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Models for nonunitary quantum dynamics, such as quantum circuits that include projective measurements,
have recently been shown to exhibit rich quantum critical behavior. There are many complementary perspectives
on this behavior. For example, there is a known correspondence between d-dimensional local nonunitary
quantum circuits and tensor networks on a [D = (d + 1)]-dimensional lattice. Here, we show that in the case
of systems of noninteracting fermions, there is furthermore a full correspondence between nonunitary circuits
in d spatial dimensions and unitary noninteracting fermion problems with static Hermitian Hamiltonians in
D = (d + 1) spatial dimensions. This provides a powerful perspective for understanding entanglement phases
and critical behavior exhibited by noninteracting circuits. Classifying the symmetries of the corresponding
noninteracting Hamiltonian, we show that a large class of random circuits, including the most generic circuits
with randomness in space and time, are in correspondence with Hamiltonians with static spatial disorder in
the 10 Altland-Zirnbauer symmetry classes. We find the criticality that is known to occur in all of these
classes to be the origin of the critical entanglement properties of the corresponding random nonunitary cir-
cuit. To exemplify this, we numerically study the quantum states at the boundary of Haar-random Gaussian
fermionic tensor networks of dimension D = 2 and 3. We show that the most general such tensor network
ensemble corresponds to a unitary problem of noninteracting fermions with static disorder in Altland-Zirnbauer
symmetry class DIII, which for both D = 2 and 3 is known to exhibit a stable critical metallic phase.
Tensor networks and corresponding random nonunitary circuits in the other nine Altland-Zirnbauer symme-
try classes can be obtained from the DIII case by implementing Clifford algebra extensions for classifying
spaces.

DOI: 10.1103/PhysRevB.106.134206

I. INTRODUCTION

Inspired by the fundamental question of how equilibrium
statistical mechanics emerges in closed quantum systems [1]
and in which case such an equilibrium may not occur [2–4],
the last decade has seen an explosion of research on the dy-
namics of quantum many-body systems far from equilibrium.
In many cases, it has turned out that many-body entangle-
ment is a useful way of characterizing the behavior of the
system [5].

Fruitful settings to study the dynamics of quantum entan-
glement include the evolution following a quantum quench
[6–9], the dynamics under random unitary evolution [10–12],
and, starting with Refs. [13,14], the evolution under nonuni-
tary circuits [15–24]. The latter have been found to exhibit rich
phenomenology, including entanglement transitions, quantum
phase transitions that are primarily characterized by a change
in entanglement structure. In particular, Refs. [13,14] have
shown that the states that emerge at late times from uni-
tary circuits interspersed with projective measurement can
exhibit a phase transition between volume and area-law
entanglement.

A closely related family of models are tensor networks.1

Indeed, any quantum circuit can, for a given set of mea-
surement outcomes, be interpreted as the contraction of a
tensor network; conversely, using the polar decomposition,
the many-body transfer matrix describing the contraction of
a tensor network can be reinterpreted as a quantum circuit
consisting of unitary and nonunitary evolution. The universal
behaviors exhibited in nonunitary circuits and tensor networks
are therefore closely related to each other, and entanglement
transitions similar to those in random measurement circuits
have been observed in tensor networks [25].

As we will show in this paper, this correspondence between
tensor networks in D = (d + 1) dimensions and nonunitary
quantum circuits acting on quantum systems in d dimen-
sions can be extended further when considering the case of
noninteracting fermions. In this setting, not only is there a
correspondence between tensor networks in D = (d + 1) di-
mensions and nonunitary quantum circuits acting on quantum

1For a recent review of tensor networks and their use as variational
algorithms, see, e.g., Ref. [106].
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FIG. 1. A diagram showing the correspondences among nonuni-
tary quantum circuits of noninteracting fermions in d dimensions,
Gaussian tensor networks in D = d + 1 dimensions, and static Her-
mitian Hamiltonian systems of noninteracting fermions in D = d +
1 spatial dimensions.

systems in d dimensions, but there is a further correspondence
with static Hermitian Hamiltonian problems (and thus uni-
tary time evolutions) in D = (d + 1) spatial dimensions (see
Fig. 1). This will allow us to relate critical phenomena that
we numerically observe in random tensor networks for non-
interacting fermions to critical behavior in random nonunitary
circuits and random Hamiltonian systems. In the following,
we will refer to quantum circuits acting on d-dimensional
quantum systems as d-dimensional quantum circuits.

The class of tensor networks that form part of this corre-
spondence are Gaussian fermionic tensor networks (GTNs)
[26–35]. Such Gaussian fermionic tensor networks are con-
structed from Gaussian fermionic states, which are the most
general class of states that obey Wick’s theorem, i.e., all
their equal-time correlation functions are completely charac-
terized by the equal-time two-point correlation function [36].
Slater-determinant states form a subset of Gaussian states.
Gaussian fermionic tensor networks share many properties
with conventional tensor networks, but the Gaussian structure
leads to an exponential improvement in the scaling with en-
tanglement entropy of both memory and computation time. In
addition to their numerical usefulness [35], they thus serve as
a natural playground to explore the physics of random tensor
networks in a more tractable setting. The quantum circuits that
correspond to such Gaussian tensor networks are nonunitary
quantum circuits of noninteracting fermions. For brevity, we
will refer to these as nonunitary Gaussian circuits (NGCs).
Given the correspondence between such NGCs and GTNs, we
will often use these terms together. When we further consider
Gaussian fermionic tensor networks consisting of random ten-
sors, the corresponding quantum circuits will be subject to
space-time disorder. We emphasize that the class of GTNs and
NGCs is a very broad class and encompasses all nonunitary
dynamics of noninteracting fermions [36]. As such, it includes
models previously discussed in the literature, such as those
of Refs. [19,23,37], as well as discrete-time variants of those
in Refs. [38,39]. We emphasize, and explain in detail below
(cf. end of Sec. V C 1), that the class of models considered in
this work are more general than the loop-model-based circuits

considered by other authors and can have manifestly different
behavior of physical observables (such as, e.g., of disorder-
averaged moments of correlation functions).

The correspondence between GTNs and NGCs and non-
interacting fermions undergoing a unitary time evolution in
the presence of static (quenched) disorder is an important
result of this work. This correspondence relies on two impor-
tant ingredients. The first ingredient is to construct a transfer
matrix that captures the single-particle action of the NGC
in an enlarged Hilbert space where the density matrix that
the NGC acts on is treated as a vector (incorporating both
bra and ket). Such a single-particle transfer matrix, evolving
the density matrix by one time step, exists for each dis-
order realization of the NGC and preserves the locality of
the circuit. The second, complementary, ingredient is to ex-
press the unitary disordered fermion problem, at fixed energy,
in discrete space as a general Chalker-Coddington network
model [40]. This Chalker-Coddington network model also
admits a transfer matrix description for each disorder real-
ization. The desired correspondence between random GTNs
and NGCs and disordered unitary fermion problems is then
established by identifying the transfer matrix description of
the NGC in the enlarged Hilbert space representing the density
matrix with that of the Chalker-Coddington network model.
The space-time randomness in the d-dimensional NGC cor-
responds to the spatial quenched disorder in the [D = (d +
1)]-dimensional unitary fermion problem. As will be shown
later (see in particular Sec. V), enlarging the Hilbert space
for the NGC so that its transfer matrix acts on the density
matrix is crucial to ensure that the mapping between GTNs
and NGCs and noninteracting unitary fermion problems exists
in both directions. The enlarged Hilbert space leads to the
D-dimensional unitary fermion problems in the correspon-
dence having more symmetries than those apparent in the
corresponding GTN, and this is crucial for the correct under-
standing of the underlying physics.

With this correspondence and the appropriate symmetry
identification in hand, important results for disordered non-
interacting fermions such as the 10-fold Altland-Zirnbauer
symmetry classification [41,42] as well as the well-studied
phase diagrams and the well-developed understanding of their
critical behavior can be directly reinterpreted in the language
of quantum circuits. In particular, our results imply that the
critical phases and critical points that emerge at late times
in the evolution under nonunitary Gaussian circuits (and cor-
respondingly GTNs) exhibit conformal symmetry and share
properties such as multifractality, possible logarithmic correc-
tions, etc., with well-known models of disordered fermions.
Furthermore, the existence of topologically distinct gapped
phases in random noninteracting fermion systems implies the
existence of distinct area-law phases in GTNs and NGCs,
with critical points separating these phases. It is also worth
noting that we find no robust volume-law phases (in line with
Ref. [43]), except for rather fine-tuned choices of GTNs and
NGCs such as those corresponding to unitary circuits.

A. Overview of main results

This work begins by elucidating the relation between quan-
tum circuits with measurements, circuits with nonunitarity
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arising from other mechanisms, and tensor networks. We then
proceed to introduce Gaussian fermionic tensor networks. Our
random tensor network construction proceeds analogously to
Ref. [25]. One typical example of the systems we consider
is given by Gaussian tensor networks on the square lattice,
where each tensor is chosen independent and identically dis-
tributed (i.i.d.) from an orthogonal Haar-random ensemble.
This turns out to be the most generic ensemble possible,
and the related quantum circuits preserve no quantum num-
bers except fermion parity. We numerically observe that the
contraction of these tensors gives rise to a state exhibiting
many features of quantum criticality, including power-law
decay of correlations (with a particular form of logarithmic
corrections which we specify, arising from marginally irrele-
vant corrections to scaling), a logarithmic growth of all Renyi
entanglement entropies with (sub)system size, and scaling of
the mutual information between two intervals with the cross
ratio, a hallmark feature of underlying conformal symmetry.

This GTN model in D = d + 1 dimensions admits a single-
particle transfer matrix formalism where the transfer matrix
can also be understood as the first-quantized description of
the corresponding NGC. In particular, this transfer matrix
captures the NGC-generated evolution of density matrices in
d spatial dimensions (i.e., it acts on a space that has twice the
dimension of the space of “ket” vectors on which the circuit
itself acts). Interestingly, we show that, despite the absence
of symmetries other than fermion parity in the GTN and
NGC itself, the transfer matrices of the GTN and NGC can
be identified with those of the Chalker-Coddington network
model in D spatial dimensions in Altland-Zirnbauer symmetry
class DIII, which is characterized [44,45] by a time-reversal
symmetry that squares to −1, a particle-hole symmetry that
squares to +1, and chiral symmetry. The origin of these
symmetries is related to the fact that the NGC-generated evo-
lution of density matrices in d spatial dimensions maintains
the purity and the Hermiticity of the density matrices. This
symmetry class DIII is known [46]2 to exhibit a disordered
metallic phase in spatial dimension D = d + 1 = 2 which the
aforementioned numerically observed entanglement critical-
ity naturally corresponds to. The stability of the disordered
metallic phase implies that the numerically observed critical
entanglement properties should be those of an entire critical
entanglement phase. We also show that there is a transition
from the critical entanglement phase into an area-law phase
when sufficiently strong dimerization or staggering is turned
on. In the language of Chalker-Coddington network models,
this transition is known as a metal-insulator transition into
one of two gapped phases (one of them topological). This
transition is known to be continuous, and driven by prolif-
eration of topological defects in the theory describing the
metal.3

We can repeat our construction for all the other nine
Altland-Zirnbauer symmetry classes using the tools of Clif-

2See also Appendix B 3.
3See, e.g., Ref. [84]. In the long-wavelength description the topo-

logical defects arise since the first homotopy group of the target
space of the corresponding non-linear σ model field theory (see, e.g.,
Appendix B) is equal to Z2 [45].

ford algebra extensions [47] in any dimension D. Any
criticality known in all these cases for unitary evolution with
static disorder is the origin of critical entanglement properties
of the corresponding GTN and NGC. For example, symmetry
class AIII emerges from DIII by imposing a global U(1)
conservation law [44,48–50] for the circuit evolution, which
in D = 2 leads to continuously varying critical behavior as-
sociated with a line of fixed points of the random quantum
circuit [51–55].4 Interestingly, we also show that symmetry
class BDI can emerge from symmetry class AIII by imposing
a further constraint on the GTN and NGC. For details, see
Sec. VI A 1. Symmetry class BDI is also known to exhibit a
line of critical fixed points [53,55]. It turns out that the circuit
in Ref. [37] is in symmetry class BDI with corresponding
universal properties.

Finally, we numerically consider the case of Gaussian
fermionic tensor networks in D = 3 dimensions, and observe
a logarithmic violation of the area law in a critical entan-
glement phase. This behavior is a reflection of the known
[46] stable metallic phase of the corresponding Hamiltonian
problem in symmetry class DIII with static disorder in D = 3
spatial dimensions. A similar area-law violation was found for
nonunitary Clifford circuits in the same spatial dimension in
Ref. [56]. We note that metallic phases are known [46] to
occur in all symmetry classes of disordered noninteracting
fermions for D � 3, and thus such entanglement phases with
logarithmic area-law violations will occur generically in those
cases.

The remainder of this paper is structured as follows: In
Sec. II, we introduce tensor networks in more detail and
discuss the relation between them and nonunitary quantum
circuits. We also discuss the relation between nonunitary
quantum circuits and quantum systems whose nonunitarity
arises from measurements. In Sec. III, we introduce Gaus-
sian fermionic tensor networks. In Sec. IV, we introduce the
Haar-random Gaussian fermion tensor network, the numer-
ical setup, and the various signatures of criticality that we
observe. In Sec. V, we introduce the transfer matrix formal-
ism, establish the mapping between GTNs and NGCs and
Chalker-Coddington network models, and provide an analyt-
ical understanding of the numerically observed entanglement
criticality via the theory describing the metallic phase of dis-
ordered fermions in Altland-Zirnbauer symmetry class DIII.
In Sec. VI, we discuss the construction of models in all 10
Altland-Zirnbauer symmetry classes. In Sec. VII, we discuss
the case of GTNs in D = 3 dimensions. Finally, in Sec. VIII
we provide an outlook for future directions.

4Each fixed point on this line can be taken into a gapped phase
through a continuous transition (while remaining in symmetry class
AIII) driven by proliferation of topological defects. For a description
in terms of the long-wavelength nonlinear-σ -model (NLSM) field
theory of this transition (see, e.g., Ref. [107]; in the long-wavelength
description the topological defects arise since the first homotopy
group of the target space of the NLSM field theory is nontrivial (see,
e.g., Ref. [45]). Numerically, this transition into the gapped phase is
observed in Ref. [54].
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FIG. 2. (a) A generic tensor network on the square lattice is
depicted. The horizontal and vertical directions of the tensor network
are labeled as u and v. (b) The graphical representation of the four-leg
tensor Ti jkl is shown. (c) The contraction between two tensors T (1)

and T (2) is graphically represented by connecting the contracted legs.

II. TENSOR NETWORKS AND QUANTUM CIRCUITS

A. General tensor network on the square lattice

A general tensor network on a square lattice is depicted in
Fig. 2(a). Each individual four-leg tensor T ∈ CM4

, shown in
Fig. 2(b), defines a state in a M4-dimensional Hilbert space:

|T 〉 =
∑
i jkl

Ti jkl |i jkl〉, (1)

where each of the indices i, j, k, l = 1, 2, 3, . . . , M labels the
states within the M-dimensional Hilbert space associated with
a given leg of the tensor T . Here, M is the bond dimension of
each leg of the tensor T . The contraction of two tensors T1,2,
as shown in Fig. 2(c), yields a new tensor

M∑
i2,k1=1

δk1,i2 T (1)
i1 j1k1l1

T (2)
i2 j2k2l2

. (2)

Equivalently, we can think of this tensor as being defined by
P12(|T (1)〉 ⊗ |T (2)〉), where P12 is a projection operator that
acts on the tensor product of the Hilbert spaces associated
with two contracted legs, and projects onto the maximally
entangled state 1√

M

∑
k1i2

δk1,i2 |k1〉 ⊗ |i2〉 [57]. Similarly, all
the contractions in the tensor network shown in Fig. 2(a) can
be viewed as the projections onto maximally entangled states
on the contracted legs.

When we rotate the square-lattice tensor network (coun-
terclockwise) by 45◦, we can view it as a quantum circuit
that acts on a qudit chain with each qudit carrying an M-
dimensional local Hilbert space [see Fig. 3(a)]. Each tensor
can be viewed as an operator acting on two neighboring qu-
dits. The matrix elements of the operator associated with the
tensor T [as shown in Fig. 3(b)] are given by Ti jlk , where
the pair of tensor indices i and j are viewed as the column
indices of the matrix, and the pair l and k as the row indices.
When T is viewed as an operator, it has a polar decomposition
T = UK [graphically represented in Fig. 3(b)] where U is a
unitary operator and K is a positive-semidefinite Hermitian
operator. Physically, we can view U as the real-time evolution
operator under some Hermitian Hamiltonian and K as the
imaginary-time evolution operator under some other Hermi-

FIG. 3. (a) We can rotate the square-lattice tensor network shown
in Fig. 2(a) by 45◦ and view it as a quantum circuit acting on a
one-dimensional qudit chain along the x direction. The t direction
is viewed as the physical time direction of the quantum circuit.
(b) Each four-leg tensor can be viewed as a (nonunitary) quantum
gate acting on two neighboring sites on the one-dimensional qudit
chain. By the polar decomposition, this quantum gate can be factored
into the product of a unitary operator U and the positive-semidefinite
Hermitian operator K .

tian Hamiltonian.5 With this operator interpretation of each
four-leg tensor, the whole tensor network shown in Fig. 3(a)
can be interpreted as a nonunitary quantum circuit that evolves
the qudit-chain quantum states with Hermitian Hamiltonians
but in a mixture of real and imaginary time (or simply as
a nonunitary quantum circuit that evolves the qudit-chain
quantum states only in real time but using non-Hermitian
Hamiltonians). In the remainder of this paper, unless specified
otherwise, Hermiticity is always implicitly assumed when we
talk about the Hamiltonian of a system.

It is conceptually straightforward to generalize the con-
struction above to fermionic tensor networks, where each
tensor represents a state in a fermionic Hilbert space. For
general overviews of how to take into account the fermionic
exchange sign in contractions, see Refs. [26,58–60]. In
Sec. III, we will specialize to the case of Gaussian fermionic
tensor networks and discuss the technical issues arising from
their fermionic nature.

B. Relation to quantum systems undergoing unitary evolution
and generalized measurements

A particularly interesting physical scenario where nonuni-
tary circuits and nonunitary evolutions arise is given by a
quantum system that undergoes both unitary evolution and
projective measurements [13,15]. In the presence of measure-
ments, the evolution of the quantum system is characterized
by an ensemble of quantum trajectories with each quantum
trajectory labeled by a different set of measurement outcomes.
In the following, we first briefly introduce our notion of
quantum trajectory before we discuss the connection to tensor
networks. A more detailed description of quantum trajectories
can be found, for example, in Ref. [61].

For our purposes, a single measurement is described by
a set of Kraus operators Cm, where m labels the different

5To be more precise, since K is positive-semidefinite, its corre-
sponding Hamiltonian may have positively infinite-energy eigen-
states that correspond to the zero eigenvalues of the operator K .
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measurement outcomes. Given some input density matrix ρ,
Born’s rule gives the probability of the mth measurement
outcome as pm = Tr(CmρC†

m); normalization of probability
requires

∑
m C†

mCm = 1, i.e., the operators C†
mCm form a

positive-operator-valued measure [61]. For the mth measure-
ment outcome, the density matrix after the measurement is
given by ρ ′ = CmρC†

m/pm; if the input density matrix repre-
sents a pure state, ρ = |ψ〉〈ψ |, so does the density matrix
Cm|ψ〉〈ψ |C†

m/pm after measurement. In the case of a con-
ventional projective measurement, the Cm are projectors, i.e.,
C2

m = Cm. We emphasize that we are free to interpret any set
of operators {Cm} that satisfies the condition

∑
m C†

mCm = 1

as a generalized measurement within this formalism, and any
such measurement can be physically implemented (see, e.g.,
Ref. [62].).

It is clear that we can interpret a circuit composed of
unitary evolution and projective measurements within this
formalism. Given a set of measurement outcomes 	m (each
entry corresponding to the outcome of one projective mea-
surement), we can define an operator C 	m as the product (over
time steps) of the unitary evolution operators followed by
the projection operators corresponding to the measurement
outcomes in each step (noting that the succession of a mea-
surement with N and one with M outcomes can be thought
of as a measurement with N × M outcomes). While the set
of measurement outcomes will grow exponentially with the
volume of the circuit and the Born-rule probability p 	m of a
given set of outcomes 	m becomes exponentially small, the
entire set of operators {C 	m} will still satisfy the conditions
above, in particular, the C†

	mC 	m also form a positive-operator-
valued measure.

As explained in the previous section, a generic tensor
network can be viewed as a nonunitary quantum circuit com-
prised of real-time and imaginary-time evolution. In this work,
we will not focus on individual tensor networks but rather
the average behavior in certain random ensembles of tensor
networks with each realization of the tensor network taking
an equal weight in the average. Each such ensemble of tensor
networks provides an ensemble of nonunitary circuits {Cm}.
If the condition

∑
m C†

mCm = 1 is satisfied, the corresponding
ensemble of tensor networks can describe a physical quantum
system undergoing both unitary evolution and generalized
measurement. However, an important yet subtle distinction
arises due to the Born-rule probability pm = Tr(CmρC†

m) of
the system choosing a particular trajectory in the case of
measurements, which depends on the initial density matrix
ρ. To establish a precise correspondence between nonunitary
circuits where the nonunitarity arises due to measurements
and those where nonunitarity arises from some other mecha-
nism, the ensemble in the latter case may have to be reweighed
according to the Born-rule probability.6

It appears possible that certain universal behavior exhib-
ited in these two situations is closely related. Reference [63]

6Indeed, due to this, it is very unlikely that circuits involving
imaginary-time evolution or with predetermined measurement out-
comes can experimentally be efficiently implemented, unless one
were willing to engage in anthropic computing (see Ref. [108]).

speculated about potential differences in circuits with Haar-
random evolution. As we will see below, certain classes of
tensor networks are amenable to a rather complete numer-
ical and analytical treatment, and as such provide valuable
insights into the nonunitary dynamics of quantum many-body
systems. Therefore, for the purpose of this paper, we employ
the language of tensor networks; however, as discussed in
Appendix E, our tensor network construction could be adapted
as a measurement circuit. Comparison between the universal
behavior in the tensor network ensemble and the Born-rule
ensemble will be reserved for future investigations.

III. FERMIONIC GAUSSIAN TENSOR NETWORK

A. Definition

In this work, we focus on random ensembles of Gaussian
fermionic tensor networks (GTNs) [26–35], which are a spe-
cial type of fermionic tensor networks that describe Gaussian
states. In a GTN on the square lattice, each four-leg tensor de-
fines a fermionic Gaussian state in a Hilbert space associated
to 4χ Majorana fermion modes. The 4χ Majorana fermion
modes are divided into four groups of χ Majorana fermion
modes each, with each group residing on one of the legs of the
four-leg tensor. We refer to the number of Majorana modes χ

on each leg of the tensors as the Majorana bond number of
the GTN; it is related to the bond dimension M introduced
previously via M = √

2
χ

, i.e., GTNs are an exponentially
more compact representation. In particular, for conventional
tensor networks, the maximal amount of entanglement that
can be captured is O(log M ) (and the computational effort thus
exponential in the amount of entanglement), whereas here it
is O(χ ) (and the computational effort thus polynomial in the
amount of entanglement).

In a GTN, each tensor is itself a fermionic Gaussian state.
Such a state is completely determined by its two-point fermion
correlation functions. To be more precise, let us denote the
Majorana modes associated to a four-leg tensor with Majorana
bond number χ for each leg as γ̂i=1,2,...,4χ . The fermionic
Gaussian state associated to the four-leg tensor is completely
determined by the 4χ × 4χ covariance matrix [36]

�i j =
〈

i
2

[γ̂i, γ̂ j]

〉
= 〈iγ̂iγ̂ j〉 − iδi j, (3)

where the expectation value is taken in the fermionic Gaus-
sian state. Multipoint fermion correlation functions in the
fermionic Gaussian state can be constructed from �i j via
Wick’s theorem.7 Hence, we can use the covariance matrices
�i j to represent the four-leg tensors in the GTN. However,
we emphasize that the meaning of indices of the covariance
matrix �i j which labels the Majorana fermion operators as-
sociated with a given tensor, is different from the meaning of
the indices of the four-leg tensor Ti jkl which labels the states
in a (sub-)Hilbert space. The covariance matrix �i j for a pure
Gaussian state satisfies

�ᵀ = −�, �∗ = �, �2 = −1. (4)

7See Ref. [109] for a recent review of this formalism.
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The first two conditions are simply derived from the properties
of Majorana fermion modes while the third condition is the
consequence of a pure Gaussian state. The fermion parity of
the pure Gaussian state is given by the Pfaffian Pf(�) = ±1 of
the covariance matrix �. The space of all 4χ × 4χ covariance
matrices � satisfying the conditions in Eq. (4) is given by the
symmetric space O(4χ )

U(2χ ) . The space of � further restricted to the
sector with a fixed fermion parity Pf(�) is given by the sym-
metric space SO(4χ )

U(2χ ) . In particular, the four-leg tensors that can
be interpreted as a quantum gate that conserves the fermion
parity are the ones with a fixed fermion parity Pf(�) = 1.
In principle, one can also consider mixed Gaussian states,
which can also be fully specified by their covariance matrix.
The covariance matrices of mixed Gaussian states still satisfy
the first two conditions in Eq. (4), but the third condition
is relaxed to �2 � −1, meaning that no eigenvalues of the
Hermitian matrix �2 are smaller than −1. This work will
mostly focus on the square-lattice GTNs where every four-leg
tensor is associated with a pure fermionic Gaussian state. We
refer to this type of tensor network as the pure-state GTN.
We also impose an extra requirement that each tensor in the
pure-state square-lattice GTN has a fixed fermion parity +1 so
that when the pure-state square-lattice GTN is interpreted as a
quantum circuit, each quantum gate in the circuit respects the
fermion parity and, hence, can be viewed as a bosonic operator
(in the sense that it does not change the fermion parity of the
state it acts on).

The pure Gaussian state |�〉 that is associated8 with a
four-leg tensor, with each leg having Majorana bond number
χ , and which has a 4χ × 4χ covariance matrix �i j , can be
determined via the equation(

γ̂i − i
∑

j

�i j γ̂ j

)
|�〉 = 0, i = 1, 2, . . . , 4χ. (5)

When we view γ̂ as a 4χ -component column vector of Majo-
rana operators, the equation above can be conveniently written
as (γ̂ − i �γ̂ )|�〉 = 0.

B. Contraction of Gaussian tensors

Since Gaussian tensor networks are just a special case of
general fermionic tensor networks, the contraction of two ten-
sors can similarly be viewed as a projection onto a maximally
entangled-pair state on the legs that are being contracted.
Crucially, the result of such a contraction of two Gaussian
tensors is again a Gaussian tensor; if the two input states are
pure, so is the contracted state.

It is worth noting that the contraction of two Gaussian
tensors can also be viewed as applying a quantum operation
defined by one Gaussian state to the other Gaussian state.
Here, by quantum operation we mean any completely posi-
tive trace-nonincreasing linear operation on density matrices,
i.e., the most general operation that transforms a valid (pure
or mixed) quantum state into another valid quantum state.

8Specifically, so that the two-point fermion correlation function is
then 〈γ̂iγ̂ j〉 = 〈�|γ̂iγ̂ j |�〉 = Tr(ρ̂�γ̂iγ̂ j ), with ρ̂� = |�〉〈�| the pure
state density matrix.

FIG. 4. (a) The Gaussian tensors � and ϒ are contracted. The
Majorana modes on the contracted legs of the Gaussian tensors �

and ϒ are denoted as γ̂1,2,...,d and η̂1,2,...,d , respectively. (b) We can
view both of the Gaussian tensors � and ϒ as two-leg tensors when
implementing the contraction between them.

Indeed, as proven in Refs. [36,64], any Gaussian map, i.e.,
completely positive linear map that transforms Gaussian states
into Gaussian states, can be described as the contraction of
(possibly nonpure) tensors in this formalism. As such, any
kind of circuit for noninteracting fermions can be translated
into the contraction of a GTN. Therefore, the circuits dis-
cussed in Refs. [23,37] and the quantum measurement circuits
without annihilation in Ref. [19] can be viewed as particular
examples of Gaussian tensor networks.

To illustrate in greater detail the procedure of contraction,
let us discuss the contraction of two four-leg tensors as shown
in Fig. 4(a). Consider two Gaussian tensors represented by
the covariance matrices � and ϒ . When a Majorana bond-
number-χ leg of the tensor � that carries Majorana fermion
modes γ̂i=1,2,...,χ is contracted with a Majorana bond-number-
χ leg of the tensor ϒ that carries Majorana fermion modes
η̂i=1,2,...,χ , the contraction yields a new Gaussian state

|�〉 = P12(|�〉 ⊗ |ϒ〉), (6)

where the projection operator P12 is given by

P12 =
χ∏

i=1

1 + iγ̂iη̂i

2
. (7)

The contraction is graphically represented in Fig. 4(a). Notice
that the contracted leg in Fig. 4(a) has a direction which
indicates the ordering of Majorana modes γ̂i and η̂i in the
projection operator, i.e., the contraction with the reversed
direction is implemented by the projection

∏χ

i=1(1 + iη̂iγ̂i )/2.
The choice of direction is necessary for each contracted bond
of a fermionic tensor network.

The Gaussian state |�〉 is again fully characterized by a
covariance matrix �. Here, we view |�〉 as Gaussian state
residing in the Hilbert space given by only the Majorana
modes on the uncontracted legs. For an explicit expression
for �, it is convenient to relabel the Majorana modes on �

and ϒ as shown in Fig. 4(b): in particular, the modes on � are
grouped into γ̂L, which remain open, and γ̂R, which are to be
contracted; for ϒ , the modes η̂L are to be contracted, while η̂R

remain open. We can reorganize the two covariance matrices
in a block form

� =
(

�LL �LR

−�
ᵀ
LR �RR

)
, ϒ =

(
ϒLL ϒLR

−ϒ
ᵀ
LR ϒRR

)
. (8)

Here, �LL and ϒRR are 3χ × 3χ matrices describing the
correlations between the 3χ modes γ̂L and η̂R, respectively,
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and similarly �RR and ϒLL are χ × χ matrices, and the off-
diagonal matrices are χ × 3χ or 3χ × χ rectangular matrices.
The covariance matrix �, which is a 6χ × 6χ matrix that
describes the correlations of the 6χ Majorana operators γ̂L

and η̂R, is then given by [36]

� =
(

�LL 0
0 ϒRR

)

+
(

�LR 0
0 ϒRL

)(
�RR 1

−1 ϒLL

)−1(
�LR 0

0 ϒRL

)T

. (9)

Notice that � depends on � and ϒ in a nonlinear way.
Furthermore, one can check that, if (�)2 = (ϒ)2 = −1, then
(�)2 = −1, i.e., the contraction between pure-state tensors
results in a pure-state tensors. This expression can be eval-
uated in O(χ3) time.

Having introduced the contraction between two tensors,
a GTN can be built by contracting the involved tensors one
by one using Eq. (9). The order of tensor contractions does
not affect the final result as long as the same tensor network
geometry is maintained. This independence of ordering can
be understood as follows. A GTN that consists of tensors
{�(n)}n produces a Gaussian state P(⊗n|�(n)〉) where P is the
product of projections onto the maximally entangled-pair state
on each pair of contracted legs in the GTN. The projections
on different pairs of contracted legs commute with each other,
which implies that the final GTN is independent of the order
in which the projectors are applied. In practice, the order may
make a difference to the computational cost (see Appendix C).

IV. NUMERICAL RESULTS

A. Setup

We now turn to a numerical investigation of the properties
of Gaussian tensor networks with random tensors. We will
find that for a generic choice of random ensemble (which we
introduce below), the state obtained by contracting the tensor
network exhibits signatures of quantum criticality and scale
invariance, namely, a logarithmic divergence of the bipartite
entanglement entropy with the subsystem size and power-law
decay of two-point correlation functions.

We consider an ensemble of tensor networks where each
tensor is independently drawn from an identical probabil-
ity distribution of what we call Haar-random Gaussian pure
states. To construct such a state on 2n Majorana fermions, we
start from the reference pure state

�2n =
(

0 1n

−1n 0

)
, (10)

where 1n is the n × n identity matrix. Then, we obtain a
random special orthogonal matrix O ∈ SO(2n) following the
approach of Ref. [65]. The desired Haar-random Gaussian
pure state is then given by

� = O �2n Oᵀ. (11)

This will generate pure states with a fixed parity Pf(�) = +1.
The ensemble of � generated by the Haar-random matrix
O ∈ SO(2n) is equivalent to the random ensemble of � in
the symmetric space SO(2n)

U(n) with a uniform probability mea-
sure. In principle, one can extend the ensemble to that of

FIG. 5. In the numerical study, we consider the square-lattice
random GTN with periodic boundary condition in the u direction.
At v = 0, we start with the initial Gaussian state represented by
the Gaussian tensor �0 which is a product state. The contraction of
the tensor �0 with v (“depth”) rows of the random GTN yields the
Gaussian state represented by the tensor �v .

states with random fermion parity Pf(�) = ±1 by considering
Haar-random matrix O ∈ O(2n) in Eq. (11) instead; however,
we find that the numerical results presented in this section,
which are obtained in an ensemble of fixed parity, are, within
sampling error, identical to the ones obtained for random
fermion parities. For the square-lattice GTN with Majorana
bond number χ , we perform this procedure with 2n = 4χ for
each four-leg tensor independently.

In the contraction of the tensor network (see Fig. 5), we
start from an initial state at v = 0 given by the covariance
matrix

�0 =
Lχ/2⊕
k=1

�2, (12)

which is unentangled for even χ and entangled only between
adjacent sites for odd χ (there is no fully unentangled state for
odd χ ; note also that we require Lχ even to construct pure-
state GTNs). The initial state �0 of the GTN for even and odd
χ are pictorially represented by the hollow circles shown in
Fig. 5. We have chosen to fix the parity of the initial state
to Pf(�0) = +1; similar as for the parity of the tensors on
each site of the network, we have confirmed that results are
indistinguishable for an initial state of the other parity. We
contract the initial state �0 with rows of tensors as shown in
Fig. 5. We denote by �v the state that is the result after the
contraction of v (“depth”) rows of tensors with the initial state
�0; i.e., that state is defined by the open legs at the top of the
network with depth v. We are interested in the behavior for
v → ∞. We apply periodic boundary conditions in the spatial
direction, i.e., the u direction, of the network.

Here, we have defined a Haar-random ensemble of pure-
state square-lattice GTNs. This ensemble of GTNs yields an
ensemble of random quantum circuits via the correspondence
between GTNs and nonunitary Gaussian circuits in Sec. II.
As shown in Appendix E, this quantum circuit ensemble can,
in principle, characterize the dynamics of a physical system
undergoing both unitary evolution and generalized measure-
ments. However, one needs to be careful that, for the physical
system undergoing both unitary evolution and generalized
measurements, the probability for a specific quantum circuit
(corresponding to fixed measurement outcomes) in the circuit
ensemble to appear needs to follow the Born’s rule, which
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implies that different quantum circuits in general appear with
different probabilities. In contrast, in all the following discus-
sions of the Haar-random ensemble of GTNs, each GTN and
NGC appears with equal probabilities.

B. Correlation functions

We first analyze the two-point correlation function 〈iγkγl〉
(i.e., the equal-time Green’s function) in the state �v , which
resides on the one-dimensional lattice of open legs on the top
the GTNs shown in Fig. 5. Each site of this lattice corresponds
to an open leg and therefore contains χ Majorana modes. The
quantity of interest, corresponding to the average of the square
of the two-point correlation function for Majorana modes that
are r sites away from each other, is given by

C(r) = 1

χ2L

χ∑
m,n=1

L∑
p=1

〈iγ̂p,mγ̂p+r,n〉2, (13)

where by γ̂p,m we denote the mth Majorana mode (m =
1, . . . , χ ) on the pth site of the lattice, we apply periodic
boundary conditions, i.e., γ̂p+L,n = γ̂p,n, and the bar indicates
ensemble averaging. The individual expectation values in a
fixed realization of disorder (i.e., before disorder averaging)
correspond exactly to elements of the covariance ma-
trix �v: 〈iγ̂p,mγ̂p+r,n〉 = (�v )(p−1)χ+m,(p+r−1)χ+n (except for
r = n = 0).

Our results are shown in Fig. 6, where we take the depth
v = 500 and average over 20 realizations. In random systems,
the mean and typical correlations can differ widely near criti-
cal points because a correlation function (as opposed to, e.g.,
a free energy) is in general not self-averaging [66]. In partic-
ular, different disorder moments of a correlation function can
scale with independent critical exponents [67], a phenomenon
called multifractality which is ubiquitous in disordered non-
interacting fermion systems [68,69] (for a relatively recent
discussion see, e.g., Refs. [70,71]). An extreme version of this
phenomenon is known to occur in one-dimensional quantum
systems with (static) spatial randomness where disorder mo-
ments of correlation functions can be dominated entirely by
rare event (Griffiths) physics leading to completely different
functional forms of mean and typical correlations, such as,
e.g., in the random singlet phase [72,73]. We have checked
for this numerically and find that, in our case, the mean and
typical correlations differ only by a prefactor. The reason
for the self-averaging of these correlations will be given in
Appendix A 2.

The correlations shown in Fig. 6 clearly decay with a power
law, consistent with a critical system. To quantify this more
precisely, we perform a fit to

C(r) = A
(1 + λ0 log r)2

r2
, (14)

where A and λ0 are fit coefficients. The correction to a pure
power-law decay in the numerator arises from the presence of
a marginally irrelevant operator, whose coupling constant is
denoted by λ0. For details, see Appendix B. We find excellent
agreement with this form with a constant λ0 that depends on
χ , as shown in Fig 6.

(a)

(b)

FIG. 6. Correlation function C(r) [cf. Eq. (13)] obtained from
averaging over 20 disorder realizations for Majorana bond number
χ = 1 (a) and χ = 6 (b) and r up to L/2. Points indicate raw data,
while the black line indicates a fit of the data for the largest system
size to Eq. (14).

C. Entanglement entropy

As a second quantity of interest, we compute the von
Neumann entanglement entropy for a contiguous block of L/2
sites in the state �v for periodic boundary condition along the
u direction. We denote this quantity as SL/2. In the inset in
Fig. 7(b), we show the dependence of SL/2 on the depth v for
a few characteristic values of L and χ . We find that it very
quickly reaches a plateau. To obtain averaged quantities, we
average over v for v greater than some cutoff (usually v =
250) as well as several completely independent simulations
(here 100).

The averaged SL/2 is shown for Majorana bond numbers
between χ = 1 and 10 and system sizes ranging from L = 32
to 2048 (for the smallest bond number) in Fig. 7(a). As indi-
cated by the dashed lines, we find excellent agreement with
the scaling form

SL/2 = ζ1 log (L/L0), (15)

where we take both ζ1 and L0 as fit parameters. In Fig. 7(b), we
show the dependence of ζ1 extracted from our fits on Majorana
bond number χ , which we find to be nearly linear.

This scaling form of the entanglement entropy is familiar
from a variety of other systems, where it may occur for com-
pletely unrelated physical reasons. Therefore, we intentionally
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(a)

(b)

FIG. 7. (a) Scaling of bipartite entropy of half of the system with
total system size in the Haar-random ensemble. Majorana bond num-
bers are χ = 1 through χ = 10 from bottom to top. Crosses indicate
the numerical data, while the dashed lines indicate fits to the form
SL/2 = ζ1 log(L/L0). (b) Dependence of the entropy scaling prefactor
ζ1 on the Majorana bond number χ . Inset of (b): convergence of the
entropy at the center of the system with depth v for L = 128 and
χ = 1, 2, 10.

introduce the new letter ζ1 for the prefactor of the logarithm to
avoid any possible confusion with these better-known cases.
These include ground states of nonrandom critical Hamil-
tonian systems in one dimension [74,75], where this form
follows from conformal symmetry and the coefficient of the
logarithm is related to the central charge c of the corre-
sponding conformal field theory (CFT) via ζ1 = c/3. It also
appears in scenarios not related to conformal symmetry, such
as random-singlet phases [76] or, under particular circum-
stances, in ferromagnets and other symmetry-broken systems
[77] (in which case the prefactor is nonuniversal). Finally, this
scaling of the entanglement entropy was found at the critical
points that occur in the interacting random circuit and tensor
network models [13–15,18,25,78], which also exhibit confor-
mal symmetry and where the coefficient ζ1 of the logarithm is
twice the scaling dimension of a boundary operator.

We can repeat the analysis of the entanglement entropy for
Renyi entropies, defined by

Sα (ρ) = 1

1 − α
Tr[log (ρα )], (16)

FIG. 8. Coefficient of the logarithmic term in the entanglement
entropy for Renyi entropies of different index α; see Eqs. (16) and
(17). Crosses represent raw data, and dashed lines fits to the form
ζα = B(1 + 1/α), where B is the only fit coefficient.

for our random GTNs and NGCs. For α = 1, the von Neu-
mann entropy is obtained. For a one-dimensional nonrandom
gapless Hamiltonian system, conformal field theory predicts
[79] that the ground-state entanglement entropy of an interval
of length L (embedded in a much larger system) scales as
ζα log(L/L0) for all α, where ζα is given by

ζα = ζ1

2

(
1 + 1

α

)
, (17)

and where ζ1 = c/3 of Eq. (15) with c the central charge.
For the measurement-induced transition in interacting random
circuits, Ref. [80] observed that an additional constant term
appears in the α dependence of ζα as compared to Eq. (17).
We can numerically test the α dependence of ζα in the random
GTN. To this end, we compute the Renyi entropy with index
α ranging from 0.5 to 5 for half of the system analogous to
the calculation shown in Fig. 7 and perform a fit to extract
the prefactor of the logarithmic scaling. Our results are shown
in Fig. 8. We observe excellent agreement with the form of
the α dependence displayed in Eq. (17) (without additional
constant). We reiterate that ζ1 is not related to the central
charge of a nonrandom CFT.

In addition to the entanglement entropy, we also examine
the full entanglement spectrum. We find results consistent
with the Gaussian unitary ensemble (see Appendix D).

D. Mutual information

Following Ref. [15], we also compute the mutual informa-
tion of two disjoint segments [x1, x2] and [x3, x4], which is
given by

I ([x1, x2], [x3, x4]) = S([x1, x2]) + S([x3, x4])

− S([x1, x2] ∪ [x3, x4]), (18)

where S([x, y]) denotes the von Neumann entanglement en-
tropy between sites x through y and the rest of the system, and
by ∪ we denote the union of two segments. We plot this as a
function of the cross ratio of the segment end points. Defining
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FIG. 9. Mutual information between the disjoint segments
[x1, x2] and [x3, x4] versus the cross ratio η of Eq. (20). In both panels,
L = 100. We exclude any data points where the intervals [x1, x2] or
[x3, x4] are shorter than four sites, or the ends of the intervals are
closer than four sites.

the chord distance between points x and y as

rxy = L

π
sin

(
π

L
|x − y|

)
, (19)

the cross ratio is given by

η = rx2x1 rx4x3

rx3x1 rx4x2

. (20)

Our results are shown in Fig. 9. We observe that all the
mutual information data nicely collapse onto a function that
depends only on a single variable η. This behavior of the mu-
tual information is strongly suggestive of a two-dimensional
conformal field theory description of the random GTN-NGC
system. Moreover, we observe a power-law behavior of
I ([x1, x2], [x3, x4]) at small cross ratio η.

We can examine the behavior for small η in more detail
by taking the limit where the intervals [x1, x2] and [x3, x4] are
chosen to be short compared to their separation and to the sys-
tem size. More precisely, we take |x1 − x2| = |x3 − x4| = d
and |x2 − x3| = r, and focus on the parameter regime with
d � r � L such that η = d2/r2. In this case, the mutual
information I ([x1, x1 + d], [x1 + r, x1 + r + d]) with a fixed
d will decay with the distance r between the intervals with
the same functional form as the correlation function (14). In
particular, the corrections to the asymptotic power-law decay
have the same form.

V. TRANSFER MATRIX FORMALISM AND
ANALYTICAL UNDERSTANDING OF THE

ENTANGLEMENT CRITICALITY

To facilitate an analytical approach to understand these nu-
merical results, we now introduce a transfer matrix formalism
for the contraction of pure-state GTNs. Using this transfer ma-
trix formalism, we will then map any lattice pure-state GTNs

FIG. 10. (a) A one-dimensional GTN is shown. (b) A two-leg
tensor � in the one-dimensional GTN is shown. Its two legs are
labeled by L and R, respectively. (c) The contraction of the two
two-leg tensors � and �′ yields a third two-leg tensor �′′. This
contraction can be equivalently captured using the transfer matrix
formalism.

(with no uncontracted legs in the bulk) to a corresponding
network model of unitary scattering problems on the same
lattice. This type of network model that we obtain from the
GTN turns out to be exactly what is commonly known as
a Chalker-Coddington network model which was originally
introduced to study noninteracting fermion systems with static
or quenched disorder. This connection will allow us to under-
stand the criticality observed in the previous section in terms
of stable critical phases or critical points in disordered systems
of noninteracting fermions. In the following, we will refer to
the critical behavior obtained in Sec. IV as the entanglement
criticality of the Haar-random GTN (and its corresponding
NGC). Interestingly and surprisingly, even though the entan-
glement criticality is obtained in a most generic Haar-random
pure-state GTN without any symmetry constraint, it shares the
same description as the disordered metallic phase in Altland-
Zirnbauer symmetry class DIII in two spatial dimensions.

A. Transfer matrix: Definition and properties

To introduce the transfer matrix approach, we first con-
sider the contraction of a one-dimensional GTN as shown
in Fig. 10, where each tensor has two legs with the same
Majorana bond number χt . It turns out that the contraction of
a GTN on a higher-dimensional lattice can always be reduced
to this case (with a possibly system-size dependent χt) while
still respecting locality; we will expand on this reduction to a
one-dimensional GTN in Sec. V A 3.

1. Transfer matrix in one-dimensional geometry

In the one-dimensional pure-state GTN shown in
Fig. 10(a), every tensor has two legs, each with a Majorana
bond number χt . As discussed in Sec. II, we can view the
one-dimensional pure-state GTN shown in Fig. 10(a) as a
quantum circuit with its time direction going from the left to
the right of the GTN. This quantum circuit acts on a Hilbert
space associated with χt Majorana fermion operators, which
we denote as α̂i=1,2,...,χt . The fact that this tensor network
is Gaussian implies that its corresponding quantum circuit
always evolves a single Majorana fermion operator to another
single Majorana fermion operator. Each two-leg tensor � [for
example, the one in Fig. 10(b)] in the one-dimensional pure-
state GTN corresponds to a (nonunitary) quantum gate g�

that induces a linear transformation of the Majorana fermion
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operators via

α̂i → g�α̂ig
−1
� =

∑
j

tp[�]i j α̂ j . (21)

Here, we have introduced the χt × χt matrix tp[�], which will
be referred to as the P-sector transfer matrix of �. Since g� is a
quantum gate of noninteracting fermions, the P-sector transfer
matrix tp[�], which can be viewed as the first-quantized (or
single-particle) version of g� , contains the full information
about g� and hence of the tensor �. In the following, we
will only consider pure-state Gaussian tensors � with fixed
fermion parity Pf(�) = 1 such that the corresponding quan-
tum gate g� is a bosonic operator, i.e., g� is a quantum gate
that preserves fermion parity.

As is shown in Fig. 10(b), for each two-leg tensor �,
we use the labels L and R to distinguish the two legs and
their associated Majorana modes. We can write the covariance
matrix � shown in Fig. 10(b) in a block form

� =
(

�LL �LR

�RL �RR

)
, (22)

where the block �LR captures the correlations between the χt

Majorana modes residing on the left leg and those on the right
leg, and likewise for the other blocks. Since the Majorana
bond number, i.e., the number of Majorana modes, associated
with each leg is χt , each block in � is a χt × χt square matrix.
The P-sector transfer matrix tp[�] of the tensor � then turns
out to be given by

tp[�] = �−1
LR (1 − i �LL ) = (1 + i �RR)�−1

LR , (23)

where the second equality is guaranteed by the pure-state
condition �2 = −1. The detailed derivation of the Eq. (23)
is summarized in Appendix F.

A key property of the transfer matrix, defined in this way, is
that matrix multiplication of two such transfer matrices yields
a result consistent with the contraction of the corresponding
tensors. Specifically, consider, as shown in Fig. 10(c), the
contraction of the two tensors � and �′, which yields the
tensor �′′. This tensor contraction is equivalently described
by the product of the two quantum gates g� and g�′ that
are associated with the two tensors � and �′, respectively,
i.e., g�′ · g� = g�′′ with g�′′ the quantum gate associated with
the tensor �′′. We therefore conclude that the transfer matrix
corresponding to �′′ is given by the product of those corre-
sponding to � and �′:

tp[�′] · tp[�] = tp[�′′]. (24)

This result can also be checked explicitly using Eqs. (9)
and (23).

In Eq. (23), we have assumed that �LR is invertible, which
is true for a generic pure-state tensor � in the symmetric
space SO(2χt )

U(χt )
of all possible 2χt × 2χt pure-state covariance

matrices. The exceptions to the assumption merely form a
measure-zero subspace of SO(2χt )

U(χt )
.9 In the following, unless

9This subspace includes the gates that project the Majorana modes
onto a state that is unentangled from the rest of the system.

otherwise specified, we will assume the generic situation
where �LR is invertible.

Given the conditions that �2 = −1 and � = −�T, we no-
tice that the P-sector transfer matrix satisfies the property that

tp[�]T · tp[�] = 1, (25)

which means that the P-sector transfer matrix tp[�] belongs to
the complexified special orthogonal group:

tp[�] ∈ SO(χt )C. (26)

In the special case where �LL = �RR = 0, the quantum gate
g� associated with the two-leg tensor � becomes unitary
and the P-sector transfer matrix tp[�] becomes real, i.e., � ∈
SO(χt ).

As we have discussed before, the P-sector transfer matrix
contains the full information of the tensor �. Furthermore, for
any element tp ∈ SO(χt )C , there exists a pure-state two-leg
Gaussian tensor � such that the P-sector transfer matrix of �

is given by tp via Eq. (23) [except for those tp with Re(tp)
noninvertible, a situation encountered only in a measure-zero
subset of SO(χt )C]. Therefore, the elements of the symmetric
space SO(2χt )

U(χt )
of all possible 2χt × 2χt covariance matrices �,

viewed as two-leg tensors, are in one-to-one correspondence
with the elements of the space (and also group) SO(χt )C
of the P-sector transfer matrices (except for subsets of zero
measure).

2. P- and H-sector transfer matrices

As discussed earlier, from the perspective of quantum cir-
cuits, the (nonunitary) quantum gate g� associated with the
two-leg tensor � evolves the Majorana fermion operators in
Hilbert space by α̂i → g�α̂ig

−1
� = ∑

j tp[�]i j α̂ j leading to the
definition of the P-sector transfer matrix tp[�]. Similarly, we
can define the χt × χt H-sector transfer matrix th[�] by the
evolution

α̂i → g−1†
� α̂ig

†
� =

∑
j

th[�]i j α̂ j . (27)

It is easy to show that th[�] = tp[�]∗. We can further intro-
duce the full transfer matrix t[�] for both sectors:

t[�] =
(
tp[�] 0

0 th[�]

)
. (28)

Obviously, under tensor contraction, the H-sector transfer
matrix th and the full transfer matrix t obey the same mul-
tiplication rule as the P-sector transfer matrix, i.e., Eq. (24).

For a mixed-state Gaussian tensor �, i.e., �2 �= −1,
only the full transfer matrix t[�] remains well defined (see
Appendix G for a detailed discussion of the full transfer
matrix for mixed-state Gaussian tensors). The decoupling of
the full transfer matrix into the block-diagonal form (28) with
the P-sector and the H-sector transfer matrices can be viewed
as a special property of the pure-state tensor � with �2 =
−1. As such, it is natural to interpret t[�] as the evolution
of the density matrix, and the P-sector transfer matrix as a
single-particle (or first quantized) description of the evolution
of ket vectors in the Hilbert space. Likewise, the H-sector
transfer matrix should be viewed as a single-particle (or first-
quantized) description of the evolution of bra vectors in the
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FIG. 11. We can view the square-lattice GTN as a quasi-one-
dimensional GTN along the t direction. Each two-leg tensor �(t ) in
the quasi-one-dimensional GTN consists of all four-leg tensors �(x,t )

in the square-lattice GTN that share the same t coordinate.

Hilbert space. This interpretation of the P-sector, H-sector,
and full transfer matrix follows naturally from the detailed
derivation of them in Appendix F.

For a pure-state tensor �, given that its P-sector trans-
fer matrix tp[�] already contains all the information of the
two-leg tensor �, the introduction of the H-sector transfer
matrix th[�] and the full transfer matrix t[�] may naively seem
redundant. However, as we will see in the later subsections,
the full transfer matrix will serve as an important tool for us
to establish an exact mapping between the pure-state GTN
(together with its corresponding nonunitary quantum circuit)
and a network model of unitary scattering centers which can
be viewed as arising from a unitary Hamiltonian system of
noninteracting fermions. Also, we will see that the structure
of the full transfer matrix of the GTN ensures the unitarity
of the corresponding network model. More interestingly, the
structure of the full transfer matrix guarantees the symmetries
of the network model even when no symmetry constraints are
imposed on its corresponding pure-state GTN.

3. Transfer matrix of the square-lattice pure-state GTN

We now turn to the two-dimensional GTN introduced in
Sec. III, and show how to reduce it to a quasi-one-dimensional
system that can be tackled with the transfer matrix tools in-
troduced in the previous sections while preserving locality.
As shown in Fig. 11, a square-lattice GTN can be viewed
as a quasi-one-dimensional GTN in the t direction. In this
mapping, an entire column of tensors in the square-lattice
GTN is represented by a single tensor, as illustrated in the
right panel of Fig. 11. This tensor is described by a covariance
matrix �(t ) of size 4Lxχ × 4Lxχ , where Lx is the extent of the
tensor network in the x direction, that is given by the direct
sum of the covariance matrices of all �(x,t ) with the same
coordinate t :

�(t ) =

⎛
⎜⎜⎜⎝

. . .

�(x,t )

�(x+1,t )

. . .

⎞
⎟⎟⎟⎠. (29)

This block structure is a direct consequence of the locality
of the tensor network, and is preserved after rewriting the
contraction in the transfer matrix language. This can be seen
explicitly by applying Eq. (23), which respects the block form
of the covariance matrix and thus yields a P-sector transfer
matrix tp[�(t )] of size 2Lxχ × 2Lxχ and of the form

tp[�(t )] =

⎛
⎜⎜⎜⎝

. . .

tp[�(x,t )]
tp[�(x+1,t )]

. . .

⎞
⎟⎟⎟⎠. (30)

Here, to apply Eq. (23) to each four-leg tensor �(x,t ) shown
in Fig. 11, we have grouped the two legs on the left and the
two on the right together, respectively. Similarly, the H-sector
transfer matrix th[�(t )] and the full transfer matrix t[�(t )] of
the quasi-one-dimensional GTN (obtained from the square-
lattice GTN) are given by the direct sums of th[�(x,t )] and
t[�(x,t )], respectively.

At this point, we have concluded that, at each given time
coordinate t , the P-sector transfer matrix tp[�(t )] has a block-
diagonal form with each diagonal block having dimension
2χ × 2χ . However, it is important to note that the transfer
matrix for the full tensor network does not have this block
structure since the positions of the diagonal blocks in the
transfer matrices tp[�(t )] and tp[�(t+1)] at consecutive times
t and t + 1 are shifted relative to each other by χ in their
row and column indices. Therefore, the product

∏Lt
t=1 tp[�(t )]

that describes the entire square-lattice GTN does not “decou-
ple” into small blocks, and can thus be a generic element of
SO(χt )C .

B. Mapping to unitary scattering problems with TR, PH,
and chiral symmetries

In this subsection, we use the transfer matrix formalism
to establish an exact mapping the between a single pure-state
Gaussian tensor (together with its corresponding quantum
gate) and a unitary scattering problem with a static and non-
interacting Hamiltonian. Applying this mapping to a lattice
of such tensors (free of uncontracted legs in the bulk) yields
a network model of unitary scatterers that resides on the
same lattice. Such network models are commonly known as
Chalker-Coddington network models and were introduced as
lattice models for problems of noninteracting fermions subject
to static or quenched disorder.

We will show that even in the absence of any constraints
on the pure-state Gaussian tensors �, the corresponding scat-
tering problems always have time-reversal (TR) symmetry,
particle-hole (PH) symmetry, and chiral symmetry, which
corresponds to symmetry class DIII in the Altland-Zirnbauer
10-fold symmetry classification. Applying this to the random
GTNs numerically studied in Sec. IV allows us to identify the
criticality observed there with the known disordered metallic
phase in symmetry class DIII in two spatial dimensions. We
can thus compute properties of the entanglement criticality
from the theory of this metallic phase. Importantly, this im-
plies that the entanglement criticality observed in Sec. IV
should be viewed as a critical entanglement phase that is stable
against sufficiently weak deformation of the Haar-random
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FIG. 12. A generic pure-state Gaussian tensor � can be mapped
to a unitary scattering problem with its transfer matrix given by
t[�]. Every Majorana mode associated with the Gaussian tensor �

corresponds to a pair of counterpropagating modes in the scattering
problem. The scattering problem respects unitarity, TR symmetry,
PH symmetry, and chiral symmetry.

ensemble. At the end of this section, we will show that, by
deforming the Haar randomness of the ensemble and by in-
troducing “staggering” in the square-lattice pure-state GTN,
one can access a transition from critical entanglement phase
to an area-law entanglement phase. This transition is the same
as the known metal-to-insulator transition in symmetry class
DIII in two spatial dimensions.

1. Mapping a single pure-state Gaussian tensor to a unitary
scattering problem with a single scattering center

We start by considering a single two-leg pure-state Gaus-
sian tensor � with the Majorana bond number on each leg
given by χs. It is straightforward to verify that its full transfer
matrix t[�] satisfies the condition

t[�]† · Jpb · t[�] = Jpb, (31)

where

Jpb =
(

0 1

1 0

)
. (32)

To understand the physical implication of this relation, it is
instructive to interpret the transfer matrix t[�] as describing
a scattering problem with two χs-component modes with am-
plitudes φL,p and φL,h on the left-hand side of the scattering
center and two other χs-component modes with amplitudes
φR,p and φR,h on the right-hand side. The relation between the
modes on the left and the right of the scattering center is given
by the transfer matrix(

φR,p

φR,h

)
= t[�]

(
φL,p

φL,h

)
. (33)

We can interpret the operator Jpb as the (single-particle) prob-
ability current operator and view Eq. (31) as the conservation
of the probability current in the scattering problem. With
the probability current conserved, this scattering problem is
unitary and, hence, should be viewed as arising from a static
(Hermitian) Hamiltonian.

Note that the modes φL/R,p/h are not eigenstates of the
probability current operator Jpb. The eigenstates of Jpb are
instead given by (see Fig. 12)

φL,± = 1√
2

(φL,p ± φL,h), (34)

φR,± = 1√
2

(φR,p ± φR,h). (35)

Here, the φL,± and φR,± each form χs pairs of counterprop-
agating modes. Based on the physical meaning of the full
transfer matrix t[�] in the GTN context, we can associate
each such pair of counterpropagating modes with a Majorana

mode of the tensor �. In this example, the modes labeled L
and R correspond to the two legs of the tensor �; a similar
assignment of pairs of counterpropagating scattering modes
to legs of the tensor can be made in the more general case of
tensors with more than two legs.

Another perspective is gained by thinking of the modes
φL,+ and φR,− as the in states, namely, the modes traveling
towards the scattering center and the modes φL,− and φR,+
as the out states, i.e., the modes traveling away from the
scattering center. This allows us to define the scattering S
matrix of this scattering problem by(

iφL,−
φR,+

)
≡ S

(
iφL,+
φR,−

)
, (36)

where the S matrix is a 2χs × 2χs matrix that relates the in
states to the out states. The factors of i in the definition of
the S matrix above are merely gauge choices. For a scattering
problem arising from a static Hamiltonian, this S matrix is
expected to be unitary. The S matrix can be obtained as fol-
lows. We plug the expression Eq. (23) of t[�] into Eq. (33) and
apply the basis transformations shown in Eqs. (34) and (35) to
obtain a linear relation among φL,± and φR,±. By rearranging
this linear relation into the form shown in Eq. (36), we obtain
the S matrix in this scattering problem:

S = i �, (37)

which, given that �T = −� and �2 = −1, is indeed unitary.
We can now discuss the symmetries in this unitary single-

particle scattering problem. For any two-leg pure-state tensor
�, the associated scattering problem has time-reversal (TR),
particle-hole (PH), and chiral symmetries. At the level of the
transfer matrix of a single scattering center, these symmetries
correspond to the following three conditions:

TR symmetry: �
†
TR · t[�]∗ · �TR = t[�]

with �TR =
(

0 −1

1 0

)
, (38)

PH symmetry: �
†
PH · t[�]∗ · �PH = t[�]

with �PH =
(

0 1

1 0

)
, (39)

Chiral symmetry: �C · t[�] · �C = t[�]

with �C =
(
1 0
0 −1

)
. (40)

These conditions are automatically satisfied by any pure-state
Gaussian tensor �. Here, we note that the TR symmetry
squares to −1 (�2

TR = −1) and the PH symmetry squares
to +1 (�2

PH = +1). The chiral symmetry can be viewed as
a product of the TR and the PH symmetries. Therefore, this
scattering problem belongs to symmetry class DIII in the 10-
fold Altland-Zirnbauer symmetry classification. As we point
out earlier, the transfer matrix corresponding to the scatter-
ing problem t[�], just like the P-sector transfer matrix tp[�],
should be identified as an element of the complexified special
orthogonal group SO(χs)C . Based on Eq. (37), the scattering
S matrix should be identified as a point in the symmetric space
SO(2χs )

U(χs ) of the pure-state Gaussian tensors �. The group formed
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by the full transfer matrices t[�] (which are also transfer
matrix in the scattering problem) and the symmetric space
of the scattering S matrix S we obtained here for symme-
try class DIII are consistent with the classification given in
Refs. [41,81].

As we now see, the identification of a conserved proba-
bility current and the identification of all the symmetries in
the scattering problem fundamentally rely on the existence
of both the P sector and the H sector in the full transfer
matrix t[�]. In the scattering problem, this is evident from
the fact that all three symmetries act only within the pairs of
counterpropagating modes, where each such pair corresponds
to one Majorana mode of the Gaussian tensor �.

2. Mapping a lattice GTN to a lattice network model
of scattering problems

The mapping between a single two-leg pure-state Gaussian
tensor � and a unitary scattering problem introduced above
can be straightforwardly extended to a correspondence be-
tween a lattice of Gaussian tensors (with no uncontracted legs
in the bulk) and a lattice of unitary scattering problems defined
at scattering centers located at the sites and vertices of the
lattice. For the simplest case, consider the one-dimensional
“tensor network” shown in Fig. 10(c) which consists of two
pure-state Gaussian tensors � and �′. Such a tensor network
can be mapped to a one-dimensional network model of scat-
tering problems that consists of two scattering centers. The
transfer matrices at these two scattering centers are given by
t[�] and t[�′], respectively. Global unitarity follows immedi-
ately from the fact that t[�′′] = t[�′] · t[�] is a valid transfer
matrix that obeys probability conservation, i.e.,

(t[�′] · t[�])† · Jpb · (t[�′] · t[�])

= t[�′′]† · Jpb · t[�′′] = Jpb. (41)

By analogous arguments, TR, PH, and chiral symmetries of
the transfer matrix of an individual tensor are inherited by the
transfer matrix describing the entire tensor network.

Clearly, this argument can be iterated for a one-
dimensional chain of two-leg tensors. To generalize to more
complex geometries, we need to consider the case of tensors
with more than two legs. This generalization is again straight-
forward: as we have discussed in the previous section, the
scattering problem for an individual tensor is conveniently
constructed in terms of pairs of counterpropagating modes,
where each pair corresponds to one Majorana mode of the
original tensor. Just like we have grouped the Majorana modes
of the original tensor into legs, each carrying χ modes, we can
group such pairs of counterpropagating modes into legs of the
tensor. Thus, for a tensor with r legs of Majorana bond number
χ , there will be r sets of χ pairs of counterpropagating modes.
Noting again that the symmetries act only within these pairs,
it is clear that the same symmetry properties that hold for the
two-leg tensors also hold for tensors with an arbitrary number
of legs. This is illustrated for the case of a four-leg tensor in
Fig. 13(a).

Applying this mapping to every four-leg tensor in the
pure-state square-lattice GTN, we obtain a network model of
scattering problems on the square-lattice with a local scat-
tering center at each site of the square lattice as show in

FIG. 13. (a) Each four-leg tensor in the square-lattice GTN is
mapped to a unitary scattering problem with TR, PH, and chiral
symmetries on a four-leg geometry. (b) Applying this mapping to
each four-leg tensor, we map the square-lattice pure-state GTN to a
network model of unitary scatters on the square lattice. The network
model also respects TR, PH, and chiral symmetries.

Fig. 13(b). To ensure global unitarity of the square-lattice
network model, we simply need to verify that the conserved
probability currents at each scattering center are globally
compatible with each other. One way to see the global com-
patibility of the probability current is to view the square-lattice
network model (and its corresponding square-lattice GTN) as
a network (and a GTN) on a quasi-one-dimensional geometry
along the t direction. We can identify the globally conserved
probability current as the probability current along the t direc-
tion in this quasi-one-dimensional geometry. Therefore, the
square-lattice network model of scattering problems obtained
from the square-lattice pure-state GTN is a unitary model that
can be viewed as arising from a static noninteracting (Her-
mitian) Hamiltonian. This network model naturally inherits
the TR, the PH, and the chiral symmetries from the scattering
problems at each site of the square lattice and thus belongs to
symmetry class DIII in the Altland-Zirnbauer 10-fold symme-
try classification. We emphasize that the mapping we describe
is applicable to any realization of the square-lattice GTN with
no constraints on each constituent pure-state Gaussian tensor.

C. Critical entanglement phase as symmetry-class-DIII
disordered metallic phase

1. Identification of critical entanglement phase

In Sec. V B 2, we have introduced a mapping between any
pure-state square-lattice GTN and a unitary network model
of scatterers on the square lattice. The latter is an example
of what is commonly known as a Chalker-Coddington net-
work model. Such models were originally introduced to study
the physics of noninteracting fermions subjected to static or
quenched disorder. Such disordered noninteracting fermion
problems obviously admit, in any fixed realization of disorder,
descriptions by static (and Hermitian) Hamiltonians. In gen-
eral, for a Hamiltonian problem of noninteracting fermion in
D spatial dimensions, the corresponding Chalker-Coddington
network model also resides in D spatial dimensions. This
is because, in the absence of interactions, the fermion
modes with different real (or Matsubara) frequency decou-
ple, and the Chalker-Coddington network models are used to
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describe a slice of fixed real (or Matsubara) frequency. The
quenched disorder in the noninteracting fermion problem is
captured by randomness at each scattering center10 in the
Chalker-Coddington network. If the disordered noninteracting
fermion problem respects certain symmetries, the scatterers
in the Chalker-Coddington network should respect the same
set of symmetries. A more detailed review of the Chalker-
Coddington model can be found in Appendix A.

We are now in a position to relate the criticality observed
in Sec. IV to known results. We have mapped the most generic
Haar-random ensemble of square-lattice pure-state GTNs into
a random/disordered ensemble of Chalker-Coddington net-
work models on the square lattice, where each realization
of disorder of the network model preserves TR symme-
try (with �2

TR = −1), PH symmetry (with �2
PH = 1), and

chiral symmetry. Therefore, by the mapping between Chalker-
Coddington network models and static Hamiltonians in the
same dimension, the problem of Haar-random pure-state
square-lattice GTNs can be viewed as the problem of unitary
systems of disordered noninteracting fermions in symmetry
class DIII and in two spatial dimensions. It is known that
this latter model exhibits a metallic phase [41,82]. The critical
entanglement phase observed in Sec. IV should thus naturally
be identified with this critical phase.

Therefore, properties of the critical entanglement phase
that we observe numerically should be described by the theory
of the corresponding metallic phase. The renormalization-
group fixed point governing the universal behavior of this
phase turns out to be a two-dimensional conformal field theory
of free scalar fields. A more detailed description of this fixed-
point theory is provided in Appendix A. The numerically
obtained logarithmic scaling of the half-system entanglement
entropy shown in Eq. (15) (and in Fig. 7) and the scaling
collapse of mutual information as a function of the cross ratio
shown in Fig. 9 are both nontrivial numerical verifications
of the the criticality and of the conformal symmetry of the
critical entanglement phase.

Stronger evidence consistent with the specific metallic
phase is observed from the numerically obtained second-
disorder moment of the two-point Majorana fermion corre-
lation function shown in Fig. 6, which fits nicely with the
particular scaling form of Eq. (14), which can be derived from
the metallic fixed point that describes the symmetry-class-DIII
disordered metallic phase in two spatial dimensions. The 1/r2

decay of Eq. (14) is given by the equal-time correlations at
the absorbing boundary of the disordered metallic phase (see
Appendix A for details on this boundary condition) and
the factor of (1 + λ0 log L)2 in Eq. (14) results from the
marginally irrelevant operator known to exist at this fixed
point (for details, see Appendix B).

It is important to note that this two-dimensional fixed point
describing the metallic phase in symmetry class DIII has
no relevant or marginally relevant perturbations allowed by
symmetry. Therefore, since the symmetries are always present
within the GTN construction, the entanglement criticality ob-
served in Sec. IV is really a critical entanglement phase that

10Some of that randomness may be transferred, depending on the
case, to randomness on links.

extends beyond the Haar-random pure-state GTN and is stable
to any weak perturbation of this GTN ensemble. For further
details, see Appendix A.

The theory of the metallic fixed point also predicts that
the N th-disorder moment of the square of the two-point Ma-
jorana fermion correlation function 〈iγ̂p,mγ̂p+r,n〉2N exhibits
a 1/r2N power-law decay. This is discussed at the end of
Appendix B 2. The presence of the marginally irrelevant
operator will lead, on top of this power law, to logarith-
mic corrections to scaling [analogous to those displayed in
Eq. (14) for N = 1]. In contrast, all the corresponding disor-
der moments of the two-point Majorana fermion correlation
functions in loop-model-based circuit models (for example,
models studied in Ref. [19], including the three-dimensional
variant, in Ref. [83], and also in Ref. [23]) would be indepen-
dent of the order of the moment11 (and are, depending on the
particular loop model, subject to corresponding logarithmic
corrections to scaling).

2. Transition from critical entanglement phase to area-law
entanglement phase

The study of the two-dimensional Chalker-Coddington net-
work model in symmetry class DIII in Ref. [84] shows that
the transitions out of the critical metallic phase discussed in
the previous section to a gapped phase can be induced by
turning on a “staggering pattern” of sufficient strength on the
square lattice. In the language of GTNs or quantum circuits,
this transition is a transition from the critical entanglement
phase to an area-law entanglement phase. In the following, we
will demonstrate that the same phenomenon can be observed
by introducing a staggering deformation to the Haar-random
pure-state square-lattice GTN with Majorana bond number
χ = 1.

With Majorana bond number χ = 1, each four-leg tensor
of the square-lattice GTN has four Majorana modes associated
with it, one for each leg as shown in Fig. 14(a). Each four-
leg tensor is described by a 4 × 4 covariance matrix �i j ≡
〈 i

2 [γ̂i, γ̂ j]〉 with i, j = 1, 2, 3, 4. For fixed fermion parity, this
covariance matrix is, as discussed in Sec. III A, an element
of the coset space SO(4)/U(2) ∼ S2 (2-sphere), and it can
be parametrized by a real unit vector 	n = (n1, n2, n3) in the
following way:

�(	n) = n1 iσ zy + n2 iσ y0 + n3 iσ xy

=

⎛
⎜⎝

0 n1 n2 n3

−n1 0 −n3 n2

−n2 n3 0 −n1

−n3 −n2 n1 0

⎞
⎟⎠, (42)

11This follows because in any realization of disorder of the loop
model, the elements of the covariance matrix (4), which are exactly
the Majorana correlators in question, are equal either to 0 or ±1. The
nonzero entries correspond to pairs of Majorana modes connected
by a loop. Therefore, any even power of the correlation function
will be equal to 0 or +1, and all even moments must be exactly the
same.
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FIG. 14. (a) For the four-leg tensor with Majorana bond number
χ = 1, the four Majorana modes associated with this tensor are
labeled according to this figure. (b) The random GTN can be driven
into an area-law entanglement phase upon staggering of the tensors
on the two sublattices. The sublattice A is colored green while the
sublattice B is colored orange.

where n2
1 + n2

2 + n2
3 = 1, and σ ab ≡ σ a ⊗ σ b, where a, b =

0, x, y, z. The Haar-random ensemble of �(	n) is given by the
uniform distribution of 	n on a two-dimensional unit sphere.12

Now, we consider a random ensemble for these tensors,
where, in order to introduce a staggered pattern on the square
lattice as is shown in Fig. 14(b), the tensors on the sublattice
A (green sites) and those on the sublattice B (orange sites) are
chosen from a different random distribution. A four-leg tensor
on the sublattice A (B) is generated by �(	nA(B)) where

	nA = (cos θ, sin θ cos ϕ, sin θ sin ϕ), (43)

	nB = (sin θ sin ϕ, cos θ, sin θ cos ϕ). (44)

Here, θ and ϕ are random variables chosen independently for
each four-leg tensor. The probability distribution for ϕ is taken
to be uniform in the interval [0, 2πσ ), while θ = arccos s with
s being a uniform random variable in [1 − 2σ, 1]. The param-
eter σ , which controls the disorder strength, can be tuned from
0 to 1. Note that the random ensemble of GTN considered
here corresponds to a Chalker-Coddington network model
whose disorder realization is microscopically quite different
from the disorder considered in Ref. [84]. In the limit where
σ = 0, the GTN has a staggered pattern and becomes free of
randomness. One can readily show analytically and numer-
ically that the correlation function C(r) defined in Eq. (13)
exhibits short-ranged exponential decay as opposed to power-
law decay in this limit. This corresponds to a gapped phase
of noninteracting fermions in two spatial dimensions. This
gapped phase is expected to be stable against a finite amount
of (quenched) disorder, i.e., it is expected to be stable for
small σ . In the language of the random quantum circuit, this
gapped phase of disordered fermions should be identified with
an area-law entanglement phase (as opposed to the critical
entanglement phase), a statement that will be confirmed by

12We note in passing that the loop models discussed in
Refs. [19,23,83] are highly special (fine-tuned) cases of this, cor-
responding to covariance matrices either (i) with 	n = (n1, n2, n3) ∈
{(1, 0, 0), (0, 1, 0)}, or (ii) with 	n ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
with corresponding probabilities.

FIG. 15. (a) Inverse correlation length 1/ξ extracted from the
squared two-point correlation function in a staggered GTN with
Majorana bond number χ = 1, as function of the disorder strength
dictated by σ (see main text). For σ � 0.45 the correlation length
diverges, signaling a phase transition into a critical entanglement
phase. (b) Scaling of the entanglement entropy of half of the system
with system size for different values of the disorder strength σ .

the numerical simulations presented later. For σ = 1 the en-
semble reproduces the Haar-random ensemble that we have
introduced in Sec. IV. Therefore, we expect the same critical
entanglement phase for large values of σ as the one found in
the Haar-random GTN in Sec. IV.

We follow the same protocol and geometry as in Sec. IV
and conduct numerical simulations of the random square-
lattice pure-state GTN with the randomness (or disorder
strength) parametrized by σ as defined above. For the squared
two-point correlation function C(r) defined in Eq. (13), we fit
it to the form exp(−r/ξ ) and extract the correlation length
ξ for every choice of σ . The correlation length ξ is ex-
pected to be finite in the area-law entanglement phase which
corresponds to the localized (gapped) phase of disordered
fermions in two spatial dimensions, and is expected to diverge
as one approaches the critical entanglement phase from the
area-law side. Indeed, numerical results shown in Fig. 15(a)
confirm our expectations. We also calculate numerically the
half-system entanglement entropy SL/2 (as defined in Sec. IV)
in the “large circuit depth” limit with v → ∞. The numerical
results presented in Fig. 15(b) clearly show that when the
correlation length ξ is finite, SL/2 is of order 1, i.e., follows an

134206-16



CRITICALITY AND ENTANGLEMENT IN NONUNITARY … PHYSICAL REVIEW B 106, 134206 (2022)

area law. In contrast, SL/2 follows a log L behavior when the
correlation length diverges. The transition between the area-
law entanglement phase and the critical entanglement phase
occurs at σ � 0.45. Even though our random GTN model
studied here corresponds to a Chalker-Coddington network
model that is microscopically different from the model studied
in Ref. [84], our phase diagram is consistent with the phase
diagram for symmetry class DIII in two spatial dimensions
described in Ref. [84].

VI. RANDOM GTNS, NGCS, AND UNITARY DISORDERED
FERMIONS IN ALL SYMMETRY CLASSES

We have shown that any lattice pure-state GTN (including
the Haar-random ensemble discussed above) or nonunitary
Gaussian circuit (NGC) can be mapped, in a fixed realization
of disorder, to a unitary Chalker-Coddington network model
in symmetry class DIII residing on the same lattice. In this
section, we will discuss how to obtain random ensembles
of pure-state lattice GTNs that map to unitary disordered
Chalker-Coddington network models in all the symmetry
classes of the Altland-Zirnbauer 10-fold way symmetry clas-
sification. The key to obtaining these other symmetry classes
is to employ the idea of Clifford algebra extensions [47] and
consider additional constraints on the random ensemble of the
covariance matrix � that represents each Gaussian tensor in
the GTN. The mapping introduced in Sec. V still maps every
realization of the GTN into a Chalker-Coddington network
model with TR symmetry, PH symmetry, and chiral symme-
try, in every realization of disorder. When the extra constraints
on the random ensemble of Gaussian tensors of the GTN are
properly chosen, the resulting disordered Chalker-Coddington
network model can reside in any desired symmetry classes in
the Altland-Zirnbauer 10-fold way classification. In the fol-
lowing, we will first provide the construction of the complex
symmetry classes AIII and A. In the discussion of symmetry
class AIII, we will also present an embedding of symmetry
class BDI into symmetry class AIII. Following the discussion
of the complex symmetry classes, we will also provide a
systematic construction of each of the eight real symmetry
classes, namely, symmetry classes DIII, AII, CII, C, CI, AI,
BDI, and D. Moreover, this construction makes connections
between the entanglement criticality in GTNs and NGCs
and criticality in unitary systems of disordered noninteracting
fermions in all of the 10 symmetry classes.

A. Complex symmetry classes AIII and A

1. Symmetry class AIII

To construct models in symmetry class AIII, we impose an
additional U(1) symmetry constraint for each of the Gaussian
tensors. This requires us to consider tensor networks of even
Majorana bond number χ = 2n. We will require that each
tensor � obeys the condition

[�, Q] = 0 (45)

for a charge operator Q that is given by

Q ≡
(

0 −i
i 0

)
⊗ 1. (46)

Here, we assume as usual that the Majorana modes on � are
grouped together in legs, such that the (0 −i

i 0 ) part of the
operator Q only acts within the Majorana modes on the same
leg of the tensor and does not mix between the legs of the
tensor.

For the whole GTN to respect the U(1) symmetry, we also
require that the U(1) symmetry is compatible with the tensor
contractions, i.e., that when two U(1)-symmetric tensors �

and �′ are contracted, the resulting tensor also satisfies the
U(1)-symmetry condition (45). Remembering that the con-
traction between two tensors can be viewed as the projection
onto a maximally entangled state of the Majorana modes
residing on the contracted legs, the compatibility between the
U(1) symmetry and the tensor contraction can be guaranteed
by requiring that these maximally entangled states are also
U(1) symmetric. When the whole pure-state GTN respects the
U(1) symmetry, we can view the GTN as a charge-conserving
Gaussian tensor network based on complex fermions. As will
be explained later, when the U(1) charge of each tensor is at
half-filling, such a tensor network can be further interpreted
as a charge-conserving (nonunitary) quantum circuit acting on
noninteracting complex fermions.

We are interested in the behavior of the “maximally ran-
dom” U(1)-symmetric lattice GTN and its corresponding
random circuit. To obtain this ensemble, consider the fact that
in a square-lattice GTN, a four-leg pure-state Gaussian tensor
� with Majorana bond number χ (and fixed fermion parity)
can always be viewed as a point in the symmetric space SO(4χ )

U(2χ )
prior to imposing the condition of the U(1) symmetry. With
the extra U(1)-symmetry constraint of Eq. (45), the total space
of the Gaussian tensor � should be identified as the symmet-
ric space U(2χ )

U(χ+q)×U(χ−q) , where q is the total U(1) charge of
the Gaussian state |�〉 measured with respect to half-filling.
The appearance of the symmetric space U(2χ )

U(χ+q)×U(χ−q) can
be seen by noting that the U(1)-symmetry constraint (45)
ensures that there exists a complex fermion basis where the
charge operator Q takes the form (12χ 0

0 −12χ
) and the co-

variance matrix takes the form (iG 0
0 −iG∗) with G a 2χ × 2χ

Hermitian matrix such that G2 = 12χ . Physically, the matrix
1
2 (G + 12χ ) represents the two-point functions of complex
fermions in the U(1)-symmetric Gaussian state |�〉. The space
of 2χ × 2χ Hermitian matrix G with χ + q eigenvalues +1
and χ − q eigenvalues −1 is given by the symmetric space

U(2χ )
U(χ+q)×U(χ−q) .

For an isolated Gaussian tensor �, the total charge q can,
in principle, take any integer value between −χ and χ . How-
ever, we require q = 0 for each tensor in the GTN so that
the GTN can be interpreted as a Gaussian quantum circuit
that conserves U(1) charge. The charge conservation of the
corresponding quantum circuit can be more conveniently un-
derstood in the language of the GTN. Remember that the
GTN is constructed by first forming a tensor product of the
Gaussian states given by each tensor in the GTN, and then
by projecting the result of the tensor product onto the maxi-
mally entangled-pair states on all the contracted legs. In the
U(1)-conserving GTN, the U(1) charges of the maximally
entangled-pair states being projected onto are all at half-
filling. Therefore, we need to require the U(1) charge of each

134206-17



JIAN, BAUER, KESELMAN, AND LUDWIG PHYSICAL REVIEW B 106, 134206 (2022)

Gaussian state given by each tensor to be also at half-filling,
i.e., q = 0, so that the U(1) charge of the state living on the
boundary legs of the GTN, namely, the total charge of state
produced by the contraction of the GTN, is independent of the
size of the GTN. Having set q = 0 for each Gaussian tensor,
the maximally random ensemble of pure-state square-lattice
GTNs with U(1) symmetry is given by choosing every four-
leg Gaussian tensor in the GTN independently and randomly
as a point in the symmetric space U(2χ )

U(χ )×U(χ ) with the uniform
probability measure on this symmetric space.

Following the discussion in Sec. V, we map each realiza-
tion of the U(1)-symmetric square-lattice pure-state GTN to
a Chalker-Coddington network model on the square lattice.
Based on Eq. (37), the Gaussian tensor � on each site of
the GTN should be identified as the scattering S matrix of
the scattering process occurring on the corresponding site in
the Chalker-Coddington model. The classification given in
Ref. [41] tells us that a Chalker-Coddington network model
with its scattering S matrix on each site residing in the sym-
metric space U(2χ )

U(χ )×U(χ ) belongs to symmetry class AIII.
To further confirm this symmetry class identification, we

study the transfer matrix of each tensor in the U(1)-symmetric
square-lattice GTN. Similar to Sec. V A 3, we treat each four-
leg Gaussian tensor with each leg having Majorana bond
number χ as a two-leg tensor with each leg having Majorana
bond number 2χ . In the basis associated with the two legs (L
and R) of the Gaussian tensor � where the covariance matrix
� is written as (�LL �LR

�RL �RR
), the U(1) charge operator Q can

be chosen to take the form (σ
y ⊗ 1χ 0

0 σ y ⊗ 1χ
). As discussed

in Sec. V A 3, the full transfer matrix t[�] = (tp[�] 0
0 th[�])

governs the scattering process at the site in the Chalker-
Coddington network model given by the GTN. The U(1)
symmetry of the Gaussian tensor � leads to the condition that

[t[�], Q̃] = 0, (47)

where Q̃ = (σ
y ⊗ 1χ 0

0 σ y ⊗ 1χ
). This condition should be in-

terpreted as the U(1) charge conservation condition on the
scattering problem in the Chalker-Coddington network model.
Here, the charge operator Q̃ for the Chalker-Coddington
model derives from the charge operator Q in Eq. (46) that
imposes the constraint on the Gaussian tensor �. But, Q̃ and Q
should not be identified as they act on different vector spaces.
The constraint (47) enables us to write

t[�] = W

⎛
⎜⎝
tp+[�]

tp−[�]
th−[�]

th+[�]

⎞
⎟⎠W †, (48)

W = 1√
2

⎛
⎜⎝
1χ 1χ

i1χ −i1χ

1χ 1χ

−i1χ i1χ

⎞
⎟⎠, (49)

where W provides the basis rotation that diagonalizes the
charge operator Q̃. The first two diagonal blocks in this ex-
pression correspond to the P sector of the full transfer matrix
while the last two diagonal blocks correspond to the H sector.
The subscripts ± indicate the charge-Q̃ eigenvalues ±1 of

the associated blocks. On top of the charge conservation,
the condition that the original P-sector and H-sector transfer
matrices are complex conjugates of each other and belong to
the complexified special orthogonal group SO(2χ )C enforces
that

tp+[�] = (tp−[�]T)−1 = th−[�]∗ = (th+[�]†)−1, (50)

where tp+[�] belongs to the complex general linear group
GL(χ,C). Since the relation above implies that the full trans-
fer matrix t[�] with U(1) conservation is fully parametrized
by tp+[�], the full transfer matrix t[�] also corresponds to an
element of GL(χ,C). Moreover, it is easy to show that any
element of GL(χ,C) has a corresponding U(1)-symmetric
Gaussian tensor � [via the form of full transfer matrix in
Eq. (48) and the relations in Eq. (50)]. The result that the
group of U(1)-symmetric full transfer matrices t[�] is given
by GL(χ,C) is consistent with the group of transfer ma-
trices in symmetry class AIII as classified in Refs. [41,81].
Therefore, we conclude that the U(1)-symmetric pure-state
square-lattice GTN can be mapped to a unitary Chalker-
Coddington square-lattice network model in symmetry class
AIII.

Note that under TR symmetry, the charge operator Q̃ of our
“GTN-induced” Chalker-Coddington network model trans-
forms as

TR symmetry action : Q̃ → �
†
TRQ̃∗�TR = −Q̃, (51)

which implies the U(1)-symmetry action exp{iαQ̃} generated
by Q̃ commutes with the TR symmetry action. Therefore,
the TR symmetry defined for symmetry class DIII in fact
plays the role [44,48–50] of the chiral symmetry in symmetry
class AIII.

Having mapped the U(1)-symmetric pure-state GTN, in
every realization of disorder, to unitary Chalker-Coddington
network models in symmetry class AIII, the entanglement
phases of the random U(1)-conserving pure-state GTN and
NGC can be identified with phases of disordered noninter-
acting fermions in two spatial dimensions and in symmetry
class AIII. In particular, it is known [51–55] that this symme-
try class exhibits in two spatial dimensions a line of critical
fixed points parametrized by the dimensionless conductance
(a measure of the strength of disorder) varying continuously
along the line, where each point on the line is described
by a distinct interacting conformal field theory. Being free
of symmetry-allowed relevant or marginally relevant pertur-
bations, each one of the critical fixed points on this line
will again correspond to a critical entanglement phase in the
U(1)-conserving GTN and NGC, which will exhibit properties
such as a logarithmic scaling of the half-system entangle-
ment entropy SL/2 as defined in Sec. IV C based on general
reasoning provided in Refs. [18,25]. In contrast to symmetry
class DIII in two dimensions, the fixed points along this AIII
line possess in general no symmetry-allowed marginally ir-
relevant operators (the leading irrelevant operator has finite
scaling dimension). The analog in symmetry class AIII of
second disorder moment C(r) of the fermion two-point cor-
relation function defined as in Eq. (13) is free of logarithmic
corrections and is expected to decay as a pure power law
1/r2, owing to a relationship of this quantity at an absorbing
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boundary (see, e.g., Appendix A) with the point-contact
conductance [85].

Generalizing the discussion of the GTN with global U(1)
symmetry on the square lattice to lattices in higher dimen-
sions, we can identify entanglement phases in D-dimensional
U(1)-symmetric lattice GTNs as phases of symmetry-class-
AIII unitary disordered fermions in D spatial dimensions. In
particular, for all spatial dimensions D � 3, it is known that
a stable disordered metallic phase occurs in this13 as in all 10
symmetry classes [46,86].

Returning to the special case of the square-lattice GTN
with Majorana bond number χ in D = 2 dimensions, the
U(1)-symmetric condition is enforced by requiring each
Gaussian tensor � = (�LL �LR

�RL �RR
) to commute with a U(1)

charge operator Q which can be chosen to the take form
(σ

y ⊗ 1χ 0
0 σ y ⊗ 1χ

). In the same basis, if we further require

� to anticommute with the operator K = (σ
z ⊗ 1χ 0

0 −σ z ⊗ 1χ
),

the resulting full transfer matrix t[�] resides in the group
GL(χ,R) which is a subgroup of GL(χ,C). This state-
ment can be obtained by directly showing that the matrices
tp±[�] and th±[�] introduced in Eq. (48) are real once the
extra condition {�, K} = 0 is imposed [in addition to the
U(1)-symmetry condition {�, Q} = 0]. Notice that GL(χ,R)
matches exactly the group of transfer matrices of symmetry
class BDI [41,81]. Hence, the U(1)-symmetric GTN with an
extra condition {�, K} = 0 for each Gaussian tensor corre-
sponds to a Chalker-Coddington network model in symmetry
class BDI. Via the GTN-NGC correspondence, such a GTN
also corresponds to a U(1)-conserving NGC such that there
exists a complex fermion basis in which all the gates in
the circuit are purely real. Based on these correspondences,
the entanglement phases in such GTN and its corresponding
NGC can be identified with phases of disordered noninter-
acting fermions in symmetry class BDI. Focusing on D =
2, similar to symmetry class AIII, disordered noninteracting
fermions in symmetry class BDI also exhibit a line of critical
fixed points that are free of symmetry-allowed relevant or
marginally irrelevant operators [53,55]. Therefore, this line
of critical fixed points corresponds to a critical entanglement
phase for the U(1)-conserving GTN-NGC with the extra con-
straint {�, K} = 0. The conformal field theory that describes
such critical fixed points in symmetry class BDI predicts that
the corresponding critical entanglement phase should exhibit
logarithmic scaling of the half-system entanglement entropy
SL/2 as defined in Sec. IV C and a pure 1/r2 scaling (free of
logarithmic corrections) of the second disorder moment C(r)
of the fermion two-point correlation function defined as in
Eq. (13).

Interestingly, recent work [37] presents a numerical study
of a particular microscopic model of a random nonunitary
quantum circuit with a global U(1) symmetry acting on non-
interacting fermions. A critical phase is observed in which
the second moment of the fermion two-point function decays
with a 1/r2 power-law behavior. We notice that the circuits
involved in this particular microscopic model are not only

13See, e.g., Refs. [48,51,52].

U(1) symmetric but also real (after a change of basis). While
at the microscopic level, the random ensemble studied in
Ref. [37] looks different from the random ensemble of GTNs
and NGCs with a U(1) conservation law and the extra condi-
tion {�, K} = 0, the critical properties are expected to be the
same since they are governed by the universality class, which
depends only the symmetry class, which in this case is BDI.

2. Symmetry class A

The original Chalker-Coddington network model was first
introduced in Ref. [40] to tackle the two-dimensional integer
quantum Hall plateau transition (in the absence of inter-
actions). In this system, where the magnetic field breaks
time-reversal symmetry, only charge is preserved and, hence,
it belongs to symmetry class A. In the following, we will
provide a construction of lattice GTNs and NGCs whose
corresponding Chalker-Coddington network models reside in
symmetry class A.

To construct such a lattice GTN, we need to consider an-
other constraint on each Gaussian tensor � in addition to the
U(1)-symmetry constraint (45) discussed in Sec. VI A 1. We
introduce another operator � with real matrix elements (in
the same basis as that of the covariance matrix �) such that

�2 = 1, �T = �, [�, iQ] = 0. (52)

Note that we can view both � and iQ as operators in a
real matrix algebra, the latter operator satisfying (iQ)2 = −1

and (iQ)T = −iQ. For a pure-state GTN corresponding to
the symmetry-class-A unitary Chalker-Coddington network
model, we need to require each pure-state Gaussian tensor �

in the GTN to satisfy the following conditions:

[iQ, �] = 0, {�,�} = 0, (53)

where the first condition is exactly the same as the U(1)-
symmetry condition discussed in Sec. VI A 1. We also require
that the operators iQ and � do not mix or permute Majorana
modes on different legs of the tensor � so that the lattice
geometry of the GTN will not interfere with the constraints
(53) on each individual tensor in the GTN.

Let us discuss the square-lattice pure-state GTN as an
example illustrating this. Let χ be the Majorana bond number
of the GTN. The space of all 4χ × 4χ pure-state covariance
matrices � which satisfy the conditions in Eq. (53) can be
identified with the symmetric space U(χ ): We can choose a
basis where iQ takes the form iσ 0y ⊗ 1χ and � takes the form
σ z0 ⊗ 1χ . It can then be shown that the covariance matrices
� satisfying the constraint (53) are in one-to-one correspon-
dence with the χ × χ unitary matrices. We will consider the
random ensemble of GTNs with the constraints (53). In par-
ticular, it is natural to define the maximally random ensemble
by having every Gaussian tensor � in the GTN independently
chosen as a random point in the symmetric space U(χ ) with
uniform probability measure, the Haar measure.

As we have discussed in the context of symmetry class
DIII, the symmetric space of the Gaussian tensor at each site
of the GTN should be identified with the space of scattering S
matrices at the corresponding site of the Chalker-Coddington
network model obtained from the GTN. The appearance of
the symmetric space U(χ ) as the space of covariance matrices
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then confirms that the symmetry class of this type of Chalker-
Coddington network model should be identified as symmetry
class A [41].

In the square-lattice GTN, we can also study the space
formed by the full transfer matrix t[�] of the four-leg Gaus-
sian tensor � constrained by Eq. (53). As we did before, we
can think of each four-leg tensor � as a two-leg tensor (in a
quasi-one-dimensional geometry) with each leg having Ma-
jorana bond number 2χ . In the basis associated with the two
legs (L and R) of the Gaussian tensor � where the covariance
matrix � reads as (�LL �LR

�RL �RR
), the U(1) charge operator iQ can

be chosen to take the form (iσ 0y ⊗ 1χ/2 0
0 iσ 0y ⊗ 1χ/2

) and the oper-

ator � can be chosen to take the form (σ
z0 ⊗ 1χ/2 0

0 −σ z0 ⊗ 1χ/2
).

The relative sign in lower right block of � as compared to its
upper left block is to ensure that the tensor contractions (along
the quasi-one-dimensional geometry) are compatible with the
constraints (53), namely, that the contraction of two tensors
� and �′ satisfying Eq. (53) yields a third tensor that also
satisfies the same conditions. The constraints on the Gaussian
tensor � can be translated into the following conditions on the
full transfer matrix t[�] = (tp[�] 0

0 th[�]):

[ t[�], Q̃] = 0, t[�]† · J� · t[�] = J�, (54)

where Q̃ = (σ
0y ⊗ 1χ/2 0

0 σ 0y ⊗ 1χ/2
) and J� =

(σ
z0 ⊗ 1χ/2 0

0 σ z0 ⊗ 1χ/2
). The conditions above for the

full transfer matrix t[�] imply that the corresponding
Chalker-Coddington network model conserves the U(1)
charge Q̃ and also a current defined by J� [in addition
to the probability current Jpb, Eq. (32)]. The set of full
transfer matrices t[�] satisfying the conditions (54) forms
the group U( χ

2 ,
χ

2 ). This result is in agreement with the
group of transfer matrices in symmetry class A, which is
classified in Refs. [41,81]. We note that for the case of
χ = 2, the group U(1, 1) formed by the full transfer matrices
is exactly the group of transfer matrices appearing in the
symmetry-class-A Chalker-Coddington model introduced
in Ref. [40]. In fact, using the charge operator Q̃ and the
two conserved currents Jpb and J�, we can show that the
Chalker-Coddington network model obtained from the GTN
under the constraint (53) consists of four decoupled copies
of Chalker-Coddington network models with each copy only
conserving the U(1) charge symmetry. The four decoupled
copies (or “layers”) are related to each other by the action of
time-reversal (TR), particle-hole (PH), and chiral symmetries,
previously introduced in the context of symmetry class
DIII. Therefore, we can conclude the random ensemble of
square-lattice pure-state GTNs with each Gaussian tensor
constrained by Eq. (53) can be mapped to the disordered
unitary symmetry-class-A Chalker-Coddington network
model on the square lattice.

Our mapping between GTNs and NGCs and the corre-
sponding Chalker-Coddington network models in symmetry
class A thus relates the two-dimensional integer quantum Hall
plateau transition, which is a conformal critical point, to an
entanglement critical point in a GTN and NGC. Interestingly,
since the integer quantum Hall plateau transition is a transition
between topologically distinct gapped phases, the correspond-

TABLE I. Table [41,45,50] of all eight real symmetry classes of
S matrices in the current context (which are referred to as “time-
evolution operators” in those references) in the Cartan/Altland-
Zirnbauer classification, and their associated symmetric spaces Rp

(which are also known mathematically as classifying spaces). Each
symmetry class and its symmetric space is labeled by an integer p
mod 8.

Symmetry class Symmetric space Rp p mod 8

BDI SO(N + N ′)/[SO(N ) × SO(N ′)] 0
D SO(N ) 1
DIII SO(2N )/U(N ) 2
AII U(2N )/Sp(N ) 3
CII Sp(N + N ′)/[Sp(N ) × Sp(N ′)] 4
C Sp(N ) 5
CI Sp(N )/U(N ) 6
AI U(N )/O(N ) 7

ing transition in the GTNs and NGCs is thus also between
distinct area-law phases.

Again, the mapping from pure-state lattice GTNs under
the constraint (53) to Chalker-Coddington network models in
symmetry class A can be generalized to any dimensions. As
mentioned earlier in Sec. VI A 1, for all spatial dimensions
D � 3, it is known [46] that a stable disordered metallic
phase occurs in all 10 symmetry classes. Therefore, GTN in
symmetry class A and in dimensions D � 3 also naturally
admits a critical entanglement phase that corresponds to such
a disordered metallic phase.

B. Real symmetry classes

Disordered noninteracting fermion systems in the real sym-
metry classes are known to exhibit rich behavior in two spatial
dimensions (D = 2). For example, the symmetry classes BDI
and CII behave similarly to AIII, i.e., they exhibit lines of
critical fixed points.14 Class C is similar to class A, i.e. there
is a critical point [44,87]. Finally, class D is known to exhibit
stable critical phases as well as quantum critical points [88].

1. General constructions

For a given symmetry class, the scattering S matrices in
the Chalker-Coddington network model should belong to the
symmetric space given by the symmetry class. For all eight
real symmetry classes, the corresponding symmetric space is
summarized in Table I. As we discussed in Sec. V B 1, the
S matrices in a Chalker-Coddington network model obtained
from a GTN are exactly given by the covariance matrices
of the Gaussian tensors in the GTN. Therefore, to realize a
Chalker-Coddington network model in a specific symmetry
class using the GTN, one simply needs to find the correct set
of constraints on the individual Gaussian tensor � in the GTN
such that the space of permissible pure-state Gaussian tensors
matches the symmetric space of the desired symmetry class.

14See, e.g., Ref. [55] for a summary.
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A systematic way to find a right set of constraints for all the
eight real symmetry classes is to follow the so-called “Clifford
algebra extension problem” [47]. As shown in Table I, the
symmetric space Rp of every real symmetry class is labeled
by an integer p modulo 8. For a given symmetry class, a
procedure to find an appropriate set of constraints for the
Gaussian tensor in the GTN is as follows. We first find a
non-negative integer q such that Rp with p ≡ q + 2 mod 8
matches the desired symmetric space, i.e., we build all real
symmetry classes upon DIII, which has p = 2, i.e., q = 0,
is this notation (compare Table I.) Then, we write q real
skew-symmetric matrices �1,2,...,q such that

�2
i = −1, �T

i = −�i for i = 1, 2, . . . , q,

�i� j = −� j�i for i �= j. (55)

The matrices �1,2,...q generate the real Clifford algebra with q
negative generators Cl0,q(R). For each Gaussian tensor � in
the GTN, we require that

�i � = −� �i (56)

for i = 1, 2, . . . , q. Since � is also a real skew-symmetric
matrix such that �2 = −1, the set of matrices �1,2,...,q to-
gether with � all together generate the real Clifford algebra
with q + 1 negative generators Cl0,q+1(R). Therefore, we can
identify the space of permissible matrices � as the space of
extensions of the real Clifford algebra Cl0,q(R) (with all q
negative generators �1,2,...,q fixed) to the real Clifford algebra
Cl0,q+1(R). It is known that the space of such Clifford algebra
extensions is given by symmetry space Rp with p = q + 2
mod 8 (see Table I.) For the Clifford algebra extension prob-
lems, the corresponding symmetric spaces Rp are also referred
to the classifying spaces. Therefore, when a random GTN
consists of only Gaussian tensors obeying the constraints
given above, its corresponding Chalker-Coddington network
models belong to the desired symmetry class. Moreover, each
of the symmetric spaces admits a natural uniform measure.15

Therefore, we can always define the maximally random en-
semble of GTNs by having each of its Gaussian tensors drawn
from the specified symmetric space according to its uniform
probability measure.

In the special case with q = 0, no constraint is imposed on
the Gaussian tensor �. In this case, we recover the random
pure-state GTN studied in Secs. IV and in V. Indeed, for
q = 0, the symmetric space R2 = SO(2N )

U(N ) is the space of pure-
state covariance matrices with no additional constraint. Also,
the symmetry class associated with the symmetric space R2 is
symmetry class DIII, which is consistent with the discussion
in Sec. V.

For a random ensemble of D-dimensional GTNs with each
of its Gaussian tensors obeying Eq. (56), entanglement phases
in this random ensemble can be identified with the phases of
unitary systems of disordered noninteracting fermions in D
spatial dimensions in the symmetry class whose symmetric
space is given by Rq+2. However, we would like to comment
that the procedure provided above is not the only way to

15They are generalizations of spheres; see, e.g., corresponding com-
ments in Ref. [45].

realize GTNs that are mapped to Chalker-Coddington net-
work models in the desired symmetry class. For example,
an alternative procedure is provided by the Clifford algebra
extension problem with positive generators instead of those
with negative generators discussed above (see Appendix H
for more details). Also, a different construction for symmetry
class BDI as emerging from symmetry class AIII was already
discussed in Sec. VI A 1.

2. An alternative construction for symmetry class D

In Sec. VI B 1, we have discussed a systematic con-
struction of pure-state GTNs whose corresponding Chalker-
Coddington models belong to any of the eight real symmetry
classes. However, in some cases, this construction may re-
quire an unnecessarily large number of Majorana modes in
each Gaussian tensor of the GTN. For example, when applied
to the case of symmetry class D, the construction given in
Sec. VI B 1 requires a minimum of q = 7 negative Clifford
algebra generators �1,2,,...7. The minimal matrix dimensions
to accommodate the algebra of the operators �1,2,...,7 and the
covariance matrix � is 16 before we take into account the “leg
structure” (or geometry) of the Gaussian tensor � in the GTN.
Therefore, the construction given in Sec. VI B 1 requires at
least 16 Majorana modes in each Gaussian tensor in order
to realize the GTN that corresponds to a symmetry-class-D
Chalker-Coddington network model. In the following, we pro-
vide an alternative and minimal construction for symmetry
class D which is applicable to the square-lattice GTN with
Majorana bond number χ = 1.

For a generic square-lattice GTN with Majorana bond
number χ = 1 (which, as discussed, is in symmetry class
DIII), each four-leg Gaussian tensor can be described by a
4 × 4 covariance matrix �(	n) that can be parametrized follow-
ing Eq. (42). Here, we again adopt the ordering of Majorana
modes on a single four-leg tensor as shown in Fig. 14(a). In or-
der to realize the GTN that corresponds to a symmetry-class-D
Chalker-Coddington network model, we further require that

�(	n) · �′ = −�′ · �(	n), (57)

where �′ = (σ
z

−σ z ). Note that �′2 = 1 and �′T = �′.
Hence, �′ and �′� together generate the real Clifford algebra
Cl2,0(R) with two positive generators. The constraint (57)
on �(	n) can be satisfied by choosing 	n = (cos θ, sin θ, 0). In
the following, we will denote �[	n = (cos θ, sin θ, 0)] as �(θ )
for simplicity. Now, we view the four-leg tensor shown in
Fig. 14(a) as a two-leg tensor (with the Majorana modes γ̂1,2

residing on the leg L and γ̂3,4 residing on the leg R), which
enables us to discuss the full transfer matrix t[�(θ )] of the
tensor �(θ ). In addition to all the common properties shared
by all full transfer matrices, the constraint (57) leads to an
extra current conservation relation for the full transfer matrix
t[�(θ )]:

t[�(θ )]† · J�′ · t[�(θ )] = J�′ , (58)

where the extra current operator is given by J�′ = (σ
z 0

0 σ z ).
With this extra current conservation condition, the full trans-
fer matrix t[�(θ )] can be identified as an element of the
group O(1, 1). In fact, according to the classification given
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FIG. 16. Illustration of a quasi-three-dimensional tensor net-
work, which can be understood as a stack of W (here W = 3) layers
of the two-dimensional network connected in the z direction. We
apply periodic boundary conditions in the u direction.

in Refs. [41,81], the group O(1, 1) indeed matches the group
of transfer matrices of Chalker-Coddington network models
in symmetry class D.

In the Chalker-Coddington network model that corre-
sponds to the square-lattice GTN with a Gaussian tensor of
the form �(θ ) on each site, the scattering process at each
site, which is governed by the full transfer matrix t[�(θ )],
conserves two types of currents Jpb and J�′ . We can choose
a basis where both currents are diagonal matrices. In this
basis, the 4 × 4 full transfer matrix t[�(θ )] decouples into
two 2 × 2 blocks. That is to say that the Chalker-Coddington
network model studied here in fact consists of two decou-
pled layers of Chalker-Coddington network models. In fact,
each layer can be identified as a symmetry-class-D Chalker-
Coddington network model (with one mode per edge) on the
square lattice. The two layers of symmetry-class-D Chalker-
Coddington network model are interchanged under the chiral
symmetry action given �c.

In fact, this alternative construction for symmetry class D is
a special case of another systematic construction of GTNs that
correspond to Chalker-Coddington network models in any of
the eight real symmetry classes and in any dimensions. This
systematic construction, which is an alternative to the con-
struction given in Sec. VI B 1, is summarized in Appendix H.

VII. THREE-DIMENSIONAL TENSOR NETWORKS

As further generalization of our construction, we consider
the contraction of a three-dimensional random Gaussian ten-
sor network, as sketched in Fig. 16. In this construction, the
square lattice of the two-dimensional tensor network is re-
placed by a cubic lattice, and the state on the boundary is now
defined on a two-dimensional strip rather a one-dimensional
chain. Each tensor in this cubic-lattice GTN is given by an
independent Haar-random Gaussian pure state.

In the following, we will focus on the entanglement prop-
erties of this construction. For concreteness of this discussion,
we will consider a tensor network of length L and thickness W
and some depth v � W, L, as shown in Fig. 16. The boundary
state (residing on the top boundary of the GTN) is thus defined

on a square lattice of dimensions L × W with χ Majorana
modes on each site. We choose periodic boundary conditions
in the u direction, and open boundary conditions in the z
direction. We have also chosen a simple product state (graph-
ically represented by the blue dots in Fig. 16) at depth v = 0
as the initial state. With these choices, the three-dimensional
case can be understood as a stack of W connected layers of
two-dimensional random Gaussian tensor networks in the u-v
plane. The entanglement cut we consider is also shown in
Fig. 16: the L × W system where the boundary state resides
is cut into two halves of size L/2 × W and the length of the
cut itself is W .

In this geometry, an area-law scaling of the entanglement
entropy would correspond to

S ∼ W. (59)

This scaling would be expected for the ground state of a two-
dimensional (nonrandom) fermionic Hamiltonian with either
a gapped spectrum or a single gapless (Dirac) point [5,89],
as well as certain classes of critical systems [90,91]. If, on
the other hand, the ground state is described by a finite Fermi
surface, one expects a logarithmic violation of the area law,
thus leading to a scaling of the form

S ∼ W log(L/L0). (60)

Note that this is the same scaling that would also be ex-
pected for the ground state of a stack of W decoupled
one-dimensional systems each with a gapless Hamiltonian.

To gain some intuition into the three-dimensional GTN, we
can choose the Majorana bond number in the z direction, i.e.,
connecting layers, independently from the other directions;
we will use χz for the Majorana bond number along the z
direction and χ for the two directions within the u-v plane.
Consider first the case χz = 0. This corresponds exactly to
decoupled layers of the previously described two-dimensional
random Gaussian tensor networks, and the entanglement en-
tropy is thus the sum of the contributions from each individual
layer. We know that the entropy scaling of one layer is S =
ζ1(χ ) log(L/L0) with ζ1(χ ) as shown in Fig. 7. A stack of W
independent layers will thus have entropy

χz = 0 : S = W ζ1(χ ) log(L/L0), (61)

where ζ1(χ ) is the scaling prefactor of a single layer with
Majorana bond number χ .

Now consider the case of χz � χ , i.e., where the legs
along the z direction carry much more entanglement than the
other ones in the u-v plane. Heuristically, this is similar to
replacing one column of W tensors (along the z direction)
by a single tensor, which is equivalent to a single layer with
Majorana bond number W χ . This situation will produce the
entanglement scaling S ∼ ζ1(W χ ) log L, where ζ1(W χ ) is
the scaling prefactor for a single layer with bond dimension
W χ . As we have shown in Sec. IV C, ζ1 scales linearly with
the bond dimension, and therefore ζ1(W χ ) ∼ W ζ1(χ ). We
thus conclude that for the (D = 3)-dimensional network with
χz � χ ,

χz � χ : S = ζ1(W χ ) log(L/L0)

∼ W ζ1(χ ) log(L/L0). (62)
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FIG. 17. Entropy scaling in three-dimensional systems. The left panel (a) shows the scaling for fixed bond number χ = 8 (where we use
the same bond number in all three directions) with the length L of the system for a variety of W . Note that the y axis is entropy divided
by thickness W for better readability. In all cases, a logarithmic scaling with L is observed. The right panel (b) shows the prefactor of this
logarithmic scaling as a function of thickness W and for various bond numbers χ . Together, these results clearly establish W log L scaling
of the entropy. This is using periodic boundary condition in the L and open boundary condition in the W direction, but results for periodic
boundary condition in both directions are qualitatively similar.

Since we find similar scaling with W and with L in the limit
of both small and large χz, it is natural to expect that it holds
also for the isotropic case with χz = χ . This is substantiated
by our numerical results. Figure 17(a) shows the scaling of the
von Neumann entanglement entropy SL/2 for the cut shown in
Fig. 16 as a function of L (on a logarithmic scale) for different
choices of W from W = 2 to 6 and fixed Majorana bond
number χ = χz = 8. This confirms the suspected scaling of
the entropy proportional to log(L/L0). Figure 17(b) shows
the extracted prefactor ζ1 as function of both W and χ . Most
importantly, we find that the prefactor of the logarithm scales
linearly with W , i.e., consistent with the logarithmic violation
of the area law shown in Eq. (60).

VIII. OUTLOOK

In this work, we have established correspondences, as
shown in Fig. 1, among nonunitary Gaussian circuits (NGCs),
pure-state Gaussian tensor networks (GTNs), and unitary
noninteracting fermion systems subject to static Hermitian
Hamiltonians undergoing static unitary time evolution. These
correspondences enable the identification of entanglement
phases and criticality in random NGCs and in random pure-
state GTNs with their counterparts in disordered Hamiltonian
systems of noninteracting fermions. One natural direction to
consider is the effect of interactions in such tensor networks
and in nonunitary circuits. More specifically, one can con-
sider deformations of a GTN into a more general fermionic
tensor network where the quantum state associated with each
tensor is no longer given by Gaussian states. In the lan-
guage of quantum circuits, such deformations turn a NGC
into a more generic nonunitary quantum circuit that can no
longer be fully described by its action on single fermionic
operators. One interesting question worthy of future inves-
tigation concerns the stability of entanglement phases and
entanglement criticality obtained in GTNs and NGCs to such
deformations. Moreover, none of the pure-state GTNs and

NGCs we have investigated exhibit a volume-law entangle-
ment phase (in line with Ref. [43]), while, as exemplified by
Refs. [13–15,25,92,93], the volume-law entanglement phase
certainly exists in non-Gaussian and interacting random ten-
sor networks and in generic random nonunitary circuits. One
may ask how a volume-law entanglement phase can emerge
when the pure-state random GTNs and NGCs are deformed
by interactions.

Another possible avenue that could be explored is mixed-
state GTNs. Unlike the pure-state GTNs, a mixed-state GTN
does not naturally correspond to a NGC. However, as dis-
cussed in Appendix G, a mixed-state GTN still admits a
transfer matrix description and can be mapped to a Chalker-
Coddington network model residing inside symmetry class D
(if no further constraint is imposed). While it may be most
natural to expect a volume-law scaling of the entanglement en-
tropy in the mixed-state GTNs, it remains a question whether
there can be different entanglement phases in random mixed-
state GTNs that are distinguishable under other measures of
entanglement and that correspond to different phases of uni-
tary disordered fermions in symmetry class D.

Finally, as pointed out in Sec. II B, there is a subtle
yet important distinction between physical systems whose
nonunitarity is induced by measurement, and systems evolv-
ing under generic random nonunitary circuit dynamics. While
both can be described by ensembles of nonunitary circuits,
the former further requires two extra conditions. The first
condition is that the ensemble of nonunitary circuits gener-
ates a positive-operator-valued measure. The second condition
is that the probability for each circuit to appear needs to
follow Born’s rule (as explained in Sec. II B), whereas for
circuits where nonunitarity does not arise from measurements,
the probability measure can be chosen freely. It remains an
open problem to elucidate the exact relation between the two
types of systems. In particular, the general question about
the relationship between the universality classes describing
the entanglement criticality in these two types of systems
deserves further investigation. For the specific case of the
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Haar-random ensemble of pure-state GTNs introduced in
Sec. IV, we have shown in Appendix E that, when viewed
as a random ensemble of NGCs, the ensemble generates a
positive-operator-valued measure. However, in this study we
have assumed that each realization of the random GTN and
NGC appears with equal probability. While this is clearly
different from the Born-rule probability that one needs to
use when the same NGC ensemble is used to describe the
evolution under generalized (nonprojective) measurements,
how sensitive different universal behavior shown in different
parameter regimes of Fig. 15(a) is to this difference in the
choice of probability requires further study.
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APPENDIX A: NONINTERACTING SYSTEMS OF
FERMIONS SUBJECTED TO STATIC DISORDER:

BRIEF REVIEW

1. General considerations and description in terms
of Chalker-Coddington models

We begin by considering a system of noninteracting
fermions described by a Hermitian Hamiltonian in D = 2
spatial dimensions subject to disorder which is static, i.e., time
independent. (We will also briefly comment on the case of
D = 3 spatial dimensions.) In every realization of disorder,
the Hamiltonian generates a unitary time evolution. Upon
Fourier transforming from time to energy, only fermions at
the same energy couple to each other, owing to the absence
of interactions. The (2 + 1)-dimensional fermion system at
any fixed energy E is described by a (D = 2)-dimensional
statistical mechanics system [94]. Specifically, in terms of
the first-quantized Hamiltonian H of the (2 + 1)-dimensional
fermion system, the retarded (advanced) fermion two-point
function at energy E is expressed as

G±
a1,a2

(	r1, 	r2; E ± iε)

= 〈	r1|[(∓iE + ε ± iH)−1]a1,a2 |	r2〉
= 〈

ĉ±,a1 (	r1)ĉ†
±,a2

(	r2)
〉
E±iε (ε → 0+), (A1)

where additional indices a1, a2 may possibly appear (as in-
dicated) to characterize additional quantum numbers, when
needed. [The last equality corresponds to the second-
quantized formulation, ĉ±,a(	r) and ĉ†

±,b(	r) denoting canonical
fermion creation and annihilation operators.] From now on,
we assume that the system exhibits critical behavior at en-
ergy E = 0 and we will often omit the energy E from
our expressions. In all symmetry classes that possess either
particle-hole (charge-conjugation) or chiral symmetry, which
are the classes we are most interested in here in this work,
the single-particle Hamiltonian H changes sign under these
operations, and therefore E = 0 is a special value of energy
in those cases. At this energy the system is known to be
critical. In the other symmetry classes it is typically possible
to choose a generic value of energy. Because the (2 + 1)-
dimensional fermion system is noninteracting, all observables
can be expressed in terms of the two-point function. We will
now rewrite this two-point function in the language of the
so-called Chalker-Coddington network model [40].

For this purpose, it is convenient to consider (D = 2)-
dimensional position space being discretized on a lattice
which we choose here to be a square lattice (the details of
the lattice are unimportant), and we also choose an evolution
of the (D = 2)-dimensional system in discrete time steps. In
this way, one arrives at the Chalker-Coddington formulation
of the system. Here, these discrete time steps are those of
the time tH associated with the Hamiltonian H of the (D =
2)-dimensional fermion system and should not be confused
with the coordinate t of the square-lattice GTN, which is also
the circuit time for the NGC, corresponding to the Chalker-
Coddington model. Because time steps for the Hamiltonian H
are discrete, the fermion two-point function is now expressed
in the form

G±(I1, I2; E ± iε) = 〈I1|(1 − e±iE−ε U ±)−1|I2〉. (A2)

Here I j denotes a position 	r j on the square lattice (chosen
to be a center of a link) as well as, if needed, an additional
quantum number a j of the fermion at that lattice position [i.e.,
I j = (	r j, a j )]. As mentioned above, in the cases of interest,
the energy is usually set to zero, i.e., E = 0. The matrix
U ± ≡ U ±1 (where U = U +1) in Eq. (A2) is unitary, and can
be thought of as arising from a time evolution by a small
time step δtH with the first-quantized Hamiltonian H, i.e.,
writing U ± = exp{∓iδtH H}, thereby recovering Eq. (A1)
from Eq. (A2) in the limit of small δtH. Here, tH denotes
the time associated with the Hamiltonian H as introduced
above and we reiterate that tH is to be distinguished from the t
coordinate of the GTN. In fact, the coordinates (x, t ) or (u, v)
introduced in the main text for the square-lattice GTN should
be viewed as the spatial coordinates of the corresponding
Chalker-Coddington model.

Just as we can, in continuous time tH, represent the resol-
vent appearing in Eq. (A1) as the Laplace transformation of
the (retarded) time-evolution operator,

(∓iE + ε ± iH)−1 =
∫ ∞

0
dtH exp{−tH[∓iE + ε ± iH]},

(A3)
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the expression Eq. (A2) appearing for discrete time is the
discrete Laplace transform of the discrete time-evolution
operator

(1 − e±iE−εU ±)−1 =
∞∑

n=0

exp(−n[∓iE + ε])(U ±1)n.

(A4)

In the discrete formulation, the quantum state of the system at
(discrete) time tH is described by a wave function ψI (t ),

|ψ (tH)〉 =
∑

I

ψI (tH) |I〉 (A5)

=
lattice links∑

j

at link 	r j∑
a j

ψ	r j ,a j (tH) |	r j, a j〉. (A6)

The matrix U ± (having row and column indices Ii and I j)
describes the unitary (forward and backward) time evolution
of the quantum state of the network by one discrete time
step:

|ψ (tH + 1)〉 =
∑

I

ψI (tH + 1) |I〉, (A7)

where

ψI (tH + 1) =
∑

J

UI,J ψJ (tH). (A8)

In one time step the wave function evolves from link 	r j to
an adjacent link 	ri (	ri and 	r j are two links attached to the
same lattice point of the square lattice, usually referred to a
“node” in this context; all other matrix elements vanish owing
to the locality of the evolution) or, depending on the case (or
symmetry class), “reflects back” to the same link 	r j . Thus,
in one time step there is probability flux moving from one
link to an adjacent link through a node (or possibly “reflecting
back”). For this reason the matrix UI,J simply encodes the in-
formation of a “scattering matrix” or “S matrix” for scattering
of probability flux at a node.

The information contained at each node in a “scattering
matrix” can be recast in the familiar way in the language of a
“transfer matrix” at the same node. This process is reviewed
explicitly in Sec. V B 2 (where the square lattice is rotated by
45◦). Since we are interested in situations where the original
noninteracting fermion problem is subject to static (quenched)
disorder in (D = 2)-dimensional position space, these S ma-
trices, and consequently also the transfer matrices defined at
each node, will in general, in each realization of disorder,
differ from node to node.

Finally, we come back to higher spatial dimensions D:
While the above discussion was cast in the language of the
correspondence of Hamiltonians of noninteracting fermions
in D = 2 spatial dimensions subject to static disorder, with
(D = 2)-dimensional Chalker-Coddington models upon dis-
cretization of space and time coordinates (where the time
coordinate refers to the coordinate tH), the same procedure
carries through in higher dimensions. Thus, a noninteracting
fermion system in D = 3 spatial dimensions whose uni-
tary time evolution is governed by a Hamiltonian subject
to static disorder in (D = 3)-dimensional space, corresponds

to a (d = 2)-dimensional quantum circuit subject to dis-
order in both space and time via a (D = 3)-dimensional
Chalker-Coddington model. (A relatively recent detailed dis-
cussion of Chalker-Coddington models in D = 3 appeared in
Refs. [95,96] for symmetry classes C and AII.)

In any spatial dimension D, the properties of systems of
noninteracting fermions subject to static disorder are well
studied. In particular, in the absence of extra conserva-
tion laws arising from unitarily implemented symmetries,
these systems correspond to the so-called “10-fold way”
Altland-Zirnbauer classification, the 10 Altland-Zirnbauer
symmetry classes which exhaustively classify the behavior
of fermionic quantum systems invariant under symmetries
which arise from the most general antiunitary symmetry op-
erations (including amongst others, e.g., time reversal). There
are then 10 classes of such local scattering S matrices, and
unitary time-evolution operators U ±. In the presence of ad-
ditional unitary symmetries, more classes can arise in this
manner.

For the discussion of the numerical results, it is also im-
portant to take boundaries into account. In GTN and NGC
dynamics, one is typically interested in the physical state at
late times, i.e., after evolving for a sufficiently long time such
that physical quantities have reached a steady state. In our
GTN simulations in Sec. IV, this corresponds to considering
the state for sufficiently large network depth v. Hence, the cor-
responding Chalker-Coddington model has a spatial boundary
at a certain large value of v, denoted as vb (the subscript
“b” standing for boundary). One could also consider termi-
nating the GTN (and its corresponding Chalker-Coddington
model) at a certain large t-coordinate value t = tb, namely,
a large circuit time t for the corresponding NGC, instead
and study the fermion correlation on the boundary at t = tb.
However, the choice of the direction of the spatial boundary
of the Chalker-Coddington model does not affect universal
results. Here, we reiterate that both the v and t coordinates
of the GTN should be understood as spatial coordinates of
the Chalker-Coddington model (which are to be distinguished
from the discrete time tH that is introduced earlier in this
Appendix to relate the Chalker-Coddington model to the static
Hamiltonian H).

In the language of the corresponding Chalker-Coddington
model, the fact that the GTN-NGC is simply stopped at depth
v = vb, or at coordinate t = tb, amounts to a particular bound-
ary condition on the Chalker-Coddington model. We now
discuss what boundary condition this is. Physically, it is clear
that from the point of view of the discrete time evolution
(with discrete time step in tH) of the Chalker-Coddington
model that any quantum mechanical probability flux that
hits this boundary from “inside” the Chalker-Coddington
network simply escapes to what would be depths v or t
coordinates larger than v = vb or t = tb (i.e., “outside” the
Chalker-Coddington model). Moreover, the actual GTN and
the Chalker-Coddington model end at v = vb or t = tb, and are
thus not present at depths v or t coordinates larger than v = vb

or t = tb. Therefore, no quantum mechanical probability flux
will ever enter the Chalker-Coddington model through this
boundary from depths v or t coordinates larger than v = vb

or t = tb, i.e., from “outside” the Chalker-Coddington net-
work. This type of boundary condition is well known in the
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context of Chalker-Coddington models: It is what is called an
absorbing boundary condition [85,97]. One can also show at
the microscopic level of the GTN that the absorbing boundary
condition should be applied to the boundary of the corre-
sponding Chalker-Coddington model at depth v = vb or t
coordinate t = tb. We remark that when Chalker-Coddington
models are used to describe and/or compute the electrical or
thermal conductance properties of systems of noninteracting
fermions in D spatial dimensions subject to static disorder,
such absorbing boundary conditions represent idealized con-
tacts of the conducting system with so-called ideal leads to
which the system is connected in order to measure and/or
define corresponding conductances.16

2. Field theory description of disorder-averaged observables

On length scales much longer than the mean-free path
arising from disorder (serving as a microscopic short-distance
“cutoff” scale), the theoretical description of these systems
is known to be very systematic and geometrical. Disorder-
averaged observables for any Hamiltonian with static disorder
in any one of the 10 symmetry classes possess a “hydrody-
namic” description in terms of a specific nonlinear-σ -model
(NLSM) field theory, one for each symmetry class [41,46].
(For a more recent discussion of this dictionary, see, e.g.,
Refs. [44,45,50].) The observable described by these long-
length-scale theories is the average of the modulus square
of the retarded two-point function, Eqs. (A1) and (A2), and
higher-disorder moments thereof.

In a nutshell, the field theory represents the disorder aver-
age of the absolute square of the two-point function, which is
the average of the product of the retarded and the advanced
two-point function:

G+
a,a(	r1, 	r2) [G+

b,b(	r1, 	r2)]∗ = G+
a,a(	r1, 	r2) G−

b,b(	r2, 	r1)

= 〈(ĉ+,a(	r1)ĉ†
−,b(	r1))(ĉ†

+,a(	r2)ĉ−,b(	r2))〉
∝ 〈Q+−

a,b (	r1)Q−+
b,a (	r2)〉. (A9)

Here, Q+−
a,b is a complex Hermitian Hubbard-Stratonovich

field [thus satisfying (Q+−
a,b )∗ = Q−+

b,a ], whose averages are
evaluated using the action for the NLSM (parametrized by
Q+−

a,b ) in the corresponding symmetry class. In this formu-
lation, the indices are expanded to include replica indices
α, β ∈ {1, . . . , n}, i.e., a → (a, α) and b → (b, β ). The num-
ber n of replicas is taken to zero, i.e., n → 0, at the end of the
calculation.

Let us now specialize to symmetry class DIII which is
discussed in the main part of the paper. Since this describes
a superconductor, the second-quantized Hamiltonian can be
written as a bilinear of Majorana fermions γ̂a(	r), and the

16Contacts occurring in the real world are of course known to
possess contact resistances which have to be taken into account, but
which are solely properties of the physical contacts themselves. The
notion of an idealized contact allows the discussion of the conduction
properties of the sample, without reference to the details of the con-
tact which could be included into the calculation of the conductance
of the system connected to a realistic contact at a later point.

corresponding first-quantized Hamiltonian is antisymmetric
and purely imaginary. We can obtain a formulation in terms
of complex fermions, as the one used in Eqs. (A1) and
(A9) above, by introducing a second copy η̂a(	r) of Majorana
fermions and defining ĉa(	r) ≡ [γ̂a(	r) + iη̂a(	r)]/

√
2. Then,

Eq. (A1) represents the two-point function in the form written.
Consider now the quantity in Eq. (A9) where the two points
	r1 and 	r2 are located near the (“final” v = vb or “final” t = tb)
boundary of the circuit for E = 0 (where the system is criti-
cal). Because 	r1 and 	r2 are near the boundary it turns out that
we can now set ε → 0. We see from Eq. (A1) that at E = ε =
0 this expression is antisymmetric under exchange of (	r1, a1)
and (	r2, a2). Expressing this in terms of Majorana fermions γ̂

and η̂ defined above, the first two-point function in Eq. (A9)
equals 2〈γ̂a(	r1)γ̂a(	r2)〉. We can now simply replace ĉ−,b in
the same equation by a second copy ĉ+,b of the fermion ĉ+,a

yielding the same two-point function. Using this in Eq. (A9)
we see that the left-hand side of this equation is proportional to
(i.e., four times) the second moment of the Majorana fermion
two-point function, 〈γ̂a(	r1)γ̂a(	r2)〉 〈γ̂b(	r1)γ̂b(	r2)〉, evaluated at
two points on the boundary. The indices a �= b can be taken to
be replica indices. This is the quantity evaluated numerically
in Eq. (13) of Sec. IV B of the main part of the paper. Next,
we discuss the right-hand side of the Eq. (A9).

In symmetry class DIII of interest in the main part of
this paper, the NLSM field Q+−

a,b is known to be real and
an element of the (special) orthogonal group Q+−

a,b = Oa,b ∈
SO(n), where a, b = 1, . . . , n are replica indices, and Q−+

b,a =
(O−1)a,b the inverse group element. Moreover, at an absorbing
boundary such as the one at depth v = vb or t coordinate
t = tb for the Chalker-Coddington model that corresponds
to a GTN that terminates at v = vb or t = tb, the NLSM
field O(	r) ∈ SO(n) tends to the identity element in the group.
Parametrizing this field in terms of the Lie algebra O(	r) =
exp{i∑a<b Tab φab(	r)}, where Tab are suitably normalized
matrices antisymmetric in a and b, the absorbing boundary
condition is a Dirichlet boundary condition on the fields φab

(antisymmetric in indices a and b). The correlation function of
Majorana bilinears at the boundary will then be given by the
normal derivative at the boundary of the NLSM field O(	r),
and will hence be proportional to ∂

∂v
φab(	r) or ∂

∂t φab(	r), where
the derivatives are taken at the “final” depth v = vb or the
“final” t coordinate t = tb of the Chalker-Coddington model,
depending on the formulation we chose to consider.

The action of the NLSM in class DIII,

S =
∫

dd	r Tr

{
1

2g
( 	∇O−1)( 	∇O) − ε(O + O−1)

}
(A10)

simplifies, upon rescaling in the usual manner φab →
φab/

√
g, to leading order for small coupling constant g, i.e.,

in the metallic phase, to a Gaussian action in the free scalar
fields φab. The two-point function of the normal derivatives
along the boundary thus gives a power law decaying with dis-
tance along the boundary with exponent =2. This power law
acquires a significant correction from the leading irrelevant
operator, which is known to be marginally irrelevant, at the
metallic Gaussian fixed point of the NLSM. The functional
form of the boundary correlation function of the Majorana
fermion bilinear in the presence of this marginally irrelevant
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operator in the bulk is computed in Appendix B by computing
suitable renormalization group (RG) functions, and solving
the corresponding Callan-Symanzik (RG) equation for the
boundary correlation function. The resulting functional form
for this correlation function has been fit successfully in the
main part of this paper to the same function, computed nu-
merically.

APPENDIX B: LOGARITHMIC CORRECTIONS TO
SCALING OF SECOND MOMENT OF THE FERMION

CORRELATION FUNCTION IN THE
SYMMETRY-CLASS-DIII METALLIC PHASE

1. Setup

We start from the long-wavelength formulation of disor-
dered Majorana fermions in symmetry class DIII and D = 2
spatial dimensions, the NLSM in Eq. (A10), valid on length
scales large compared to the mean-free path. This is a special
type of NLSM (also known as the “principal chiral model”)
in which the field O(	r) ∈ SO(n) is an element of a group [in
the present case the (special) orthogonal group], which we
parametrize as

O(	r) = exp

{
i
∑

A

φA(	r) TA

}
, (B1)

where n, the number of replicas, tends to zero at the end of the
calculation, a well-understood limit in the present situation.
Here, φA(	r) are real fields, and TA are n(n − 1)/2 matrices
generating infinitesimal SO(n) rotations which form a basis of
the Lie algebra in the defining (n-dimensional) representation
suitably normalized, i.e., Tr(TATB) = δA,B, as in Appendix B 4
below. One can choose the subscript A that labels the SO(n)
generator TA to be A = (a, b) with 1 � a < b � n, but this
will be unimportant in the present section.

Upon inserting the parametrization from Eq. (B1) into the
action (A10) appearing in the Boltzmann weight exp{−S}
for the resulting statistical mechanics model describing
disorder-averaged observables, this action can be written in a
perturbative expansion in the parameter g,17 about a Gaussian
fixed-point theory (describing the metallic fixed point in class
DIII) as

S = S0 + Sint,

S0 =
∫

	r

1

8π
(∂μϕA)(∂μϕA),

Sint = λ

∫
	r

[(
∂μϕA1

)
ϕB2

]
CA1B2HCHA2B1

[
ϕA2

(
∂μϕB1

)] + O(λ2),

where
∫

	r = ∫
d2	r, φA = (

√
g/(4π )) ϕA, λ = κ0 g where κ0 is

a fixed positive rational number (whose value is immaterial),
O(λ2) denotes terms of order λ2, and the totally antisymmet-
ric and cyclically invariant coefficients CABC characterize the

17Signifying physically the inverse longitudinal thermal conductiv-
ity divided by kBT (where T is temperature), in the zero-temperature
limit, of the system of fermionic BCS quasiparticles deep inside the
superconducting phase of a superconductor in symmetry class DIII.

structure constants of the Lie algebra of the group SO(n),

[TA, TB] = iCABC TC . (B2)

The action S0 describes the metallic fixed point of free scalar
fields in D = 2 dimensions, an elementary two-dimensional
CFT in which each scalar field is a sum of holomorphic and
antiholomorphic fields,

ϕA(	r) = ϕA
L (z) + ϕA

R (z∗), (B3)

where z = x + iy, z∗ = x − iy when 	r = (x, y)T. Using
Eqs. (B2) and (B3) and (1/4)∂μ∂μ = (∂/∂z)(∂/∂z∗) = ∂z∂z∗

we arrive at the following form of the action that we will use
in the sequel:

S = S0 + Sint,

S0 =
∫

	r

1

2π

(
∂zϕ

A
L

)(
∂z∗ϕA

R

)
,

Sint = λ

∫
	r

[(
∂zϕ

A1
L

)
ϕ

B2
L

]
CA1B2HCHA2B1

[
ϕ

A2
R

(
∂z∗ϕ

B1
R

)] + O(λ2).

(B4)

We will need the correlators of the scalar fields at λ = 0,

〈
ϕA

L (z1)ϕB
L (z2)

〉 = −δAB ln z12,〈
ϕA

R (z∗
1 )ϕB

R (z∗
2 )
〉 = −δAB ln z∗

12〈(
∂zϕ

A
L

)
(z1)ϕB

L (z2)
〉 = (−1)δAB

z12
,

〈(
∂z∗ϕA

L

)
(z∗

1 )ϕB
L (z∗

2 )
〉 = (−1)δAB

z∗
12

,

〈
ϕA

L (z1)
(
∂zϕ

B
L

)
(z2)

〉 = δAB

z12
,

〈
ϕA

L (z∗
1 )
(
∂z∗ϕB

L

)
(z∗

2 )
〉 = δAB

z∗
12

. (B5)

No summation over repeated indices is implied here.

2. Absorbing boundary

We also need to discuss the absorbing boundary condition
which we place at y = Im(z) = 0, the real axis of the complex
z plane, at which (as already discussed in Appendix A 2) the
NLSM field from Eq. (B1) tends to the identity group element,
O(	r) → 1, implying φA(	r) → 0. This hence also implies a
Dirichlet boundary condition on the scalar field in Eq. (B3):

ϕA(	r) = ϕA
L (z) + ϕA

R (z∗) → 0, as Im z = y → 0

or ϕA
R (z∗) → (−1)ϕA

L (z), as Im z = y → 0. (B6)

Because the scalar field φA vanishes at the absorbing bound-
ary, the two-point function of the field O(	r) near the boundary
becomes that of the normal derivative ( ∂

∂y ϕ
A
L ) (or equivalently

of the normal derivative of −ϕA
R). That two-point function

reads as, in the noninteracting fixed-point theory [Eq. (B4)
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at λ = 0],〈(
∂

∂y
ϕA

L

)
(x1)

(
∂

∂y
ϕB

L

)
(x2)

〉

=
〈[

∂z

∂y

(
∂zϕ

A
L

)]
(x1)

[
∂z

∂y

(
∂zϕ

B
L

)]
(x2)

〉
= δA,B

x2
12

. (B7)

In conclusion, the NLSM field O(	r) near the boundary be-
comes a boundary operator which we denote18 by �s(x) ≡
limy→0( ∂

∂y ϕ
A
L ); its two-point function at the fixed point is19

〈�s(x1)�s(x2)〉 = 1

x2
12

. (B8)

In the next subsection, we will discuss the effect of the
interaction λ on this boundary two-point function. For this
purpose, it will be crucial to understand the behavior of the
interaction term Sint from Eq. (B4) near the absorbing bound-
ary. Here, the region of integration over 	r will be the upper
complex z plane, and thus the argument of ϕA

L (z) will be in the
upper complex plane. On the other hand, due to the Dirich-
let boundary condition, the second line of (B6) implies that
([ϕA

R (∂z∗ϕB
R )] − [ϕB

R (∂z∗ϕA
R )])z∗ is the analytic continuation of

the expression ([ϕA
L (∂z∗ϕB

L )] − [ϕB
L (∂z∗ϕA

L )])z from the upper-
half complex plane into the lower-half complex plane,20 the
two expressions becoming equal to each other on the real axis.
Thus, the right-moving factor (involving ϕR) of the interaction
operator in Sint is located precisely at the mirror image with
respect to the real axis of the left-moving factor, and all scalar
fields are left moving (ϕL) after this analytic continuation.
This fact turns out to be crucial for the ability to perform the
integral over half-space, the upper-half complex plane, in an
efficient manner.

Before proceeding to the effect of the interaction λ on the
correlation function in Eq. (B8), we turn to the N th-disorder
moments of the square of the Majorana correlation function
appearing in Eq. (13), namely, 〈iγ̂p,mγ̂p+r,n〉2N , discussed at
the very end of Sec. V C 1. As follows from the discussion
in the two paragraphs preceding Eq. (A10), these moments
are described in NLSM language by the two-point function of
the n-fold product of fields in N different replicas at the same
boundary point x, limy→0[( ∂

∂y ϕ
A1
L (x)) . . . ( ∂

∂y ϕ
AN
L (x))]. Since

at the metallic fixed point, Eq. (B4) with λ = 0, all replica
indices are decoupled, this two-point function equals the N th
power of the N = 1 result from Eq. (B8), i.e., it decays with
the 2N th power of distance. This was the result mentioned in
the main text at the end of Sec. V C 1.

18The subscript s stands for “surface,” which in the present context
just means in general “boundary,” in particular a one-dimensional
boundary (the real axis) of (D = 2)-dimensional (bulk) position
space.

19The two-point function is independent of the choice of index A
due to permutation symmetry of the replica indices.

20The antisymmetrization is implicit due to the contraction with the
antisymmetric structure constant CABC .

3. Renormalization group calculation

The purpose of this section is to obtain the renormaliza-
tion group (RG) anomalous dimension function [denoted by
γs(λ) below] of the boundary operator �s, which leads to the
functional form of the two-point function in the presence of
the marginally irrelevant bulk perturbation � as determined
as the solution of the Callan-Symanzik (RG) equation for this
function.

The most efficient way to perform the one-loop RG cal-
culation is using the operator product expansion (OPE) and
tracking the change of the action S upon changing a hard
short-distance cutoff [98–101]. We will need to consider the
renormalization of the bulk operator �(	r) = �(z, z∗) appear-
ing in the interaction term in (B4):

Sint = λ

∫
	r
�(	r) + O(λ2) (B9)

as well as that of the boundary operator �s(x) = ∂
∂y ϕ

A
L (x)

appearing in Eqs. (B8) and (B7). In this subsection, we carry
out this RG calculation using the results obtained for the
corresponding OPE coefficients in Appendix B 5 below. These
OPE coefficients are

�(z1, z∗
1 )�(z2, z∗

2 ) ∼ −b

z12z∗
12

�(z2, z∗
2 ) + · · · , z1 → z2

�(z, z∗)�s(x = 0) ∼ −bs

zz∗ �s(x = 0) + · · · , z → 0 (B10)

where the ellipses denote subleading terms in the considered
limit. As mentioned, the numbers b and bs are computed
explicitly in Appendix B 5.

These OPE coefficients turn out to imply the following
renormalization group (RG) equations for the bulk coupling
constant λ, as well as for a coupling constant21 [102] hs

conjugate22 to the boundary operator �s(x) when added to the
action as S → S(hs) = S − hs

∫
dx �s(x):

dλ

dl
= β(λ) = −π (−b)λ2 + · · · ,

dhs

dl
= −2π (−bs/2)λhs + · · · , (B11)

21The renormalization of the boundary operator �s by the bulk
perturbation specified by the bulk operator � arises from the inte-
gral over bulk positions 	r = (z, z∗) in the upper-half complex plane.
Owing to the OPE in the second line in (B10), this integral is loga-
rithmically divergent at short distances coming the integration region
near the position of the boundary operator �s(x = 0) located on the
real axis at position x = 0. Due the analytic continuation property of
the interaction operator �(z, z∗) discussed in the paragraph below
(B7), and since the integral over the bulk interaction operator is
only over the upper-half complex plane, the effect of this integration
over the location of the bulk interaction on the RG equation for the
boundary operator �s is half of what it would have been had the
boundary operator �s been replaced by another bulk operator. This
type of mechanism was first used [102] in a similar (but not identical)
context for the renormalization of a boundary operator due to bulk
operators in the context of one-dimensional Heisenberg quantum
spin chains.

22Imagine a surface (boundary) “boundary magnetic field.”
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where dl is the infinitesimal increase of the logarithm of the
short-distance cutoff during a RG step. The second equa-
tion provides the anomalous dimension function γs(λ) of the
boundary operator �s(x), defined by

γs(λ) = (1 − 1) − 1

hs

dhs

dl
= 2π (−bs/2)λ + · · ·, (B12)

where the (1 − 1) part means that the dimension of the bound-
ary is 1, and the scaling dimension of the boundary operator
at λ = 0 is also 1.

The two-point function of the boundary operator in the
presence of the coupling constant λ of the marginally ir-
relevant bulk operator � is then found by solving the
RG equation for this two-point function (the usual Callan-
Symanzik equation), yielding

〈�s(x1)�s(x2)〉 = 1

(x21)2
exp

{
−2

∫ λ(x12/a)

λ(1)
dλ

γs(λ)

β(λ)

}
× F [λ(x12/a)], (B13)

where

λ(el ) = λ

1 + π (−b)λ l
(B14)

is the running coupling constant, and F [. . . ] is a function that
is finite at zero argument.

In Appendix B 5 below we obtain the results

b = C (2)
ad j, bs = −C (2)

ad j, and C (2)
ad j = 2(n − 2), (B15)

where C (2)
adj is the value of the quadratic Casimir invariant in

the adjoint representation of SO(n). As a first basic check,
we then conclude from the first line in Eq. (B11) that the
bulk coupling constant λ is indeed marginally irrelevant (in
the infrared, where l increases) in the replica limit n → 0.

Finally, inserting the values obtained for b and bs into the
functions β and γs appearing in the integrand of the integral
in Eq. (B13) above, we obtain for the boundary two-point
function

〈�s(x1)�s(x2)〉 = [1 + 4πλ ln(x12/a)]2

(x12)2
, (B16)

where λ0 = 4πλ = 4πκ0g. This is the result reported in
Eq. (14) of the main text (up to a multiplicative factor which
can always be absorbed by redefining the normalization of the
field �s).

4. Summary of relevant group theory facts,
and derivation of Eq. (B2)

a. Summary of group theory facts

In the following we summarize some basic group theory
facts (and conventions) that we will use. We normalize the
generators TA of infinitesimal SO(n) rotations in the defining
(n-dimensional) representation via

Tr(TATB) = δA,B. (B17)

The structure constants defined in Eq. (B2) are known to
define the generators(

T adj
A

)
BC = (−i)CABC (B18)

of infinitesimal SO(n) rotations in the [n(n − 1)/2]-
dimensional adjoint representation. Using those, the quadratic
Casimir invariant in the adjoint representation C (2)

adj is ex-
pressed as

CABCCDBC = C (2)
adj δAD, (B19)

where C (2)
adj = 2(n − 2). We will also need some basic infor-

mation about quartic invariants, which arise when considering
traces of four generator matrices TA. In particular,23

Tr(TATBTCTD) = α Tr(T{ATBTCTD}) + β [(−i)CHAB(−i)CHCD

+(−i)CHDA(−i)CHBC], (B20)

where α and β are positive numbers (whose specific values
are not needed here) and the curly brackets under the trace
on the right-hand side of the first line denote complete sym-
metrization of the four indices A, B,C, D that symmetrized
trace (multiplying α) defines the quartic invariant of the group
SO(n).

b. Derivation of Eq. (B2)

After taking the derivative of the expansion of the
parametrization from Eq. (B1) to second order in φA

∂μO(	r) = i(∂μφA)TA + i2

2!

[(
∂μφA1

)
φA2

+φA1

(
∂μφA2

)]
TA1 TA2 + · · · (B21)

and similarly for ∂μO−1(	r), we insert the result into the action
(A10) yielding

Tr[(∂μO−1)(∂μO)] = Tr({−i(∂μφA)TA}{i(∂μφB)TB})

+ 1
4

[(
∂μφA1

)
φA2 + φA1

(
∂μφA2

)]
× [(

∂μφB1

)
φB2 + φB1

(
∂μφB2

)]
× Tr

(
TA1 TA2 TB1 TB2

)
, (B22)

where we have used the fact that the trace of three generator
matrices is antisymmetric for groups whose defining represen-
tation is real, such as SO(n) and USp(2n), in particular

Tr(TATBTc) ∝ CABC, (B23)

implying that all traces of three T matrices appearing in the
expansion vanish (due to the symmetry of the terms with
which these traces are contracted). Finally, we use Eq. (B17)
in the first term, and Eq. (B20) in the second term on the
right-hand side of Eq. (B22). The first term on the right-hand
side of Eq. (B20), totally symmetric in all four indices, yields
when contracted against the other terms a total derivative
(∂μ∂μ)(φA1φA2φB1φB2 ) which can be dropped, while the sec-
ond term on the right-hand side of the same equation vanishes
upon contraction due to symmetry. The remaining third term
on the right-hand side of Eq. (B20) then gives the interaction

23The following equation can be obtained, e.g., by repeating for
the generators of the defining representation the steps presented in
Appendix C1 of Ref. [101] for the generators of the adjoint represen-
tation. The structure constants fC

AB in that reference correspond to
iCABC in the notations of this paper.
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term listed in Eq. (B2), concluding the derivation of this
equation.

5. Details of the calculations of operator product expansion
(OPE) coefficients

a. Bulk-bulk OPE

We begin with the bulk operator �(	r) appearing in the
interaction Sint in Eq. (B4) which factorizes into a product of a
holomorphic (“left-moving”) and an antiholomorphic (“right-
moving”) part.

(i) We will first discuss the OPE of two holomorphic parts
of this operator at two positions z1 and z2:[(

∂zϕ
A1
L

)
ϕ

B2
L

]
z1

CA1B2H
[(

∂zϕ
A′

1
L

)
ϕ

B′
2

L

]
z2

CA′
1B′

2H ′

=
{

δB2A′
1

z12

[(
∂zϕ

A1
L

)
ϕ

B′
2

L

]
z2

− δB′
2A′

1

z12

[
ϕ

B2
L

(
∂zϕ

A′
1

L

)]
z2

}

× CA1B2HCA′
1B′

2H ′ + · · ·

= 1

z12

[(
∂zϕ

A1
L

)
ϕ

B′
2

L

]
z2

× {Ca1,B2,HCB2B′
2H ′ − CA1B2H ′CB2B′

2H } + · · ·

= 1

z12

[(
∂zϕ

A1
L

)
ϕ

B′
2

L ]z2 i2CA1B′
2H ′′CH ′′HH ′ + · · ·. (B24)

The last equality follows because, upon making use of
Eq. (B18), the curly bracket on its left-hand side can be
written as a commutator of the matrices T adj in the adjoint
representation

i2{(T adj
H

)
A1B2

(
T adj

H ′
)

B2B′
2
− (

T adj
H ′

)
A1B2

(
T adj

H

)
B2B′

2

}
= i2

{
iCHH ′H ′′

(
T adj

H ′
)

A1B′
2

}
. (B25)

The result on the right-hand side of the last equality in
Eq. (B24) now follows upon making once again use of
Eq. (B18).

(ii) The OPE of two of the antiholomorphic parts of the
bulk operator O(	r) at two positions z∗

1 and z∗
2 is obtained in

the analogous way with the result[
ϕ

A2
R

(
∂z∗ϕ

B1
R

)]
z∗

1
CHA2B1

[
ϕ

A′
2

R

(
∂z∗ϕ

B′
1

R

)]
z∗

2
CH ′A′

2B′
1

= [(
∂z∗ϕ

B1
R

)
ϕ

A2
R

]
z∗

1

[(
∂z∗ϕ

B′
1

R

)
ϕ

A′
2

R

]
z∗

2
CB1A2HCB′

1A′
2H ′

= 1

z∗
12

[(
∂zϕ

B1
L

)
ϕ

A′
2

L

]
z∗

2
i2CB1A′

2H ′′CH ′′HH ′ + · · ·

= 1

z∗
12

[
ϕ

A2
L

(
∂zϕ

B1
L

)]
z∗

2
i2(−1)CA2B1H ′′CH ′′HH ′ + · · ·. (B26)

(iii) Combining the last two equations we obtain the first
OPE listed in Eq. (B10) with (−b) = −C (2)

ad j upon making use
of Eq. (B19).

b. Bulk-boundary OPE

In this section we discuss the renormalization of the
boundary operator �s(x) = (∂zϕ

A
L )x whose two-point func-

tion appears in Eq. (B7), by computing its OPE with the bulk
operator � appearing in the perturbation, Eqs. (B9) and (B4).
It proves convenient to place the boundary operator �s at the

origin z = 0 on the real axis, as in the second of Eq. (B10).
Using Wick’s theorem and Eq. (B5) yields

�(z, z∗)�s(z = 0) = ([
ϕ

B2
L

(
∂zϕ

A1
L

)]
z(−1)CB2A1H

× [
ϕ

A2
L

(
∂zϕ

B1
L

)]
z∗CA2B1H

)(
i∂zϕ

E
L

)
z=0

= −δB2E

z

[
ϕ

A2
L

(
∂zϕ

B1
L

)]
z∗
(
i∂zϕ

A1
L

)
z=0

×CB2A1HCA2B1H + · · ·

= −δB2EδA2A1

zz∗
(
i∂zϕ

B1
L

)
z=0(−1)

×CEA1HCA1B1H + · · ·

=
C (2)

adj

zz∗
(
i∂zϕ

E
L

)
z=0 + · · ·, (B27)

where in the last line we used the cyclic property and the
total asymmetry of the structure constants, together with
Eq. (B19), to obtain (−1)CEA1HCA1B1H = CEA1HCB1A1H =
C (2)

ad j δEB1 . Thus, in Eq. (B27) we have obtained the result
quoted in Eq. (B10) above.

APPENDIX C: NUMERICAL DETAILS

In this Appendix, we provide some additional detail re-
garding the numerical methods used to obtain the results in
Sec. IV.

1. Efficient contraction

In the vth step of the evolution, one needs to contract the
Gaussian state �v , defined on Ld Majorana modes, with a
row of L tensors with 4χ Majorana modes each, to obtain
�v+1. We will label these tensors �(v,u=1) through �(v,u=L).
In principle, one could perform a sequential contraction, i.e.,
contract �v with �(v,u=1), then with �(v,u=2), etc. In each
step, one needs to evaluate Eq. (9), which will take O(L2d3)
operations in each step, and thus an entire row takes O(L3d3).

An alternative contraction scheme is to first contract all
the tensors �(v,u) with a fixed v together to form the trans-
fer operator, and then contract it with �v to obtain �v+1 in
one step. An efficient way to perform this contraction is in
a “treelike” fashion (for a system size L = 2m): first con-
tract �(v,u=1) and �(v,u=2) into �(v,u=1:2), and likewise for
�(v,u=2n−1) and �(v,u=2n) into �(v,u=2n−1:2n). In the next step,
contract �(v,u=1:2) and �(v,u=3:4) into �(v,u=1:4), and likewise
for the rest of the system, and then repeating this procedure
until one has the full tensor �(v,u=1:L) for the vth row. There
are m = log2(L) such steps, and the nth one, e.g., contract-
ing �(v,u=1:l ) with �(v,u=l+1:2l ), for l = 2n, takes O(l2d3) =
O(22nd3) operations; therefore, all the operations to construct
�(v,u=1:L) take

∑m−1
n=0 2m−n22nd3 = O(d3L2) operations. The

final step of contracting �v with �(v,u=1:L) is the most expen-
sive one, taking O(L3d3) operations.

Therefore, the scaling of the two approaches is asymptot-
ically the same, O(L3d3). However, in practice we find the
second approach to be faster by a constant, yet significant,
factor.
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2. Numerical stabilization

Due to numerical roundoff, the pure-state property �2
v =

−1 can be destroyed after many layers of the contraction,
i.e., for large v. To remove such numerical stability issues,
we periodically reset the state to the closest pure state. To this
end, we find the orthogonal transformation such that

�v = O

[⊕
λn

(
0 1

−1 0

)]
Oᵀ (C1)

with λn � 0 and O an orthogonal matrix [103]. If �v is pure,
λn = 1 for all n; however, in practice, we find that some
λn < 1 by a small amount. In such cases, we replace �v by
�′

v defined by

�′
v = O

[⊕(
0 1

−1 0

)]
Oᵀ, (C2)

i.e., we set all λn = 1.

APPENDIX D: LEVEL STATISTICS OF THE
ENTANGLEMENT SPECTRUM

In addition to the entanglement entropies, we can also
examine the full entanglement spectrum of the state �v (as de-
fined in Sec. IV A). We expect to find level statistics consistent
with the Gaussian unitary ensemble; one way to see this is that
the underlying nonunitary circuit that describes our ensemble
has no symmetries (except for the particle-hole symmetry
implied by the Majorana description), and in particular has
no time-reversal symmetry (which would lead to the Gaus-
sian orthogonal ensemble). In related work, the entanglement
spectrum across the measurement-driven phase transition in
interacting quantum circuits was studied in Ref. [104], where
a nonuniversal distribution interpolating between Poisson and
GUE was found.

Here, similar to the entanglement entropy, we partition the
system into two halves and consider the covariance matrix of
the left Ld/2 Majorana modes, which we will denote as �half

v .
There exists an orthogonal transformation O such that �half

v =
O[
⊕

λn( 0 1
−1 0)]Oᵀ, where λn ∈ [0, 1] is the entanglement

spectrum. Modes with λn = 1 correspond to unentangled
modes, while modes with λn = 0 are maximally entangled
(i.e., contribute log 2 to the entanglement entropy).

A convenient way to characterize the entanglement spec-
trum is through the ratios of consecutive gaps in the
entanglement spectrum. Assuming that λn � λn−1, let δn =
λn − λn−1. Then, we define [4,105]

r̃ = min(δn, δn+1)

max(δn, δn+1)
. (D1)

This quantity is well characterized for several random matrix
ensembles. In particular, for the Gaussian unitary ensemble, it
is known to follow the Wigner surmise, or more precisely

P(r̃) = 1

Zβ

(r̃ + r̃2)β

(1 + r̃ + r̃2)1+3β/2
, (D2)

with β = 2 and Zβ = 4π

81
√

3
(see Ref. [105], in particular, for

other ensembles).
To perform a numerical comparison, we (similar to the

computation of the entanglement entropy) take �v for v > 20,

FIG. 18. Probability distribution of the ratio of consecutive en-
tanglement spectrum gaps [see Eq. (D1)] for system size L = 256.
The green line shows the expected distribution for the Gaussian
unitary ensemble (GUE), Eq. (D2).

and average over 100 independent runs. To remove nonuni-
versal contributions to the entanglement spectrum, we exclude
all λn > 0.75, and then perform the analysis outlined above.
Our results are shown in Fig. 18. We find excellent agreement
between our numerical observation and the Gaussian unitary
ensemble. The agreement improves as the system size and
bond number are increased.

APPENDIX E: RELATION BETWEEN HAAR-RANDOM
GTN AND QUANTUM DYNAMICS WITH UNITARY

EVOLUTION AND GENERALIZED MEASUREMENTS

As discussed Sec. II B, for a physical system undergoing
unitary evolution and generalized measurements, the ensem-
ble of different quantum trajectories of the physical system
is characterized by an ensemble of quantum operators {Cm}
(acting on the physical system) that satisfies the normaliza-
tion condition of the positive-operator-valued measure, i.e.,∑

m C†
mCm = 1. This normalization condition is equivalent to

the trace-preserving condition, i.e., that the map from any
density operator ρ̂ (with Trρ̂ = 1) to the operator

∑
m Cmρ̂C†

m
preserves the operator trace, i.e., Tr(

∑
m Cmρ̂C†

m) = Trρ̂ =
1. Here, each term C†

mρ̂Cm in the summation should be
viewed as the un-normalized density operator obtained from
the circuit Cm acting on the initial density operator ρ̂. The
Haar-random ensemble of square-lattice pure-state GTNs in-
troduced in Sec. IV can be viewed as an ensemble of quantum
circuits following the correspondence between GTNs and
quantum circuits discussed in Sec. II. In this Appendix, we
show that the ensemble of quantum circuits obtained from
the Haar-random square-lattice pure-state GTN satisfies the
trace-preserving condition discussed above and hence can be
interpreted as the operator ensemble that governs the dynam-
ics of a quantum system undergoing both unitary evolution
and generalized measurements.

Following the discussion in Sec. II, a square-lattice pure-
state GTN with Majorana bond number χ on each leg can
be viewed as a quantum circuit that acts on a chain along
the x direction with χ Majorana modes on each site [as
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shown in Fig. 3(a)]. This quantum circuit evolves a generic
initial state |ψ0〉, which is not necessarily a Gaussian state,
to the (un-normalized) final state P(|ψ0〉 ⊗ |�tot〉), where
|�tot〉 ≡ ⊗n|�(n)〉 is the tensor product of all the Gaussian
states |�(n)〉 associated with each Gaussian tensor �(n) in the
pure-state GTN and P is the projection operator that projects
the Majorana modes on the contracted legs into maximally
entangled-pair states. The projection given by P essentially
implements all the contractions in the whole tensor network as
discussed in Sec. II. Here, we have viewed the initial state |ψ0〉
also as a generic (non-Gaussian) tensor which is contracted
with the GTN. The contractions within the GTN and the
contraction between the GTN and the initial state |ψ0〉 yield
the final state P(|ψ0〉 ⊗ |�tot〉).

At the level of quantum state, the quantum circuit given
by the GTN transforms an initial state |ψ0〉 into the final
state P(|ψ0〉 ⊗ |�tot〉). At the level of density operators, the
same quantum circuit transforms the initial density opera-
tor ρ̂0 ≡ |ψ0〉〈ψ0| into an (un-normalized) density operator
P(ρ̂0 ⊗ |�tot〉〈�tot|)P. In fact, for any initial (pure-state or
mixed-state) density operator ρ̂0 (with Trρ̂0 = 1), the same
quantum circuit transforms it into the (un-normalized) density
operator P(ρ̂0 ⊗ |�tot〉〈�tot|)P.

To show that the ensemble of quantum circuit given
by the Haar-random ensemble of GTNs satisfies the
tracing-preserving condition, we need to show that
Tr( 1

N
∑

{�(n)} P(ρ̂0 ⊗ |�tot〉〈�tot|)P) = 1 for any initial
density operator ρ̂0. Here N is an overall normalization
constant and the summation

∑
{�(n)} is the summation over the

fermion-parity-preserving Haar-random ensemble defined in
Sec. IV for each individual Gaussian tensor �(n) in the GTN.
Since every Gaussian tensor in the GTN is independently
random, we can perform the summation over the Haar-random
ensemble independently for each pure-state Gaussian tensor
�(n) in the GTN. For a single pure-state Gaussian tensor
�(n), the summation over the fermion-parity-preserving
Haar-random ensemble yields

∑
�(n)

|�(n)〉〈�(n)| = 1 + (−1)F̂n

2
, (E1)

where (−1)F̂n is the many-body fermion-parity operator of all
the Majorana modes residing on the tensor �(n). The right-
hand side of Eq. (E1) is exactly the many-body fermion-parity
projection operator acting on the local fermionic Hilbert space
associated with the tensor �(n).

Applying Eq. (E1) to every tensor in the GTN, we can
obtain that

Tr

⎛
⎝ 1

N
∑
{�(n)}

P(ρ̂0 ⊗ |�tot〉〈�tot|)P
⎞
⎠

= 1

N Tr

{
P

[
ρ̂0 ⊗

(
⊗n

1 + (−1)F̂n

2

)]
P

}
. (E2)

By expanding all the operators on the second line of this
equation using Majorana modes in the tensor network, we
can show that, with a properly chosen constant N that is
independent of ρ̂0, the expression on the second line of the
equation above always evaluates to 1. Therefore, the ensemble

of random quantum circuits obtained from the Haar-random
ensemble of square-lattice pure-state GTN defined in Sec. IV
satisfies the trace-preserving condition and, hence, can be
associated with the dynamics of a quantum system whose
dynamics are governed by unitary evolution and generalized
measurements.

In the discussion of the trace-preserving condition above,
each square-lattice GTN is treated as a quantum circuit acting
on a one-dimensional fermion chain along the x direction
[as shown in Fig. 3(a)]. In fact, we can also alternatively
treat the same square-lattice pure-state GTN as a different
quantum circuit acting on a one-dimensional fermion chain
along the u direction (as shown in Fig. 5). The “physical
time” for this alternative type of quantum circuit is along the
v direction of the GTN. Under this alternative treatment, the
Haar-random ensemble of the square-lattice pure-state GTNs
gives rise to a different random ensemble of quantum circuit
which also satisfies the trace-preserving condition. The proof
of the trace-preserving condition for this different ensemble
of quantum circuits is completely parallel to the discussions
given in the earlier paragraphs of this Appendix. Therefore,
when the Haar-random ensemble of square-lattice pure-state
GTN is viewed as a random ensemble of quantum circuits
acting on a fermion chain along the u direction, this ensemble
of quantum circuit can also describe the dynamics of this
fermion chain induced by both unitary evolution and gener-
alized measurements.

The discussion above shows that the ensemble of quan-
tum circuits obtained from the Haar-random square-lattice
GTN can be used to describe the dynamics of a fermion
chain undergoing both the unitary evolution and generalized
measurements. However, one needs to be careful that, within
the ensemble of quantum circuits, the probability of each
quantum circuit to appear in this fermion chain system whose
nonunitarity is solely due to generalized measurements should
follow Born’s rule as discussed in Sec. II B. Hence, generi-
cally, the probabilities for different quantum circuits to appear
are different from one another. In contrast, in the problem
of the random ensemble of GTNs studied in the main text,
each GTN and its corresponding quantum circuit appear with
the same probability. Therefore, the problem of Haar-random
GTNs is not exactly equivalent to the problem of a quantum
system undergoing both unitary evolution and generalized
measurements. What effect this difference has on correspond-
ing universal critical behavior requires further investigation.

APPENDIX F: TRANSFER MATRIX OF PURE-STATE GTN

As stated in Sec. V A, a two-leg pure-state Gaussian tensor
� [as shown in Fig. 10(b) for instance] with Majorana bond
number χt can be viewed as a quantum gate g� acting on
the Hilbert space of the χt Majorana fermion α̂i=1,2,...,χt . The
P-sector transfer matrix tp[�] is defined via α̂i → g�α̂ig

−1
� =∑

j tp[�]i j α̂ j , namely, the evolution of the Majorana fermion
operators α̂i under the quantum gate g� . We will derive the
expression of the P-sector transfer matrix tp[�] shown in
Eq. (23) in this Appendix. We will also introduce the H-sector
transfer matrix th[�] and the full transfer matrix t[�]. In par-
ticular, we will discuss a formalism where the P-sector and
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FIG. 19. A one-dimensional GTN consists of tensors {�(n)} is
shown. The tensor �(n) of the GTN is located in-between the co-
ordinates t = n − 1 and t = n.

the H-sector transfer matrices are treated in equal footing and
where the full transfer matrix naturally arises.

Consider a one-dimensional pure-state Gaussian tensor
network of the form shown in Fig. 19. This GTN also de-
scribes the evolution of a quantum system under the quantum
circuit

∏
n g�(n) where g�(n) is the quantum gate associated with

the tensor �(n). Furthermore, as indicated in Fig. 19, we can
view g�(n) as the quantum gate that evolves the system from
the (discrete) time step t = n to the time step t = n + 1.

Let us denote the Majorana bond number of each leg
of this one-dimensional pure-state GTN as χt . Each two-
leg pure-state Gaussian tensor �(n) here is associated with a
Gaussian state |�(n)〉. We organize the χt Majorana modes
residing on the left (right) leg of the tensor �(n) into a
χt-component column vector γ̂

(n)
L,i=1,2,...,χt

(γ̂ (n)
R,i=1,2,...,χt

). The
whole one-dimensional pure-state GTN shown in Fig. 19
yields the Gaussian state P|�tot〉 where �tot ≡ ⊗n|�(n)〉 is
the tensor product of all the independent Gaussian states
|�(n)〉 and P ≡ ∏

n Pn,n+1 is the product of projections

Pn,n+1 ≡ ∏χt
i=1

1+iγ̂ (n)
R,i γ̂

(n+1)
L,i

2 that implement the contractions
between the tensors �(n) and �(n+1). As mentioned ear-
lier, the Gaussian state P|�tot〉, which represents the GTN
shown in Fig. 19, captures the quantum evolution given
by the product of quantum gates

∏
n g�(n) . As a general-

ization, for the same quantum evolution but with an extra
Majorana fermion operator inserted at the discrete time
t = n, the representing Gaussian state can be given by
Pγ̂

(n)
L |�tot〉 instead. Here, since −iPγ̂

(n)
L = Pγ̂

(n−1)
R , there is

no need to separately consider the Gaussian state of the form
Pγ̂

(n)
R |�tot〉. The P-sector transfer matrix tp[�(n)], which is

the single-particle version of the gate g�(n) , can therefore be
equivalently defined by the linear relation between Pγ̂

(n)
L |�tot〉

and Pγ̂
(n+1)

L |�tot〉, i.e., tp[�(n)]Pγ̂
(n)

L |�tot〉 = Pγ̂
(n+1)

L |�tot〉 (or
equivalently

∑
j tp[�(n)]i jPγ̂

(n)
L, j |�tot〉 = Pγ̂

(n+1)
L,i |�tot〉). Here,

Pγ̂
(n)

L |�tot〉 is viewed as a χt-component vector of ket states
where the components are given by Pγ̂

(n)
L,i |�tot〉 with i =

1, 2, . . . , χt .
Now, we derive the expression of the P-sector transfer ma-

trix tp[�(n)]. Similar to our treatment in Sec. V A, we can write
each of the covariance matrices �(n) in block matrix form
(�

(n)
LL �

(n)
LR

�
(n)
RL �

(n)
RR

) with each block a d × d matrix. The subscripts

of each block indicate the type of correlation it captures. For
example, the block �

(n)
LR captures the correlation between Ma-

jorana modes γ̂
(n)

L and γ̂
(n)

R . The block-matrix form of Eq. (5)
applied to the Gaussian state |�(n)〉 reads as

[(
γ̂

(n)
L

γ̂
(n)

R

)
− i

(
�

(n)
LL �

(n)
LR

�
(n)
RL �

(n)
RR

)(
γ̂

(n)
L

γ̂
(n)

R

)]
|�(n)〉 = 0. (F1)

Based on the first row of this block-matrix equation, we obtain
that (

�
(n)
LR

)−1(
1 − i�(n)

LL

)(
Pγ̂

(n)
L |�tot〉

)
= i

(
Pγ̂

(n)
R |�tot〉

) = (
Pγ̂

(n+1)
L |�tot〉

)
. (F2)

Hence, we conclude that

tp[�(n)] = (
�

(n)
LR

)−1(
1 − i�(n)

LL

)
, (F3)

which is exactly the result shown in Eq. (23). Since the
contraction of two neighboring pure-state Gaussian tensors
captures the multiplication of their corresponding quantum
gates, the same tensor contraction gives rise to the multi-
plication of their corresponding P-sector transfer matrices as
shown by Eq. (24).

The quantum circuit
∏

n g�(n) evolves an initial ket state
|ψi〉 by |ψi〉 → (

∏
n g�(n) )|ψi〉. In the same time, the initial

bra state 〈ψi| evolves as 〈ψi| → 〈ψi|(
∏

n g�(n) )†. In the tensor
network language, the bra-state evolution is given by the (bra)
Gaussian state 〈�tot|P. Similarly, the bra-state evolution with
a Majorana fermion operator insertion at the time step t = n
is given by the χt-component vector of the Gaussian bra states
〈�tot|γ̂ (n)

L P. The H-sector transfer matrix th[�(n)] is defined as
the linear relation∑

j

th[�(n)]i j〈�tot|γ̂ (n)
L, j P = 〈�tot|γ̂ (n+1)

L,i P, (F4)

which the single-particle version of the quantum gate g�(n) is
the evolution of a bra state. We can easily obtain that

th[�(n)] = tp[�(n)]∗. (F5)

In fact, even though the P-sector and the H-sector transfer
matrices describe the ket state and bra state, respectively,
they can be treated in a unified way. Notice that Eq. (F2)
still holds when we replace the χt-component vector of ket
states Pγ̂

(n)
L/R|�tot〉 by the χt-component vector of operators

Pγ̂
(n)

L/R|�tot〉〈�tot|P. Similarly, Eq. (F4) still holds when we

replace the vector of bra states 〈�tot|γ̂ (n)
L P by the vector of

operators P|�tot〉〈�tot|γ̂ (n)
L P. Using the operator version of

Eqs. (F2) and (F4), we can obtain the operator relation as-
sociated with the full transfer matrix t[�(n)]:

t[�(n)]

(
Pγ̂

(n)
L |�tot〉〈�tot|P

P|�tot〉〈�tot|γ̂ (n)
L P

)
=
(

Pγ̂
(n+1)

L |�tot〉〈�tot|P
P|�tot〉〈�tot|γ̂ (n+1)

L P

)
.

(F6)
From the perspective of this operator relation, the decoupling
of the full transfer matrix t into the P-sector transfer matrix tp

and the H-sector transfer matrix th is the natural consequence
of the fact that ket states and bra states do not mix under
the quantum circuit evolution given by the product

∏
n g�(n)

of quantum gates. The decoupling between the P sector and
the H sector in the full transfer matrix t directly results in the
chiral symmetry (40) of t. Interestingly, the P sector and the
H sector are not just simply decoupled, they are also related
by the TR and the PH symmetries as shown in Eqs. (38)
and (39).

In Appendix G, we will see that Eq. (F6) can be generalized
to one-dimensional GTNs that involve mixed-state tensors �

with �2 �= 1. Therefore, the full transfer matrix t[�] can be

134206-33



JIAN, BAUER, KESELMAN, AND LUDWIG PHYSICAL REVIEW B 106, 134206 (2022)

defined even for mixed-state Gaussian tensor �. However,
the contraction with a mixed-state Gaussian tensor � cannot
be described as an evolution induced by a single quantum
gate. Therefore, there is no decoupling between the P sector
and the H sector in a mixed-state GTN. In other words, in
a mixed-state GTN, the P-sector transfer matrix tp and the
H-sector transfer matrix th become ill defined while the full
transfer matrix t still remains a valid notion. The absence of
such decoupling between the P and the H sectors changes the
symmetry class of the full transfer matrix t when t is inter-
preted as the transfer matrix in a unitary scattering problem
(with a static Hamiltonian).

APPENDIX G: MIXED-STATE GTN AND ITS
TRANSFER MATRIX

In this Appendix, we discuss the mixed-state GTN and its
transfer matrix. A mixed-state tensor � is fully characterized
by its covariance matrix � with the conditions that (1) �T =
−�, (2) �∗ = �, and (3) �2 � −1, namely, no eigenvalues
of �2 are smaller than −1. For a mixed-state tensor � with
Majorana modes γ̂i, we can represent � by a Gaussian density
matrix ρ̂� such that

�i j = Tr

(
i
2

[γ̂i, γ̂ j]ρ̂�

)
. (G1)

A Gaussian density matrix ρ̂� is completely determined by its
two-point correlation functions, namely, its covariance matrix
�i j . All multipoint correlation functions can be obtained from
the two-point functions via Wick’s theorem. Equation (5),
which is applicable for a pure-state tensor, can be generalized
to the case of a mixed-state Gaussian tensor:(

γ̂i − i
∑

j

�i j γ̂ j

)
ρ̂� = ρ̂�

(
γ̂i + i

∑
j′

�i j′ γ̂ j′

)
, (G2)

which can be viewed as the defining relation of the Gaussian
density matrix ρ̂� based on the covariance matrix �i j .

The contraction of a mixed-state GTN can be described
using the Gaussian density matrices. Consider a mixed-state
GTN with the set of tensors {�(n)}. The contraction of these
tensors in the GTN produces a new Gaussian density ma-
trix P(⊗nρ̂�(n) )P where P, as introduced in Sec. III B for
the case of pure-state GTNs, is still the projection onto the
maximally entangled-pair states on all of the contracted legs
in the GTN. Similar to the pure-state case, we can study the
contraction of mixed-state Gaussian tensors directly at the
level of covariance matrices. In Sec. III B, we have discussed
the contraction of the two Gaussian tensors � and ϒ that
are of the forms shown in Eq. (8) and in the configuration
shown in Fig. 4. Their contraction gives rise to a new Gaussian
tensor/covariance matrix � shown in Eq. (9). In fact, Eq. (9)
holds even if � and ϒ are mixed-state Gaussian tensors and
Eq. (9) is consistent with the formulation of tensor contrac-
tions using Gaussian density matrices and the projection onto
maximally entangled-pair states on the contracted legs.

A one-dimensional mixed-state GTN that takes the same
geometry as the one shown Fig. 19 can be represented by the
Gaussian density matrix P(⊗nρ̂�(n) )P. In this GTN, similar to
the discussion in Appendix F, each tensor �(n) has two legs

with the Majorana modes residing on them denoted as γ̂
(n)

L

and γ̂
(n)

R , respectively. This mixed-state GTN can no longer be
interpreted as the product of a sequence of quantum gates. We
can still generalize Eq. (F6) and define the full transfer matrix
t[�(n)] of the Gaussian tensor �(n) by the linear relation

t[�(n)]

(
Pγ̂

(n)
L ρ̂totP

Pρ̂totγ̂
(n)

L P.

)
=
(

Pγ̂
(n+1)

L ρ̂totP

Pρ̂totγ̂
(n+1)

L P.

)
, (G3)

where ρ̂tot ≡ ⊗nρ̂�(n) . In the special case when ρ̂tot is the
tensor product of pure Gaussian state density matrices ρ̂�(n) ,
the whole GTN becomes a pure-state GTN and Eq. (F6) is
immediately restored from Eq. (G3). Without assuming the
purity of the tensors, we can obtain the general expression of
the transfer matrix t[�] for a two-leg Gaussian tensor � using
Eq. (G2) and the property of the projection operator P:

t[�] =
( 1√

2
1 1√

2
1

i√
2
1 −i√

2
1

)†(
�−1

LR −�−1
LR �LL

−�RR�−1
LR �RR�−1

LR �LL − �RL

)

×
( 1√

2
1 1√

2
1

i√
2
1 −i√

2
1

)
, (G4)

where we have used the block-matrix form � = (�LL �LR

�RL �RR
) of

the two-leg tensor � in the one-dimensional GTN like what
we have done in Appendix F.

We can check that for any covariance matrix �, the follow-
ing relation always holds:

t[�]†J ′
pbt[�] = J ′

pb, (G5)

where

J ′
pb =

(
0 −i1
i1 0

)
. (G6)

When we identify the full transfer matrix t[�] of a generic
(mixed-state or pure-state) Gaussian tensor � as the trans-
fer matrix in a unitary scattering problem (with a static
Hamiltonian), Eq. (G5) should be viewed as the conservation
probability current. We emphasize that the conservation of
the probability current is exactly what guarantees the unitarity
of the corresponding scattering problem. Note the probability
current J ′

pb defined in Eq. (G6) is different from the probabil-
ity current Jpb in Eq. (32) which is defined for the pure-state
GTN in the main text. In fact, Eq. (G5) holds for any two-leg
tensor � regardless of its purity, while the current Jpb defined
in Eq. (32) is conserved only in the case of a pure-state
GTN. The reason that we have chosen Jpb defined in Eq. (32)
instead of J ′

pb defined above for the pure-state GTN is that
the probability current Jpb further enables us to identify at the
microscopic level the absorbing boundary condition, which
was introduced in Appendix A to understand the form of
the averaged squared two-point function in Eq. (13) of the
Chalker-Coddington network model that corresponds to the
pure-state GTN. In the current context of mixed-state GTNs,
the only conserved probability current is given by J ′

pb in
Eq. (G6), which is enough for the justification of the unitarity
of the scattering problem defined by the full transfer matrix
t[�] (regardless of the purity of the tensor �).
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With the conserved probability current defined by J ′
pb,

one can calculate the corresponding scattering S matrix of
the scattering problem that corresponds to the (mixed-state
or pure-state) Gaussian tensor �. The S-matrix expression
given in Eq. (37) will no longer hold as we have used a
different definition of the probability current. Nevertheless,
the scattering S matrix can be shown to be unitary even for
a general mixed-state tensor �.

Also, for any covariance matrix �, the unitary scattering
problem with its transfer matrix given by t[�] always has a
PH symmetry:

�PH · t[�]∗ · �PH = t[�] (G7)

with

�PH =
(

0 1

1 0

)
. (G8)

Here, we note that the PH symmetry exchanges the P-sector
and the H-sector of the transfer matrix. Also, we have �2

PH =
1. For a generic Gaussian tensor �, the unitary scattering
problem with its transfer matrix given by t[�] does not
have any other extra symmetries and therefore should corre-
spond to symmetry class D in the Altland-Zirnbauer 10-fold
classification. It is straightforward to see that under matrix
multiplication, the group of all full transfer matrices t[�] ob-
tained from all (pure- and mixed-state) covariance matrices �

forms a subgroup of SO(χt, χt ) where χt is the Majorana bond
number of each of the legs of the two-leg Gaussian tensor
�. As is shown in Ref. [41], the space of transfer matrices
in a class-D unitary scattering problem is indeed given by
SO(χt, χt ). As a real manifold, this subgroup formed by t[�]
has the same dimension as the group manifold SO(χt, χt ).
However, not every element of SO(χt, χt ) corresponds to a
physical covariance matrix. In fact, any group element in
SO(χt, χt ) corresponds to a skew-symmetry matrix � via
Eq. (G4). However, it is not guaranteed that so-obtained �

satisfies the physical condition (of a covariance matrix) that
no eigenvalues of �2 are smaller than −1. The set of group
elements in SO(χt, χt ) that does not correspond to a physical

covariance matrix in fact has a finite measure in the noncom-
pact group manifold SO(χt, χt ).

APPENDIX H: RANDOM GTN AND CLIFFORD ALGEBRA
EXTENSION PROBLEM WITH POSITIVE GENERATORS

In Sec. VI B 1, we have discussed how to utilize the Clif-
ford algebra extension problem with negative generators to
restrict the space of permissible pure-state Gaussian tensor
� so that it matches the desired symmetric space Rp. In
this Appendix, we provide an alternative procedure moti-
vated by the Clifford algebra extension problem with positive
generators.

To realize Rp as the space of permissible pure-state Gaus-
sian tensor �, we can start with a positive integer p. Then,
we write p operators �′

i=1,2,...,p in the real matrix algebra such
that

�′
i
2 = 1, �′

i
T = �′

i for i = 1, 2, . . . , p,

�′
i�

′
j = −�′

j�
′
i for i �= j. (H1)

The operators �′
1,2,...,p generate the real Clifford algebra

Clp,0(R) with p positive generators. The conditions we im-
pose on the Gaussian tensor � are given by

� �′
1 = −�′

1 �,

� �′
i = �′

i � for i = 2, 3, . . . , p. (H2)

We notice that the operator ��′
1 is a real and symmetric

operator that squares to 1. Therefore, the operators �′
1,2,...,p

together with the operator ��′
1 generate the real Clifford

algebra Clp+1,0(R) with p + 1 positive generators. Therefore,
the space of all pure-state Gaussian tensors � that satisfy the
conditions (H2) is the same as the classifying space of exten-
sions from the real Clifford algebra Clp,0(R) to Clp+1,0(R),
which is given by Rp. The case with p = 1 which corresponds
to symmetry class D was discussed earlier in greater detail in
Sec. VI B 2.
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