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Second harmonic generation at the edge of a two-dimensional electron gas
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We show that driving a two-dimensional electron gas by an in-plane electric field oscillating at the frequency
ω gives rise to an electric current at 2ω flowing near the edge of the system. This current has both parallel and
perpendicular to the edge components, which emit electromagnetic waves at 2ω with different polarizations. We
develop a microscopic theory of such an edge second harmonic generation and calculate the edge current at 2ω

in different regimes of electron transport and electric-field screening. We also show that at high frequencies the
spatial profile of the edge current contains oscillations caused by excitation of plasma waves.

DOI: 10.1103/PhysRevB.106.125426

I. INTRODUCTION

Nonlinear transport and optical phenomena in two-
dimensional (2D) electron systems are at the core of modern
research in solid-state physics [1–4]. Of particular interest are
the second-order effects comprising second harmonic gen-
eration (SHG) [5–15] and generation of dc current by ac
electric field of radiation [16–23]. Such effects in the leading
electro-dipole electron-photon interaction occur in structures
with broken space inversion symmetry and, therefore, have
been established as a sensitive tool to probe structural inho-
mogeneity, crystalline symmetry, the staking and twist of 2D
crystal flakes, etc. [6,24–28].

In small-size samples, the translational and inversion
symmetry is naturally broken at the edges, which gives
rise to additional (edge-related) sources of second-order
nonlinearity. The corresponding photogalvanic currents flow-
ing along the edges and controlled by the electromagnetic
field polarization have been observed in single and bilayer
graphene [29–32]. A kinetic theory of the edge photogalvanic
effects has been developed for the intraband (Drude-like) opti-
cal transitions [29,30,33], inter-Landau level transitions [31],
interband one-photon [34] and two-photon absorption [32] in
2D Dirac materials. Edge effects in SHG response have been
observed in 2D layers of transition metal dichalcogenides in
the spectral range of interband transitions and attributed to the
local modification of atomic and electronic structures at the
edges [35,36]. The edge SHG induced by nonlinear intraband
transport of 2D electron gas at the edge remains unexplored
so far.

Here, we study SHG induced by high-frequency intraband
transport of 2D electrons at the edge of a semi-infinite sample.
We show that driving the electrons back and forth by an
in-plane ac electric field at the frequency ω gives rise to an
electric response at 2ω. The current at the double frequency
emerges near the edge in a narrow region determined by the
dynamical screening of the electric field and the mean free
path of electrons. The current at 2ω has both parallel and
perpendicular to the edge components which have specific

dependencies on the incident field polarization and emit the
electromagnetic field at 2ω with different polarizations. We
develop a kinetic theory of the edge SHG and calculate the
current at 2ω in different regimes of electron transport and
electric-field screening. At ωτ1 > 1, where τ1 is the momen-
tum relaxation time of electrons, the spatial profile of the
current contains oscillations caused by excitation of plasma
waves [37–40]. Remarkably, the studied second-harmonic
current is induced already at normal incidence of radiation
and does not require the absence of spatial inversion center
in the crystal lattice. Hence, it can be observed in the flakes of
centrosymmetric 2D materials, such as graphene.

The edge SHG can be viewed as a low-dimensional analog
of the surface SHG in bulk materials [41–49]. The latter
is known since 1960s and used now as an efficient tool to
probe the structure of surface, in particular, surface recon-
struction [46–49]. The most relevant to our research are the
papers on the surface SHG in metals, e.g., Refs. [41,43,44].
The calculations of surface currents were carried out in the ki-
netic, Ref. [41], and hydrodynamic, Refs. [43,44], approaches
in the collisionless regime of electron transport, which works
well for metals excited by high-frequency radiation. The pre-
vious results on 3D metals can not be directly applied to the
edge SHG because of the different nature of electric-field
screening and current spreading in 2D systems [37,38,50],
which ultimately determine the nonlinear response. Moreover,
to describe properly the transport of 2D electrons driven by
terahertz field [51,52] we go beyond the collisionless model
and take into account the processes of electron gas relaxation
since the corresponding relaxation times are comparable to the
period of driving electric field.

II. SECOND HARMONIC EMISSION BY EDGE CURRENTS

Consider a semi-infinite 2DEG occupying the half-plane
x � 0 at z = 0 and irradiated by a plane electromagnetic wave
with the electric field Eω(t ) = Eωe−iωt + E∗

ωeiωt , where Eω

is the incident field amplitude; see Fig. 1. As we calculate
below, nonlinearity of the field-induced ac electron transport
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FIG. 1. Second harmonic generation at the edge of 2DEG. In-
cident electromagnetic wave with the in-plane electric field Eω

oscillating at the frequency ω induces the electric current J2ω at
the double frequency in a narrow strip near the edge. In turn, the
edge current J2ω emits outgoing electromagnetic wave at 2ω with
the electric-field amplitude E2ω. (a) The incident field Eω with both x
and y components induces the current along the edge J2ω,y ∝ Eω,xEω,y

emitting the wave with E2ω ‖ y. (b) For the incident field Eω ‖ x, the
edge current flows perpendicular to the edge, J2ω,x ∝ E 2

ω,x , and the
outgoing wave is polarized with E2ω ⊥ y.

at the edge results in the emergence of the current oscillating
at the double frequency. This current has inhomogeneous den-
sity j2ω(x, t ) = j2ω(x)e−2iωt + j∗2ω(x)e2iωt and is localized at
the edge. The direction of the edge current depends on the
incident field polarization. For the field polarized perpendic-
ularly to the edge, Eω ⊥ y in Fig. 1(b), the current j2ω is
perpendicular to the edge. The field Eω with both parallel and
perpendicular components induces also the current j2ω along
the edge, Fig. 1(a).

The edge current, in turn, emits electromagnetic waves
with the frequency 2ω and the vector potential A2ω(r, t ) =
A2ω(r)e−2iωt + A∗

2ω(r)e2iωt . The field A2ω(r) can be found
from the wave equation [53]

�A2ω + k2
2ωA2ω = −4π

c
j2ω(x)δ(z), (1)

where k2ω = 2ω/c is the wave vector of the emitted wave and
δ(z) is the Dirac δ function. Translation invariance in the y
direction implies that A2ω is independent of y.

The Green function of the two-dimensional Helmholtz
equation enables us to present the solution of Eq. (1) in the
form

A2ω(r) = iπ

c

∫
j2ω(x′)H(1)

0 (k2ω

√
(x − x′)2 + z2)dx′, (2)

where H(1)
0 is the Hankel function of the first kind.

Far from the edge, A2ω(r) represents the outgoing cylin-
drical wave. Its parameters can be found by analyzing the
asymptotic of A2ω(r) at large R = √

x2 + z2. The asymptotic
expansion of the Hankel function at large arguments has
the form H(1)

0 (ξ ) ≈ √
2/(πξ ) exp(iξ − iπ/4). Then, in the far

field zone, i.e., at R 	 2π/k2ω, and in the dipole approxima-
tion [53], which suggests k2ωl 
 2π , where l is the width of
the stripe where the edge current flows, the field is given by

A2ω(r) = i
√

2π

c
√

k2ωR
exp

[
i
(

k2ωR − π

4

)]
J2ω, (3)

where

J2ω =
∫ +∞

0
j2ω(x)dx (4)

is the total electric current at 2ω flowing at the edge.
The magnetic and electric fields of the outgoing wave are

related to the vector potential as

H2ω = ik2ω × A2ω, E2ω = H2ω × k2ω

k2ω

, (5)

where k2ω = (x/R, 0, z/R)k2ω. The current J2ω flowing along
the edge emits the electromagnetic waves with the field E2ω

parallel to the edge, whereas the edge current flowing perpen-
dicularly to the edge induces the wave with the field E2ω lying
in the (x, z) plane, see Fig. 1.

III. KINETIC THEORY

Now we calculate the edge current J2ω. We consider
intraband transport of electrons and neglect contributions as-
sociated with real or virtual interband transitions which are
vanishing when the photon energy is much smaller than the
band gap [54]. In the kinetic approach, the response of an
electron system to an external field is described by the Boltz-
mann equation for the electron distribution function f . In
our case f = f (p, x, t ), and the Boltzmann equation has the
form [30,33]

∂ f

∂t
+ vx

∂ f

∂x
+ eE · ∂ f

∂ p
= St f , (6)

where p is the electron momentum, v = p/m is the electron
velocity, m is the effective mass, E (x, t ) is the total electric
field in the 2D layer acting on electrons, and St f is the
collision integral. The collision integral describes the relax-
ation of electrons in the bulk of 2D layer. Additionally, we
assume that electrons are reflected specularly at the edge,
which implies the boundary condition f (px, py, x = 0) =
f (−px, py, x = 0).

The field E (x, t ) is the sum of the incident field Eω(t )
and the field induced by oscillating electric charge near the
edge [37]

Ex(x, t ) = Eω,x(t ) +
∫ +∞

0

2ρ(x′, t )dx′

x − x′ , Ey(t ) = Eω,y(t ),

(7)
where ρ(x, t ) is the charge density given by ρ(x, t ) =
eν

∑
p( f − f0), ν is the factor of spin and valley degeneracy,

f0 is the equilibrium distribution function, and the principal
value of the integral in Eq. (7) is calculated. The charge
density depends on the x coordinate only, therefore the y
component of the electric field remains unscreened. Note,
that we neglect electromagnetic retardation assuming that
σ0/2π 
 c, where σ0 is the two-dimensional conductivity of
the electron gas [37,40]. In fact, the same inequality justifies
the dipole approximation used in Eq. (3).

Since the external field is harmonic, we solve Eqs. (6)
and (7) by expanding the distribution function f and the

125426-2



SECOND HARMONIC GENERATION AT THE EDGE OF … PHYSICAL REVIEW B 106, 125426 (2022)

electric field E in the Fourier series as follows:

f (p, x, t ) = f0 + [ f1(p, x)e−iωt + c.c.]

+ [ f2(p, x)e−2iωt + c.c.],

E (x, t ) = [Eω(x)e−iωt + c.c.] + [E2ω(x)e−2iωt + c.c.],
(8)

where f1, Eω ∝ Eω and f2, E2ω ∝ E2
ω in the lowest order in

the incident field amplitude. Note, that f (p, x, t ) [as well
as Ex(x, t )] also contains time-independent nonequilibrium
corrections ∝ E2

ω. These corrections determine static edge
polarization and dc edge currents [30,33]. However, they are
not relevant for SHG and are omitted.

Equations for the corrections f1 and f2 read

−iω f1 + vx
∂ f1

∂x
+ eEω · ∂ f0

∂ p
= St f1, (9)

−2iω f2 + vx
∂ f2

∂x
+ eEω · ∂ f1

∂ p
+ eE2ω · ∂ f0

∂ p
= St f2, (10)

where

Enω,x(x) = Eω,xδn,1 +
∫ +∞

0

2ρnω(x′)dx′

x − x′ , (11)

Enω,y = Eω,yδn,1, and ρnω(x) = eν
∑

p fn(p, x).
The amplitude of the local current density oscillating at 2ω

is determined by the correction f2 as follows:

j2ω(x) = eν
∑

p

v f2(p, x), (12)

and the total current is given by Eq. (4). Below we solve
Eqs. (9)–(11) and calculate the current components parallel
and perpendicular to the edge.

IV. CURRENT ALONG THE EDGE

Consider first the y component of the edge current. Multi-
plying Eq. (10) by vy and summing up over p we obtain

∑
p

vxvy
∂ f2

∂x
+ e

∑
p

vy

(
Eω,x

∂ f1

∂ px
+ Eω,y

∂ f1

∂ py

)

+e
∑

p

vyE2ω,x
∂ f0

∂ px
= (

2iω − τ−1
1

)∑
p

vy f2, (13)

where τ1 is the momentum relaxation time defined as∑
p vαSt f = −τ−1

1

∑
p vα f , Ref. [55]. Taking into account

that
∑

p vy∂ fn/∂ px = 0 and
∑

p vy∂ fn/∂ py = −(1/m)
∑

p fn

we obtain the current density

j2ω,y = − eντ1

1 − 2iωτ1

[∑
p

vxvy
∂ f2

∂x
− eEω,y

m

∑
p

f1

]
. (14)

The total current J2ω,y given by Eq. (4) is found
by integrating Eq. (14) over x. Using the relation∑

p f1 = −(i/ω)
∑

p vx∂ f1/∂x, which follows from Eq. (9),

we obtain

J2ω,y = − eντ1

1 − 2iωτ1

∑
p

vxvy[ f2(p,+∞) − f2(p, 0)]

− ie2ντ1Eω,y

mω(1 − 2iωτ1)

∑
p

vx[ f1(p,+∞) − f1(p, 0)].

(15)

Equation (15) is general and does not rely on particular type of
boundary conditions. It shows that the current at 2ω emerges
if the field-induced corrections to the electron distribution at
the edge and the 2D bulk are different.

To proceed further, we note that
∑

p vx f1(p, 0) = 0 since
the current through the edge does not flow. The sum∑

p vxvy f2(p, 0) also vanishes for the specular reflection of
electrons from the edge. Therefore, the edge current J2ω,y

is determined by the corrections to the distribution function
far from the edge, where the electric field is unscreened,
i.e., Eω = Eω and E2ω = 0, and the electron distribution is
homogeneous.

The term
∑

p vx f1(p,+∞) describes ac electric current
in the bulk and can be expressed via the bulk conductivity.
Solution of the kinetic Eq. (9) in the case of uniform electric
field yields

eν
∑

p

v f1(p,+∞) = σωEω, (16)

where σω = σ0/(1 − iωτ1) is the Drude conductivity at
the frequency ω, σ0 = nee2τ1/m is the static conductiv-
ity, and ne = ν

∑
p f0 is the carrier density. The term∑

p vxvy f2(p,+∞) is calculated by multiplying Eq. (10) by
vxvy and summing up the result over p, which gives∑

p

vxvy f2(p,+∞) = eτ2

m(1 − 2iωτ2)

×
∑

p

f1(p,+∞)(vxEω,y + vyEω,x ), (17)

where τ2 is the relaxation time of the second angular har-
monic, 1/τ2 = −∑

p vxvySt f /
∑

p vxvy f , Ref. [55].
Finally, taking into account Eqs. (15), (16), and (17), we

obtain the current along the edge

J2ω,y = − ieσ0τ1(1 − 4iωτ2)

mω(1 − iωτ1)(1 − 2iωτ1)(1 − 2iωτ2)
Eω,xEω,y.

(18)
The current J2ω,y is proportional to Eω,xEω,y. It reaches max-
ima for the field Eω linearly polarized at the angle ±π/4 with
respect to the edge and for circularly polarized field. The cur-
rent vanishes for the field Eω polarized along or perpendicular
to the edge.

Figure 2 shows the frequency dependence of the current
J2ω,y. The current is calculated after Eq. (18) for linearly
polarized incident field Eω and different ratio between the
relaxation times τ2 and τ1. Since J2ω,y is complex, both the
modulus and the argument of J2ω,y are plotted. We consider
two cases: τ2 = τ1 and τ2 
 τ1. The former corresponds to
electron scattering by short-range impurities, when the prob-
ability of scattering is independent of the scattering angle and
the relaxation times of all angular harmonics coincide; see
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FIG. 2. Frequency dependence of the edge current at 2ω flowing
parallel to the edge. The dashed line corresponds to short-range
scattering with τ1 = τ2, the solid line stands for the hydrodynamic
regime with τ2 
 τ1. The main graph and the inset show the modulus
|J2ω,y| and the argument arg(J2ω,y ) of the complex-value current J2ω,y,
respectively. The current is measured in J0 = 2eσ0τ

2
1 Eω,xEω,y/m.

Ref. [55]. The case τ2 
 τ1 corresponds to the hydrodynamic
regime when the second angular harmonic of the distribution
function is destroyed by frequent electron-electron collisions
while the first angular harmonic is almost unaffected by
electron-electron collisions and survives at much longer times.
In this case, the first contribution to the edge current in
Eq. (15) vanishes. Figure 2 shows that J2ω,y is weakly sensitive
to the τ2/τ1 ratio. The current ∝ 1/ω and ∝ 1/ω3 at low and
high frequencies, respectively. An estimation for the current
magnitude J2ω,y for n = 2 × 1011 cm−2, m = 0.067m0 rele-
vant for GaAs-based quantum wells, τ1 = 1 ps, ωτ1 = 1, and
the electric field Eω = 1 kV/cm oriented at 45◦ with respect
to the edge gives J2ω,y ≈ 0.3 × 10−5 A.

Figure 3 shows the spatial distributions of the current den-
sity j2ω,y(x) near the edge. Different curves correspond to
different ωτ1. The distributions are obtained from Eq. (14) for
τ2 
 τ1, when the first term in Eq. (14) is negligible. The sec-
ond term is then found by numerical calculations of the charge
density ρω(x) = eν

∑
p f1 in the local response approximation

 (arb. units)

 (arb. units)

FIG. 3. Spatial profile of the edge current density j2ω,y(x) in-
duced by linearly polarized field Eω,x = Eω,y. The main graph and
the inset show the modulus | j2ω,y| and the argument arg( j2ω,y ) of
the complex-value current j2ω,y, respectively. The current density is
calculated numerically in the local response approximation.

(see next section for details). In this approximation, the decay
of the edge current j2ω,y(x) in the 2D bulk is determined by
the length of dynamical screening lscr = σ0/ω. Hence, the
current profile narrows with the frequency increase. At large
ωτ1, arg( j2ω,y) exhibits spatial oscillations, i.e., the currents
j2ω,y at different x are phase-shifted and flow in the opposite
directions in the nearby regions. These oscillations are caused
by excitation of the edge plasmons, see the Appendix for
details.

V. CURRENT NORMAL TO THE EDGE

Now consider the x component of the edge current. Mul-
tiplying Eq. (10) by vx, summing up over p, and taking
into account that

∑
p vx∂ f1/∂ py = 0 and

∑
p vx∂ fn/∂ px =

−(1/m)
∑

p fn, we obtain

j2ω,x = −eντ1

1 − 2iωτ1

[∑
p

v2
x

∂ f2

∂x
− eEω,x

m

∑
p

f1

]
+ σ2ωE2ω,x,

(19)
where σ2ω = σ0/(1 − 2iωτ1) is the conductivity at double
frequency.

The total current is obtained from Eq. (19) by integrating
over x. Using the relation

∑
p f1 = −(i/ω)

∑
p vx∂ f1/∂x, we

obtain

J2ω,x = − eντ1

1 − 2iωτ1

∑
p

v2
x [ f2(p,+∞) − f2(p, 0)]

− ie2ντ1Eω,x

mω(1 − 2iωτ1)

∑
p

vx[ f1(p,+∞) − f1(p, 0)]

+ ie2ντ1

mω(1 − 2iωτ1)

∫
dEω,x

dx

∑
p

vx f1 dx

+ σ2ω

∫
E2ω,x(x)dx. (20)

Comparing Eqs. (15) and (20) one observes that the current
perpendicular to the edge contains two additional contribu-
tions which are not proportional to a difference between
the distribution function at the edge and in the 2D bulk.
Evaluation of these terms requires the knowledge of the dis-
tribution function corrections f1 and f2 and the electric field
Ex in the whole half-space x > 0. The corrections and the
field can be found numerically from Eqs. (9)–(11). However,
solving Eqs. (9)–(11) self-consistently is, in general, a chal-
lenging task. Therefore, in what follows we consider two
approximations.

Note that symmetry consideration of the edge SHG allows
the current J2ω,x to be induced by both E2

ω,x and E2
ω,y. However,

the analysis of Eqs. (19), (9), and (10) shows that, for specular
reflection of electrons from the edge, J2ω,x ∝ E2

ω,x, i.e., the
current J2ω,x vanishes for the field Eω polarized along the
edge. This result also holds in the local response approxima-
tion considered below.

A. Strong screening: Local response approximation

In the absence of high-ε dielectric environment, Coulomb
interaction in 2D systems is dominant and, therefore, drift
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FIG. 4. Frequency dependence of the edge current at 2ω flowing
perpendicular to the edge. The solid line corresponds to the local re-
sponse approximation in the regime of strong screening. The dashed
line is calculated in the hydrodynamic regime with τ2 
 τ1 and
neglecting screening. The main graph and the inset show the modulus
|J2ω,x| and the argument arg(J2ω,x ) of the complex-value current J2ω,x ,
respectively. The current is measured in J0 = eσ0τ

2
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currents induced by local electric fields prevail over diffusion
currents. In the local response approximation [38], terms with
the spatial gradients in equations for the current density are
neglected. As a result, equations for the current density at ω

and 2ω assume the form

jω,x(x) = σωEω,x(x) (21)

and

j2ω,x(x) = eτ1ρω(x)Eω,x(x)

m(1 − 2iωτ1)
+ σ2ωE2ω,x(x). (22)

The latter follows directly from Eq. (19).
To find the spatial profile of the current density j2ω,x(x)

and the total current J2ω,x we solve Eqs. (21) and (22) self-
consistently with Eqs. (11) for Enω,x(x) and the continuity
equations −inωρnω + d jnω,x/dx = 0; see the Appendix for
details. The absence of the current through the edge implies
the boundary conditions jnω,x(0) = 0.

Figure 4 shows the frequency dependence of the current
J2ω,x. The solid line shows the current calculated numerically
in the local response approximation for linearly polarized
incident field Eω ‖ x. The dependence closely follows the one
for J2ω,y shown in Fig. 2, and the phase shift between J2ω,x and
J2ω,y for linearly polarized incident field is close to zero.

Figure 5 shows the spatial distributions of the current den-
sity j2ω,x(x) near the edge. Different curves correspond to
different ωτ1. Similarly to the current along the edge j2ω,y,
the current j2ω,x decays in the 2D bulk on the scale of the
screening length lscr = σ0/ω and its profile narrows with the
frequency increase. In contrast to j2ω,y, the current j2ω,x van-
ishes at x = 0 as set by boundary conditions. Similarly to
j2ω,y, the profile of j2ω,x exhibits spatial oscillations at large
ωτ1 caused by the excitation of edge plasmons.

B. Negligible screening

The opposite case of weak screening is realized if the 2D
layer is surrounded by a high-ε dielectric medium and one can
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FIG. 5. Spatial profile of the edge current density j2ω,x (x) in-
duced by linearly polarized field Eω ‖ x. The main graph and the
inset show the modulus | j2ω,x| and the argument arg( j2ω,x ) of the
complex-value current j2ω,x , respectively. The current density is cal-
culated numerically in the local response approximation, Eq. (22).

neglect the back action of an in-plane electric field produced
by charge oscillations. In this case, the total electric field E
acting upon the electrons coincides with the incident field Eω

and the last line in Eq. (20) vanishes. To calculate the other
contributions to J2ω,x we need to find the difference between
the distribution functions at the edge and in the bulk by solv-
ing Eqs. (9) and (10) with Eω,x = Eω, Eω,y = 0, and E2ω = 0.
We do it analytically for τ2 
 τ1, which corresponds to the
hydrodynamic regime of electron flow, and ωτ2 
 1. In this
regime, one can retain only the zeroth and first angular har-
monics in the distribution function corrections f1 and f2.

The functions fn(p, x) (n = 1, 2) can be searched in the
form fn(p, x) = an(p, x) + vxbn(p, x). The absence of the cur-
rent through the edge, the current at 2ω in the bulk, and the
charge/energy oscillations at ω in the bulk implies bn(p, 0) =
0, b2(p,+∞) = 0, and a1(p,+∞) = 0, respectively. Solu-
tion of Eq. (9) with these boundary conditions has the form

a1 = eλ−1
ω Eω,x f ′

0e−λωx, b1 = −eτωEω,x f ′
0(1 − e−λωx ), (23)

where

τω = τ1

1 − iωτ1
, λω = (1 − i)

√
mω

2ετω

, (24)

ε = p2/2m, and (...)′ = ∂ (...)/∂ε. Equation (10) leads to the
system of coupled differential equations

−2imωa2 + ε
∂b2

∂x
= −eEω,x(b1ε)′,

∂a2

∂x
+ (τ−1

1 − 2iω)b2 = −eEω,xa′
1. (25)

Its solution has the form

a2 = A + Be−λωx + Cxe−λωx − De−λ2ωx/(λ2ωτ2ω ),

b2 = D(e−λωx − e−λ2ωx ) + Fxe−λωx, (26)

where τ2ω and λ2ω are given by Eq. (24) with ω → 2ω, and
the constants A, B, C, D, F are found from Eq. (25).

Further, we note that

eν
∑

p

vx f1(p,+∞) = σωEω,x,
∑

p

vx f1(p, 0) = 0,
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and ∑
p

v2
x [ f2(p,+∞) − f2(p, 0)]

= 1

2m

∑
p

ε[a2(p,+∞) − a2(p, 0)].

By solving Eq. (25) we find

∑
p

ε[a2(p,+∞) − a2(p, 0)] = iσωE2
ω,x

ν ω

× 2τ 2
ω + 4τ2ωτω − τ 2

2ω + (3/4)
√

2τω

√
τ2ω(τ2ω − 6τω )

(τ2ω − 2τω )2
,

(27)

where the sign of
√

τnω is chosen so that Re
√

τnω > 0.
Finally, Eq. (20) for the current J2ω,x yields

J2ω,x = − ieσ0τ1E2
ω,x

mω(1 − iωτ1)(1 − 2iωτ1)
F (ω), (28)

where

F (ω) = 3
[
8τ 2

ω + √
2τω

√
τ2ω(τ2ω − 6τω )

]
4(τ2ω − 2τω )2

. (29)

The frequency dependence of the current J2ω,x given by
Eq. (28) is shown in Fig. 4 by the dashed line. Comparing the
dashed and solid lines we see that the currents at 2ω calculated
in the regimes of strong and negligible screening are close in
magnitude.

We recall that Eq. (28) is obtained in the hydrodynamic
regime with τ2 
 τ1, ω

−1. Within the same approximation,
the current along the edge J2ω,y is given by Eq. (18) with
τ2 = 0. In this regime, the ratio J2ω,x/J2ω,y is determined by
the incident field polarization and the function F (ω). The
absolute value of F (ω) lies in the range 0.7–0.8 and its ar-
gument is close to zero in the whole frequency range. The
latter suggests that the ac current J2ω is linearly polarized for
linearly polarized field Eω.

VI. SUMMARY

To summarize, we have studied theoretically second
harmonic generation (SHG) emerging at the edge of a two-
dimensional (2D) electron gas. It has been shown that ac
in-plane electric field oscillating at frequency ω induces ac
electric current at frequency 2ω near the edge. This second-
harmonic current is induced already at normal incidence of
radiation and does not require the absence of spatial inversion
center in the crystal lattice. The current is formed in the edge
region determined by the dynamical screening of the electric
field and the mean free path of electrons. The edge current J2ω

has both parallel and perpendicular to the edge components,
J2ω,‖ ∝ Eω,‖Eω,⊥ and J2ω,⊥ ∝ E2

ω,⊥, respectively, where Eω

is the driving electric-field amplitude. The currents J2ω,‖ and
J2ω,⊥ emit electromagnetic fields at 2ω with different polar-
izations and different radiation patterns. We have developed
the kinetic theory of high-frequency nonlinear edge trans-
port which takes into account the screening of the in-plane
electric field by 2D electrons. The parallel current J2ω,‖ is

calculated analytically in a quite general case whereas the
perpendicular current J2ω,⊥ is calculated in the limiting cases
of strong and negligible screening. At ωτ1 > 1, where τ1 is the
momentum relaxation time, the spatial profile of the current
density contains oscillations caused by the excitation of edge
plasmons. The SHG spectroscopy can be used to visualize
edges and spatial inhomogeneities in doped 2D materials and
heterostructures.
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APPENDIX: PROFILES OF ELECTRIC FIELD, CHARGE,
AND CURRENT IN THE LOCAL RESPONSE

APPROXIMATION

Here, we calculate the spatial distributions of the electric
field, charge, and electric current at the edge of a 2D electron
gas in the local response approximation. To this end, we solve
Eqs. (11), (21), and (22) together with the continuity equations

−inωρnω + d jnω,x

dx
= 0 (A1)

inside a strip of the width 2a occupying −a � x � a.
Equation (11) for the strip assumes the form

Enω,x(x) = Eω,xδn,1 +
∫ a

−a

2ρnω(x′)dx′

x − x′ . (A2)

This integral equation can be inverted to express ρnω via
Enω,x. Taking into account that ρnω is infinite at x = ±a and∫ a
−a ρnω(x)dx = 0, we obtain [56]

ρnω(x) = xEω,xδn,1

2π
√

a2 − x2
− 1

2π2

∫ a

−a

√
a2 − x′2Enω,x(x′)dx′
√

a2 − x2(x − x′)
.

(A3)

Note that the first term in the right-hand side of Eq. (A3)
at n = 1 gives the distribution of charge density induced by
the static electric field, i.e., in the limit ω → 0, when the x
component of the field inside the strip is completely screened
so that Eω,x = 0.

Equations (A1) and (A3) yield

−i

nω

d jnω,x

dx
= xEω,xδn,1

2π
√

a2 − x2
− 1

2π2

∫ a

−a

√
a2 − x′2Enω,x(x′)dx′
√

a2 − x2(x − x′)
.

(A4)

First, we analyze the linear response and calculate the dis-
tributions Eω,x(x), ρω(x), and jω,x(x). By integrating Eq. (A4)
from −a to x and using Eq. (21) together with the boundary
condition jω,x(−a) = 0 we obtain

ilscrEω,x

1 − iωτ1
=

√
a2 − x2Eω,x

2π

+
∫ x

−a

dx′′

2π2

∫ a

−a

√
a2 − x′2Eω,x(x′)dx′

√
a2 − x′′2(x′′ − x′)

. (A5)

125426-6



SECOND HARMONIC GENERATION AT THE EDGE OF … PHYSICAL REVIEW B 106, 125426 (2022)

1 = 0.1

1 = 1

1 = 2

ar
g

(E
ω

,x
)

/4

0

Coordinate x (arb. units)
0 50 100

E ω
,x

/
E

ω
,x

0

0.5

1.0

1.5

Coordinate x (arb. units)
0 20 40 60 80 100

FIG. 6. Spatial profiles of the electric field Eω,x (x) at the edge
of 2D electron gas subject to the incident electric field Eω,x . The
main graph and the inset show the modulus |Eω,x| and the argument
arg(Eω,x ) of the complex-value field Eω,x , respectively. The field
profile is calculated numerically in the local response approximation.

Equation (A5) is simplified further by introducing the vari-
ables α and β as follows: x = a cos α and x′ = a cos β. Taking
into account that∫ x

−a

dx′′
√

a2 − x′′2(x′ − x′′)
= 1

a sin β
ln

(
sin α+β

2

| sin α−β

2 |

)
, (A6)

we finally obtain the integral equation for Eω,x

ilscrEω,x(α)

a(1 − iωτ1)
= Eω,x sin α

2π

− 1

2π2

∫ π

0
ln

(
sin α+θ

2

| sin α−β

2 |

)
sin βEω,x (β )dβ.

(A7)

Equation (A7) can be solved by decomposing the electric
field Eω,x(α) in the Fourier series

Eω,x(α) =
∑
m=1

E (m)
ω sin mα. (A8)

The integrals in Eq. (A7) are calculated analytically,∫ π

0
ln

(
sin α+β

2

| sin α−β

2 |

)
sin mα dα = π

m
sin mβ. (A9)

This procedure allows us to reduce the integral Eq. (A7) to the
set of linear equations

ilscrπE (m)
ω

a(1 − iωτ1)
+ 1

π

∞∑
m′=1

Kmm′E (m′ )
ω = Eω,x

2
δm,1, (A10)

where

Kmm′ = − 2[1 + (−1)m+m′
]m′

m′4 + (m2 − 1)2 − 2m′2(m2 + 1)
. (A11)

The Fourier components E (m)
ω can be readily found from the

numerical solution of the equation set (A10).
Figure 6 shows the spatial profiles of the electric field

Eω,x(x) at the edge of 2D electron gas calculated after
Eqs. (A8) and (A10) for different frequencies of the incident
field Eω,x. The x coordinate in Fig. 6 is counted from the
left edge of the wide strip. The calculations are done for the
strip width a 	 lscr when field profiles at the edge do not
depend on a. Figure 6 reveals that the electric field is effi-
ciently screened in the region x ∼ lscr = σ0/ω near the edge
(Eω,x ∼ √

x at small x), whereas far from the edge the field
is unscreened and coincides with Eω,x. With the frequency
increase, the screening length decreases and the region of field
screening narrows. At large ωτ1, the profile Eω,x(x) contains
oscillations caused by excitation of plasmons with the wave
vectors q ∼ ω2/(2πnee2) = ωτ1/(2π lscr ) [38,39].

Now we calculate j2ω,x(x). By integrating Eq. (A4) with
n = 2 over x from −a to x and using the boundary condition
j2ω,x(−a) = 0 and Eq. (22), one obtains

− ilscr j2ω,x(α)

2a(1 − 2iωτ1)
= 1

2π2

∫ π

0
ln

(
sin α+β

2

| sin α−β

2 |

)
sin β

×
[

j2ω,x(β ) − �Eω,x(β )
dEω,x

dx
(β )

]
dβ,

(A12)

where

� = − ieσ0τ1

mω(1 − iωτ1)(1 − 2iωτ1)
, (A13)

and Eω,x is the field at ω calculated above.
Decomposing the current j2ω,x(α) in the Fourier series,

j2ω,x(α) =
∑
m=1

j (m)
2ω sin mα, (A14)

and using Eqs. (A8) and (A9), we reduce the integral
Eq. (A12) to the set of linear equations

ilscrπ j (m)
2ω

2a(1 − 2iωτ1)
+ 1

π2

∞∑
m′=1

Kmm′ j (m′ )
2ω

= − �

4a

[
m−1∑
m′=1

m′

m
E (m′ )

ω E (m−m′ )
ω −

∞∑
m′=m+1

E (m′ )
ω E (m′−m)

ω

]
.

(A15)

The total current flowing near the left edge is found as

J2ω,x =
∫ 0

−a
j2ω,xdx = a

∑
m>1

m cos(πm/2)

m2 − 1
j (m)
2ω . (A16)

The profile of the edge current calculated after Eqs. (A14)
and (A15) is shown in Fig. 5 of the main text. The total current
J2ω,x is shown in Fig. 4 by the solid line.
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