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Evolution of domain structure with electron doping in ferroelectric thin films
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To minimize their electrostatic energy, insulating ferroelectric films tend to break up into nanoscale “Kittel”
domains of opposite polarization that are separated by uncharged 180◦ domain walls. Here I report on self-
consistent solutions of coupled Landau-Ginzburg-Devonshire and Schrödinger equations for an electron-doped
ferroelectric thin film. The model is based on LaAlO3/SrTiO3 interfaces in which the SrTiO3 substrate is
made ferroelectric by cation substitution or strain. I find that electron doping destabilizes the Kittel domains.
As the two-dimensional electron density n2D increases, there is a smooth crossover to a zigzag domain wall
configuration. The domain wall is positively charged but is compensated by the electron gas, which attaches itself
to the domain wall and screens depolarizing fields. The domain wall approaches a flat head-to-head configuration
in the limit of perfect screening. The polarization profile may be manipulated by an external bias voltage and the
electron gas may be switched between surfaces of the ferroelectric film.
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I. INTRODUCTION

Interfaces between SrTiO3 and certain polar cap layers,
most commonly LaAlO3, become conducting when the cap
thickness exceeds a few monolayers [1,2]. This is primarily
due to an electron transfer from the LaAlO3 surface to the
SrTiO3 side of the interface [3], and the resultant electron
gas is bound to within a few nanometers of the interface by
residual positive charges on the LaAlO3 surface [4]. A number
of interesting phases, including ferromagnetism [5–7], super-
conductivity [8–11], and a possible nematic phase [12–15]
have been observed. An attractive feature of these interfaces
is that they are tunable: Both the electron doping and spatial
profile of the electron density can be modulated by gating [2],
and for (001) interfaces there is a narrow doping range near
a Lifshitz transition [16–19] over which the superconducting
transition temperature [5,20–23], superfluid density [9], spin-
orbit coupling [23–25], and the metamagnetic response [26]
change by an order of magnitude.

In part, this tunability is due to SrTiO3’s dielectric proper-
ties. SrTiO3 lies close to a quantum critical point separating
ferroelectric and paraelectric phases [27], and its dielectric
function therefore depends strongly on both temperature and
electric field [28]. This has a profound effect on the inter-
facial band structure [29–33]. Of particular interest, SrTiO3

may be made ferroelectric by cation substitution, as with
Sr1−xCaxTiO3 [34] and Sr1−xBaxTiO3 [35], by oxygen isotope
substitution [36], and by application of lattice strains [37,38].
This naturally introduces another tunable parameter—the
ferroelectric polarization—with which one may control the
electron gas.

Steps in this direction have been taken by several groups in
recent years. Zhou et al. [39] observed that a two-dimensional
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(2D) electron gas coexists with a ferroelectric-like lattice po-
larization in LaAlO3/Sr0.8Ba0.2TiO3 interfaces; Bréhin et al.
[40] demonstrated that Al/Sr0.99Ca0.01TiO3 interfaces are
metallic and switchable; and Tuvia et al. [41] obtained hys-
teretic polarization and resistivity at LaAlO3/Sr1−xCaxTiO3

interfaces. These experiments raise at least two important
questions.

First, why is the polarization switchable? There were, until
recently, reasonable expectations that the itinerant electrons
would screen external electric fields and effectively eliminate
the ability to manipulate the lattice polarization. Why does
this not happen?

Second, what do the polarization and electron gas profiles
look like? In paraelectric LaAlO3/SrTiO3 interfaces, the elec-
tron gas forms a compact 2D layer adjacent to the interface
while the lattice polarization points perpendicular to the inter-
face, into the substrate [4]. On the other hand, it is a universal
feature of ferroelectrics that they break up into domains to re-
duce the large electrostatic depolarizing fields that accompany
ferroelectricity [42,43]. Which, if either, scenario applies to
ferroelectric LaAlO3/Sr0.99Ca0.01TiO3 interfaces? If domains
do form, then does the electron gas attach itself to the domain
walls, remain at the interface, or do something else?

K. Chapman and I recently explored these questions with
a model system similar to the one shown in Fig. 1(a) [44].
The system comprises a ferroelectric substrate capped by a
thin dielectric film (representing LaAlO3) and sandwiched by
capacitor plates on the top and bottom surfaces. The cap layer
is insulating, and a free electron gas resides in the ferroelectric
substrate. From this model, we obtained a simple explanation
for the switchability: We showed that unless the external field
is large, the electron gas attaches itself to polarization gradi-
ents and is therefore unavailable to screen external fields. We
further obtained robust hysteresis for the polarization versus
bias voltage and a novel low-polarization branch with negative
dielectric susceptibility. These calculations suggest that when
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FIG. 1. Typical ferroelectric device and representative domain
structures. (a) Schematic diagram showing a device consisting of
a ferroelectric layer of thickness Lz and a dielectric cap layer of
thickness h sandwiched between capacitor plates at voltage bias V .
The system has periodic boundary conditions in the x and y directions
with periodicities Lx and Ly, respectively. The positive y axis points
into the page. Representative Kittel (b), head-to-head (c), and zigzag
(d) domain structures. Polarization directions are indicated by thick
black arrows. As shown in (b), the depolarizing fields for the Kittel
domains are restricted to the ferroelectric surface region. The fields in
(c) and (d) (not shown) span the whole film, unless they are screened
by an electron gas.

the electron density is comparable to the polarization the
electron gas strongly influences the ferroelectric properties.
However, these results are based on explicitly 1D solutions for
the polarization, electron density, and electrostatic potential,
which are therefore translationally invariant parallel to the
interface.

It is known that under most conditions insulating ferro-
electrics spontaneously break translational symmetry parallel
to the interface and form Kittel domains [42,43] as a way
of reducing the depolarizing electric fields generated by the
lattice polarization [Fig. 1(b)]. In this limit, our previous so-
lutions are incorrect. On the other hand, we showed that in
the limit of large electron densities, these depolarizing fields
are screened so that the arguments leading to Fig. 1(b) break
down. We argued that domain structures like the one shown in
Fig. 1(c) might be stable instead. In insulating ferroelectrics,
the head-to-head domain wall of Fig. 1(c) has a net pos-
itive charge and a concomitantly large electrostatic energy
that makes domain formation unfavorable. Electron doping
introduces negatively charged carriers that accumulate along
the domain wall and screen electric fields. This lowers the
electrostatic energy and raises the possibility that normally
prohibited structures like that in Fig. 1(c) might be stable.

Indeed, several authors have made similar arguments over
the years. A number of early papers proposed mechanisms—
for example electron-hole creation by large depolarizing fields
or charge transfer from metallic leads—to generate a free
electron or hole gas that would support a head-to-head or
tail-to-tail domain wall [45–48]. The energetics of domain for-
mation depend on the details of the electron- or hole-doping
mechanism, but the general conclusion of a recent stability
analysis is that there are regimes in which head-to-head or
tail-to-tail domain walls may be favored over Kittel domains
[49]. This is confirmed by experimental observations of head-
to-head domain walls in a handful of materials over the past
decade [50].

I remark that interest in head-to-head domain walls (or
any form of charged domain wall) is in part because they
form conducting channels that can be manipulated by external
forces, for example electric fields or lattice strains [50]. The
nascent field of domain wall electronics is part of a broad
effort to engineer novel electronic functionalities in complex
oxides via nanoscale inhomogeneities [51]. In ferroelectrics,
one has the possibility of producing writeable circuits, in
which the conducting channels can be generated, moved,
and erased by an external stimulus. A striking demonstration
of writeability can be found in nominally nonferroelectric
SrTiO3, in which stable conducting channels can be patterned
and erased by an atomic force microscope [52].

Whether domain formation is relevant to ferroelectric
SrTiO3 interfaces is unclear. Tuvia et al. [41] reported that
the polarization near their LaAlO3/Sr1−xCaxTiO3 interfaces
was everywhere into the substrate, which is what one would
find if the substrate were either uniformly polarized or hosted
a head-to-head domain. More importantly, this is not what
one would find if there were Kittel domains. This raises the
question: What happens to the Kittel domain structure when
ferroelectric films are electron doped?

To address this, I report on a set of numerical calcula-
tions similar to those we published in Ref. [44] but with
the potential, polarization, and electron density allowed to be
functions of two spatial coordinates [x and z in Fig. 1(a)].
These calculations differ from earlier work [45–49] in a
number of key ways: First, my calculations are primarily
numerical, which allows me to relax constraints on the domain
wall geometry that were needed previously to obtain analytic
results; second, the electronic band structure is obtained by
direct solution of the Schrödinger equation rather than via (for
example) semiclassical approximations; and, third, electron
doping is presumed to come directly from the LaAlO3 cap
layer rather than from oxygen vacancies or thermal excita-
tions across the band gap. This last assumption is important
because it automatically places my calculations in a regime
where the electron density along the domain wall can be
high (1020−1021 cm−3). Donor defects, in particular oxygen
vacancies, are not considered in the current model, although
they can make an important contribution if their density is
high. In the specific case of SrTiO3 interfaces, considerable
effort has been expended to control oxygen defects during
sample synthesis [53] so that to a first approximation they may
usually be neglected.

From my numerical calculations, I find that the domain
structures shown in Fig. 1 are endpoints, with insulating
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ferroelectric films having domains like those in Fig. 1(b)
and metallic films approaching Fig. 1(c) in the limit of
strong screening of depolarizing fields by the electron gas.
At electron densities between the two endpoints, the domains
pass from a Kittel-like structure to a zigzag configuration
[Fig. 1(d)]. Although this zigzag configuration is quantita-
tively different from the 1D solution shown in Fig. 1(c), the
two are qualitatively similar.

The model and calculations are described in Sec. II.
In brief, the approach is to simultaneously solve Landau-
Ginzburg-Devonshire (LGD) and Schrödinger equations for
the polarization and electron density for the device pictured
in Fig. 1(a). These equations are coupled via Gauss’s law for
the electrostatic field, which appears in both equations. The
results of these calculations are shown in Sec. III and are then
discussed in the context of earlier work in Sec. IV.

II. METHODS

Figure 1(a) shows the device to be modeled. It consists of
a dielectric cap layer of thickness h on top of a ferroelecric
substrate of thickness Lz. The system is periodic in the x and
y directions with periodicity Lx and Ly, respectively, and has
translational invariance along the y axis (which points into the
page). The dielectric/ferroelectric bilayer is sandwiched by
capacitor plates on the top and bottom surfaces, and these are
maintained at a potential difference V .

In this model, there is a free electron gas in the ferroelectric
substrate and the dielectric cap layer is insulating. The elec-
tron gas is assumed to come from a charge transfer between
the surface of the cap layer and the substrate, as occurs in the
LaAlO3/SrTiO3 system. Overall charge neutrality is implicit
in the assumption that the electric field vanishes outside the
capacitor plates.

The total energy has three parts,

F̃[Ptot, ρ f , ρext] = Fp + Fe + V, (1)

where Fp and Fe are the free energies due to the polariza-
tion and electronic degrees of freedom, respectively. These
exclude contributions from the electric field, which are col-
lected together in the electrostatic energy V . As written, the
free energy depends on the total lattice polarization Ptot, the
itinerant charge density due to the electron gas, ρ f , and the
external charge density on the capacitor plates and cap-layer
surface, ρext.

It is more meaningful to write the free energy in terms of
the potential V than the external charge density. This is done
via a Legendre transformation,

F[Ptot, ρ f ,V ] = F̃[Ptot, ρ f , ρext] −
∮

φSσ
extda, (2)

where φS is the potential on the bounding surface (the ca-
pacitor plates) and the external charge is written as a surface
charge density. For simplicity, the bottom plate in Fig. 2 is
grounded (φS = 0) and the top plate is at potential φS =
V . Equation (2) therefore simplifies to F = F̃ − σ extV LxLy.
Note that the Legendre transformation does not change the
self-consistent equations for Ptot and σ f but is necessary
when the free energies of two solutions at fixed V are to be

FIG. 2. Typical self-consistent solution showing (a) the lattice
polarization Ptot , (b) the bound charge density ρb = −∇ · P, and
(c) the free charge density ρ f = −ene. Results are for a 28 × 46 nm
ferroelectric substrate with a 5-nm dielectric cap layer. The average
electron density is n2D = 0.20 per 2D unit cell and charge densities
are in C/cm3. Arrows in (a) indicate the polarization direction while
the color indicates the value of Pz in μC/cm2. Results are for the
short-circuit boundary condition, V = 0. Other parameters are given
in Table I.

compared. In this case σ ext can be obtained from the electric
field at the capacitor plate.

The polarization is assumed to lie in the x-z plane and
can be broken up into contributions from the soft ferroelectric
phonon mode, P, and the background polarizability Pb, such
that Ptot = P + Pb. The LGD energy for the polarization is
then

Fp

Ly
=

∫ Lx

0
dx

∫ Lz

0
dz

[
a1P2

x + a3P2
z + a11

[
P4

x + P4
z

]

+ a12P2
x P2

z +g11

2
|∇ · P|2+g44

2

[(
∂Pz

∂x

)2

+
(

∂Px

∂z

)2]]

+
∫ Lx

0
dx

∫ Lz+h

0
dz

|Pb|2
2ε0χ (z)

. (3)

The LGD parameters correspond roughly to those found in
SrTiO3 and are given in Table I. A spontaneous polarization
along the z axis is induced by taking a3 < 0; however, a1 is
kept positive to avoid trivial solutions in which the ferroelec-
tric spontaneously polarizes along the x axis. In fact, a3 < 0 <

a1 may be realized by applying a compressive strain along the
x and y axes of a SrTiO3 thin film [38]. The background po-
larization is obtained from the noncritical contribution, χ (z),
to the dielectric susceptibility. For concreteness,

χ (z) =
{
χSTO, 0 < z < Lz

χLAO, Lz < z < Lz + h
, (4)

with χSTO and χLAO given in Table I.
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TABLE I. LGD model parameters. Parameters are based on
values for SrTiO3 published in Appendix A of Ref. [54] with the
following exceptions: a3 is negative so that the model is ferroelectric
and gives a bulk polarization Pbulk ≈ 15 μC/cm2, and g11 and g12

are chosen to give correlation lengths ξ ≈ 1 nm. χLAO is the dielectric
susceptibility of LaAlO3, while χSTO is the background susceptibility
obtained from the optical dielectric constant for SrTiO3, ε∞ ≈ 5.5ε0

[55].

Parameter Value Units

a1 1.0 × 108 C−2 m2 N
a3 −8.0 × 107 C−2 m2 N
a11 1.70 × 109 C−4 m6 N
a12 1.47 × 109 C−4 m6 N
g11 1 × 10−10 C−2 m4 N
g44 1 × 10−10 C−2 m4 N
χLAO 25 –
χSTO 4.5 –

The itinerant electrons are treated within a single-band
effective mass approximation, for which the free energy is

Fe = −kBT ln[e−β[Ĥ−μN̂]] + μN + e
∫

drρ f (r)φ(r). (5)

Here β = 1/kBT , ρ f (r) is the free electron density, and

Ĥ =
∫

dr�̂†(r)

[
− h̄2∇2

2m∗ − eφ(r)

]
�̂(r), (6)

is the mean-field Hamiltonian with electrostatic potential
φ(r). �̂(r) is the second-quantized electron annihilation op-
erator.

The final two terms in Eq. (5) require explanation: μN
is a Legendre transformation from the grand potential (fixed
chemical potential μ) to the Helmholtz potential (fixed elec-
tron number N) and is introduced because μ is adjusted at
each step of the calculation to keep N fixed. The average 2D
electron density is related to the electron number by

n2D = N

LxLy
. (7)

The final term in Eq. (5) subtracts off the electrostatic energy
that is added to the mean-field Hamiltonian Ĥ ; this is to avoid
double-counting terms that are included in the electrostatic
energy V .

Indeed, neither the LGD energy, Eq. (3), nor the elec-
tronic energy, Eq. (5), contains a net contribution from the
electric field. The field energy contributions are collected
together in

V = 1

8πε0

∫
dr

∫
dr′ (ρ f + ρb + ρext )r(ρ f + ρb + ρext )r′

|r − r′| ,

(8)
where

ρb = −∇ · Ptot = −∇ · P − ∇ · Pb, (9)

is the bound charge density.

Minimizing F with respect to different components of the
polarization leads to the constituent equations,

Ez = 2a3Pz + 4a11P3
z + 2a12P2

x Pz − g11∂
2
z Pz − g44∂

2
x Pz,

(10)

Ex = 2a1Px + 4a11P3
x + 2a12P2

z Px

− g11∂
2
x Px − g44∂

2
z Px (11)

Pb = ε0χ (z)E. (12)

These are supplemented by the self-consistent equation for the
itinerant charge density,

ρ f (r) = −ene(r) = −e〈�̂†(r)�(r)〉, (13)

the electrostatic potential

−ε0∇2φ(r) = ρ f (r) + ρb(r), (14)

and the boundary conditions

P(x, 0) = 0, ∂zP(x, z)|z=Lz = 0, (15)

P(x, z) = P(x + Lx, z), (16)

φ(x, 0) = 0, φ(x, Lz + h) = V, (17)

φ(x, z) = φ(x + Lx, z). (18)

Setting the polarization to zero at z = 0 physically separates
the external charge density on the lower capacitor plate from
the bound surface charge density P · (−ẑ) at the lower surface
of the ferroelectric; this is convenient for analysis but has no
consequences for the main results of this paper. Note also that
Eq. (14) does not explicitly include ρext; this contribution is
implicit in the boundary condition (17).

Equations (10)–(14) must be solved self-consistently for
the polarization, itinerant charge density, and potential. It
should be noted that evaluation of Eq. (13) is by far the slowest
step because it requires solving Schrödinger’s equation for
the eigenstates of Ĥ . Because materials like Sr1−xCaxTiO3

have low transition temperatures (Tc � 30 K), we focus on
the T → 0 limit; however, self-consistency of the Schrödinger
equation can often be improved by taking a finite value of T
that masks artificial discreteness of the electronic band struc-
ture due to finite-size effects. For this reason, ρ f is evaluated
at temperature T = 10 K. Further details are given in the
Appendix.

III. RESULTS

A. Short-circuit conditions

Typical self-consistent results for the polarization and
electron density are pictured in Fig. 2 for the short-circuit
configuration (V = 0). Because the LGD parameters in
Eq. (3) are chosen such that a3 < 0 < a1, the ferroelectric
polarizes spontaneously along the z axis and only tilts to-
ward the x axis near domain walls [Fig. 2(a)]. The average
electron density is chosen to be n2D = 0.20 electrons per 2D
unit cell, which corresponds to a 2D charge density en2D =
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FIG. 3. Electron density (top row) and z component of the polarization (bottom row) in the short-circuit configuration (V = 0). Results
are for (a) n2D = 0.0, (b) n2D = 0.1, (c) n2D = 0.2, (d) n2D = 0.3, and (e) n2D = 0.4 electrons per 2D unit cell. Other parameters are as in
Fig. 2.

20 μC/cm2 assuming a lattice constant a = 4 Å. This is sim-
ilar to the maximum polarization in the ferroelectric domains
(P0 ≈ 15 μC/cm2), so that the bound and free charges make
comparable contributions to the electric field. The domain
wall structure shown in Fig. 2(a) is a consequence of feedback
between these two contributions.

The polarization profile in Fig. 2(a) is striking because
it has a zigzag-shaped domain wall separating regions of
positive and negative polarization. This is different from the
Kittel domains found in insulating ferroelectric films because
there is a substantial positive bound charge density associated
with the domain wall, while the top and bottom surfaces of
the ferroelectric substrate both have negative charge densities
[Fig. 2(b)]. The electron gas is attached, albeit loosely, to the
domain wall and partially screens the positive bound charge
[Fig. 2(c)]. By construction, the electron density is constant
along the y axis (into the page).

Figure 3 illustrates how the the zigzag profile emerges
from Kittel domains and then evolves with increasing n2D.
The figure shows both the electron density and z component
of the polarization for a series of n2D values spanning the
range en2D � P0 to en2D � 2P0. In all cases, the maximum
polarization amplitude P0 in the ferroelectric domains differs
only slightly from the nominal bulk polarization

Pbulk ≡
√−a3

2a11
,

which is held fixed.

When n2D = 0 [Fig. 3(a)], the ferroelectric film breaks
up into Kittel domains, namely oppositely polarized domains
separated by 180◦ domain walls along which ρb = 0. The
bound charge density is nonzero along the top and bottom
surfaces of the ferroelectric substrate. Taking ρb ≈ −∂Pz/∂z,
one can assign positive bound charges to the top and bottom
ends of the red and blue domains, respectively.

For small electron densities [Fig. 3(b)], the electrostatic
energy is dominated by contributions from the lattice polariza-
tion. The domain structure is therefore of the Kittel type and
the electron gas attaches itself to the positively charged ends
of the Kittel domains to form one-dimensional conducting
channels along the y axis. These one-dimensional channels
are weakly connected by low density tails, and the resulting
electron density profile in Fig. 3(b) has a zigzag shape in the
x-z plane.

Although the domains in Fig. 3(b) have the Kittel struc-
ture to a first approximation, they have been modified by
the electron gas in two significant ways. First, the positive
ends of the domains have moved inward from the top and
bottom surfaces of the ferroelectric, relative to Fig. 3(a). The
polarization thus points into the substrate everywhere along
the surfaces, which are in consequence negatively charged.
Second, the widths of the positively charged domain ends
have shrunk while the negative domain ends have expanded,
relative to Fig. 3(a), with the overall effect that the domain
walls have tilted slightly. This tilting causes the domain walls
to develop a small positive charge density, which is partially
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FIG. 4. Domain wall periodicity. The main panel shows the de-
pendence of F ≡ F − Fmin on Lx for different electron densities.
Solid points are data, lines are polynomial fits to the data. The inset
shows the value of Lx at which the polynomial fits are minimized as
a function of n2D. Results are for V = 0.

compensated by the negatively charged electron gas tails that
extend along the walls.

The domain wall tilt angle increases with increasing n2D

until the domain walls connect to form a zigzag pattern
[Fig. 3(c)]. The tilt angle continues to increase as n2D grows
further, and the ends of the zigzag domain wall move inwards
from the surfaces of the ferroelectric [Figs. 3(d) and 3(e)].
At sufficiently large electron densities [Fig. 3(e)], a fraction
of the electron gas spills over from the domain wall to the
interface region. We observed similar behavior in Ref. [44]
for idealized head-to-head domain walls where, as with Fig. 3,
electrons spilled over to the surfaces when en2D � 2P0.

It should be noted that the results shown in Fig. 3 are for a
fixed periodicity Lx that does not necessarily minimize the free
energy F . Figure 4 shows the energy F = F − minLx (F ) as
a function of Lx for five different values of n2D. The optimal
domain-wall periodicity corresponds to the value of Lx at
which F = 0. The optimal Lx is plotted as a function of n2D

in the figure inset. Two trends are apparent in Fig. 3. First, F
has the strongest dependence on Lx when n2D = 0, and this
becomes progressively weaker as n2D increases. This suggests
that screening by the electron gas softens the domain walls.
Second, the optimal periodicity is a nonmonotonic function
of n2D: Lx increases with n2D when the domain walls have
a Kittel-like structure (that is, while there are many distinct
domain walls, each connecting the top and bottom surfaces
of the ferroelectric) and decreases with n2D when the domain
walls connect to form a single zigzag wall.

Some aspects of Figs. 3 and 4 can be understood in terms
of the competition between electrostatic and domain wall
energies [43]. The key point is that electric fields are pro-
gressively screened as n2D increases, such that the relative
importance of the domain wall energy increases. The domain
wall energy is proportional to the domain wall area and at
low electron densities, where the domain walls are Kittel-like,
this is minimized by maximizing the spacing between them.
This naturally explains why Lx increases with n2D. At high

FIG. 5. Toy model for the energetics of zigzag domain walls.
(a) The model consists of a ferroelectric in the short-circuit con-
figuration with a zigzag domain wall separating regions of opposite
polarization. The electron gas is assumed to be uniformly distributed
along the domain wall. The domain wall is tilted by an angle θ and
hosts a net charge density σdw given by Eq. (19). The zigzag pattern
extends over the interval [−z0, z0] in the z direction. (b) As a further
simplification, the charge is treated as if it is uniformly spread over
[−z0, z0] with an average charge density ρav = σ0/2z0.

electron densities, where there is a single zigzag wall, the
domain-wall area is minimized by increasing the tilt angle
toward 90◦ (i.e., toward the horizontal). There, one expects the
zigzag domain wall to approach a flat horizontal configuration
as n2D increases. Both of these trends are seen in the numerics,
as discussed above.

The physics of the zigzag domain wall is captured by a sim-
ple toy model, pictured in Fig. 5. In this model, a ferroelectric
is sandwiched between two grounded conducting plates and
hosts a zigzag domain wall. Itinerant electrons are bound to
the domain wall, so the average 2D charge density along the
wall is

σdw = σ0 sin θ (19)

where σ0 = 2P0 − en2D and θ is the tilt angle. The grounded
plates compensate the surface charges, so the only charges in
the system lie along the domain wall. The zigzag wall extends
from −z0 to z0, where 2z0 = Lx tan θ . To keep things simple,
I make the further approximation that the domain wall charge
is uniformly smeared over [−z0, z0], so

ρ(z) =
{

0, |z| > z0
σ0
2z0

, |z| < z0
. (20)

This is obviously a crude approximation; however, it captures
the essential feature that the domain wall charge becomes less
spread out as the tilt angle increases.

The electrostatic potential vanishes at the top and bottom
plates and is

φ(z) =
{

σ0
2ε

( Lz

2 − |z|), |z| > z0
σ0

4z0ε

(
z0Lz − z2

0 − z2
)
, |z| < z0

. (21)
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FIG. 6. Voltage dependence of the electron density (top row) and polarization (bottom row) for (a) V = −3.0 V, (b) V = −2.0 V, (c) V =
−1.0 V, (d) V = 1.0 V, (e) V = 2.0 V, and (f) V = 3.0 V. Results are for n2D = 0.20. Other parameters are as in Fig. 2.

In this expression, ε is the dielectric permittivity of the ferro-
electric.

Combining the electrostatic energy, Ues = 1
2

∫
ρφ, and the

domain wall energy Udw, one obtains the energy density

ftoy = 1

LxLyLz
(Ues + Udw)

= σ 2
0

4εLz

(
Lz

2
− 2z0

3

)
+

�

√
L2

x + 4z2
0

LxLz
, (22)

where � is the domain wall energy per unit area.
The optimal height z0 of the zigzag pattern is then obtained

by minimizing ftoy with respect to z0. From this, one obtains
the simple result for the tilt angle,

cos θ = Lx(2P0 − en2D)2

12ε�
. (23)

This equation predicts that the tilt angle increases when n2D

increases, up to a maximum of θ = 90◦ when en2D = 2P0.
(Note that this model only applies to the regime en2D � 2P0;
at higher densities one must allow electrons to spill over to
the surfaces.) This is not observed in numerical calculations
because the electron kinetic energy (not included in the toy
model) ensures that electrons spread away from the domain
wall and screen internal fields inefficiently. I have checked
numerically that when m∗ is increased, the electron gas is
bound more tightly to the domain wall, and the tilt angle
increases as one would expect.

So far, the model provides no insight into what determines
the optimal zigzag periodicity. Indeed, setting ∂ ftoy/∂Lx = 0
yields Lx → ∞. I have explored more complicated versions of
the model, which preserve the zigzag structure of the charge
density but obtain the same qualitative results. It seems likely

that a key missing ingredient is that the electron gas distribu-
tion depends nontrivially on the domain wall configuration.
The numerical calculations in Fig. 3 show that the electron
density tends to be highest at the vertices of the zigzag domain
walls. This is because there is a shallow potential well at each
vertex. It is plausible that the energy of the system can be
lowered by having sufficient vertices that all electrons can
be accommodated by low-energy states within these wells. In
this case, the number of vertices should scale with n2D such
that Lx ∝ n−1

2D. Qualitatively, this matches the trend shown
in Fig. 4. If this explanation is correct, then it indicates that
while the tilt angle is determined primarily by the difference
between electrostatic and domain wall energies, predicting the
zigzag periodicty requires knowledge of the band structure of
the electron gas.

B. Voltage dependence

Figure 6 shows the dependence of the electron density and
polarization profiles as a function of bias voltage for a fixed
n2D = 0.20. By convention, a positive voltage indicates that
the top surface is at a higher potential than the bottom surface.

At large negative bias [Fig. 6(a)], the polarization points
upwards, similarly to what one would find in an insulating
ferroelectric. The itinerant electrons are then acted on by
two distinct forces: The external field due to the capacitor
plates pushes the electron gas toward the bottom surface, and
the internal field due to the polarization gradients draws the
electron gas toward the interface. As we discussed at length
in Ref. [44], it is the internal field that largely controls the
behavior of the itinerant electrons: bound and free charges
bind together to form an approximately neutral compensated
state at the positive end of the ferroelectric. The orientation of
the polarization is then controlled by the external field through
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its action on the unscreened negative end of the ferroelectric.
This scenario begins to break down when V exceeds a thresh-
old “spillover” voltage, beyond which some of the electron
gas spills over to the negative end of the ferroelectric. This
occurs in Fig. 6(a), where a small fraction of the electron gas
lives at the bottom of the substrate.

As V is increased to −2.0 V, ripples in the polarization pro-
file grow into fingers of opposite polarization that extend into
the ferroelectric [Fig. 6(b)]. These further evolve into zigzag
patterns when V = −1.0 V [Fig. 6(c)]. The polarization and
electron density patterns then reverse themselves at positive
bias, with the system obtaining a uniformly polarized state
at V = 3.0 V [Figs. 6(d)–6(f)]. In Fig. 6(f), V exceeds the
spillover threshold, and some of the electron gas is bound to
the interface.

A few comments can be made about the sequence shown
in Fig. 6. First, although the average polarization changes
sign as the voltage is swept from negative to positive (as
one might expect), the polarization at the interface is negative
for all V . That is, the electron gas actually generates a sign
reversal in the polarization at the interface when V < 0. We
observed similar effects in Ref. [44], and these appear tied to
overscreening by the electron gas when en2D � P0.

Second, it should be emphasized that the results presented
in Fig. 6 are for the lowest energy solutions of the self-
consistent equations. Metastable solutions have been found,
but are difficult to stabilize using the numerical schemes
adopted in this work. The solution shown in Fig. 6(a), for
example, is metastable over a small range of V > −3.0 V.

Third, the dielectric susceptibility obtained from the spa-
tially averaged polarization, χ = ε−1

0 ∂Pav/∂Eav, is positive.
That is, the average electric field and polarization point in the
same direction. This is different from what we observed for
the head-to-head configuration in Ref. [44], which exhibited
negative susceptibility. The reason for this difference is un-
clear.

IV. DISCUSSION

Many of the results reported in this paper are consistent
with the 1D calculations of Ref. [44]. There, we observed
high-polarization states much like those shown in Figs. 6(a)
and 6(f). We found that the electron gas compensates bound
charges associated with polarization gradients near the sur-
faces, so that these regions are close to electrically neutral.
The consequence is that depolarizing fields may be nearly
eliminated but that external fields are largely unscreened. This
result was key to understanding the switchability of the po-
larization by external fields. The compensation was found to
break down either when en2D > 2P0 or when the bias voltage
V is greater than a spillover voltage. In both cases, some frac-
tion of the electron gas remains unattached to bound charges
and is free to screen external fields. All of these results are
consistent with the 2D calculations described here. However,
there are two important differences between the current and
previous calculations.

First, as mentioned above, there is no low-polarization
branch with negative dielectric susceptibility in the current
work. In Ref. [44], this branch was connected to the formation
of a head-to-head domain wall running parallel to the film

surfaces. Here it has been found that the situation is more
complicated, namely that 180◦ domain walls in the insulating
ferroelectric evolve toward a flat head-to-head domain wall
as depolarizing fields are increasingly screened by itinerant
electrons. While the zigzag domain walls are qualitatively
similar to the flat head-to-head domain walls reported pre-
viously, the dielectric susceptibility that one may infer from
Fig. 6 is positive.

Second, the pronounced hysteresis curves reported in
Ref. [44] have not been found in the 2D calculations.
Hysteretic tendencies are observed in the numerics (that
is, self-consistent calculations appear to converge toward a
metastable state before settling on the ground state) and
metastable states can be stabilized at large bias voltages, but
(for example) high-polarization states with the electron gas
confined to a single surface have not been found at V = 0. It is
expected that calculations at finite driving frequencies would
find hysteresis curves.

While these differences may simply reflect the additional
degrees of freedom inherent in the 2D solution, it is worth not-
ing that the electronic Hamiltonians used here and in Ref. [44]
are not the same. In Ref. [44], we had three anisotropic bands
derived from t2g orbitals of the Ti atoms, while here I have
taken a simpler model with a single isotropic band with effec-
tive mass m∗ equal to the bare electron mass. This distinction
is potentially important as the dxy-derived bands in the t2g

Hamiltonian are heavy along the z direction and are especially
effective at screening electric fields. Further work is needed to
understand the influence of the t2g bands on the domain wall
structure.

I should emphasize that the results shown here are for fixed
n2D. This matters, for example, when comparing experiments
to the voltage dependence shown in Fig. 6 because in any real
system gating affects both the voltage across the sample and
the electron density. One subtle issue when comparing to my
calculations is that any experimental value of n2D obtained
in the paraelectric state will underestimate the value in the
ferroelectric state. This is because internal electric fields due
to the ferroelectric polarization bend the band structure near
charged domain walls and should increase the charge transfer
from the LaAlO3 surface. Such physics is not included in my
model. This effect will be most pronounced at low electron
densities where electric fields are only weakly screened. As
the free charge density increases, however, the potential in the
substrate becomes increasingly uniform and the effect will
be less. As an illustration, at zero bias voltage (V = 0), I
find that the electron potential energy, −eφ(x, z), varies by
approximately 0.2 eV across the substrate when n2D = 0 but
by less than 0.02 eV when n2D = 0.4. These results are for a
thin film (45 nm), and one should expect that the band bending
will be more pronounced for thicker films.

With these caveats, it is instructive to compare
the current calculations with recent experiments on
LaAlO3/Sr0.99Ca0.01TiO3 interfaces reported by Tuvia
et al. [41]. There the authors concluded that the ferroelectric
Sr0.99Ca0.01TiO3 substrate was uniformly polarized at the
interface, with no evidence of a Kittel-like domain structure.
Furthermore, the authors inferred from their experiments that
the ferroelectric polarization creates a depletion layer such
that the electron gas moves away from the interface into the
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substrate. From this, and from details of the domain patterns
of the octahedral tilts, the authors further concluded that the
polarization at the interface points into the substrate, along
the z direction.

To make a meaningful comparison, it must be noted that
an ungated sample in the experiments corresponds to a pos-
itive bias voltage in my calculations; this is because the
LaAlO3 surface has a residual positive charge that is equal
and opposite to the free electron charge density. Further-
more, typical polarizations in bulk Sr0.99Ca0.01TiO3 are P0 ∼
1−3 μC/cm−2 [56], which is comparable to the electron
density that one can infer from the Hall number given in the
Supplemental Information of Ref. [41]. Although these values
are approximately an order of magnitude smaller than the ones
used in the calculations presented here, they correspond to the
regime en2D ∼ P0 where zigzag domains are preferred over
Kittel domains.

With this in mind, the following scenario provides a plau-
sible explanation for the experiments of Ref. [41]. In the
ferroelectric phase, a zigzag domain wall forms within the
Sr0.99Ca0.01TiO3 substrate, such that the polarization points
inwards at the top and bottom surfaces of the substrate. Be-
cause of the comparitively low value of P0, the bound charge
densities are small and electrons are only loosely attached to
the domain wall. Importantly, a significant fraction of them
spill over to the interface because of the positive charge on
the LaAlO3 surface. The domain wall acts as a charge reser-
voir, and the fraction of the electrons at the interface can be
manipulated by an applied gate voltage.

Finally, I note that the strongest prediction of the model
presented here is that the in-plane resistivity should be
anisotropic, with the anisotropy largest at low electron den-
sities. In this case, one expects the conductivity to be large
along the y direction but small in the x direction. Because
there are two possible orientations for the zigzag walls (that is,
the zigzag may lie in the x-z or y-z planes), the domain wall
patterns will be twinned. The conductivity anisotropy could
then be revealed by detwinning through the application of a
uniaxial strain.

V. CONCLUSIONS

I have explored 2D solutions of coupled Landau-Ginzburg-
Devonshire and Schrödinger equations to understand the
effect of electron doping on thin ferroelectric films. The
results reported here support many of the conclusions that
Chapman and I obtained previously in Ref. [44]. Namely, I
found that the electron gas tends to bind to positively charged
polarization gradients to form a compensated state. Because
of this, the electron gas responds only weakly to an applied
external field which, in consequence, may be used to manipu-
late the orientation of the polarization. The compensated state
breaks down either when the bias voltage exceeds a spillover
threshold or when the electron density is larger than is needed
to completely compensate the bound charge density. In either
case, a fraction of the electron gas is available to partially
screen external fields.

There are also some significant differences with Ref. [44],
which are apparent when V = 0. The most significant of these
is that in Ref. [44] we obtained a horizontal head-to-head

domain wall with negative dielectric susceptibility, whereas
here I found that Kittel domains evolve into a zigzag domain
structure with positive dielectric susceptibility. There are qual-
itative similarities between the solutions: Like the horizontal
domain wall, the zigzag domain wall has a head-to-head ori-
entation of the polarizations, making it positively charged; in
both cases, domain wall formation is enabled by screening of
depolarizing fields by the electron gas.

The important conclusion of this work is that the domain
structure in ferroelectric films is fundamentally altered by the
presence of an electron gas. An interesting consequence of
this is that by removing electrostatic forces as the primary
driver of domain formation, one opens the possibility that
other (short-range) forces may play a significant role in shap-
ing the ferroelectric state.
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APPENDIX: NUMERICAL SOLUTION
OF THE SCHRÖDINGER EQUATION

The electron gas is modeled by a free electron model with
an effective mass m∗. The Schrödinger equation is[

− h̄2

2m∗ ∇2 − eφ(x, z)

]
�(x, y, z) = ε�(x, y, z). (A1)

Because the potential φ depends only on x and z, we can use
separation of variables to write

�(x, y, z) = 1√
Ly

eikyyZ (n)(x, z), (A2)

εn,ky = ε̃n + h̄2

2m∗ k2
y , (A3)

where εn,ky is the energy for band n with wave vector ky, and
ε̃n is the eigenvalue for the equation

− h̄2

2m∗

[
∂2Z (n)

∂x2
+ ∂2Z (n)

∂z2

]
− eφ(x, z)Z (n) = εnZ (n) (A4)

subject to the boundary conditions

Z (n)(x, 0) = Z (n)(x, Lz ) = 0, Z (n)(0, z) = Z (n)(Lx, z).
(A5)

The eigenvalue equation is solved on a grid. Let the grid con-
tain nx × nz points with index (i, j) ∈ [1, nx] × [1, nz]. The
grid points are spaced by , so z j = ( j − 1). If the first grid
point is at z = 0 and the final point at z = Lz, then

 = Lz

nz − 1
= Lx

nx
. (A6)

The discrete approximation for the second derivatives is

∂2Z (n)

∂x2
≈ Z (n)

i−1, j + Z (n)
i+1, j − 2Z (n)

i, j

2
, (A7)

∂2Z (n)

∂z2
≈ Z (n)

i, j−1 + Z (n)
i, j+1 − 2Z (n)

i, j

2
, (A8)
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with Z (n)
1, j = Z (n)

nz, j = 0 and Z (n)
nx+1, j = Z (n)

1, j . Equation (A4) then
becomes the eigenvalue problem⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h2 b⊥ 0 . . . 0
b⊥ h3 b⊥ . . . 0

0 b⊥
. . .

...
...

0 . . . hnz−2 b⊥
0 . . . b⊥ hnz−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z (n)
:,2

Z (n)
:,3

...

Z (n)
:,n1−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= ε̃n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Z (n)
:,2

Z (n)
:,3

...

Z (n)
:,n1−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(A9)

where the subscript notation Z (n)
:, j refers to the entire jth col-

umn of the matrix Z(n),

b⊥ = − h̄2

2m∗2
Inx , (A10)

with Inx the nx × nx identity matrix, and

h j =

⎡
⎢⎢⎢⎢⎣

a1 j bx 0 . . . bx

bx a2 j bx . . . 0
...

...

0 . . . bx anx−1, j b
bx . . . bx anx, j

⎤
⎥⎥⎥⎥⎦, (A11)

where

ai j = 4
h̄2

2m∗2
− eφ(xi, z j ), (A12)

bx = − h̄2

2m∗2
. (A13)

For a given potential φ(x, z), this can be diagonalized
numerically to find the matrix of eigenvectors Z(n) and
eigenvalues ε̃n.

To obtain the electron density for fixed 2D electron density
n2D, one first needs to obtain the chemical potential from

n2D = 2

LxLy

∑
ky,n

f (εn,ky ), (A14)

where the factor of 2 is for spin and f (x) is the fermi-Dirac
function. Defining ε = h̄2k2

y /2m∗, we have

n2D = 2

Lx

∑
n

∫
dky

2π
f (ε̃n + ε)

=
√

1

π

(
2m∗2

h̄2

)
kBT

× 1

nx2

∑
n

1√
π

∫ ∞

0

y−1/2dy

eβ(ε̃n−μ)+y + 1

=
√

2m∗2kBT

π h̄2

1

nx2

∑
n

F− 1
2

( ε̃n − μ

kBT

)
, (A15)

where F− 1
2

is the Fermi-Dirac integral of order − 1
2 .

The three-dimensional electron density, which is required
to calculate the electric potential from Poisson’s equation, is
then

ne(xi, z j ) =
√

2m∗kBT

π h̄24

∑
n

∣∣Z (n)
i j

∣∣2F− 1
2

( ε̃n − μ

kBT

)
. (A16)
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