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Molecular dynamics simulation of the ferroelectric phase transition in GeTe:
Displacive or order-disorder character
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Experimental investigations of the phase transition in GeTe provide contradictory conclusions regarding the
nature of the phase transition. Considering growing interest in technological applications of GeTe, settling these
disputes is of great importance. To that end, we present a molecular dynamics study of the structural phase
transition in GeTe using a machine-learned interatomic potential with ab initio accuracy. First, we calculate the
asymmetric shape of the radial distribution function of the nearest-neighbor bonds above the critical temperature,
in agreement with previous studies. However, we show that this effect is not necessarily linked to the order-
disorder phase transition and can occur as a result of large anharmonicity. Next, we study in detail the static and
dynamic properties of the order parameter in the vicinity of the phase transition and find fingerprints of both
order-disorder and displacive phase transition.
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I. INTRODUCTION

The phase transition in ferroelectric materials is usually
discussed in terms of two distinct mechanisms, which de-
termine whether the phase transition has order-disorder or
displacive character [1–6]. The distinction between these two
mechanisms comes from the analysis of a simplified Lan-
dau model of ferroelectric materials [7]. In the displacive
limit of the phase transition, the frequency of a soft phonon
mode becomes zero in the higher-symmetry structure at the
critical temperature. The soft phonon mode freezes in the
lower-symmetry structure driving the structural phase transi-
tion [1–4]. On the other hand, in the order-disorder limit of
the phase transition, the local ferroelectric distortion persists
above the critical temperature. In this case the paraelectric
nature of the high-symmetry phase stems from the lack of the
long-range spatial correlation of the polarization [5,6].

Germanium telluride, GeTe, is an important thermoelectric
material that is also ferroelectric below 600–700 K [8–12].
The Landau model of ferroelectric phase transitions places
GeTe at the boundary between materials exhibiting order-
disorder and displacive characters of the ferroelectric phase
transition [13]. This is further confirmed by a number of
experimental studies with contradictory conclusions [1–6].
Depending on the spatial resolution of the experimental
method, the phase transition in GeTe is found to be either
order-disorder or displacive. This ambiguity suggests that a
computational, first-principles-based study of the phase tran-
sition would provide useful insights.

Our recent works have been able to explain a number
of interesting properties of GeTe at the ferroelectric phase
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transition, primarily negative thermal expansion [14] and an
increase in the lattice thermal conductivity [15]. However,
both of these studies relied heavily on a phonon picture of
GeTe, implying a displacive character of the phase transition.
There is an open question of whether the inclusion of order-
disorder character in the calculations would lead to different
results and conclusions.

Molecular dynamics (MD) simulations are probably the
most direct tool for classical simulations of materials [16–18].
In principle, they can capture all relevant physical effects at
high temperatures, where quantum corrections are negligi-
ble. However, MD simulations for systems containing many
atoms when forces are determined by density functional the-
ory (DFT) are extremely computationally expensive [19,20].
To circumvent this issue, researchers usually rely on a simple
analytic form of interatomic potentials which have limited ac-
curacy and transferability [21–23]. Recent works on machine
learning interatomic potentials aim to correct this and provide
interaction models of quality similar to DFT, at a much more
modest computational price [24–28]. These interatomic po-
tentials were recently used to describe phase transitions in a
variety of materials [29–33].

In this paper, we present a molecular dynamics study of
the ferroelectric phase transition in germanium telluride. To
calculate atomic forces and energies along MD trajectories,
we used our recently developed interatomic potential for GeTe
using the Gaussian approximation potential (GAP) framework
[24,25]. Our model of interatomic interactions in GeTe, based
on DFT energies and atomic forces, reproduces the experi-
mental structural parameters and negative thermal expansion
at the phase transition. The radial distribution function of the
nearest-neighbor bonds in GeTe was found to be strongly
non-Gaussian even at temperatures above the phase transi-
tion. We show that this does not necessarily mean that the
phase transition has an order-disorder character and that this
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effect could arise as a consequence of strong anharmonicity.
Furthermore, we present a detailed investigation of the order
parameter behavior at the ferroelectric phase transition, which
is found to exhibit fingerprints of both order-disorder and
displacive character.

II. COMPUTATIONAL DETAILS

Molecular dynamics simulations were performed using the
LAMMPS code [34]. To calculate the atomic forces and ener-
gies, we used our previously fitted GAP for GeTe [15,35].
This interatomic potential was fitted to DFT energies and
atomic forces. More details about the fitting procedure and the
potential are given in Ref. [15]. To obtain the equilibrium val-
ues of structural parameters at different temperatures, we first
run a 10 ps simulation using the NV T ensemble to equilibrate
velocities at the given temperature, followed by a 20 ps NPT
simulation to equilibrate the structure [36,37]. We then run a
200 ps NPT simulation while collecting data every 0.1 ps. The
time step is taken to be 1 fs. For a convergence study with the
size of the simulation region, see the Supplemental Material
[38]. At each temperature we start from the zero-temperature
equilibrium structure of GeTe and set random initial atomic
velocities sampled from the normal distribution with the vari-
ance corresponding to the target temperature.

To compute the order parameter at different temperatures,
we perform 300 ps NV T simulations on a 512-atom cell
while collecting atomic positions every second time step. A
time step of 1 fs was used in all simulations. Prior to data
collection, we equilibrate the system for 50 ps in the NV T
ensemble.

III. STRUCTURAL PARAMETERS AND THERMAL
EXPANSION OF GeTe

Germanium telluride crystalizes in a rhombohedral struc-
ture below 600 K (see Fig. 1), which is described by the
following lattice vectors:
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Here a is the lattice constant of the primitive unit cell of GeTe,
b =

√
2
3 (1 − cos θ ), and c =

√
1
2 (1 + 2 cos θ ). θ is the angle

between the lattice vectors and can be regarded as a secondary
order parameter since in the cubic phase it has a fixed value of
60◦ and a lower, temperature-dependent value in the rhombo-
hedral phase. The atomic positions in reduced coordinates are
taken to be Ge (0,0,0) and Te (0.5 + τ, 0.5 + τ, 0.5 + τ ).

We calculate the structural parameters of GeTe (the lattice
constant a and the rhombohedral angle θ ) at several tempera-
tures. At each time step we calculate the instantaneous values
of the lattice constant and rhombohedral angle from the ge-
ometry and volume of the simulation region. Following that,
we find the structural parameters at a given temperature as a
simple arithmetic mean of the instantaneous values along the
MD trajectory. The results are given in Fig. 2 and compared
with a number of available experiments [2,40,41]. In Fig. 2,

4

FIG. 1. Primitive unit cell of GeTe. Red (blue) spheres are
germanium (tellurium) atoms. a is the lattice constant, θ is the
rhombohedral angle, and τ is the order parameter (the vector from the
center of the unit cell, the black point, to the tellurium atom). The side
image shows the simulation cell in molecular dynamics simulations.
For presentation purposes we show the 4 × 4 × 4 supercell, instead
of the 10 × 10 × 10 used in our calculations. The image was made
using the VESTA software [39].

we show the relative change of the structural parameters com-
pared to their 300 K values (V is the volume of the primitive
cell):

αu = uT − u300 K

u300 K
, u = a,V,

αθ = θT − θ300 K

60◦ − θ300 K
. (2)

Our calculations reproduce the experimental results very
well. All studies show negative expansion of the lattice con-
stant at intermediate temperatures (above 300 K and below
the critical temperature) and positive expansion in the cubic
phase. We find that the lattice constant has a positive ther-
mal expansion coefficient for temperatures below 300 K, as
measured in the experiment. The rhombohedral angle tends to
the cubic value of 60◦ at high temperatures. From the behav-
ior of the rhombohedral angle, we can infer that the critical
temperature in our study is 634 K (the middle point between
the last rhombohedral structure at 631 K and the first cubic
structure at 637 K), which is in the range of experimental
results (600–700 K) [8].

We also calculate the volumetric thermal expansion of
GeTe [see Fig. 2(c)]. Again, our results follow closely exper-
imental findings, both showing negative thermal expansion at
the phase transition. In the cubic phase, GeTe regains positive
thermal expansion, in agreement with experiment. We do not
see a discontinuity in the calculated thermal expansion of
GeTe. To be precise, we see a decrease in the volumetric ther-
mal expansion coefficient as we approach the phase transition
from lower temperatures, which eventually becomes negative
thermal expansion at 631 K. For a more elaborate discussion
of negative thermal expansion near the phase transition, see
the Supplemental Material [38].

Finally, we compute the Ge-Te nearest-neighbor bond
lengths. A number of experimental [5,6] and theoretical
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FIG. 2. Relative change of (a) the lattice constant, (b) the rhom-
bohedral angle, and (c) the volume of GeTe with temperature. The
red lines are our MD results, while the points represent experimental
data taken from Refs. [2] (green), [40] (magenta), and [41] (black).

studies [19,20] claim that they observed persistence of un-
equal bond lengths in the cubic phase. Previous theoretical
studies inferred this effect from the distorted Gaussian shape
of the radial distribution function (RDF) for these bond
lengths (≈3 Å). If the interatomic interaction is perfectly
harmonic, one would expect bond lengths to be normally
distributed around some mean value which is the reported
bond length. A distortion of this Gaussian shape is usually
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FIG. 3. (a) Radial distribution function of GeTe for the nearest-
neighbor bonds at different temperatures. (b) Nearest-neighbor bond
lengths in GeTe. Our calculations are in red, Ref. [5] is in blue,
and Ref. [6] is in green (experiments reporting the order-disorder
character of the phase transition). Ref. [3] is in magenta, and Ref. [2]
is in black (experiments reporting the displacive character of the
phase transition). The solid symbols represent longer bond lengths,
while the open symbols represent shorter bond lengths. The lines are
guides to the eye.

attributed to the presence of two Gaussians, which means that
we have two different bond lengths in the considered length
scale. Like in the previous theoretical studies, we also find
two different bond lengths if we try to fit our data with two
Gaussians [see Fig. 3(a)]. Figure 3(b) shows the fitted bond
lengths using two Gaussians in our calculation compared to
experiments [2,3,5,6]. The experiments that could probe local
structure obtained unequal bond lengths in the cubic phase
[5,6] [labeled Exp. 1 and Exp. 2 in Fig. 3(b)], while the ex-
periments that saw the average structure saw equivalent bond
lengths [2,3] [labeled Exp. 3 and Exp. 4 in Fig. 3(b)]. Our
results obtained by fitting the RDF with two Gaussians are in
overall agreement with experimental results that saw the local
structure. However, contrary to those experiments, we see an
interesting behavior near the phase transition, a noticeable
increase in the short bond length and a noticeable decrease
of the larger bond length. This change in bond lengths does
not make them equal, however, and the local rhombohedral
phase seems to persist in the cubic phase as well.
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From the analysis above, it is clear why the non-Gaussian
shape of the nearest-neighbor bond length has been inter-
preted as a fingerprint of the order-disorder phase transition
[20]. However, we observe the same non-Gaussian behavior
even in the case of other rocksalt compounds modeled using
interatomic potentials, such as PbTe [23] and MgO [42] (see
the Supplemental Material [38]). These two materials are un-
doubtedly rocksalt and still have the distorted Gaussian shape
for the nearest-neighbor RDF. The deviation from the simple
Gaussian shape of the RDF is stronger in PbTe compared
to MgO, probably because PbTe is more anharmonic. The
reasoning for this assumption is as follows. First, we assume
that the bond length is determined solely due to pairwise in-
teractions between atoms. Then the probability distribution of
that bond length would be proportional to exp[−U (R)/kBT ],
where U (R) is the energy of that two-atom system. If this
energy is purely harmonic, we would have a Gaussian dis-
tribution of the bond length. However, in the case that the
bond has an anharmonic term, there will be a skewing of the
distribution in one of the directions, which is what we observe
in all three systems (MgO, PbTe, and GeTe). Additionally,
we find that the fitting procedure fails to correctly reproduce
the “static” bond lengths in the rhombohedral phase of GeTe
(see the Supplemental Material [38]). Hence, our results show
that the non-Gaussian shape of the RDF is not proof of the
order-disorder behavior in GeTe, and we are more inclined to
believe it is a consequence of the large anharmonicity of the
Ge-Te nearest-neighbor bond.

IV. ORDER PARAMETER

We calculated properties of the order parameter at various
temperatures in order to understand the driving mechanism
for the phase transition in GeTe. We calculate the local order
parameter [τi(t ) for the ith unit cell inside the supercell] as

τi(t ) = �xTe,i(t ) − �xGe,i(t ) − 0.5
∑

j

�Rj, (3)

where �xTe/Ge,i is the instantaneous position of the
tellurium/germanium atom in the ith unit cell and �Rj are
the primitive lattice vectors at a given temperature. The
average over all unit cells inside the MD simulation region
at a certain time step represents the instantaneous order
parameter. The average of the instantaneous order parameters
over the entire MD trajectory represents the order parameter
for that temperature (see the Supplemental Material [38] for
additional information).

Figure 4(a) shows the total order parameter calculated at
different temperatures compared with available experimental
literature [2,40,41]. We can see that the overall agreement
is good and that the differences mostly come from dif-
ferent values of the critical temperature. The inset shows
the temperature dependence of the soft TO (A1g) phonon
mode frequency. We have calculated the phonon frequencies
using the temperature-dependent effective potential method
[43–45]. We can fit the temperature dependence of the order
parameter and the soft TO mode to a simple functional depen-
dence:

f (T ) = A(TC − T )γ ,
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FIG. 4. Temperature dependence of (a) the average order param-
eter and (b) the variance of the order parameter as extracted from the
probability distribution functions of the order parameter at different
times and temperatures (see Supplemental Material [38] for more
explanation). The experimental points are taken from Refs. [2,40,41].
The red points denote the results from our calculations, while the bars
are the standard errors of the averaged quantity. The vertical black
line shows the phase transition boundary. In (a), the red solid lines
correspond to the power law fit to our calculated results, where γ is
the exponent. The inset in (a) shows the calculated soft transverse
optical phonon frequency versus temperature.

where TC is the critical temperature and A and γ are the fitting
parameters. A simple Landau approach to the displacive phase
transitions predicts that the γ parameter for the soft TO mode
should have the same value as the γ exponent for the order pa-
rameter [7] (see the Supplemental Material for clarification).
This is not what we find in our calculations: γ for the order
parameter is around two times smaller than γ for the soft TO
mode. The possible reason for this is that the effects of the
degrees of freedom other than the order parameter (such as
large strain-order parameter coupling or disorder of the local
order parameter) make a straightforward consideration of the
Landau model inapplicable.

The procedure we used to calculate the average order pa-
rameter at a certain temperature allows us to calculate the
time average variance of the local order parameter (see the
Supplemental Material [38] for clarification), which is shown
in Fig. 4(b). We notice a small jump at the phase transition.
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The standard errors are shown, and they are much smaller
than the size of the step in variance at the phase transition
(the standard errors are smaller than the points). This increase
is similar to the increase observed for the Debye-Waller factor
in experiments. In experiments, this increase is explained by
the ambiguity in determining the crystallographic phase of
the system, i.e., whether the system is in a unique phase or
a mixture of the two phases [41].

We suggest that the increase in the variance in Fig. 4(b)
is due to a weak order-disorder character of the phase tran-
sition. The model for this behavior is as follows. The unit
cell polarizations in our simulations are distributed according
to a normal distribution centered around the instantaneous
order parameter. The variance of that distribution should be
a smooth function of temperature. In the displacive phase
transition, the instantaneous order parameter becomes zero,
and there should be no abrupt change in the variance. How-
ever, in the order-disorder phase transition, the unit cell’s
polarization would be normally distributed around two values
of the instantaneous order parameter that have the same abso-
lute magnitude but opposite signs. If these two mean values
are sufficiently close, the distributions of the unit cell order
parameter would overlap and yield a single-peak behavior,
obscuring the order-disorder character. However, in this sce-
nario the variance of the unit cell polarization distribution may
abruptly change, which is what we calculate in our simula-
tions. Hence, we interpret the observed step in the variance as
the signature of a weak order-disorder character of the phase
transition.

Finally, we look at the dynamics of the order parameter at
different temperatures. We define the order parameter correla-
tion function as

Gαβ (�r, t ) = 〈τα (0, 0)τβ (�r, t )〉

=
∫∫

d�r′dt ′[τα (�r′, t ′) − 〈τα〉]

× [τβ (�r′ + �r, t ′ + t ) − 〈τβ〉]. (4)

Here α and β denote the Cartesian coordinates, and �r is
the position vector of the unit cell. We can find the Fourier
transform of this quantity, �αβ (�q, ω).

First, we discuss the behavior of �zz(�q = 0, ω) at different
temperatures, as shown in Fig. 5(a). We oriented our simu-
lation cell so that the order parameter is polarized along the
z Cartesian direction. We can see that at low temperatures
(300 K), the peak of this quantity is around 4 THz, which
is the frequency of the soft optical mode [see Fig. 4(a)].
Additionally, we find that the order parameter correlation
function in the other two Cartesian directions has a peak at
the frequency of other optical modes (see the Supplemental
Material [38]). This peak softens as we approach the transition
temperature and disappears at the phase transition, leaving
only a quasielastic peak (i.e., peak at the zero frequency, cor-
responding to zero energy transfer in scattering experiments).
Interestingly, in the cubic phase, only the quasielastic peak
persists, and the oscillations of the order parameter cannot be
associated with any phonon. This behavior shows there is no
persistent correlation among unit cell polarizations throughout
the simulation region, suggesting a displacive character of
the phase transition. On the other hand, in the case of the
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FIG. 5. (a) Frequency dependence of the Fourier transform of the
order parameter correlation function [see Eq. (4)] at different temper-
atures. (b) The time evolution of the order parameter at 631 K. The
side plot shows the probability density function of the instantaneous
order parameter at this temperature.

order-disorder phase transition, the thermal oscillations of the
polarization around local minima, although in opposite wells
and out of phase, would still oscillate with the same frequency,
leading to a nonzero signal in Fig. 4(a).

To understand better the dynamics of the order parameter at
the phase transition, we show the instantaneous order param-
eter 〈τz〉(t ) at 631 K in Fig. 5(b). We can see that although the
spatial correlation persists and the order parameter is nonzero
(the system is still in the rhombohedral phase), the value of the
order parameter starts to switch between plus and minus signs.
This switching leads to an exponentially decaying correlation
function and, ultimately, to the quasielastic peak observed in
Fig. 5(a). The switching behavior is dependent on the sim-
ulation cell size, with larger cells having lower frequencies
of switching. This indicates that in the thermodynamic limit
there would be no switching, and thus, this behavior cannot
be interpreted as the order-disorder phase transition.

We also calculated the order parameter correlation length at
different temperatures. We observed a large jump in the cor-
relation length at the phase transition (see the Supplemental
Material [38]), which suggests that the phase transition is of
the second order. However, due to the small size of our simu-
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lation cell, we could not observe whether the divergence of the
correlation length follows a specific power law dependence.

V. CONCLUSIONS

In summary, we used molecular dynamics simulations to
model the structural phase transition in GeTe using our re-
cently developed Gaussian approximation potential for GeTe
that mimics density functional theory results very well. First,
we confirmed the results of our recent study on negative ther-
mal expansion at the phase transition.

Second, we calculated the radial distribution function of
the nearest-neighbor bonds in GeTe for both crystallographic
phases. We observed a strongly non-Gaussian shape of the
radial distribution function in the cubic phase in accordance
with previous ab initio MD simulations. However, we showed
that this effect is most likely due to the strong anharmonicity
of the Ge-Te bonds and not due to a persistent local rhombo-
hedral distortion in the cubic phase.

Next, we discussed in detail the behavior of the order
parameter at the phase transition. We found fingerprints of
both order-disorder and displacive phase transitions. Both the
order parameter and the soft TO mode frequency continuously
fall to zero at the phase transition, pointing to the displacive
character of the phase transition. However, the variance of
the order parameter probability distribution function exhibits
a small step at the phase transition, which can be explained by
the order-disorder phase transition.

Finally, we investigated the dynamics of the order parame-
ter at the phase transition and found that in the low-symmetry
phase it closely follows the behavior of the soft TO mode.
This correlation disappears in the cubic phase, suggesting
a possible displacive character of the phase transition. We
showed the emergence of switching behavior at the phase
transition, where polarization retains spatial correlation but
loses temporal correlation. In the end, we calculated the order
parameter correlation length for different temperatures and
found that it diverges at the phase transition, suggesting that
the phase transition is of the second order.

The distinction between the displacive and order-disorder
phase transitions comes from the limiting cases of the sim-
ple Landau model of the second-order phase transition. As
simple ground state calculations show [13], GeTe does not
belong to either of these limiting cases, although it can be
shown to be closer to the displacive model. The lengthy and
detailed investigation that we carried out using molecular
dynamics confirms this conclusion. The displacive character
of the phase transition is supported by the disappearance
of the temporal correlation of the order parameter with the
persisting spatial correlation. A weak order-disorder character
of the phase transition can be inferred from the temperature
dependence of the variance of the order parameter.

Germanium telluride is a rare material in which both
the order-disorder and displacive characters of the phase
transition coexist. Similar behavior might exist in lead chalco-
genides, where the off-centering of local dipoles has been
claimed to be observed [18,46,47]. This effect could occur
also in ferroelectric SnTe [48]. A detailed first-principles
study has disproved the existence of off-centering in PbTe
[18]. Clearly, IV-VI materials represent very interesting test
subjects for this type of study. While there has been a fairly
large number of papers on the properties of PbTe and GeTe,
the other members of this group have not received as much
attention. Finally, it would be interesting to see whether the
coexistence of order-disorder and displacive characters of the
phase transition has an influence on the phonon and transport
properties of GeTe, specifically lattice thermal conductivity.
While our previous study [15] resolved the enigma of the lat-
tice thermal conductivity enhancement at the phase transition,
it did not capture the influence of the order-disorder character.
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