
PHYSICAL REVIEW B 106, 134203 (2022)

Kibble-Zurek behavior in one-dimensional disordered topological insulators
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The discovery of nonlocal order parameters in real space provides a feasible scheme for studying dynamical
critical behavior in topological systems. We study the critical phenomena in the one-dimensional Su-Schrieffer-
Heeger (SSH) model by investigating the inhomogeneities in the local winding number in real space. By slowly
quenching the system across the topological phase transition during a finite time interval, we find that the length
scale defined through the local winding number satisfies the Kibble-Zurek mechanism. In contrast to the density
of excitation, the scaling of this length scale is in full analog to the behavior of traditional continuous phase
transitions with local order parameter and spontaneous symmetry breaking. In addition, the critical behavior
and Kibble-Zurek mechanism in the generalized SSH with next-nearest-neighbor hopping are also studied.
These results extend our understanding to the Kibble-Zurek mechanism and topological phase transition in
nonequilibrium.
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I. INTRODUCTION

Over the past few decades, topological insulators, as one
of the mainstream research directions in condensed mat-
ter physics, have attracted much attention because of the
fundamental interest and potential applications in nanoelec-
tronics [1–6]. Topological quantum phases are characterized
by a bulk topological invariant and accompanying protected
boundary modes, whose description is beyond the scope of the
traditional Landau-Ginzburg-Wilson framework in the lan-
guage of local order parameters and spontaneous symmetry
breaking [7–9]. Topological insulators possess edge states
that propagate along a unidirection and are immune to the
scattering of disorders [10]. In recent years, much attention
has been paid to the study of novel dynamical topological
properties in nonequilibrium dynamics in both theory and
experiment [11–14].

As a general theory relating the phase transition and
nonequilibrium dynamics, the famous Kibble-Zurek mech-
anism (KZM) was proposed and has been examined in
diverse systems, ranging from superfluids [15–17] to su-
perconductors [18–21], quantum Ising chains [22–25], ion
crystals [26–28], Bose gases [29–33], and cosmological
scenarios [34–36]. The KZM predicts that the number of topo-
logical defects generated exhibits a universal scaling behavior
in a nonequilibrium system driven through a continuous phase
transition during a finite time interval. It was first proposed
by Kibble as a cosmological theory to describe the formation
of the early universe [37], and subsequently applied to con-
densed matter systems by Zurek [38]. The central ideal of this
theory is as follows. As slowly quenched across the critical
transition point, the system experiences different dynamical
stages. At initial stage far away from the critical point, the
relaxation time is short and the state can adiabatically follow
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the ground state of the system. As approaching to the critical
point at which the relaxation time diverges, the dynamics are
no longer adiabatic and the system arrives at the impulse
(diabatic) region. When system is far from the critical point
again, the adiabatic evolution can be recovered. The moment
at which the system fails to evolve adiabatically is called the
freeze-out time. The freeze-out time t̂ and the corresponding
correlation length ξ (t̂ ) can be determined as t̂ ∼ τ

zν/1+zν
Q and

ξ (t̂ ) ∼ τ
ν/1+zν
Q [39], where τQ is the quench time and z and ν

are both the critical exponents. Relevant physical quantities,
such as topological defects, of the postquench system are
simply determined by the correlation length at freeze-out time.

The KZM has also been studied in topological systems,
in which the number of excitations is shown to satisfy the
KZM [40–44]. However, this kind of simple generalization
does not reveal the underlying physics of the topological
nature. Topological phase transitions have no spontaneously
broken symmetry, and no local order parameter as required in
Landau’s phase transition theory. It is worthy to ask whether
the above freeze-out argument of the KZM works in topo-
logical systems that are described by a quantized nonlocal
topological invariant. A breakthrough in this research direc-
tion was made recently in Ref. [45], in which the KZM was
directly revealed in real space in a Chern insulator with weak
disorder. By introducing the so-called local Chern marker as
a local indicator of the topological phase [46–48], the authors
find that a characteristic length scale can be defined in the
inhomogeneities in the local Chern marker. The scaling be-
havior of this length scale is shown to follow the KZM, thus
establishing an almost full analog to the dynamical critical
behavior of systems with spontaneously broken symmetry and
local order parameter. However, this study was constrained to
the case of the two-dimensional (2D) Chern insulator whose
topological invariant is the Chern number. One may wonder
whether the KZM is still applicable in other types of topo-
logical systems, such as the 1D system that is described by a
winding number.
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In 1D topological systems protected by chiral symmetry, it
was found that the winding number can also be represented in
real space [47]. This representation is proven to be valid and
convenient for exploring the disordered topological Anderson
insulator. Such a real-space representation of the winding
number was further modified by deriving the real-space wind-
ing number in view of the skew polarization [48].

In this paper, by defining a local indicator of winding num-
ber in real space, we systematically study the Kibble-Zurek
mechanism in the 1D Su-Schrieffer-Heeger (SSH) model.
We first find that this local winding indicator gives rise to
a length scale that diverges near the critical transition point
ξ̂ ∼ |t − tc|−1 in equilibrium. By slowly quenching the system
across the topological phase transition point during a finite
time interval τQ, one also finds that the critical length scale
satisfies the KZM: ξ (t̂ ) ∼ τ

β
Q with critical exponent β = 1/2.

This scaling is in full analog to the behavior for the system
undergoing a symmetry-breaking second-order phase transi-
tion. Moreover, we find that our results are not restricted to
the simple short-range SSH models, but can be generalized to
the long-range SSH model.

The paper is organized as follows. In Sec. II, we present the
model and give a brief review of the calculation of the winding
number. In Sec. III we show the critical phenomenon of the
ground state in momentum space and in real space. In Sec. IV
we study the KZM under slow quench protocol. In Sec. V
we consider the long-range SSH model. Our conclusions are
given in Sec. VI.

II. THE MODEL

Without loss of generality, we take the 1D SSH model as an
example to study the Kibble-Zurek mechanism. As shown in
Fig. 1(a), in addition to the nearest-neighbor hopping terms t1
(intracell) and t2 (intercell), we also consider the next-nearest-
neighbor (NNN) intercell hopping t3. The SSH model is one
of the most studied topological models that support nontriv-
ial topological phases. When t3 = 0, the system undergoes a
topological phase transition from a topologically trivial phase
for t1 > t2 to topologically nontrivial phase for t1 < t2 with
t1 = t2 being the critical point. This topological phase tran-
sition can be described by a quantized nonlocal topological
invariant, the winding number. The winding number can take
values of 0 and ±1, corresponding to the topologically trivial
and nontrivial phases, respectively. When the NNN intercell
hopping t3 is nonzero, the phase diagram is more complex
with a topologically nontrivial phase of winding number 2,
as shown in Fig. 1(b).

We start the discussion with the tight-binding Hamiltonian:

Hr = (t1 + �tn)
N∑

n=1

|n〉〈n| ⊗ σx

+ t2

N−1∑
n=1

(
|n + 1〉〈n| ⊗ σ+

2
+ H.c.

)

+ t3

N−2∑
n=1

(
|n + 2〉〈n| ⊗ σ+

2
+ H.c.

)
, (1)

FIG. 1. (a) Schematic illustration of 1D SSH lattice. The system
consists of two sublattices denoted by blue (A sublattice) and red (B
sublattice) spheres, respectively. The dotted purple ellipse indicates
the unit cell. (b) Phase diagram of the generalized SSH model. The
winding number (shown by the color scale) is calculated as a function
of t2, t3 in k space. Four dashed lines are displayed in different colors,
which represent four different quench paths. The quench directions
are indicated by the arrows. For paths 1©– 3©, we quench t2 from 0
to 60 with t3 being 1.3, 0.6, and 0.4, respectively. In path 4©, we fix
t2 = 0 and quench t3 from 0 to −60. t1 = 1 for all the paths.

where σ± = σx ± iσy and σx,y,z is the Pauli matrices acting
on the two sublattices. n denotes the nth unit cell and N is
the total number of unit cells. The open boundary condition
is adopted in the calculations. In addition, we also introduce
a weak-disorder term �tn in the nearest-neighbor intracell
hopping t1. Specifically, �tn is chosen to be uncorrelated and
uniformly distributed in the interval {−�t,�t}. The strength
of the disorder is weak enough that the Anderson localization
length is much longer than the system size.

In the clean limit, the tight-binding Hamiltonian (1) can be
diagonalized by making a Fourier transformation [49] and one
can express the Hamiltonian in the momentum space in terms
of Pauli matrices [50]:

Hk = (t1 + t2 cos k + t3 cos 2k)σx

+ (t2 sin k + t3 sin 2k)σy. (2)

Note that the Hamiltonian has no σz terms, and thus possesses
the chiral symmetry σzHkσ

−1
z = −Hk . The eigenvalues E±

and eigenstates |ψ±〉 can be readily obtained. By using the
eigenstate of the valence band, one can get the Berry con-
nection via Ak = i〈ψ−|∂k|ψ−〉. Then the winding number in k
space can be calculated by

wk = 1

π

∮
BZ

Akdk. (3)

Here, “BZ” denotes that the integration is taken in the first
Brillouin zone.

In the case with weak disorder, the translational symmetry
is broken and the winding number defined in Eq. (3) does not
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apply. Instead, the topological invariant can be defined in real
space. One can calculate the corresponding winding number
of a 1D system with chiral symmetry directly from the real
space as proposed by Ref. [47]:

Wr = Tr w(r), with w = Q12[X, Q21]. (4)

Here, w(r) is the local indicator of winding number. “Tr”
refers to taking the trace over the real space. To calculate
the local indicator w, one needs to define a homotopically
equivalent flat-band Hamiltonian Q = P+ − P−, where P± are
the projectors onto the conduction and valence bands, respec-
tively. Then we define Q12 = 
1Q
2, Q21 = 
2Q
1, where

1,2 are the projectors onto the two sublattice subspaces. X is
the position operator. The chiral symmetry of the Hamiltonian
is now expressed as 
Hr


−1 = −Hr , where the chiral sym-
metry operator is 
 = 
1 − 
2. The real-space formula of the
winding number is still valid even in the presence of disorder
as long as the chiral symmetry is preserved.

III. THE CRITICAL PHENOMENON IN EQUILIBRIUM

In the continuous phase transitions of Landau-Wilson type,
all relevant physical quantities, like the order parameter,
specific heat, susceptibility, and correlation length, exhibit
universal scaling behaviors as approaching the critical point.
Topological phase transitions, however, are characterized not
by local order parameter, but by a nonlocal topological invari-
ant, and thus cannot be described in terms of Landau-Wilson
theory. It is necessary to study whether similar critical phe-
nomena are present in a topological system. Based on the local
winding number indicator given in the above section, we will
define a correlation length as the size of inhomogeneities of
the local indicator, and study its critical behaviors.

A. In the clean system

In the clean system (2), the winding number is expressed as
an integration of Berry connection Ak over the first Brillouin
zone (3). Thus one can focus on the Berry connection Ak and
investigate its profile in the momentum space, from which a
length scale can be derived and treated as a local parameter.
Note that a similar procedure was taken to study the critical
behavior of Berry curvature in a Chern insulator [45].

In Fig. 2, we present the results of the Berry connection of
a 1D topological model in the ground state. By fixing t2 = 1,
six different values of control parameter t1 are plotted in the
region near k = π in Fig. 2(a). One observes that there is a
peak of Berry connection around k = π . The peak first grows
with the control parameter t1, reaches the maximum value at
phase transition point t1 = 1, and then decreases. One can find
that there may exist a critical behavior around the transition
point.

To quantitatively describe the critical behavior, we define
a correlation length ξk by the inverse of the full width at half
maximum of Berry connection Ak . The calculation method is
given in the Appendix. In Fig. 2(b) we plot the correlation
length ξk in k space as a function of parameter t1. As the
system approaches the critical point tc = 1, one observes that
the correlation length diverges. We further plot the ξk as a
function of |t1 − tc| in the log-log scale in Fig. 2(c). One can

FIG. 2. Berry connection of the SSH model in the interval 2.5 �
k � 3.78 from t1 = 0.5 (topology) to t1 = 1.5 (trivial) for (a). In this
case we set t2 = 1 and t3 = 0. (b) The correlation length in k space
ξk as a function of control parameter t1 when it crosses the critical
point tc = 1. ξk as a function of |t1 − tc| in the log-log scale is plotted
in (c). Black line shows fit to blue dots coming from numerics.

see that the correlation length ξk scales with parameter |t1 − tc|
as ξk ∼ |t1 − tc|−ν with critical exponent ν = 1 [45].

Actually, one can analytically determine the correlation
length exponent. For simplicity, considering the case of
t3 = 0, the Berry connection can be explicitly given as

Ak = t2(t2 + t1 cos k)

2(t1 + t2 cos k)2 + (t2 sin k)2
. (5)

Near the point k = π , by writing t1 = 1 + δt , t2 = 1, k = π +
δk, one can obtain Ak ∼ −δt+(δk)2

(δt )2+(δk)2 and Aπ ∼ − 1
δt . From the

denominator, one can see that the full width at half maximum
of Ak occurs at δkc ∼ δt . Thus the correlation length is ξk ∼

1
δkc

∼ (δt )−1 with the critical exponent being 1.

B. With weak disorder

Next, we turn to the case with disorder (1) and study the
critical behavior in terms of the local winding number (4)
in real space. Because of the presence of weak disorder, the
local winding number in real space is no longer a constant
value, but fluctuates at different positions. In this case, one
can obtain the correlation length ξr in real space from the
disorder-averaged autocovariance function as it drops below
zero (see Appendix).

As shown in Figs. 3(a1)–3(a5), we present the distribution
of the local winding number at each site for different values
of parameter t1 around the transition point. The system size
is N = 250 and open boundary conditions are considered.
One can find that the correlation length ξr increases as the
parameter t1 approaches the critical point. Naturally, we show
the relation of the correlation length in real space ξr with
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FIG. 3. (a1)–(a5) The distribution of local winding number
across the critical point in disordered systems. The system size is
N = 250 and the disorder amplitude is �t = 0.005. The correspond-
ing control parameter t1 and the correlation length ξr of real space are
marked under the corresponding figures. (b) The correlation length
in real space ξr as a function of control parameter t1 when it crosses
the critical point t1 = 1. (c) ξr as a function of |t1 − tc| in the log-log
scale for different system sizes ranging from N = 250 to N = 1300
and averaging is done over 50 random values of �tn.

the control parameter t1 in Fig. 3(b), which exhibits a similar
critical behavior with the k space. We further plot the ξr as a
function of the average values of |t1 − tc| in the topological
regime in Fig. 3(c). Different system sizes are denoted with
different colors. The larger the system size, the closer to 1 the
correlation length exponent. The correlation length exponent
in the disordered case is thus in agreement with what we find
from the clear ones when the system size is large enough.

For the above discussions, we find that the critical phe-
nomenon in the 1D topological phase transition does exist
both in the momentum space and in the real space. In both
cases, we obtain the same critical exponent ν = 1 in the scal-
ing of correlation length. In the next section, we study the
critical behavior of topological systems under slow quench
dynamics.

IV. KIBBLE-ZUREK MECHANISM UNDER SLOW
QUENCH DYNAMICS

In this section, we study the quench dynamics of the 1D
SSH model. We consider the slow quench protocol that the
parameter t1 is varied as t1(t ) = t0 sin2[(π/2)(t/τQ)] with

FIG. 4. (a1) Berry connection of SSH model after the end of
the slow quench for three different τQ. The dashed green box is the
region of interest near k = π . (a2) The Berry connection in the region
near k = π is plotted as a function of (k − π )

√
τQ + π for different

values of τQ. Here, the vertical axis is subtracted a constant c, where
c = 0.5. The black arrows indicate the inverse of defined correlation
length ζk . (b) The correlation length in k space ζk as a function of
quench time τQ in the log-log scale. The black line is a fitting with
ζk = 1.08τ0.53

Q .

fixed t2 = 1, t3 = 0. As such, the system is quenched from
the topological phase at initial time t = 0 to the trivial phase
at final time t = τQ. Here, we set t0 = 60 in clean systems and
t0 = 2 in disorder systems; τQ determines the quench rate. The
reason we adopt this protocol is to make sure that, at the initial
time and final time, the system is not changed too abruptly as
compared to linear quench protocol. One may think that the
nonlinearity may modify the power-law behavior [51,52]. In
fact, this protocol reduces to linear at a time near the phase
transition point at t = τQ/2. As long as the quenching time
τQ is sufficiently large, this linear relation will be sustained
in the impulse region of the nonadiabatic transition, and thus
does not affect the power-law behavior.

In clean systems (2), we first evaluate the Berry connection
Ak by using the final evolved wave functions after the slow
quench dynamics, and then extract the corresponding corre-
lation length. The Berry connection after the slow quench
dynamics is shown in Fig. 4(a1) as a function of momentum
k for three different values of quench time τQ. Here we only
consider the region near k = π as it determines the main form
of Berry connection and the reason will be explained later by
using an analytical model. The postquench form of the Berry
connection near k = π for different quench times is shown
in Fig. 4(a2), in which we define the correlation length ζk by
the inverse of the full width at half maximum of the Berry
connection. For different quench rates, the Berry connection
near k = π collapses to one single line if we rescale the
momentum k by a factor τ

1/2
Q . We further plot the correlation
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length ζk as a function of quench time τQ in the log-log scale
as denoted by the black dots shown in Fig. 4(b). The scaling
exponent of the black line is indeed near 0.5, which is in good
agreement with the result of the Kibble-Zurek mechanism.
Actually, according to the KZM, the size of inhomogeneities
is given by ξ (t̂ ) = τ

ν/1+zν
Q with the exponent being 1/2 for the

1D SSH model, in which ν = z = 1 are the correlation length
and the dynamical critical exponent, respectively, as already
obtained in previous sections.

Here, we can provide an analytical study of the evolved
Berry connection under slow quench dynamics. We consider
a slow quench protocol such as t1 = g/t with g being the
quench rate, and keeping parameter t2 = 1 as a constant. The
quench time is from t = 0 to t = ∞, so that the system
is quenched from an initial deep trivial phase to the final
nontrivial phase. Specifically, we need to solve the following
generalized Landau-Zener problem:

i∂t |ψ (t )〉 = Ĥ (t )|ψ (t )〉, (6)

with the time-dependent Hamiltonian

Ĥ (t ) =
(

g

t
+ cos k

)
σx + sin kσy, (7)

in which only the nearest-neighbor hopping is considered.
If the system starts from the initial ground state, |ψ (0)〉 =

1√
2
(1,−1)T , then the final wave vector can be found to be [14]

|ψ (t )〉 = e−iεt+iφ
√

P|u+〉 + eiεt
√

1 − P|u−〉, (8)

in which ε = 1 is the absolute value of eigenenergy after
the slow quench, φ is an undetermined phase factor, and
u± = 1√

2
(1,±eik )T is the instantaneous eigenvector of the

Hamiltonian at time approaching infinity. The Landau-Zener
transition probability P is

P = e−2πgcos k − e−2πg

e2πg − e−2πg
. (9)

One can see that P takes its maximum at k = π , and
quickly decreases to zero away from k = π . Using Eq. (8),
one can readily obtain the time-dependent Berry connection
Ak (t ):

Ak (t ) = −(2P − 1)(∂kε)t + [PA++ + (1 − P)A−−]

+ e2iεt
√

P(1 − P)A+−+ e−2iεt
√

P(1 − P)A−+.

(10)

Here, we define the Berry connection tensor Ajl = i〈u j |∂kul〉
with j, l = 1, 2. For our case, the final Hamiltonian is simple,
and we find that A++ = A−− = −A+− = −A−+ = 1/2 inde-
pendently of k. Therefore, the above expression can be further
simplified. The first term is time-dependent. However, since
in the final Hamiltonian, the band is flat and the eigenenergy
ε is independent of k, this term vanishes. For a more general
Hamiltonian, this term becomes important. Since eigenenergy
always finds its minimum at k = π leading to ∂kε = 0 near
this point, this term vanishes near k = π . Away from k = π ,
however, ∂kε becomes nonzero. This leads to a linear increase
of this term. This argument explains why, in Fig. 4(a1), the
Berry connection increases as one increases τQ. For the cross-
ing terms with A+− and A−+, it is an oscillating term with

FIG. 5. (a1)–(a4) The distribution of local winding number at
the end of the slow quench in disordered systems. The quench time
ranges from τQ = 5 to τQ = 125, the system size is N = 250, and
the disorder amplitude is �t = 0.005. In (b), the correlation length
in real space ξr as a function of quench time τQ in the log-log scale.
The black line yields ξr = 3.52τ0.53

Q . The black dots are the numeric
results. Here the lattice size N = 500, the disorder amplitude is
�t = 0.005, and averaging is done over 100 random values of �tn.

time. Its main form is determined by the factor
√

P(1 − P) of
the LZ transition probability. Due to this factor, this crossing
term quickly decreases to zero away from the k = π point.
The time-independent term is simply a constant of 1/2. From
this simple analytical model, we see that the physically mean-
ingful part of the Berry connection is located near k = π , from
which the correlation length ζk should be defined.

Similarly to the clean system, we also obtain the final
evolved wave functions after the slow quench dynamics in the
disordered case (1). One finds that the postquench correlation
length ξr that we defined to measure the inhomogeneities also
increases with the quench time; see Figs. 5(a1)–5(a4). We
further plot the correlation length ξr as a function of quench
time τQ in the log-log scale in Fig. 5(b). One again finds that
ξr ∼ τ0.5

Q with exponent being 0.5.
We note that, previously, the KZM has been studied in

disordered systems. For example, in Ref. [23], the 1D ran-
dom Ising spin model was studied, and it was found that
the density of excitations has only logarithmic dependence
on the transition rate. The reason is that the randomness of
ferromagnetic couplings in the model changes the universality
class with respect to the pure Ising chain. Any strength of
disorder drives the 1D system into a localized regime, and
thus the critical exponent is ν = 2 and z → ∞ rather than
ν = 1 and z = 1. Compared with our results, it shows that
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FIG. 6. In (a), for the system with next-nearest-neighbor hopping
term t3, the correlation length ξk in equilibrium as a function of
|t2 − tc| in the log-log scale is plotted. In (b), the correlation length at
the end of the quench in k space ζk as a function of quench time τQ

in the log-log scale for the long-range SSH model. The three colors
correspond to the three quench paths 1©– 3© in the phase diagram.

disorder plays distinctive roles in topological systems and in
nontopological systems. In our problem, we considered only
weak disorder, and the scaling of the local winding number is
the same as that in the pure system, which can be attributed to
the topological nature that makes the behavior robust.

V. KIBBLE-ZUREK MECHANISM IN
THE GENERALIZED SSH MODEL

Until now, the KZM has been validated in the standard SSH
models. One may wonder whether this finding can also be
extended to the other systems. In this section, we investigate
the KZM in the generalized SSH model with the Hamiltonian
given by Eqs. (1) and (2). As shown in Fig. 1(b), we first
repeat the phase diagram of the generalized SSH model in k
space [50]. We study four different quench paths as indicated
in the phase diagram. The quench protocol is the same as
that in previous sections. The quench path 1© belongs to the
w = 2 → 0 case and the critical point is at tc = 2.3. Quench
paths 2© and 3© are both w = 0 → 1 phase transitions and the
phase transition points tc are 1.6 and 1.4 separately. The last
quench path 4© is the w = 0 → 2 phase transition, and the
corresponding critical point is tc = −1. Then we can study

FIG. 7. For (a) and (b), the correlation length in k space along
path 4© of the phase diagram. (a) The correlation length ξk in equilib-
rium as a function of |t3 − tc| in the log-log scale. (b) The correlation
length ζk vs quench time τQ in the log-log scale. For (c) and (d), the
correlation length in real space along path 2© of the phase diagram.
We fix t1 = 1, t3 = 0.4, and quench t2 from 0 to 4. We plot ξr vs
|t2 − tc| under the log-log scale in (c). ξr as a function of quench
time τQ under the log-log scale is displayed in (d). Here the lattice
size N = 250, the disorder amplitude is �t = 0.005, and averaging
is done over 100 random values of �tn. Blue and red lines are both
fittings.

the change of correlation length in equilibrium states and slow
quench along these paths.

In Fig. 6(a), we present the correlation length in equi-
librium states near the phase transition point in paths 1©– 3©
of Fig. 1(b). We find the correlation length decreases with
|t2 − tc| and exhibits a ξk ∝ |t2 − tc|−1 scaling from the fits for
the results of three different colors. In Fig. 6(b), we plot the
correlation length after the quench ζk vs quench time τQ in the
log-log scale along quench paths 1©– 3© of the phase diagram.
As quench time τQ increases, all three different quench paths
exhibit scaling behaviors of correlation length with exponents
being very close to 0.5.

To complete the results of Fig. 6, we also consider another
quench path 4© and extend the quench path 2© into the real
space with disorder. As shown in Figs. 7(a) and 7(b), the same
correlation length exponent ν = 1 and the dynamic exponent
z = 1 can be found in the case in which the system is quench-
ing along w = 0 → 2. In Figs. 7(c) and 7(d), we verify that
the KZM can be also satisfied in the generalized SSH model
from the view of real space. All of this demonstrates that,
in the presence of the next-nearest-neighbor hopping term,
the KZM in 1D topological insulators is still observable as
a universal theory in physics.

VI. CONCLUSIONS

To conclude, we have studied the Berry connection and
local winding number of the 1D SSH model in equilibrium
states and slow quench circumstances. We found the critical
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behaviors are present in both cases. After we defined the
corresponding correlation length, we found the KZM can be
observed in momentum space via the Berry connection and in
real space by the local winding number. Moreover, we extend
our results to the long-range systems. The critical exponents
show good agreement with the predictions as given by the
KZM.
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APPENDIX: THE DEFINITION METHOD
OF CORRELATION LENGTH

For the clean system, as shown in Fig. 8, we defined the
correlation length under equilibrium states ξk by the inverse
of width of black arrows in |Ak/Aπ | = 0.5. A similarly defined
method is made by Ref. [45].

In a randomized disorder system, the autocorrelation plot
is a common tool for checking randomness of the data set. The
autocorrelation coefficient is given by

Rr = Ar

A0
. (A1)

k
-1

A
k
/A

FIG. 8. The absolute value of Berry connection in the interval
2.5 � k � 3.78 under equilibrium states. The marked black arrows
denote the corresponding inverse of correlation length ξk .

The autocorrelation function Ar and the variance function A0

are expressed in

Ar = 1

N

N−r∑
x=1

(wx − w)(wx+r − w), (A2)

A0 =
∑N

x=1(wx − w)2

N
, (A3)

where N is the length of the data set, x is the position order,
r is the position lag, and w is the average of the data set. The
autocorrelation coefficient is ranging from −1 to 1.

Similarly to the previous work, we defined the size of
the inhomogeneities in the real space from the correlation
length ξr by the distance between when the disorder-averaged
autocorrelation coefficient first crosses zero (Rr = 0).
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[40] L. Ulčakar, J. Mravlje, A. Ramšak, and T. Rejec, Phys. Rev. B
97, 195127 (2018).
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