = 1/3. L = 60, U/t = 1.0.

APPENDIX B: EFFECT OF THE FILLING FACTOR

In the main text, we fixed the filling factor as ρ = 0.5. Here
we choose different filling factors to study the effect on ξ . In
Fig. 5(a), the distribution of δni(N ) has a center at Ecenter =
δE (N ) − U with a half-width (W + U )/t = 3. Obviously, the
adjustment of the filling factor alters the central energy Ecenter.
In Figs. 11(a) and 11(c), we show Ecenter as a function of V/t
for ρ = 1/6 and 1/3, respectively. Similar to the analysis in
the main text, one can obtain that the site i is fully occupied
when it satisfies Ecenter − (W + U ) � V i

L−1 , and it is empty
when it satisfies Ecenter + (W + U ) � V i

L−1 , namely

ni =
⎧⎨
⎩

1, i � (Ecenter−U−W )(L−1)
V ,

0, i � (Ecenter+U+W )(L−1)
V .

(B1)

This is well confirmed in Figs. 12(c) and 12(d). The length-
scale of the ground state is still ξ = 2(U + W )(L − 1)/V ,
thus one can conclude that the filling factor does not
affect ξ .

APPENDIX C: GROUND-STATE ENERGY
AND IPR IN THE GROUND STATE

In Fig. 12(a), we show the ground-state energies E0 for
different V/t , and different derivatives of E0 are shown in
(b)–(d). E0 and its first derivative are continuous functions of
V/t , whereas the second and third derivatives are not. This
demonstrates that the transition in Fig. 5(c) is a continuous
phase transition. Moreover, one can obtain that the transition
point is at V/t ≈ 6.0 from Figs. 12(c) and 12(d).

In addition to the lengthscale ξ in the main text, we also
use IPR to distinguish the localization in the ground state. In

FIG. 12. (a) The ground-state energies E0 for different V/t . Parts
(b), (c), and (d) show the first, second, and third derivatives of E0,
respectively. L = 60, N = 30, and U/t = 1.0.

the many-body case, the many-body wave function expands as
the Hilbert space increases whether it is a delocalized state or
a localized state, thus IPR decreases as L increases both for the
delocalized state and the localized state as shown in Fig. 13(a).
For perfectly delocalized states, IPR ∝ 1/N , where N is the
dimension of the Hilbert space. For localized states, the pro-
portion does not hold. Thus one may use IPR ∗ N to seek the
transition point. In Fig. 13(b), we show IPR ∗ N as a function
of V/t for different L’s, in which IPR ∗ N for different sizes
is small and does not depend on L significantly in the delocal-
ized phase, whereas IPR ∗ N increases with L rapidly in the
localized phase. The transition point V/t ≈ 6.0 is the same as
that indicated by ξ .

APPENDIX D: NONLINEAR POTENTIAL

In the main text, we showed the results of a system with
a linear potential. Here we consider the nonlinear case with a

FIG. 13. (a) IPR as a function of V/t for different L’s in the
ground state. (b) IPR ∗ N as a function of V/t for different L’s in
the ground state. The filling factor ρ = 0.5, U/t = 1.0. Here we use
the open boundary condition. The red dotted lines indicate V/t = 6.0
in (a) and (b).
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FIG. 14. (a) The distribution of δni(N ) for V/t = 14. (b) The
scan of ni for different V/t . (c) The distribution of δni(N,T ) for
V/t = 24 and T/t = 10 000. (d) ni(T ) for V/t = 24 and T/t =
10 000. Here we use the open boundary condition and set ρ = N/L =
0.5 and U/t = 1. L = 60 in (a),(b) and L = 18 in (c),(d).

harmonic potential Vi = V ( i
L−1 )2. In Fig. 14(a), we show the

distribution of δni(N ), which has a center at Vi = δE (N ) − U
with a half-width (W + U )/t = 3. It is similar to Fig. 5 due
to the fact that the distribution of δni(N ) is based on energy

conservation, independent of the potential form. In Fig. 14(b),
we show the scan of ni for different V/t . Based on the dis-
tribution in Fig. 14(a), one can obtain that the site i is fully
occupied when it satisfies Ecenter − (W + U ) � V ( i

L−1 )2, and
it is empty when it satisfies Ecenter + (W + U ) � V ( i

L−1 )2,
namely

ni =

⎧⎪⎨
⎪⎩

1, i �
√

Ecenter−U−W
V (L − 1),

0, i �
√

Ecenter+U+W
V (L − 1),

(D1)

which is confirmed in Fig. 14(b). Thus the lengthscale

is (
√

Ecenter+U+W
V −

√
Ecenter−U−W

V )(L − 1). Then we study the
dynamical localization of the domain-wall initial state
|111 . . . 000〉 with half-filling. In Fig. 14(c), we show the
distribution of δni(N, T ) for T/t = 10 000. It has a center at
Vi ≈ Vj with a half-width 2(W + U )/t = 6. Based on it, one
can obtain that the site i is fully occupied when it satisfies
V
4 − 2(W + U ) � V ( i

L−1 )2, and it is empty when it satis-
fies V

4 + 2(W + U ) � V ( i
L−1 )2, where the center energy V

4 is
from V ( i

L−1 )2 due to half-filling i
L−1 ≈ 1

2 . Thus we obtain

ni =

⎧⎪⎨
⎪⎩

1, i �
√

1
4 − 2(U+W )

V (L − 1),

0, i �
√

1
4 + 2(U+W )

V (L − 1),

(D2)

with the dynamical lengthscale (
√

1
4 + 2(U+W )

V −√
1
4 − 2(U+W )

V )(L − 1). We verify it in Fig. 14(d), where
Eq. (D2) gives a nice indication.
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