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We study the spreading of quantum correlations and information in a one-dimensional quantum spin chain
with critical disorder encoded in an infinite randomness fixed point. Specifically, we focus on the dynamics after
a quantum quench of the Rényi entropies, mutual information, and entanglement negativity in the prototypical
XXZ spin chain with random bonds and anisotropy parameters. We provide analytic predictions in the scaling
regime based on real-space renormalization-group methods. We support these findings through numerical
simulations in the noninteracting limit, where we can access the scaling regime.
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I. INTRODUCTION

Understanding the spreading of quantum information in
disordered many-body quantum systems is a formidable but
central task in condensed matter and statistical mechanics
[1-4]. Compared to the linear growth of bipartite entangle-
ment under generic clean unitary evolution [5—12], quantum
many-body systems with strong disorder are characterized by
a slower (sublinear) rate of quantum information propagation
[13-24]. A prominent example is the many-body localized
phase, where the slow logarithmic entanglement growth is a
consequence of the effective interactions between the local-
ized orbitals, i.e., an infinite number of emergent local integral
of motion [1,25-31], that arise as effective degrees of freedom
from a renormalization-group perspective [32,33].

On the other hand, the propagation of quantum information
in multipartite many-body quantum systems has remained, at
present, elusive. For standard models of many-body localiza-
tion transition, these subjects have been partially addressed
in Ref. [34], where the generation of entanglement clusters
has been addressed, and in Ref. [23], where the maximum
quantum mutual information has been used as a probe for the
localization transition.

In this paper, we study the problem of quantum information
spreading for spin chains with strong quenched randomness.
We use the real-space renormalization-group method (RSRG)
introduced in Ref. [32] to analyze the dynamics of Rényi
entropy, quantum mutual information, and entanglement neg-
ativity [35,36], focusing on the archetypal random bond XXZ
chain [37,38]. At equilibrium, this model is known to host
a random singlet phase [39-41], with the ground-state en-
tanglement entropy and negativity exhibiting critical features
ascribable to rare singlets connecting arbitrary far regions
[42-48]. The dynamics of the entanglement entropy follow-
ing a quantum quench from an initial product state has been
discussed analytically through the real-space renormalization
group in Ref. [32], and numerically in Refs. [18,49]. Building
on these previous works, we use the RSRG [50,51] to obtain
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analytic predictions for the propagation of the quantum mu-
tual information and of the entanglement negativity. To test
our results, we perform numerical simulations within the limit
of no interaction, and we find qualitative agreement between
our analytic findings and the numerical predictions.

We find that in the noninteracting limit, entanglement is
carried only by a pair of spins oscillating arbitrarily far in
the system. This implies the lack of multipartite entanglement
beyond two-party. One of the main consequences is that the
logarithmic negativity is proportional to the Rényi mutual
information (of Rényi index o = 1/2), which generically is
only an upper bound for the entanglement. Both of these
quantities exhibit a first Inln# growth in time (up to times
that scale exponentially with subsystem size), followed by a
decrease in time and finally by a saturation to a nonthermal
value in the infinite-time limit. Additionally, the lack of mul-
tipartite entanglement reflects in the growth of these measures
being proportional to the time-average contribution of a single
oscillating pair.

Interactions, on the other hand, build up multipartite en-
tanglement clusters, which increase the propagation rate of
entanglement. In this case, we can predict the growth in time
(in the scaling limit) of quantum mutual information and
logarithmic negativity for an initial exponentially extended
window of time, and we show it to be logarithmic-like. More-
over, in the late-time regime, we expect the saturation value to
be zero in this case.

Although we limit the analysis to the random bond XXZ,
we expect similar results to apply in more general strong dis-
order quantum many-body systems, provided that resonances
are irrelevant [32]. In particular, the physical phenomenology
is fully captured by the flow of the coupling distribution.
Our findings provide analytical and numerical insights into
random spin chain dynamical multipartite entanglement struc-
ture.

The paper is structured as follows. In Sec. II, we introduce
the model of interest and review the time-dependent strong
disorder real-space renormalization-group method. Then, in
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Sec. III, we introduce the entanglement measures we study,
and we discuss the consequences of the renormalization-
group approach for spreading quantum information both for
noninteracting and interacting Hamiltonians. In Sec. IV, we
present numerical results in the noninteracting limit, support-
ing the analytic predictions. We conclude the paper in Sec. V,
and we present the most technical aspects of our work and
further numerical checks in two Appendixes.

II. REAL-SPACE RENORMALIZATION GROUP

We are interested in the dynamics of a one-dimensional
chain of length L of qubits described by the Hamiltonian

L
H = E H;iy,
i=1

Hy =2

i,i+1 = 2
with o (@ =x, y, z) denoting the Pauli matrices at each
site i, and al.jE = (o] £ ioiy)/Z; J; > 0 and A, are indepen-
dent random variables drawn randomly from the uncorrelated
probability distributions P;(J;) and Pa(A;), respectively. For
definiteness, in the following we focus on 0 < A; < 1, but
a similar treatment can be generalized to |A;| < 1 [52]. The
Hamiltonian in Eq. (1) can be mapped to a fermionic inter-
acting model via the Jordan-Wigner transformation [53]. In
particular, the limit A; = O corresponds to the random bond
XX model, i.e., the Dyson model [54]. (In the following, we
shall denote the noninteracting limit as the Dyson model.) The
interacting model is known to present a quantum spin glass
phase [32,37], which has recently been numerically investi-
gated in Ref. [38]. In the following, we use the RSRG method
to compute the spreading of quantum information in a quench
from an initial product state.

(UiJr"i:rl + O—iiaij—l + ZAio'izala—l)’ (0

A. Strong disorder renormalization group

Before discussing the time-dependent RSRG, it is conve-
nient to first review the strong disorder renormalization-group
method for the Hamiltonian in Eq. (1) at equilibrium at zero
temperature. Here, the key idea is to iteratively integrate out
the degrees of freedom interacting through the strongest cou-
plings in the chain © = maxJ;. Without loss of generality,
we assume the largest bond is € = J,. Denoting Jp, = J,_;
and Jr = J,41 the left and right neighboring bonds, strong
disorder implies that typically 2 > Ji, Jr [39,40]. Hence, at
leading order in €2, the spins S, and S,,; connected by the
strongest bond are projected to the ground state of H, ,,; [cf.
Eq. (1)], i.e., the singlet state

|S l>= |Tn \Ln-‘rl)_uzy, Tn+l)
n,n+ \/E .

Subleading contributions are due to quantum fluctuations and
are captured by time-independent perturbation theory [55],
and for 0 < A; < 1 they lead to an effective coupling [52]

(@)

3 An_1 A,
gy~ R, ~ % (3)

between the spins S,_; and S,,>. Importantly, the procedure
preserves the XXZ structure of the (effective) Hamiltonian;
hence the subsequent renormalization steps are always de-
scribed by Eq. (1) provided the couplings are substituted with
the effective couplings in Eq. (3).

Iterating the above procedure, the disorder strength in-
creases, justifying the perturbative elimination’s validity. In
particular, the scaling limit is fully characterized by the
probability distribution of the effective couplings, P;(J;) and
PA(A)). Those distributions flow towards the so-called infinite
randomness fixed point, where the variance of some coupling
strength diverges. [For the model Eq. (1), these are the random
hoppings J;.] Remarkably, it has been proven that the flow
equation has a unique solution for any given distribution for
which J; > 0, namely that the fixed point is unique [41,52].

A direct consequence of the strong disorder renormaliza-
tion group is that the ground state of the many-body system
gets approximated by the product of singlets connecting spins
at arbitrary distances, the so-called random singlet phase
(RSP).

Moreover, the interaction A; plays an irrelevant role, pro-
vided 0 < A; < 1. In particular, these values belong to the
same fixed point of A; = 0 [52]. [This is clear from the deci-
mation rule Eq. (3), which expresses the asymptotic freedom
for A;.] As we shall see, the same does not hold for the dynam-
ical system, where interactions are responsible for quantum
correlations among clusters of spins.

B. Time-dependent real-space renormalization group

The time-dependent real-space renormalization group is
the out-of-equilibrium extension of the previously discussed
strong disorder renormalization group [32,33]. The key dif-
ference is that the RSRG aims to construct the effective
scaling dynamics via the iterative elimination of the degrees
of freedom oscillating with the highest frequency [51,56].
In particular, the renormalization-group decimation does not
project the spin pairs into the singlet sector. However, it gen-
erates effective degrees of freedom that control the late-time
dynamics for large systems. In this section, we sketch the
ideas behind RSRG and summarize the key results. We detail
in Appendix A the derivation of the main equations.

We consider the quench dynamics generated by preparing
the system in a product state | W), and letting it evolve through
Eq. (1). Most of these results will hold for generic initial
product states, provided the total magnetization is the same,
St.=>_;0f =0 [16,32]. [The Hamiltonian Eq. (1) has a
U(1) symmetry generated by the total magnetization.]

Assuming strong disorder, we again consider the strongest
bond 2. Without loss of generality, and following the notation
in Sec. IT A, we assume the strongest bond act between S,
and S,4;. We denote as S. = S,—1, Sk = Sy+2, respectively,
the left and right neighboring spins, connected to S, and
Sn+1, respectively, by Jp, = J,— and Jr = J,,41. Similarly, we
denote as Ag, A, and Ag the interactions associated with,
respectively, the bonds €2, Ji, and Jg. The Hamiltonian (1)
can then be decomposed as

H = Hq +V + Hchain, “4)
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where

H —g(0+o_ +o0 0", +2A00%" )
Q= n “n+l n “n+l QO n+1)>

2
Ji Ty Z52
Hpain = Z E(Ui Oit1 + A[O’i Oy + H.C),
i#ntl,n
L +5— — 57T Z.2
V= 7(aL o, +o,0, + 2ALGLJn)

Jr _ _
+ ?(O',;:_]O'R —}—O’n_HO'Ig_ +2ARUrf_HGI§). (®)]

The separation of energy scales induced by disorder is
reflected in the short-time dynamics being dominated by os-
cillation with frequency €2 between the two spins on sites n
and n + 1. Their dynamics is hence associated with the strong
bond Hamiltonian Hg,, which entangles them at time r =~ 1/%.
Furthermore, since the frequency of the eigenmodes of Hg, is
larger than the scaling of the remaining degrees of freedom,
the sites n and n 4 1 are seen by the remaining degrees of
freedom as in the stationary (i.e., time-averaged) state.

The above idea is formalized within the Floquet high-
frequency expansion [51,56], which consists of deriving an
effective time-independent Hamiltonian H. via a second-
order expansion of the time-evolving operator in the interac-
tion picture induced by Hg, (see also Appendix A). For this
purpose, it is convenient to reformulate the dynamics within
the interaction picture [55]. The state in the interaction picture
is given by

(W) = e w,), (6)

and the unitary evolution is governed by

U(t) = T exp (—i / H,(t)dt) 7)
0

with 7 denoting time-ordering, and the interaction Hamilto-
nian is given by

Hy(t) = e (H — Ho)et™". ®)

The decimation procedure amounts to finding the effective
Hamiltonian Hg of the system defined through

1
Ui (t) =~ exp(—iHegt) + 0(@) 9)

A key consequence is that now we can view the sites con-
nected by the high-frequency bond as a new effective degree
of freedom (n,n 4+ 1) = 1, and the high-frequency Hamilto-
nian as a single-qudit operation on this degree of freedom. In
principle, this state spans a four-dimensional Hilbert space;
however, for a given initial state, at leading order in per-
turbation theory, the effective dynamics will be effectively
restricted to subsectors of this Hilbert space.

Suppose, for example, we start from an initial product
state, and that the high-frequency bond acts on |1 1). In
this case, the effective dynamics is fully accounted for by a
global phase, and the emergent effective degree of freedom
(i.e., the aforementioned qudit) is frozen. If, instead, the high-
frequency bond acts on |1 |), the effective qudit becomes
two-dimensional and oscillates between |+) = (|1 )£ |1

N/V2.

Overall, the detailed choice of initial product state would
result in different transient dynamics, but the scaling proper-
ties of the system are expected to be the same. (See also the
numerical benchmarks in Ref. [16], and in Appendix B.)

We find it convenient to choose as an initial condition the
Néel state

Wo) =1 414 -~ 1), (10)

for which |1 1) and || |) are never populated due to U(1)
conservation constraints. In this case, the effective Hamilto-
nian is given by

JLJR _ _ =

Het = Hopgin + 1765 + ——— (0770 + o7 o );

eff chain 105 29(1 _ Aé)( L ¥R L R) n
AoJiJr[ofog +oog  ALAR oiot |52

20 1 — Aé AQ LYR n’

an

where the following operators act on the effective degree of
freedom:

L = [+ 1=)(=1 65 = [+ = 1=)(=], (12)

and we further introduced the magnetic field h; = —(A?J? +
AZJ2)/(4€2). (Note, however, that these single-spin magnetic
contributions can be gauged away because of the conservation
of the total magnetization.) For notational convenience, when
no confusion arises, we sometimes omit the tilde in the lattice
index in the following.

The last coupling in Eq. (11) suggests why multipartite en-
tanglement is generated in the dynamics. When A; # 0, these
couplings create a mixed superposition between the states |+)
and the neighbors, at times ¢ ~ O(2Q2/(JLJr Ag)) [32]. Equa-
tion (11) also clarifies that at A; = 0 (noninteracting limit),
no multipartite entanglement is genuinely generated, as the
effective degree of freedom Sj; is effectively decoupled. Lastly,
we note that A; = 1 is a peculiar point. Here RSRG fails since,
at this point, SU(2) invariance is restored, and resonances play
a pivotal role in scrambling the degrees of freedom and in
leading to thermalization [57-61].

It is easy to see that [Hy, 6] = 0, and hence the time
evolution can be computed separately for each sector 65 =
=+1. Specifically, the effective Hamiltonian bifurcates into two
sectors HE. = He(67 = %1), which have the same form of
the Hamiltonian in Eq. (1), with renormalized couplings

o Mk 1)
T QU F Ag)

_ ALA

AF = ;%(1 + Ag). (14)

[We stress that the overall sign in the coupling A in Eq. (14)
has only the effect of reversing the effective degree of
freedom |+) <> |—).] Since this bifurcation arises at any
renormalization-group time, a fixed choice of {57} fixes a
unique flow of the parameters {J;} and {A;}. We denote each
such realization as a renormalization-group trajectory.
Importantly, the asymptotic form of any trajectory is
the same. Indeed, Eq. (14) shows that the couplings A
are reducing in strength at subsequent iterations (asymp-
totic freedom). This has the relevant consequence that the
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renormalized coupling distributions are asymptotically in-
dependent. In particular, the late-time effective decimation
within each renormalization-group trajectory is captured by
the same decimation rules occurring for the equilibrium strong
disorder renormalization group Eq. (3). (We refer to Ref. [52]
for an in-depth discussion of those flow equations and their
stability, while here we pinpoint the key ideas.)

Starting from the joint distribution Py o (J, A; Q), where Q
is the largest energy scale at a specific renormalization-group
step, the decimation rule Eq. (3) induces a differential equa-
tion for Py A as Q2 is decreased,

oP; A
a2

Here F is a functional of P; o (see Ref. [32] for the full
expression). Switching to the logarithmic variables

= F[P;al. (15)

=1n— F=In-2 =InQy, (16)
i_nQ, g ’
¢ J, Q 0

i

Bi = —In[Al,

with o, Q ~ 1/t the initial and the reduced energy scale,
respectively, and integrating Eq. (15) over the interaction vari-
able 3, we obtain

3/?; _ 3/9; o
=S (O [ didendc 6~ s G
o' ar 0
a7

where p(¢;T) = [dBP, p(¢, B;T) is the distribution of ¢
at renormalization-group time I'. At equilibrium, the flow
variable I' is related to the decimation length scale I' ~ \/Z,
while in this time-dependent RSRG it is related to the real
time scale (via the high-frequency integration) I' ~ In# (see
also Sec. III). The solution of the flow equation is given by

pe(£;T) = a(@)e ™",

al) = (18)

+1 /(lo’

which holds for any real ag.

C. Predictions and limitations of the
renormalization-group approach

We now briefly discuss the predictions and limitations of
the dynamical strong disorder renormalization group.

In the noninteracting case, it follows from the effective
Hamiltonian in Eq. (11) that 6} are effectively decoupled
degrees of freedom. Their role is accounted for by the virtual
interactions between their neighboring sites, which oscillate
with a renormalized frequency. Starting from the Néel state,
it is hence clear that in the scaling time limit, the state of the
system gets approximated by a product of oscillating singlets
extending at an arbitrary range [62]

W) = ( I1 |sl-,j<t>>) (]"[ |sk>>, (19)

G, j)el kel.

with [s; j(1)) = (11, 1) & e~ ||, 1,))/+/2, and ; ; the 0s-
cillating frequency of the pair; moreover, the set / contains
all the decimated pairs, while /. contains the nondecimated
spins; finally |sz) = [1), ). [See Fig. 1(a) for a pictorial
representation. ]

In the interacting case, instead, the system state is in a su-
perposition of different states of the form (19), each one fixed

FIG. 1. Cartoon of the dynamical states. (a) The state at a given
time ¢ within the renormalization-group approximation is given as a
product of oscillating pairs of spins spreading throughout the system,
denoted as bonds joining the spins (black dots). (b) Interactions
lead to the formation of clusters of spins (dots joined by multiple
bonds in the figure), since the system is a coherent superposition of
fixed renormalization trajectories. The entanglement shared by two
generic subregions A; and A, is related to the bonds connecting them
and is clearly different in the (a) and (b) scenario.

by a specific value of the conserved number 6 in Eq. (11).
Therefore, one has

[Tis0 ]| @0

kel

W) =) a,() (1‘[ ysﬁfja)))
)z

@i, el

Here 1 is a collective index fixing a renormalization-group
trajectory, i.e., a set of choices of {57} for subsequent
renormalization times. For intermediate times, the state in
Eq. (20) is described by a product of independent clusters [see
Fig. 1(b)]. Indeed, multiple renormalization-group trajectories
share the same product structure in Eq. (19), except localized
space regions where interactions couple different singlets.
This scenario holds for a diluted number of clusters and breaks
down when large clusters interact between themselves. We
shall discuss the consequences of these results for the quantum
information spreading in Sec. III C.

We conclude by discussing the limitation of the strong dis-
order renormalization group, mainly coming from resonances
between high-frequency modes integrated out in different
regions of the chain. When resonances are relevant, the per-
turbative expansion in Eq. (9) fails, and the system rapidly
thermalizes. Within the strong disorder regime, which is the
one of interest in this paper, we discuss the conditions for
which the resonances are irrelevant in the renormalization-
group sense for the random bond XXZ (see also Ref. [32]).
For example, suppose two pairs oscillating around €2¢ have
their typical frequency separated by §€2. We use the proba-
bility distribution of bond strength Eq. (18) to estimate the
density of couplings mismatched by §€2, which is given by
0 >~ a(8S2/%). Hence, their typical distance scales as Lys X
a~'(Q/8R), leading to §Q = Qo/(Lwsa). The condition for
two pairs to be resonant is for §<2 to be of the same order (or
smaller) than their effective interaction Jeg. In this scenario,
the resonant bonds will escape the reduced dynamics, and will
explore arbitrary regions of the Hilbert space.

To estimate J.ir, we use the renormalization-group energy
scale associated with the average separation (cf. Sec. IIB)
length Lgig = In?(Q0/Jest) [32,52].
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Imposing that L., >~ Lgiy, we obtain the relation

Jogg ~ Qe Visla, (1)

Then, the condition Jeg = §S2 translates to a condition on the
typical separation between resonant bonds,

aLyese VIe/4 > 1. (22)

Hence, resonances will play no relevant role provided that a
is sufficiently small. We recall that a depends on the disorder
strength and the choice of initial conditions.

III. PROPAGATION OF QUANTUM INFORMATION

We are now in the position to discuss the renormalization-
group asymptotic predictions for the quantum information
dynamics generated by Eq. (1), focusing on the Néel state
in Eq. (10) as our initial state (while generalization to differ-
ent product states is straightforward, as already mentioned).
After introducing the information measures of interest, we
first discuss the case of noninteracting spin chains and then
interacting ones.

A. Observables of interest

In the remaining sections, we will consider the Rényi
entanglement entropies, the Rényi mutual information, the
logarithmic negativity, and fermionic negativity. In this sub-
section, we briefly review their definition and refer to the
literature for additional details.

1. Rényi entropy and mutual information

Given a quantum system and a bipartition A U B, the entan-
glement entropy is defined by [63]

S4 = —tr paln pq, (23)

where ps = trgp is the reduced density matrix associated with
the subsystem A, and p = |W)(W¥| is the density matrix of
the whole system. For « > 0, one can also define the Rényi
entropies as [4]

1
S = . In trpg (24)

—

such that lim,_, | S/(f) = S4. All Rényi entropies are good en-
tanglement measures for any bipartition, provided the global
state of the system is pure [64]. Suppose the system is mixed,
a scenario of interest when considering a tripartite (or, more
generally, a multipartite) system. In that case, the Rényi en-
tropy is not an entanglement measure as it embodies classical
correlations.

In the case of a tripartition A; U A, U B, a useful measure
of correlations between the parties A; and A, is given by the
quantum (Rényi) mutual information, defined from Eq. (24)
as

I, =S50+ 550 =53, (25)

As for the Rényi entropies in Eq. (24), the mutual information
is not an entanglement measure being sensitive to the total
correlations, both quantum and classical. However, it provides
relevant information on how the information propagates in
the system. For instance, we recall that the @ = 1/2 mutual

information was found to be proportional to the negativity (see
below for a definition) in many settings, ranging from inte-
grable models [65-68] to conformal field theories [24,69,70].
We note that this relationship has been recently investigated
also within quantum circuits [71], where it was found to
hold at early times, and within monitored and open quantum
systems [72—77], where it was shown to hold and break down
in specific setups and regimes.

2. Logarithmic and fermionic negativity

A computable and genuine entanglement measure for
generic mixed states is the so-called entanglement negativity
[35,78], which is defined in terms of partial transposition.

Given the tripartition A; U A, U B and the reduced density
matrix p4 with A = A; U A,, the partial transpose p/fz is de-
fined as

(@1, 92102191, 95) = (@1, Ghloalgl, 2}, (26)
where {@;} are bases in A; (i = 1, 2). The logarithmic negativ-
ity is defined from ,o/? as

Eavay = Intr| o, 27)
where ||O|| = trv/ 00" denotes the trace norm of the operator
0.

In the following, we shall also consider the fermionic neg-
ativity, recently proposed as an entanglement monotone of
particular relevance for fermionic systems [36]. This is of in-
terest to us for two reasons: First, as mentioned above, Eq. (1)
maps to an interacting fermionic model via the Jordan-Wigner
transformation. Furthermore, in the noninteracting limit, the
fermionic negativity can be computed using polynomial re-
sources (see Sec. IV).

For convenience, we recall here the expression of the par-
tial time reversal in the basis |{s;}) of the operators o} [79].
(Here s; =1 for [1;) and s; = —1 for [{;).) Compared to
the partial transpose in Eq. (26), the partial time reversal
of the density matrix ps contains an additional phase factor
[36,80,81],

(Isidis (sihal o2 1si s {siha)
(=PI (s, (5ol pal (s ), {s)),

which is defined in terms of 7 = >, (1 +5;)/2 and 7; =
D jea, (L +57)/2 (withk = 1,2) as

(28)

Tu(n +2) 7t +2
plis) (s = 0 FD  nOFD o
2 2
+un+ 1+ @+t +n). (29
The fermionic negativity is then given by
&l =ntr|pf]. (30)

In general, the fermionic and the logarithmic negativity are
different. However, as we show in the next subsection, they
coincide within the scaling limit for states of the form (19)
[36]. Using this equality, we shall use the fermionic negativity
for the numerical checks in Sec. IV.
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B. Quantum information dynamics in the noninteracting limit

In this subsection, we discuss the dynamics when A; = 0.
As already observed, in this limit the model in Eq. (1) reduces
to a noninteracting problem of free fermions with random
hoppings (the Dyson model). As discussed in Sec. IIC, the
state in the scaling limit is described by a product of oscil-
lating pairs extending arbitrarily far in space [cf. Eq. (19)].
Hence, it is convenient first to recall the dynamics of pairs
formation, which is the building block for computing all the
entanglement measures introduced above.

1. Production rate of oscillating pairs

Given an arbitrary bipartition of an infinite system in A
(of length £ > 1) and its complement A., we are interested
in the number of mutually shared oscillating pairs forming
up to a given renormalization-group time I". We will exploit
the equilibrium results derived in Ref. [42] for the singlets
production rate and extend them in the out-of-equilibrium
scenario, where oscillating pairs replace singlets.

At equilibrium, the average rate y,, = In(I',41/I",;) of sin-
glets formation is given by ¥, = 3. In the scaling limit, this
object does not depend on the renormalization step y = .
Such a rate, together with the number of singlets forming
over a given bond at renormalization-group time I, i.e., np >~
fr dTla(T) [cf. Eq. (18)], gives direct access to the total
number of singlets,

by
fiaa, = baa, - % ~ 2 (T + 1ag) + 01, (1)

where O(1) takes into account subleading corrections, and
bx.y denotes the number of bonds shared by two subsystems
X and Y. For instance, when the subsystem A consists of a
single interval in the middle of the system, we have bs.4, = 2,
while when it is attached to a boundary, bs.4, = 1.

The crucial result of the RSRG procedure in Sec. II is
Eq. (17), namely the fact that, in the proper variables, the
renormalization-group flow describing the system after a
quantum quench is the same as one would get at equilibrium.

Consequently, when moving to the quench setup, Eq. (31)
is still valid. What changes is the interpretation of the
renormalization-group time, now related to the real time
through I'(¢) = In(Q0t) [cf. Eq. (16)]. We note, however, that
the number of shared oscillating pairs forming between a finite
interval A and its complement A, will saturate. This is clear
from the renormalization-group perspective since saturation
occurs when all the smallest interval spins are integrated. On
average, this happens when I' ~ /¢, with £ being the length
of the interval [32,42,44]. Overall, the above observations can
be summarized in the following expression:

by
T (1) = =22 In (o (6) + 1/ag) + O(1),  (32)
with
_ [InQo), T@) SV,
Fe() = {\/Z otherwise. (33)

The above results are sufficient to compute the Rényi en-
tropies in Eq. (24).

For the mutual information and the negativity, we need
to generalize Eq. (32) to arbitrary intervals X and Y. In
full generality, we consider a k-partite system | Jy cg,X Wwith
Go = {Ay, ..., Ay_1, B}, with the A; being finite intervals and
B the complementary. We define G as the set of all possible
compact subintervals of the chain. For each X € G, of length
£x, we may first use the additivity of the number of oscil-
lating pairs (as was the case for the number of singlets at
equilibrium) shared between X and its complementary X, to
decompose ny.x, as follows:

nx:.x, = Z nxny:x.nz- (34)
Y,ZEgo

After taking the disorder average, we have a set of linear
equations,

nx.x, = Z nxny:x,NZ> (35)
Y, ZeGy

whose solution gives nyy for any X,Y € Gy. Now, the
left-hand side of (35) is the average of pairs between com-
plementary regions, given by Eq. (32). Neglecting subleading
O(1) contributions, we have

bX X

Inly, () =~ Z Axny:x.nz- (36)
Y,ZEg(]

This set of equations can be straightforwardly solved for the
variables 7ixny.x.nz, and a unique solution can be extracted for
any chosen partition of the system.

2. Dynamics of the Rényi entropies

Using the pair structure of the dynamical state, it is clear
that the average bipartite entanglement entropy of a subsystem
A is proportional to the number of shared singlets between A
and A, [32,42], i.e.,

Sa(t) = spTiaa, (). 37)

Now, for the same reason, also the average Rényi entangle-
ment entropy will be proportional to 7i4.4,(f), but with the
Rényi-index prefactor s}f‘). Its contribution can be estimated
as follows.

Consider a pair of spins oscillating at high frequency w
between the two configurations |1 |) and || 1) described
by a state of the form |s) = (]—) +ei“”|+))/\/§, with |£)
defined in Sec. II. Within the renormalization-group approach,
the remaining chain sees this effective emergent degree of
freedom as frozen. Thus, s* is estimated as the time average,
over one period, of its Rényi entropy.

Given that the associated density matrix reads in the basis

(R KN R O PR AR

0 0 0 0

1[0 14coswt —isinwt O
Ps=3510 +isinot 1—coswt O] (38)

0 0 0 0

the spectrum of the reduced density matrix p;(t) = Trpp; is
given by

A = 3[1 £ cos(wt)]. (39)

134205-6



QUANTUM INFORMATION SPREADING IN RANDOM SPIN ...

PHYSICAL REVIEW B 106, 134205 (2022)

It follows, from the definition in Eq. (24), that
1 w 21 /o

(@) — — dr1 2% ). 40
S = Tam ), n<; L) @0

In particular, Eq. (40) gives the following contribution for the
entanglement entropy [82]:

sp = lim s\ = (2In2 — 1) ~ 0.386.

(41)

Combining Eq. (40) with the scaling of the singlet formation
Eq. (32), we obtain

@ o Daa,

SE() = s )T In (T (t) + 1/ay). (42)

We conclude the discussion on the entropies with some

remarks. First, the entanglement propagation in Eq. (42) obeys
the logarithmic bound of information propagation proven in
Ref. [83]. Furthermore, the stationary value of the entangle-
ment entropy saturates to a nonthermal value, namely

Sf{")(oo) ~ s;“)%ln L.

(43)
Lastly, the predictions presented here are compatible with the
numerical results presented in Ref. [16] for the random trans-
verse field Ising chain and the random XX chain presented in
Ref. [18]. We shall review some related aspects in Sec. IV.

3. Logarithmic negativity, fermionic negativity,
and mutual information

This section discusses the observables of main interest
for this manuscript, i.e., the entanglement negativity and the
mutual information.

As for the Rényi entropies, the starting point of our analysis
is the pair product structure of the time-dependent state. From
this, it follows that, given the tripartition A; UA, U B, the
average logarithmic negativity is

EA] Ay (t) = EpﬁAl Ay (t), (44)

where €, is the negativity associated with the oscillating pair,
and 714,.4, () are the shared pairs between A; and A;. The latter
is obtained solving Eq. (36) for a specified partition (examples
follow below), whereas €, is estimated from the oscillating
pair density matrix oy [cf. Eq. (38)] and using the definition in
Eq. (26). The partial transpose of Eq. (38) with respect to the
second spin is given by

0 0 0 i sin wt
7, 0 1+ cos wt 0 0
Ps” = 2 0 0 1 — cos wt 0
—isin wt 0 0 0
45)

The trace norm is easily computed by diagonalizing the above
matrix, and the negativity contribution reads

@) =In|pl| =1In(1 + |sinwt|). (46)
Time-averaging over a period, we get
e 4Cat
€= 3/ di&(t) = —= —In2.  (47)
2w Jo b4

Here Cat >~ 0.915 ... is the Catalan constant.

Two remarks are in order here. First, by explicit computa-
tion, the prefactor ¢, is the same for the fermionic negativity
[cf. Eq. (30)] and for the Rényi entropy at o = 1/2 [cf.
Eq. (24)]. Furthermore, since the state is a product state of
singlets, it is easy to compute fermionic negativity and the
mutual information explicitly, and verify that

1724 4,
—

We now provide two explicit examples by choosing the
specific geometry of the tripartition. The solution of Eq. (36)
for these scenarios follows from the equilibrium calculations
presented in Refs. [45,48].

a. Adjacent intervals. We consider a tripartition A} U Ay U
B of an infinite system, with A; and A, two adjacent intervals
of finite length, £; and ¢,, respectively. In this case, the set
G defined above is given by G = {A;, Ay, A; U A,}. Then, ac-
cording to Eq. (36), we get the following three equations (one
for each element of G):

Ean, =E pyay = (48)

_ _ _ 2
MA;:(A) = Bapa, T 748 = 5 In Ty, (1),

= = = 2
nAzZ(Az)C = nA]ZAz + nAzZB = 3 ln F[z(t)a

aUAse = Tia:B + Tiags = 5 In Ty 40, (1). (49)
The solution is given by
_ 1 L, ()T, (1)
a,0)=-In[ ——""—=). 50
Ta,:, (1) 3 n( G ) (50)

Equation (50) together with Eqs. (44) and (47) is the complete
result for the evolution of the entanglement negativity in the
Dyson model.

Let us now discuss the consequences on the entanglement
negativity. Assuming without loss of generality that £, < ¢5,
we get [cf. Eq. (33)]

Inln(Qot), ¢ < eVl

z €, | In/4y, eﬂgtf,em, 51)
A:Ay —
=3 | in (), e/ S0 5 eV,
(514} Ve
ln(zllﬁz), t 2 evhth,

Equation (51) shows four interesting and unusual regimes: (i)
an initial double-log growth (as for the entanglement entropy);
(ii) a first plateau (dissolving into a cusp for £; = £); (iii) a
new time dependence, where entanglement decreases; and (iv)
a final saturation to a value that is nonextensive, and different
from the ground-state one (even if with the same logarithmic
scaling). The typical behavior is reported in Fig. 2.

While the initial growth, as well as the final saturation,
are reminiscent of the entanglement entropy behavior, the
intermediate regimes are clearly different: in particular, an
intermediate plateau is followed by a decrease of entangle-
ment. This is similar to what happens for the entanglement
negativity after a quench in clean systems: the same behavior,
indeed, was found both in the context of conformal field
theory [84] and for integrable models [67]. The difference is
the scale of time: the linear rate at which the entanglement
changes in clean systems is now replaced by a logarithmic
rate. Once again, this is consistent with the logarithmic bound
of entanglement growth in Ref. [83].
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&, (D)

r Ci+r O+r Ci+0+r T()
FIG. 2. Typical behavior of the logarithmic negativity dynamics
in the Dyson model. We plot in logarithmic scale [with I'(t) =
In(€20t) being the coordinate on the horizontal axis] the RSRG pre-
dictions for the Dyson model Egs. (51) and (52). The generic case of
two intervals of length ¢, and ¢, separated by a distance r is displayed
in dark gray. The equivalent picture for the adjacent interval is simply
obtained by setting r = 0, as shown in light gray. Moreover, when
£, = {,, the intermediate plateau dissolves into a cusp, giving rise
to a triangular-like shape. Numerically, only the initial growth can
be accessed (see Sec. IV). The same curve actually describes the

fermionic negativity Effh: 4, (t) and the mutual information 7/ ., ,
according to Eq. (48).

b. Disjoint intervals. A similar approach can be used for a
(infinite) system B, UA; U B; UA; U B;, where we focus on
two disjoint intervals A; and A, of finite length, respectively
£, and ¢,, separated by an interval B; of length r. Following
the calculations in Ref. [85], we get

F€1+r(t)rlz+r(t)>
Fr(t)r‘@1+[z+l‘(t) ’
whose profile is again given in Fig. 2.

Caay (1) = %”ln( (52)

C. Quantum information dynamics in the interacting system

Switching on interactions (A; # 0), the qualitative pic-
ture described breaks down at a characteristic time 0, ~
2Q0/ (JgAO). (Here, the subscript 0 denotes the characteristic
couplings at the initial time.) As described in Sec. II, in-
teractions lead to separate renormalization-group trajectories,
fixed by the values of the effective degrees of freedom &7,
which are conserved by the effective Hamiltonian H¢ at each
time step. After the time 2, two different trajectories related
by different values of a specific 6 start generating mutual
entanglement, and the system state is in a superposition of
multiple oscillating pairs. In particular, the state starts to form
multispin entanglement clusters after a time 0.

As we discuss below, we cannot work out the negativity
dynamics in all the regimes discussed in Sec. III B due to
the complex coherent pattern arising in the interacting case.
Nonetheless, some relevant phenomenological results can still

be deduced.

1. Entanglement and Rényi entropies

First, it is instructive to review the entanglement entropy
spreading estimated in Ref. [32]. An important observation is
that an effective spin will get entangled with the neighboring
spins at the characteristic time telnt ~2Q/(J 12A1 ), where the
subscript 1 denotes the typical couplings at the time of forma-

tion of the effective spin. This reasoning is straightforwardly

generalized to a cluster of decimated spins as follows. Con-
sider a given time #, such that the average distance between
nondecimated spins is given by (cf. Sec. II C)

d(tin) = [ao In(Qtin) + 117 (53)

Then, by the time t ~ iy + fent [fent ~ 22ent/ (JezmAem) is the
characteristic time fixed by the typical renormalized interac-
tions between the neighboring sites of the cluster], we can
assume all the spins within d(#,) to be entangled, namely
entanglement clusters of length d(#;,) have formed. Thus, the
entanglement entropy at time ¢ is estimated [32] to be Sat) ~
d(tin)/2. This is obtained as the mean entropy of a random
state [86], conditioned to the available degrees of freedom,
giving the factor 1/2, which takes into account the fact that
the states with aligned spins in each eliminated pair are not
populated (cf. Sec. II). Next, one needs to express d(#,) as a
function of 7. This leads to

In (z/1° 2
do(1) = d(tn(1)) ~ (% + 1) B(r —13,)0* —1)
In (¢/12,) 26 i
+<m+1> 0@t —t*)—1, (54)

where 6(x) denotes the Heaviside theta function, ¢ = (1 +
NG /2 is the golden ration, and ¢* is a crossover time that
depends on the initial conditions (see details in Ref. [32]).

Remarkably, this shows both the unbounded logarithmic
growth of the entanglement entropy seen in the numerical
simulations [13,14], as well as the delay of this interaction-
induced growth by a time that scales as the inverse interaction
strength [15].

One can extend the same reasoning to Rényi entropies

S In fact, for a large subsystem one has S = S, namely
the average does not depend on the Rényi index « [87]. We
conclude that for all « > 0 it holds that

SO() = do(1)/2 (55)

with dy(?) in (54).

The above predictions are valid for an infinite system cut
in two via a single cut. In the case of a finite subsystem,
we expect the entanglement to saturate: a conjecture for the
saturation to an extensive nonthermal value is given, again, in
Ref. [32].

Following the guidelines in Refs. [88,89], the above dis-
cussion can be further generalized to the subsystems made
of several intervals. We consider the generic case of a sub-
system A = U;A; made of k disjoint intervals A; of length ¢;,
separated by distances r;, within an infinite system, so that the
entangling surface is made by b4.4, = 2k points (boundaries).
We denote by 7y, = min; r; the minimum distance between
intervals, and £,;, = min,; ¢; and £,,,x = max; ¢; are the length
of the smallest and the largest interval, respectively. In the
limit dy(t) < 7min, £min—a regime that typically holds on ex-
ponential times ¢, as it follows from the logarithmic scaling
with time in Eq. (54)—the contributions to the entanglement
from each boundary add up. The clusters indeed become the
“independent units” in the interacting case, and the state can
be approximated (at leading order) as a tensor product of such
clusters (cf. Sec. II C). Conversely, in the limit dy(¢) > £max,
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T

(a) X} . LI .

(b) oo .
A 4

FIG. 3. Cartoon of the bipartite entanglement dynamics in the
interacting case. The state at time ¢ in the RG approximation in the
interacting model is represented via green bricks, denoting clusters
of spins that extend to average dimension dy(¢) [cf. Eq. (54)]; they are
separated by black dots, representing spins that are unpaired at time 7.
When computing entanglement and Rényi entropies of a subsystem A
(in the figure being a single interval) of length ¢, we have two limiting
regimes. (a) In the regime dy(¢) < ¢, only the clusters around the
boundaries of A (bs.4, = 2 in this specific case) will contribute to
the entanglement. (b) At later times, instead, when dy(t) > ¢, we
eventually expect the entropy to saturate. The entanglement behavior
describing these two regimes is given in Eq. (56).

the subsystem A reaches its nonthermal extensive stationary
value. The above considerations can be summarized in

[%do(t), dO(t) & Fmins Lmin,
¢ Zi Zi’ d()(t) > EmaXa

for some positive (unknown) constant c. A pictorial represen-
tation is given in Fig. 3.

Sy ~ { (56)

2. Logarithmic negativity and mutual information

Similarly to the noninteracting case, but now restricted
to the time regime where clusters are much smaller than all
characteristic lengths in the systems, the behavior of the log-
arithmic and fermionic negativity and mutual information can
be deduced from those of Rényi and entanglement entropies
above.

Consider in particular the case of two intervals A;, of
length ¢, », embedded in an infinite system (see the pictorial
representation in Fig. 4). In the small clusters regime, we find
— — @, . .

5A11Az = gﬁl:Az = QI.AZ = %d()(t)
with by,.4, the number of shared boundaries between A; and
A, namely

(57)

bA]SAz -

{1, A1, A; adjacent, (58)

0, A, A; disjoint.

We note again that the times where such a prediction holds
extend to exponentially long times until dy(?) < "min, £min
[this is a consequence of Egs. (54) and (56)].

Let us note that the relation between negativity and mutual
information in Egs. (57) and (58), valid for any index o, may
be an artifact of the rough estimate in Eq. (56). These stem
from the average entanglement contribution of a random state,
as considered in Ref. [32]. We leave it for future work to

T

FIG. 4. Cartoon of the multipartite entanglement dynamics in the
interacting case. The state at time ¢ is represented with the same
legend as in Fig. 3, and we consider a multipartite system, focusing
on quantum correlation between two noncomplementary subsystems
A, of length £, ». (a) In the regime £, » >> dy(t) only the clusters at
the shared boundaries will contribute to entanglement (in the figure,
ba,.4, = 0): this gives the predictions in Eq. (57). (b) At later times,
when clusters become comparable to subsystem size, the multipartite
structure of entanglement does not allow an easy RG prediction in
the intermediate regimes for both mutual information and negativity
until the very late time saturation regime.

investigate the fine-structure properties of the Rényi entropies
of the interacting model. Furthermore, when the cluster size
is comparable to the subsystems, the simplified discussion
proposed here fails, since the additivity property breaks down.
In particular, we cannot estimate through simple arguments
the intermediate regimes due to the complex multipartite
structure.

We can, however, estimate the expression for both the neg-
ativity and the mutual information at ¢ >> £, £,. In this case,
the spins in the system A belong to the same entanglement
cluster. Assuming finite £;, £;, it follows from Ref. [90] that
the negativity at large time is £4,.4, = 0. Similarly, the contri-
butions of the mutual information are estimated from Eq. (56),
which again give in the late-time regime /(®4,.4, = 0.

IV. NUMERICAL BENCHMARKS

To support the renormalization-group results presented in
this manuscript, we provide numerical tests for the Dyson
model in this section.

We map Eq. (1) for A; = 0 through a Jordan-Wigner trans-
formation [53] to

BC
H=Y Jicicl,, +He)= @ H G,

1

(59)

where ¢; and c; are, respectively, the annihilation and creation
fermionic operators, and H is the Hamiltonian density. We
note that for periodic boundary conditions in Eq. (1), an
antiperiodic boundary condition (ABC) applies in Eq. (59)
(BC=ABGC, i.e., Jp11 = —J;), whereas for open boundary
conditions (BC=0BC) the sum is restricted to i < L. To study
the effect of disorder, we shall employ the convenient choice
of distribution,

J [0, 1].

1
PJ) = gr””ﬁ, (60)
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In Eq. (60), 6 = 0 corresponds to the clean case, while § —
oo is the fixed point of the flow [cf. Eq. (18)]. We shall
consider § = 2—16 in our numerics, for which we expect the
strong disorder renormalization-group results to qualitatively
capture the physics.

The quadratic nature of the Hamiltonian in Eq. (59) allows
efficient numerical computations, provided the initial state is
Gaussian. (This is the case for any product state in the o*
basis, which is of interest for this paper.) In this scenario, the
evolution of the full state is faithfully encoded in that of the
correlation matrix [91],

Cij () = (W lcfe;|Wy). (61)
Using fermionic algebra, it is easy to show that
C@t)=e @ = 0)et™, (62)

The entanglement entropy and the fermionic negativity are
then computable in polynomial resources [92]. For complete-
ness, we briefly summarize how these are computed from the
correlation matrix [cf. Eq. (61)], and we refer the reader to the
literature for additional details.

a. Entanglement entropy. Given a bipartition A U B, the
entanglement and Rényi entropy are encoded in the reduced
correlation matrix Cl{‘j =Cjfori, j €A,

1
§@ = ot In[C¥ + (1 — C)*], (63)

—o
where 1 is the matrix identity of dimension |A| x |A] [91].
In a similar fashion, one can compute the Rényi mutual
information.

b. Fermionic negativity. Given a tripartition Ay UA, UB =
A U B, we define the correlation matrix G = 2C* — 1. It can
be proven [36,77,93] that the partial time-reversal density
matrix is still a Gaussian state. The latter, and its Hermitian
conjugate, both needed in the evaluation of the operator norm
in Eq. (30), are given by

G: = ( G (64)

+iGy, 4,

£iGy, 4,
—Ga,n, )

Introducing the matrix
G.=1i[1-(1+G.G_) (G4 +G)], (65)

the fermionic negativity is given by

gfzZ(ln(\/ﬂ_j—}—m)—i—%ln[l_2)\.j+2)\.§]>,

J

(66)
where p ; are the eigenvalues of G,, and A; are the eigenvalues
of C%. Since the logarithmic negativity £ and the fermionic
negativity £/ are expected to coincide for the noninteracting
case and in the scaling limit [cf. Eq. (48)], we shall consider
in this section only the fermionic negativity, and we denote it
simply (entanglement) as negativity.

We conclude this subsection with a remark. In the inter-
acting case (A; # 0) the system is not Gaussian, and the
computational complexity for the time evolution requires
exponential resources. Since the expectation of the strong
disorder renormalization-group requires the scaling limit, we
do not attempt a comparison between numerics and the
renormalization-group results presented in Sec. III C.

L =512
2.0/ 250
— f(t) = (¢y/3) Inlnt ;

g(t) = (2sp/3) Inlnt 200
1.51
— 150
10 =
100
I
0.51
50

—4 92 0 2
Inlnt

FIG. 5. Quantum information spreading in the Dyson model.
The time dependence of different entanglement measures is plotted
for L = 512 and varying 2¢ = |A;| = |A;| and § =4 in a system
with periodic boundary conditions. Specifically, in the top panel we
plot the average entanglement entropy, while in the bottom one we
plot the mutual information and the entanglement negativity. The
functions f(¢) and g(¢), which are the expected scaling behavior (cf.
Sec. III B), are plotted to guide the eye. We note that the entangle-
ment negativity and the mutual information collapse on each other in
the thermodynamic limit.

A. Results

We use Eq. (62) to evaluate the time evolution to times
fmax ~ 101 starting from a Néel state, and we use Eq. (63) to
compute the entropic measures and Eq. (66) to compute the
negativity. The maximum time #y,,x is fixed by the constraint
of using double precision floating point numerics. We shall
consider A" = 10° disorder realization for each choice of L,
subsystem size ¢, and disorder strength §.

In Fig. 5, we plot the propagation of entanglement en-
tropy, mutual information, and negativity for a chain of length
L =512 and considering adjacent intervals of size £; = {;.
(In Appendix B, we discuss the robustness of such results
by varying the total system size.) We compare these results
with the analytic estimates obtained in Sec. III B, finding good
agreement.

We note that, due to the double logarithmic behavior of the
entanglement measures, we can only explore the first regime
in Eq. (33). Nevertheless, these results are informative, and
they show that the product ansatz explored in Eq. (19) is valid.
Indeed, the mutual information and the negativity collapse
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Inlnt

FIG. 6. Rényi entropies in the Dyson model. The time depen-
dence of the Rényi entropy is plotted for L = 512, varying ¢ = |A]|,
and varying o = 2—4 in a system with periodic boundary conditions
with § = 6. We use the geometry depicted in Fig. 5, and we plot in
the main figure the bare data. Inset: The Rényi entropy rescaled by
the pair contribution s [cf. Eq. (40)]. Here, f(¢) is the expected
scaling behavior (cf. Sec. III B), plotted to guide the eye.

onto each other for sufficiently large system sizes (whereas
they present finite-size corrections for small systems).

To cross-validate the pair picture, in Fig. 6 we plot different
values of the Rényi entropy, and we show that the curves at
different « all collapse onto a single curve when rescaled by
Eq. (40).

Overall, these numerical results demonstrate that the strong
disorder renormalization-group analysis captures the relevant
physics of the quantum information dynamics.

V. CONCLUSIONS

In this paper, we have discussed the propagation of quan-
tum information in systems with strong disorder. We have
considered an archetypal model (the random bond XXZ
spin chain) to derive analytical predictions through the time-
dependent real-space renormalization-group method.

In the absence of interactions, we showed that the dynam-
ical state is described by a dynamical generalization of the
RSP, namely, a product state of oscillating pairs well approx-
imates it in the scaling limit. From this, we could estimate
the spreading of the Rényi entropy, the mutual information,
and the entanglement negativity. For the regime accessible by
double-precision numerics, we benchmark these results with
numerical simulations, finding good agreement.

In the interacting case, we could generalize the results in
Ref. [32] for the entanglement entropy to provide qualitative
predictions for Rényi entropies and (Rényi) mutual infor-
mation. For negativity and mutual information, the complex
multipartite entanglement structure allows us to estimate the
case of adjacent intervals for the (exponentially extended)
early-time regime and in the late-time limit. Within the for-
mer, we find that the mutual information and the entanglement
negativity are proportional and scale logarithmically in time.
Instead, at late times, both of these quantities vanish, similarly
to what occurs in integrable quantum systems [67].

Our results provide a qualitative understanding of the quan-
tum information spreading in random spin chains. It would be
interesting to investigate the spreading on symmetry-resolved
entanglement quantifiers [49,94—104], which provide suitable
tools for the experimental entanglement detection, as demon-
strated in Refs. [105,106]. Similar techniques can also be
applied in systems with long-range interactions [107-109],
where the dynamics of entanglement is known to be atypical
also in pure systems [110-113]. Additionally, it would be in-
teresting to study the quantum information dynamics of open
quantum system disordered media, whose clean dynamics
has recently been considered [77,114,115]. A strong disorder
renormalization group has already been applied to dissipative
systems in Ref. [116], and more recently in the context of
measurement-induced entanglement transitions [117].
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APPENDIX A: HIGH-FREQUENCY FLOQUET
INTEGRATION AND DERIVATION OF THE
EFFECTIVE HAMILTONIAN

In this Appendix, we review the high-frequency Flo-
quet expansion and how to derive the effective Hamiltonian
Eq. (11). We refer to Refs. [51,56] for additional details.

1. High-frequency Floquet expansion

We consider the generalization of the decomposition in
Eq. (4), that is, H = Hg + V + Hey. In full generality, we

assume
Ho= Y P,
¢e€o(Hg)

(AD)

where o (Hg) is the spectrum of Hg, and P, are the projectors
onto the eigenvalue spaces. We simplify the description to
the case of a nondegenerate spectrum, so that P, map onto
a one-dimensional manifold. (Similar considerations can be
extended to the degenerate case, combining the following
analysis with ordinary degenerate perturbation theory.) We
assume that H,.q is unaffected, at leading order, by Hg, hence
entering trivially the effective Hamiltonian Hg in Eq. (11).
We can therefore only focus on the action of Hg on V.
In the interaction picture,
V() = elfalye—ifiar — ZEii(EX?Eth,pVPX.
é.x

(A2)

We introduce the energy differences AE; = E, — Ej, labeled
by an integer j. We have

‘/I(I) — ZeiAEjth,
J

Vj = Z ZquVPXSAE,,EXfEW

¢ X
(A3)

134205-11



PAOLA RUGGIERO AND XHEK TURKESHI

PHYSICAL REVIEW B 106, 134205 (2022)

The unitary evolution in the interaction picture in Eq. (7) is

given by
/ dtVi(t)

- / dv, / dnVim Vi) + 0. (Ad)
0 0

U[(t) _ T€71f0 dtV[('L’)

We recall that the renormalization step is given by
Ur(t) = Uen(t) = e = | — iHegt — 3 Het” + O().
(AS)

This is done by expanding both unitary operators U;(t) and
U.#(t) and matching the same order terms. One has

Let us write the explicit form of Hg,

S0 0 0
Qo -4 1 0
= — 2
He=710 1 %2 o | (A10)
0 0 0 fe

whose eigendecomposition is given by

E—_9<1+ﬂ> )= —=(11 1) = 14 1), (AL
s = ) ’ _\/E ’

E — 9(1—3) o) = —=(11 1) +14 1), (Al2)
1n = > ) 0 _«/E ’

Agq

Q
© 1 2 Ep=+— l)=111), )= (A13)
Heff - Heff + Heff + o m ’ (A6)
! Using Eq. (A9), we obtain the effective Hamiltonian. For
where convenience, we report here the nonzero leading contributions
0) ' 1
He = ?/0 dVi(@) =V, (AT p=sx=t: o lsVIoPls)sl
(M i i 272 22
Hyy = __/ dflf dnVi(t)Vi(n2) _ ALARSLR . AL + AR
2t Jo 0 =" 5q CLORSI— —— 5 s)sl,
1 Al4
=y Wi vl (AB) 3 . (A9
AE;>0 T =s,x=tr: ———|(s|V]|t
j ¢=sx=1 Q(1+AQ)/2|(S| [££)17]s5) (s]
After simple algebra, we get A
= m(oﬂ’a{ + o og)ls)(sl, (A15)
Heir = Z PyVPy+> > PV = VP¢. (A9) o
¢ 179 ¢ =to, x =5 §I<to|V|S>I2|to>(to|
Let us notice that, although the projectors act on the full A2 .
Hilbert space of Hg,, in practice depending on the interactions, — ALALJRIR ofoilto) (to] + ALJE + ArJR Ito) (to|
only a reduced manifold of degrees of freedom is populated. 2Q 4Q
See also the discussion in Sec. II. | (Al6)
+
$p=ty, x =t+: m|(5|v|fi>|2|f0)(fo|
2. Analysis for the Hamiltonian in Eq. (1) (I—A4q)/
We now specialize to the Hamiltonian in Eq. (1), and we — A(UJO’E + gljog)lto) {to]. (A17)
apply the rules obtained in the previous section [cf. Eq. (A9)]. 2Q(1 — Ag)
,,,,,,, 25 — a=2 Y
- a=3 !

1 A
flt) = gln 111?////////

—4 —2 0 2
Inlnt

-2 0 2
Inlnt

Inlnt

FIG. 7. Robustness of numerical results. We test the numerical results presented in the main text varying the parameters of the model. Left:

We consider £ = 16-L/4 for L =

128,256,512 and 8§ = 4. Our data show that the values of the entanglement measure are the same when

£ < L, hence they are independent of the specific value of the system size L. Center: Scaling of the entanglement entropy for open boundary
conditions, varying the disorder strength §. After a nonuniversal transient time, the scaling of the entanglement entropy reaches the expected
form f(¢) = (s,/3)Inlnt (dashed orange lines). Right: Scaling of the Rényi entropy for different values of « for open boundary conditions

and averaging over random initial states.
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Summing them up, and using the definition in Eq. (12), we
obtain the final expression Eq. (11).

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we consider additional numerical checks.
Specifically, we show how the results presented in Sec. IV
change when (i) considering different system sizes L; (ii) dif-
ferent disorder strength §, and (iii) different initial conditions.
Our results are summarized in Fig. 7. (For readability, we
avoid including all the tests and report only a selection of
them.)

First, we note that for a fixed £ <« L, the value of L is
irrelevant, and all the curves fall on top of each other [see
Fig. 7(left)].

In Fig. 7(center, right), we compare the results using open
boundary conditions, for which b4, = 1 [cf. Eq. (32)]. We
can appreciate the agreement between numerical results and
theoretical prediction.

The values of the disorder give nonuniversal contributions
in the dynamics, but the late-time behavior is the same for suf-
ficiently large subsystems. These are shown in Fig. 7(center).

Lastly, we note that the initial condition is irrelevant to
the overall physical picture. Figure 7(right) shows averag-
ing over the initial random product state conditions, and on
the disorder configurations. Contrary to the rest of the paper
(where we use N = 10° realizations), in total, ' = 10° for
this plot. It is clear from the plot that the qualitative predic-
tions of the RSRG are unaffected by the choice of the initial
state.
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