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Weak quantization of noninteracting topological Anderson insulator
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We study the transition between the two-dimensional topological insulator (TI) featuring quantized edge
conductance and the trivial Anderson insulator induced by strong disorder. We discover a distinct scaling
behavior of the TI near the phase transition where the longitudinal conductance approaches the quantized value
by a power law with system size, instead of an exponential law in a clean TI. This region is thus called the weak
quantization topological insulator. By using the self-consistent Born approximation, we associate the emergence
of the weak quantization with the imaginary part of the effective self-energy acquiring a finite value at strong
disorder. We use our analytical theory, supported by direct numerical simulations, to study the effect of disorder
range on the topological Anderson insulator. Interestingly, while this phase is quite generic for uncorrelated or
short-range disorder, it is strongly suppressed by long-range disorder, perhaps explaining why it has not been
seen in solid state systems.
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I. INTRODUCTION

Noninteracting topological phases are interesting not only
from theoretical perspectives but also for potential applica-
tions. Because of the nonlocal topological characteristics, the
most important signature of these phases is the anomalous
boundary metallic mode robust to perturbative deforma-
tions of the Hamiltonian. In this paper, we focus on
two-dimensional (2D) topological systems featuring robust
conducting edge modes [1–7]. A paradigm of this class, and
probably the most experimentally viable, is the quantum spin
Hall insulator induced by the spin-orbit coupling and band
inversion [8–13]. Such nontrivial topological insulators (TIs)
manifest an odd number of conducting helical modes at the
boundary and a stable quantized conductance against small
parameter changes. Recently, an anomalous quantum Hall
effect where chiral modes can exist without an external field
has also been reported [14–16]. In all these experiments, quan-
tized conductance is the key evidence to confirm the nontrivial
topology.

The intuition behind the stability of the anomalous edge
states can be explained as follows. In a clean topological sys-
tem, electrons at one edge can only move in one direction (per
each time-reversal partner) so backscattering is absent and the
current flows around the defect [17]. As disorder becomes
sufficiently strong, bulk parameters can be renormalized, driv-
ing the system to a different topological phase [18–32]. An
interesting case is when the renormalized Hamiltonian itself
supports nontrivial topology with robust boundary modes
while the original clean system is trivial [20–22,24–27,30–
34], the so-called topological Anderson insulator (TAI) phase.
This phenomenon can also be studied in one-dimensional
systems [35–38] and has been observed experimentally in
atomic and optical systems [39], even though the topology

here is characterized through a bulk index rather than the
associated gapless boundary mode. The quantization plateau
should not survive to an arbitrarily large disorder strength,
with the bulk eventually becoming the exponentially localized
Anderson insulator (AI) with trivial topology and thus zero
edge conductance. While early works numerically demon-
strated a “levitation and pair annihilation” mechanism for the
suppression of edge conductance [40,41], an intuitive physical
picture is provided through a percolation process. Conducting
bands, in the presence of disorder, generically develop tails
of exponentially localized states that eventually overlap with
the bulk gap [24,42]. These localized bulk “islands” become
connected if the disorder landscape is correlated and form
a percolating network, effectively acting as a passage for
the two edge modes to percolate into the bulk and destroy
the quantization plateau through an effective edge-edge cou-
pling [43,44]. In comparison with the pristine system, the
bulk density of state at the energy gap is exactly zero, so the
edge-edge hybridization can only happen through tunneling
across the vacuum bulk, which is exponentially suppressed
with the distance.

In this paper, we study the transition regime between TI
and AI with increasing disorder strength, focusing on the
quantization plateau (and its eventual disappearance) in the
two-terminal longitudinal conductance. We first numerically
show that near the TI-AI phase boundary, the scaling of
the conductance quantization error (1 − G) with the system
size is slower than any exponential laws usually observed in
clean TIs. We refer to this region as the weak quantization
topological insulator (WQTI), while reserving the TI nomen-
clature for a regime with exponentially fast quantization. This
change of the scaling law distinguishes TI and WQTI. In the
following, we show that this transition is the manifestation
of the second-order transition of the imaginary part of the

2469-9950/2022/106(13)/134201(6) 134201-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7765-0173
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.134201&domain=pdf&date_stamp=2022-10-06
https://doi.org/10.1103/PhysRevB.106.134201


DINHDUY VU AND SANKAR DAS SARMA PHYSICAL REVIEW B 106, 134201 (2022)

FIG. 1. (a) The quantization error 1 − G with the rescaled size
L∗ so that 1 − G at different parameters collapses into a single
function with an asymptote L−4. The inset shows the finite-size
scaling of quantization error but in a log-linear graph, distinguishing
the exponential decay for W = 10, μ = 0.5 (yellow asterisks) from
the polynomial decay for W = 15, μ = −0.3 (blue circles). (b) The
scaling of the conductance at μ = 0 across the WQTI-AI transition.
The vertical axis is plotted by the scale ln[y/(1 − y)] to show both
the limits near zero and one. The lattice parameters for the simulation
are identical to Fig. 2(b).

self-energy acquiring a nonzero value for sufficiently strong
disorder [see Fig. 2 and Fig. S2(a) of the Supplemental Mate-
rial (SM) [45]].

Here, we describe how the WQTI fits into other phase
classification schemes in the present literature. In terms of
topological classification, WQTI and TI belong to the same
phase and should exhibit perfect quantized conductance in the
thermodynamic limit. However, for finite systems, TI (WQTI)
would manifest robust (fragile) quantization, which has im-
plications for experiments. This motivates our separation of
WQTI from the TI phase based on the scaling behavior. We
note that TAI refers to the disorder-induced quantized conduc-
tance phase starting from the pristine limit with no metallic
edge modes, either because the bare (before the disorder-
induced renormalization) mass is positive or the bare chemical
potential lies outside the bulk gap. Therefore, TAI may over-
lap with either TI or WQTI depending on details.

A key distinguishing feature of our work compared with
earlier works reporting similar numerical evidence is the
development of an analytical framework that theoretically
establishes the fragile power-law behavior of the WQTI phase.
Furthermore, we predict the emergence of TI, WQTI, and
AI phases based entirely on our analytical theory, obtain-
ing excellent agreement with the exact numerical results. To
demonstrate the predictive power of our theory, we study
the effect of disorder range on the TAI region (with no

FIG. 2. (a)–(c) Longitudinal conductance with increasing disor-
der correlation lengths. For the specifications of the lattice, the width
is 200a, the length is 400a, m = −1, α = 16, β = 100, γ = 48.
Points marked in (b) correspond to Fig. 1(a). The black lines show
the renormalized energy gap μ̄ = ±m̄, the purple lines are the � = 2
isolines in Eq. (2), and the dashed blue lines are the boundary of the
Im �0 = 0 region. (d) The � = 2 isolines (solid lines) at different
correlation lengths. The dotted lines mark the energy gap in the
pristine limit. Accordingly, the TAI phase (shaded region beyond the
dotted lines) only exists for ξ = 2 and 4.

quantized-conductance clean analog). Both our analytic the-
ory and numerical simulation show a progressive suppression
of the quantization plateau as the disorder range increases.
Again, this has been reported based on numerical simulations
before [43,44], but our analytical model provides deep insight
into the underlying physics. The main text of this paper is
devoted to the on-site disorder, so, with no loss of generality,
we only work on one spin sector of the Hamiltonian, leaving
the other time-reversal partner implicit.

II. THEORY

We start with a clean Chern insulator Hamiltonian that
preservers the translational symmetry,

H0(kx, ky) = α(kxσx − kyσy) + (m + βk2)σz + γ k2σ0. (1)

The tunable chemical potential is μ. We perform the numer-
ical simulation on a square lattice with the lattice constant a,
using a discretized version of Eq. (1). The parameters α, β, γ

when accompanied by an appropriate power of the lattice
constant give the unit of energy, i.e., α/a, β/a2, and γ /a2 have
the same dimension as the mass m. Therefore, throughout this
paper, we fix a = 1 and provide the value for α, β, γ with the
length scale a implied. To reproduce the effect of quenched
impurities, we introduce random disorder at each site whose
strength is chosen independently from a uniform distribution
[−W/2,W/2]. Each impurity interacts with electrons via a
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Gaussian interaction, resulting in the disorder potential being
long-range correlated 〈u(r)u(r′)〉 ∼ e−(r−r′ )2/2ξ 2

[45] (〈·〉 de-
notes averaging over disorder configurations.) The disordered
Hamiltonian is thus H0 + u(r)σ0 with σ0 reflecting the on-site
disorder (other types of disorder differing by the accompa-
nying matrix are studied in the SM [45]). Because of the
finite correlation length, W, α are rescaled by ξ−1 and β, γ by
ξ−2 [45]. For this reason, we use the rescaled disorder strength
W̄ = W/ξ instead of the absolute value in all the figures.
The longitudinal conductance G is computed exactly using
the Landauer-Büttiker formalism [17,46] and implemented
numerically using the KWANT package [47]. We average over
up to 700 disorder configurations to ensure convergence and
present the conductance in the unit of e2/h so that the ideal TI
quantized conductance is unity.

From the theoretical perspective, we can average the
Green’s function over disorder configurations to obtain an
effective theory with recovered translational symmetry, i.e.,
G = 〈[μ − H0 − u(r)σ0]−1〉 = (μ − H0 − �)−1. This self-
energy � is a matrix � = �0σ0 + �zσz (by symmetry
reasoning there are no σx,y terms). If we only consider
noncrossing diagrams (i.e., the self-consistent Born approx-
imation), the self-energy can be written as an integral
equation [45]. Due to renormalization by the self-energy, the
renormalized mass m̄ = m + Re �z and chemical potential
μ̄ = μ − Re �0 define a new energy gap by the condition
m̄ < 0 and |μ̄| < |m̄|. However, as shown in the numerical
results (Fig. 2), the boundary generated from the gap-opening
condition, defined only by the real parts of the self-energy,
does not enclose the TI region but in fact extends far beyond.
Thus, a theory based only on mass and chemical potential
renormalization, described by the real part of the self-energy,
is incomplete. We take into account the imaginary part of the
self-energy analytically and obtain the boundary enclosing the
numerically simulated quantization plateau, thus providing a
complete and correct theory.

We first provide a preliminary argument. The gapless
boundary modes inherit the imaginary term from the bulk
which can be regarded as the incoherent broadening of the
edge excitation. As such, the edge current can disperse into
the bulk where it might hybridize with the current leaking
from the opposite edge and mutually exchange momentum.
This effective coupling between the two chiral edges, arising
from the impurity-scattering-induced imaginary self-energy,
leads to the quantization error and eventually the suppression
of the conducting edge modes. This is the physical mechanism
driving the TI-WQTI-AI transition with increasing charge
disorder. Formally, when the two edge states hybridize, the
quantization error in the longitudinal conductance is propor-
tional to hybridization probability. In the SM [45], we evaluate
this probability as ∼F (	E/
)L−4. Here, F is a function, 	E
is the energy separation between the renormalized chemical
potential and the edges of the renormalized bulk gap, 
 is
the energy level broadening, and L is the interedge separation.
The level broadening may arise from either Im �0 or Im �z,
but the edge states are the eigenvectors of σx, so only the
former can contribute to the L−4 scaling. We thus identify

 = Im �0. From this dimensional scaling analysis, if the
imaginary part of the self-energy is nonzero, 1 − G should

scale as L−4; and, if it is zero, the quantization converges
exponentially because the two edges can only interact through
tunneling which is suppressed exponentially in the absence of
level broadening.

To quantify this physics, we numerically compute the
quantization error 1 − G while changing the system width
(the ratio length/width is fixed at 2). For points with nonzero
Im �0 [see Fig. 2(b)], 1 − G decreases with increasing sys-
tem size by a subexponential scaling law as shown in the
log-log plot in Fig. 1(a). After rescaling L, there emerges a
one-parameter scaling function β = d ln(1 − G)/d ln L that
approaches −4 for G sufficiently close to unity, consistent
with our analytical picture of the interedge hybridization
through the bulk leakage. Because of this power-law scaling
of the quantization error, we refer to this phase as the WQTI.
Compared with the pristine TI, we compute the quantization
error for a point with vanishing Im �0 (but a finite strength
of disorder) which, as shown in the inset of Fig. 1(a), has a
clear exponential scaling. This comparison establishes that the
disorder-induced TI-WQTI transition is driven by the imagi-
nary part of the self-energy acquiring a finite value beyond
a critical point, resulting in the edge localization length di-
verging across the phase transition (and thus hybridizing in
the WQTI phase). While earlier works numerically demon-
strated the strong finite-size effect observed in the presence
of strong disorder [24,33,48], we quantify this behavior by
providing the one-parameter scaling function and an analyti-
cal and physical explanation which remarkably reproduces the
asymptotic scaling exponent of −4.

Now, we discuss what happens if the disorder increases
further. In Fig. 1(b), we increase the disorder strength and
study the WQTI-AI transition. For G � 0.3, the scaling flow
is to 1 with the rate being progressively faster for larger
(closer to 1) G. On the contrary, when the disorder is strong
enough, the conductance is suppressed close to zero, and
more importantly, does not depend on the system size. This
change of scaling marks the WQTI-AI phase transition. The
small finite conductance in the AI phase might be caused by
rare conducting bubbles. These bubbles are incoherent, so the
finite-size scaling law should obey the Ohmic law, i.e., L0 for
2D, albeit the conductance magnitude is much smaller than
the conductance quantum because of strong localization with
G ∼ 0. Combining with the previous argument, the scaling
exponent β is negative for G > Gc ∼ 0.3 and approaches −4
in the limit G → 1; for G < Gc, β = 0 [45]. We note one
difference with the transverse conductance measurement in
which β < 0(> 0) for G > 0.5(< 0.5) and there is only one
fixed point (β = 0) at G = 0.5 [40]. The reason for this dis-
parity is that the rare conducting bubbles support longitudinal
but not transverse conductivity.

While the TI-WQTI boundary can be obtained analytically
from Im �0, it is not so obvious for the WQTI-AI transition
because of very strong disorder. Instead, we look at where
our self-energy approximation breaks down and the Anderson
localization physics prevails. The hybridization probability
already shows that the factor 
/	E , if being large, can sig-
nificantly couple the two edges and can completely suppress
the edge conductance. Since the hybridization can happen
through either the upper or lower bulk bands, we propose a
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quantity to capture its magnitude,

� = Im �0

μ̄ + |m̄| + Im �0

|m̄| − μ̄
. (2)

The physical driving mechanism of the WQTI-AI transition
is the disorder-induced density of percolating states inside the
energy gap, which can be estimated by ρ(μ) ∼ Im �0/(m̄2 −
μ̄2). This shows that Eq. (2) is indeed consistent with the
microscopic physics. Therefore, we expect the � function
including the imaginary part of the self-energy to resolve the
inconsistency between the renormalized energy gap (obtained
from only the real part of the self-energy) and the numeri-
cally generated conductance. In particular, by fixing � to a
constant, we can reproduce the boundary of the numerical
quantization regime. To verify this, we apply our theory to
explain the dependence of the TAI phase on the correlation
length of the disorder. This effect has been studied in a few
papers [43,44], based mostly on numerical simulations.

III. NUMERICAL PHASE DIAGRAM

A. m > 0

We first study the case where the clean limit is a nontrivial
TI, i.e., for W = 0, the longitudinal conductance is quantized
for m < μ < −m. To connect with our finite-size simulation,
we identify the region of G within 10% error from unity as the
quantization plateau, rather than the critical value 0.3 derived
earlier from the scaling analysis. The first remark is that while
the renormalized energy gaps (black lines) are clearly larger
than the quantization regime, the isolines � = 2 (purple lines)
consistently enclose this region, even as ξ changes. These
results also agree with the absence of quantization plateau in
the μ < m region, despite still being within the energy gap.
This is strong validation of the theory.

We now focus on the fate of the TAI in the presence of
long-range correlated disorder. Although a prominent TAI
region, i.e., the part of the quantization plateau with μ > −m,
is visible for ξ = 2 [Fig. 2(a)], it is suppressed quickly with
longer correlation lengths [Figs. 2(b) and 2(c)]. The trend
appears more apparent in Fig. 2(d) where we collect all the �

isolines for different correlation lengths. The naive explana-
tion is that the exponential suppression induced by ξ prevents
the energy gap to broaden [45], thus ruling out the TAI. This
limit is approximately reached for ξ = 20, indicated by the
almost symmetry around μ = 0. However, the TAI already
vanishes for ξ = 8 despite a visibly widened energy gap. In
fact, we show that the ξ dependence is mostly due to the rapid
increase of Im �0 passing the critical point, rather than the
decrease of the gap [45].

B. m < 0

We now consider the case where disorder inverts the sign of
the mass, thus introducing nontrivial topology to an otherwise
trivial system. By definition, the whole quantization plateau
is now TAI. As can be seen from Figs. 3(a)–3(c), the TAI
phase is suppressed for long-ranged disorder, similar to the
case of m < 0. Again, the naive argument predicts that the TAI
should disappear when a sufficiently long correlation length
suppresses the mass inversion by rendering the quadratic

FIG. 3. (a)–(c) Numerical simulations for the trivial clean limit.
The width is 350a, the length is 700a, m = 1, α = 120, β = 400,
γ = 200. (d) The renormalized energy gaps for different disorder
correlation lengths corresponding to (a)–(c). (e) Similar to (d) but for
the � = 2 isolines.

terms in the Hamiltonian irrelevant [20,21,30]. However, our
numerical simulations show a complete loss of quantization
even at a moderate ξ = 5 where the mass inversion is still
clearly present. On the other hand, the isoline � = 2 exhibits a
consistent shrinkage of the TAI phase. We note that the quan-
titative agreement here between the theoretical and numerical
results is not as good as the m < 0 case. The reason might
be that the mass first needs to be inverted so the TAI plateau
now exists at a very high disorder strength. Our analytical
theory only includes noncrossing diagrams [45], so we expect
its accuracy to degrade at very strong disorder. Nevertheless,
theoretical and numerical results in Fig. 3 show similar trends.
These two examples demonstrate that our theory, particularly
the � function, is an effective tool to study the disorder-driven
topology.

IV. CONCLUSION

We theoretically identify several different class A dis-
ordered 2D TI phases, including TI (perturbatively weak
disorder), WQTI (moderate disorder), and AI (strong disor-
der). Our analytical theory, directly supported by numerical
simulations, relies on the imaginary part of the disorder-
induced self-energy, which was ignored in earlier studies.
One might raise a question about the extremely accurate
quantization in integer quantum Hall experiments. In addition
to various quantitative reasons, e.g., large gap, a protective
mechanism is based on the bulk of a Hall insulator being
localized at essentially all energy. This is because the Landau
levels are exactly flat, and in the presence of disorder, quickly
collapse into localized states (except when the sample is very
small). The WQTI mechanism is not possible because it re-
quires extended bands around the energy gap.
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In earlier works [20,21], the disorder is uncorrelated and
zero ranged, and the TAI is predicted to be a generic phase.
However, our analysis with nonzero correlation lengths shows
that TAI is fragile and vanishes for long-range disorders. In 2D
semiconductors [8–10], the dominant disorder is always the
long-range correlated Coulomb disorder arising from random
quenched charge impurities [49,50], and hence the TAI phase
is difficult to observe [except perhaps in artificial atomic,
molecular, and optical systems [34,39]]. Our work establishes
TI, WQTI, and AI as the three generic phases in the presence
of disorder, with WQTI being a somewhat fragile intermediate
critical phase in between the weak-disorder TI and the strong-
disorder AI phase.

Lastly, we compare our “weak quantization” with the
“quantization loss” due to intraedge coupling between the two
spin sectors in quantum spin Hall insulators [51,52]. Being
a local process, the latter cause a finite deviation from the
quantized conductance even in the thermodynamic while in
our model the quantization recovers slowly. Moreover, the
intraedge backscattering is not possible in noninteracting sys-
tems.
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