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Multimode resonances, intermode bound states, and bound states in the continuum in waveguides
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We study analytically and numerically the formation of bound states in the continuum (BICs) in quantum-
mechanical and optical spatially symmetric multimode waveguide systems. The widely used Friedrich-Wintgen
model predicts a BIC for two (nearly) degenerate eigenstates of the resonator. However, numerical calculations
typically show that BICs may appear away from the degeneracy point (or avoided crossing region) in the
energy-parameter space. From the two-mode point of view based on the Friedrich-Wintgen model, such BICs
can be considered as accidental. In this paper, we go beyond the two-mode approximation and, appealing to the
notion of intermode bound states, provide an illustrative procedure for deriving conditions for BIC formation
within an arbitrary finite-mode approximation. In particular, we show that a three-mode approximation allows
the description of a continuous transition of a BIC between different pairs of modes, which can be associated
with it within the two-mode model. Also, a manifestation of exceptional points as (anti)resonance coalescence
is discussed. Analytical conclusions are verified by the results of numerical simulations of two-dimensional
quantum-mechanical and optical stubbed waveguides with confining impurities in the stub. Moreover, numerical
simulations confirm the existence of BICs in optical subwavelength resonators, which were earlier predicted in
quantum-mechanical waveguides.
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I. INTRODUCTION

A bound state in the continuum (BIC) is a localized state
with energy embedded into the continuum of delocalized
states. A BIC was first described long ago in quantum me-
chanics as a purely mathematical construct [1]. However, in
the past years a number of realistic physical mechanisms have
been proposed for how to create states with zero coupling to
the continuum, and BICs have become a hot topic in physics
[2–6]. Decoupling from the continuum can occur either be-
cause of different symmetry properties of the BIC and the
continuum or due to the destructive interference irrespective
of symmetry [2,7]. The latter implies that a BIC cannot be
found in a strictly one-dimensional topologically trivial struc-
ture [6]. BICs were theoretically and experimentally studied in
numerous physical systems: quantum-mechanical [7–10] and
optical [11,12] waveguides (WGs), photonic crystals [13–15],
subwavelength gratings [16–18], metasurfaces [19,20], acous-
tic resonators [21–24], etc.

An electronic conductor can be considered as a typical
example of a quantum-mechanical WG. However, interelec-
tron interactions, which are essential in electronic systems
[25–29], modify BIC formation conditions and provide the
possibility for new BICs to appear due to Coulomb repulsion.
Recently, BIC existence was theoretically predicted and con-
firmed by ab initio simulations with at least partial accounting
for Coulomb effects in molecular conductors, in particular, in
such a well-studied molecule as benzene [30].

Practically, conditions for BIC formation can be most ef-
fectively realized in photonic systems [3–5], where they can
be used, e.g., for the implementation of electromagnetic stor-

age [5]. A BIC can exist only in a spatially infinite system if it
is composed of materials with finite and nonzero refractive
indices [31]. In a finite-size system, a BIC typically turns
into a quasi-BIC possessing an extremely narrow resonance
width and a high Q factor with great prospects for practical
utilization [32,33].

A universal approach for BIC description [2,6] is based
on the formalism of the Feshbach effective non-Hermitian
Hamiltonian [34,35] with its complex eigenvalues determin-
ing poles of the scattering S matrix [36]. In this notion, BICs
correspond to real eigenvalues of the effective Hamiltonian
[2,6]. Therefore a BIC can be considered as a resonance of
zero width [6,37]. On the other hand, the S matrix must remain
finite everywhere on the real energy axis, and hence the BIC
point is a point where S-matrix pole and zero must coincide
[27,37,38]. Thus a BIC can be equivalently treated as an
antiresonance (S-matrix zero) of vanishing width [38].

Except for those corresponding to BICs, other eigen-
values of the Feshbach effective Hamiltonian are complex
due to its non-Hermiticity. However, there exists a class of
non-Hermitian Hamiltonians possessing real eigenvalues—
pseudo-Hermitian Hamiltonians [39,40] with PT -symmetric
Hamiltonians [41,42] being the most practically important
subclass among them (here P and T stand for operations
of spatial and time-reversal symmetry, correspondingly). Two
real eigenvalues of a PT -symmetric Hamiltonian can coa-
lesce at some point of the parameter space and turn into a pair
of complex-conjugate ones (PT -symmetry breaking) [42].
Such points are called exceptional points (EPs), and they are
well known from linear algebra theory [43]. In contrast to
the crossing (diabolic) point, which is typical for Hermitian
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operators, and where eigenstates, being degenerate, remain
orthogonal, the EP provides the coalescence of two orthogonal
eigenstates into a single nondegenerate one. A small pertur-
bation, which slightly shifts a system from its EP, provides
a strong nonanalytical change in its energy spectrum and
properties. Therefore, at present, EPs are widely discussed
in different physical systems in terms of improving sensor
characteristics [44–46].

In Refs. [38,47] a representation of the transmission coef-
ficient was proposed which relates transmission unity peaks
(resonances) in a spatially symmetric system to real eigenval-
ues of some auxiliary PT -symmetric Hamiltonian, which can
be directly deduced from the Feshbach effective Hamiltonian.
In this approach, the EP of the auxiliary Hamiltonian corre-
sponds to the coalescence of resonances (CR) [38,48], which
was recently experimentally demonstrated also in acoustic
waveguides [49]. Coalescence of antiresonances (CA) can
take place as well [30,38], and a mathematical description
based on EPs can be applied in this case also. It is important to
note that the description of such EPs is out of the scope of the
traditional approach based on consideration of S-matrix poles.
This is because the resonance position on the real energy
(frequency) axis coincides with the real part of the S-matrix
pole (Feshbach effective Hamiltonian eigenvalue) only in the
case of narrow and isolated resonances [38,50].

Methods for BIC description based on the Feshbach
Hamiltonian in quantum-mechanical or electromagnetic WGs
usually imply a separation of the system into a cavity, the
eigenstates of which determine the Hermitian part of the
Feshbach Hamiltonian [6], and attached (input-output) WGs
with a continuum of propagating modes (open channels)
and evanescent modes in closed channels. In particular, the
Friedrich-Wintgen (FW) interference mechanism of BIC for-
mation [51] corresponds to the crossing (degeneracy) point or
region of the avoided crossing of two eigenstates of the cavity
and can be effectively described by a 2 × 2 non-Hermitian
Hamiltonian [2,6]. However, separation into a cavity and
attached WGs is not straightforward [52], especially for sys-
tems where eigenstates of the scattering region are strongly
hybridized with WG modes, e.g., in a straight WG with
impurity [8,9,53]. In this case, it seems more appropriate
to utilize an approach based on the coupled-wave theory
(CWT), which was initially developed for the description of
distributed-feedback lasers [54,55] and later was successfully
applied to the study of BICs in quantum-mechanical WGs
with impurities [8,9] and photonic crystal slabs [56–58]. In
Ref. [8], it was found that the BIC formation condition in a
WG with impurity can be formulated in terms of two bound
states (similarly to the FW model). One is an ordinary bound
state split from a given mode by attractive impurity potential
forming a well, which is also responsible for Fano resonance
[59]. The other bound state involved is quite different and
is formed in a composite quantum well due to intermode
interference and nonzero intermode coupling: Well and barrier
potentials are determined by the thresholds of different modes.
Such a BIC typically can be described in a two-mode ap-
proximation [15]. Another example is a photonic crystal slab,
where recent numerical multimode simulations [60] indicate
that the main contribution to the BIC state is provided by a
couple of modes. However, recently it was shown in Ref. [61]

that a two-mode approximation is unable to describe, e.g., a
BIC in the quantum-mechanical waveguide with a subwave-
length resonator, whereas the three-mode model works well.
These results demonstrate that finite-mode (i.e., two- or three-
mode) approximate models within the framework of CWT
can provide a sufficient background for studying complicated
properties of WGs.

In this paper, we show that this is indeed the case, and via
compact two- and three-mode analytical models we describe
a variety of multimode interference phenomena in WGs in-
cluding BICs, EPs for both resonances, and antiresonances
and continuous transition between different intermode inter-
ference BICs. The latter is of special importance as it extends
the FW mechanism and provides an analytical description of
BICs, which cannot be described by a two-mode FW model.
We refer to such BICs as “accidental” by analogy with BICs
that are not symmetry protected [6,62–64]. The universal-
ity of analytic results is confirmed by multimode numerical
simulations of both quantum-mechanical and electromagnetic
systems.

The structure of this paper is as follows. In Sec. II we
present the basic quantum-mechanical model and discuss the
numerical study of a prime example of BIC formation in a WG
with a stub, which by variation of the ratio of the stub to WG
widths provides a BIC formation study from the case of an
almost isolated cavity to the case of an almost straight mul-
timode WG. In Sec. III some finite-mode analytical models
of BIC formation and CA-CR phenomena are considered in
detail based on the notion of intermode states. The continuous
BIC transition between two FW-like regimes is presented and
explained within the three-level model in Sec. IV. Analytical
results are confirmed therein by numerical simulations. We
show that such a transition can be described either on the basis
of the three-mode approximation or within the three-level
effective Hamiltonian model. The former approach provides
a better agreement with exact results as it naturally accounts
for evanescent modes in WGs. We also demonstrate numer-
ical simulation results that confirm the existence of BICs
in electromagnetic WGs with a subwavelength resonator. A
discussion of the results and a conclusion are presented in
Sec. V.

II. QUANTUM-MECHANICAL MULTIMODE
SCATTERING PROBLEM

A. Basic equations and boundary conditions

Consider a two-dimensional (2D) system composed of a
resonator attached to two WGs located along the x axis. As-
suming U (x, y) to be the potential profile of the whole system,
one gets the following 2D Schrödinger equation:

∂2�

∂x2
+ ∂2�

∂y2
+ [E − U (x, y)]� = 0 (1)

with appropriate boundary conditions on �(x, y) for either
a scattering or eigenvalue problem. Here, we assume that
the mass of the particle is constant over all of the system,
and the units are chosen such that h̄2

2m = 1. We focus on the
situation where U (x, y) is a piecewise constant function of x,
i.e., U (x, y) = Uj (y) for x j−1 < x � x j , where j enumerates
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the regions. If the number of regions is M, then x0 = −∞,
xM = ∞, and x1 and xM−1 define left and right WG-resonator
interface positions, respectively.

Transverse mode decomposition [65–68] is an exact and
effective way to solve Eq. (1). The general solution in the jth
region can be written as follows:

� j (x, y) =
∑

m

ψ j
m(x)Y j

m (y), (2)

where ψ
j

m(x) = Aj
meik j

mx + B j
me−ik j

mx with wave vector k j
m =√

E − γ
j

m. Transverse wave functions Y j
m (y) and correspond-

ing eigenvalues (mode thresholds) γ
j

m are found from the 1D
Schrödinger equation:

d2Y j

dy2
+ [γ j − Uj (y)]Y j = 0. (3)

Summation in Eq. (2) is performed over all of the infinite
number of transverse modes in the jth region (including both
discrete and continuous spectra).

The scattering problem is solved via the standard transfer-
matrix technique by matching wave functions (2) and their
derivatives at the borders and fulfilling the appropriate
boundary conditions at infinity [68]. Functions Y j

m form an
orthonormal basis set within the jth region, and hence one can
formulate the continuity condition of the full wave function
and its derivative between the jth and the ( j + 1)th regions as

ψ j+1
n (x j ) =

∑
m

(μ̂ j )mnψ
j

m(x j ),

∂ψ
j+1

n (x j )

∂x
=

∑
m

(μ̂ j )mn

∂ψ
j

m(x j )

∂x
.

(4)

Here, we have introduced a unitary infinite-dimensional trans-
formation matrix μ̂ j between basis sets {Y j

m} and {Y j+1
m } with

elements

(μ̂ j )mn =
∫ ∞

−∞
Y j

m (y)
[
Y j+1

n (y)
]∗

dy. (5)

Matrix μ̂ j describes the mode mixing on the jth border. Equa-
tions (4) are almost identical to CWT-based equations in 2D
quantum-mechanical [8] and 2D periodic photonic systems
[60]. Moreover, they are quite similar to corresponding equa-
tions for 3D periodic photonic systems [58].

B. Almost isolated cavity versus almost straight multimode
waveguide

As a prime example, we consider a 2D quantum-
mechanical stubbed WG of width h with a stub (resonator)
of width H (see inset in Fig. 1). Varying the ratio h/H from 0
to 1, one can provide a continuous transition from an almost
isolated cavity to an almost straight multimode WG and study
BIC formation conditions accordingly.

To be specific, we focus on the following particular elec-
tronic WG structure. Inside the WG the potential energy is
set to zero, and outside the WG it is set to U0 = 1 eV. The
electron effective mass is assumed to be 0.0665m0. To simu-
late states of the continuous spectra, which are needed for a
proper summation in Eq. (2), we use a dense set of discrete
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FIG. 1. Dependence of the BIC energy EBIC and corresponding
resonator’s length LBIC on the width of the attached WGs, h. Res-
onator width H is set to H = 10 nm. Thick solid lines show the
exact numerical solution, and thin solid lines show the estimation for
an isolated resonator (energy and condition for a pair of degenerate
eigenstates). Dashed and dot-dashed lines correspond to two- and
three-mode approximations. The exact numerical solution for BIC
energy and the three-mode approximation almost coincide. Inset:
scheme of the 2D stubbed WG structure.

transverse modes formed between artificial infinite potential
borders located at some distance � from the structure (see
inset in Fig. 1). The true continuous spectrum corresponds
to � → ∞. Nevertheless, finite � can be used as long as
convergence conditions are fulfilled. In the particular system
considered, we set � = 10 nm, which provides convergence
with about 20–30 transverse modes taken into account, and the
results demonstrate almost no dependence on � for � > 10
nm [69]. Such boundary conditions seem natural for finding
transverse mode eigenstates of a solitary (along the y axis)
system. If the system is periodic, then Bloch wave decompo-
sition is surely preferable [58,60].

The formation of BICs in symmetric quantum billiards due
to the FW mechanism is a well-known phenomenon [7,10].
Within the effective Hamiltonian formalism for h/H � 1,
one expects BICs near the degeneracy point of the isolated
resonator cavity eigenstates of the same parity (with respect
to mirror reflection x �→ −x). Figure 1 depicts this estimation
as two horizontal lines corresponding to the energy and the
resonator length providing the degeneracy of the (1,2) and
(3,1) eigenstates of the isolated resonator (h = 0) [70]. As
one can see, this estimation works pretty well for h/H � 0.6,
whereas for wider WGs the deviation of the exact values of
EBIC and LBIC shown by the thick solid lines becomes sig-
nificant. Finally, for h ≈ H , approximation by isolated-cavity
eigenstates has nothing to do with exact BIC parameters,
because splitting the system into a cavity and WGs becomes
ambiguous with ill-defined eigenstates dependent on particu-
lar cavity-WG boundary conditions [52].

Fully multimode CWT calculations can be performed only
numerically even for such simple geometries of the system,
because dozens of transverse modes need to be taken into
account for convergence. In contrast, the effective Hamilto-
nian formalism provides a relatively simple analysis, which
has a clear physical interpretation. Thus a finite-mode ap-
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FIG. 2. (a) Energy diagram of a finite-mode quantum conductor.
Thin solid lines show the mode thresholds (transverse quantization
energies) in each region. The confinement region x ∈ [−L/2, L/2]
is shaded. (b) Schemes of symmetric (red) and antisymmetric (blue)
intermode bound states m-n-m.

proximation in CWT with a reasonable number of transverse
modes taken into account, which can be easily interpreted on
the one hand, and is accurate enough on the other, is highly
desirable. Analytical and numerical results of Refs. [15,60,61]
suggest that two- or three-mode approximations can capture
the essence of BIC formation due to multimode interference.
In the rest of this paper we prove this for a wider set of
physical phenomena in a particular class of the WG systems.

III. ANALYTICAL FINITE-MODE PERSPECTIVE

A. Bound states in the continuum

Consider a symmetric (with respect to the reflection x �→
−x) system consisting of three regions with borders at x1 =
−L/2 and x2 = L/2 [Fig. 2(a)]. In this case, due to the sym-
metry one can denote μ̂1 = μ̂

†
2 = μ̂. Within the finite-mode

approximation, we take an arbitrary number of modes N into
account in both the central confinement region (the resonator
cavity) and the WGs. For definiteness, we will consider the
first N modes with the lowest thresholds. However, this is not
obligatory, and one can choose any N modes suitable for the
particular problem. Hereinafter we assume the energy range
of interest to be between the thresholds of the first and second
modes in WGs. Thus the only propagating mode is the first
one in each WG.

The general solution for an N-mode scattering problem is
quite cumbersome and is difficult to analyze in any illustra-
tive manner. Nevertheless, BIC formation conditions can be
deduced straightforwardly. Indeed, a BIC can be found as an
eigenstate with zero amplitude in the first (propagating) mode
in WGs. The system under consideration is symmetric, and
hence its eigenstates (including BICs) can be classified by
parity as symmetric (s) and antisymmetric (a). The BIC wave
function in WGs (regions 1 and 3) has the following form:

ψ s,a;1
n (x) = as,a

n eκnx, ψ s,a;3
n (x) = σs,aas,a

n e−κnx (6)

for 1 < n � N and ψ s,a;1
1 (x) = ψ s,a;3

1 (x) ≡ 0. Here, σs =
−σa = 1 and κn =

√
γ 1,3

n − E with γ 1
n = γ 3

n being the thresh-

olds of the nth transverse mode in WGs. In the central
confinement region (region 2), the wave functions of the sym-
metric and antisymmetric BICs are as follows:

ψ s,2
n (x) = bs

n cos knx, ψa,2
n (x) = ba

n sin knx. (7)

Here, kn = √
E − γ 2

n , and γ 2
n is the threshold of the nth trans-

verse mode in the cavity.
Applying boundary conditions (4) to the wave functions (6)

and (7), one gets a homogeneous system of 2N linear equa-
tions for 2N − 1 variables {as

2, as
3, . . . , as

N , bs
1, bs

2, . . . , bs
N },

which defines symmetric BICs, and another homoge-
neous system of 2N linear equations for 2N − 1 variables
{aa

2, aa
3, . . . , aa

N , ba
1, ba

2, . . . , ba
N }, which defines antisymmetric

BICs. In order to have nontrivial solutions for these systems,
any 2N − 1 equations in them must be linearly dependent.
After some algebra [69], one gets that this requirement can
be formulated as a condition of simultaneous vanishing of all
minors �s,a

n,1 of the matrices M̂s,a for any 1 � n � N . Matrices
M̂s,a here are given by (M̂s,a)nm = μmnAs,a

mnm, where

As
mnm = kn sin

(
knL

2

)
− κm cos

(
knL

2

)
,

Aa
mnm = κm sin

(
knL

2

)
+ kn cos

(
knL

2

)
.

(8)

The physical meaning of quantities As,a
mnm is quite clear because

condition As,a
mnm = 0 defines an intermode state m-n-m, which

is localized at the mth transverse mode in WGs and at the
nth mode in the resonator [see Fig. 2(b) for an illustration]
[61]. Obviously, condition As,a

nnn = 0 describes an ordinary
symmetric or antisymmetric state in a quantum well within the
nth mode. For more definiteness, hereinafter m-ny-m(nx) will
refer to intermode states which tend to (nx, ny) in the limit of
an isolated resonator.

One can reduce the requirement of �s,a
n,1 = 0 for all 1 �

n � N to only the following pairs of equations for any n and
m 
= n [69]: {

�s
n,1 = 0

�s
m,1 = 0 or

{
�a

n,1 = 0
�a

m,1 = 0.
(9)

Thus there are N (N − 1)/2 possible pairs of BIC condition
equations, which are all equivalent. One can see from Eqs. (9)
that conditions for BIC formation, which take into account N
transverse modes, can be reduced to the conditions involving
N − 1 modes, if corresponding mode-mixing matrix elements
μnN and μNn are negligible for 1 � n < N . Thus a thorough
preliminary analysis of the mode-mixing matrix should be
performed before making a decision on which finite-mode
approximation is suitable in each particular system.

As an example, let us consider the simplest multimode
model with N = 2 and some more general cases with N > 2.
For N = 2, conditions (9) turn into

As,a
222 = 0

As,a
212 = 0.

(10)

These conditions are exactly the same as those that were
first derived in Ref. [8] and require the degeneracy of 2-2-2
and 2-1-2 intermode localized states of the same parity. It
should be noted that conditions (10) do not depend on the
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mode-mixing matrix μ̂. Two-mode approximation [for states
2-2-2(1) and 2-1-2(3)] provides a better agreement with exact
BIC parameters in the example shown in Fig. 1 than isolated
resonator estimation.

A substantially different situation takes place for N = 3, in
which case BIC conditions become [one of N (N − 1)/2 = 3
equivalent formulations]

μ21μ33As,a
212As,a

333 − μ31μ23As,a
232As,a

313 = 0

μ22μ33As,a
222As,a

333 − μ23μ32As,a
232As,a

323 = 0.
(11)

Here, dependence on mode-mixing matrix μ̂ is essential.
Three-mode approximation gives even better agreement with
exact BIC parameters in the example structure considered in
Fig. 1.

It seems that conditions (11) can be fulfilled if As,a
333 =

As,a
232 = 0, i.e., if intermode localized states 3-3-3 and 2-3-2 of

the same parity are degenerate. However, this is not possible
because bound state energies in quantum wells, which differ
only by barrier height, cannot coincide. Conditions (11) show
that a BIC can be formed in the case of triple degeneracy of
intermode states 2-1-2, 2-2-2, and 2-3-2 or intermode states
3-1-3, 3-2-3, and 3-3-3. Surely, this requirement is much more
difficult to fulfill compared with two-mode degeneracy (10).
In contrast to the two-mode case, in the three-mode approxi-
mation, a new type of BIC can arise with none of As,a

mnm turning
to zero, which indicates a truly multimode interference.

Finite-mode approximations with N > 3 become much
more complicated but still can be more or less illustratively
interpreted and analyzed. See the Appendix for an example
with N = 4. Multimode consideration allows the generaliza-
tion of the two-mode BIC conditions to the requirement of
degeneracy between any two intermode bound states m-n-m
and p-q-p,

As,a
mnm = As,a

pqp = 0, (12)

if the corresponding matrix elements μmn and μpq are domi-
nant. Surely, here we do not consider m = 1 or p = 1 because
in that case corresponding intermode states would not be
bound within the energy range of interest.

B. Two-mode model: Bound states in the continuum and
exceptional points

Within the two-mode approximation, we account only
for two modes of transverse quantization in each region.
For brevity, we assume γ 1

1 = γ 3
1 = U1 and γ 1

2 = γ 3
2 = U2 as

thresholds of the first and the second modes in the attached
WGs and γ 2

1 = V1 � U1 and γ 2
2 = V2 � U2 as thresholds in-

side the confinement region (resonator cavity).
Straightforwardly discarding all other mode-mixing ma-

trix elements except for those corresponding to two selected
modes leads to the inconsistency of the solution due to the fact
that matrix μ̂ becomes nonunitary and hence does not preserve
particle and current conservation. Thus, within our illustrative
consideration of a simplified two-mode model, we assume
the 2 × 2 matrix μ̂ to be unitary. Without loss of generality,
any 2 × 2 unitary matrix can be written in the Euler angle
parametrization [71] as

μ̂ =
(

eiϕ1 cos θ eiϕ2 sin θ

−ei(ϕ−ϕ2 ) sin θ ei(ϕ−ϕ1 ) cos θ

)
(13)

with θ, ϕ, ϕ1, ϕ2 ∈ R. In fact, in the considered WG systems,
transverse wave functions are real valued, and hence ϕ, ϕ1,
and ϕ2 turn out to be either zero or π . Parameter θ indicates
the “strength” of the mode mixing, e.g., for the θ = 0 matrix,
μ̂ is diagonal and modes are fully independent, whereas for
θ = π

2 , modes totally interchange on each border.
Within the two-mode approximation, the full scattering

problem can be solved, and various interference phenomena
can be analyzed. Consider an incident particle with energy
U1 < E < U2 in the first mode going from the left. Using
wave-function matching (4) and the definition (13), one can
derive the transmission coefficient of the system (from the first
mode in the left WG to the first mode in the right WG) in the
general form [38,72]

T (E ) = |P(E )|2
|P(E )|2 + |Q(E )|2 , (14)

with

P(E ) = 2k
[
k1As

222Aa
222cos2θ + k2As

212Aa
212sin2θ

]
,

Q(E ) = V1As
222Aa

222 sin (k1L)cos4θ + V2As
212Aa

212 sin (k2L)sin4θ + 2cos2θsin2θ

×
{

Aa
212As

222

[
k2 sin

(
k2L

2

)
cos

(
k1L

2

)
− k1k2 sin

(
k1L

2

)
cos

(
k2L

2

)]

+ As
212Aa

222

[
k2 sin

(
k1L

2

)
cos

(
k2L

2

)
− k1k2 sin

(
k2L

2

)
cos

(
k1L

2

)]}
. (15)

We have introduced here k = √
E − U1, k1,2 = √

E − V1,2, and κ = √
U2 − E , and As,a

mnm are given by Eqs. (8). From the
general equations (15), one can easily derive P(E ) and Q(E ) functions in limiting cases of independent modes (θ = 0) and fully
interchange modes on each border (θ = π/2):

P0(E ) = 2kk1As
222Aa

222, Q0(E ) = V1As
222Aa

222 sin (k1L) (16)

and

Pπ
2
(E ) = 2kk2As

212Aa
212, Q π

2
(E ) = V2As

212Aa
212 sin (k2L). (17)
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For θ = 0, electrons go through the first mode only, and
resonant transmission takes place at k1L = πn, n ∈ Z, where
Q0 becomes zero. At the same time, the second mode appears
to be completely decoupled from the transport process, and
hence localized states in the second mode, which we refer to
as 2-2-2, turn into BICs [73]. Indeed, as one can see from
Eqs. (16), condition As,a

222 = 0 defining the symmetric and
antisymmetric bound states in the second mode, respectively,
provides Q0 = 0 and P0 = 0 simultaneously, which indicates
BIC formation [38].

For θ = π
2 , electrons from the first mode go through the

second mode in the confinement region and then go away in
the first mode again. In this case, resonant transmission takes
place at k2L = πn, n ∈ Z, where Q π

2
turns to zero. Similar

to the θ = 0 case, there are fully localized states (BICs) with
energies defined by the condition As,a

212 = 0. These states are
localized in the first mode of the confinement region and
decay into the second mode outside the central region, and
hence we call them 2-1-2.

The abovementioned states take place only in two mutu-
ally exclusive limiting cases of parameter θ . Nevertheless,
according to the general formulas (14) and (15) they deter-
mine the behavior of the transmission coefficient for arbitrary
θ . Zeros of function P(E ) correspond to energies of per-
fect reflection, and zeros of function Q(E ) correspond to
energies of perfect transmission. Exact analysis of expres-
sions (15) is difficult; however, some striking features can
be easily determined. Indeed, function P(E ) becomes zero
if either Aa,s

212 = As,a
222 = 0 or As,a

212 = As,a
222 = 0. In the for-

mer case, function Q(E ) is strictly nonzero, which means
that condition Aa,s

212 = As,a
222 = 0 defines the transmission dip

(antiresonance), whereas in the latter case function Q(E )
becomes zero as well. Hence the condition As,a

212 = As,a
222 = 0

indicates the formation of a BIC [38]. In other words, de-
generacy of bound states 2-2-2 and 2-1-2 of the same parity
(both either symmetric or antisymmetric) provides the for-
mation of a BIC that fully agrees with condition (10). The
analysis performed above shows that intermode states located
in different modes (2-1-2) are involved in the buildup of trans-
mission resonances and antiresonances and BIC formation on
an equal basis with ordinary states localized in a single mode
(2-2-2).

EPs in the transmission spectrum manifest themselves as a
coalescence of either resonances [38,48,49] or antiresonances
[30]. In the energy-parameter space, such points can be iden-
tified as points, where tangent line to the perfect resonance
(antiresonance) curve becomes parallel to the energy axis.
Consider in more detail the case of two degenerate states
2-2-2 and 2-1-2 of different parity with energy E0. Then, the
condition Aa,s

212 = As,a
222 = 0 will be fulfilled at E = E0 lead-

ing to P(E0) = 0, Q(E0) 
= 0, and consequently T (E0) = 0.
Moreover, thorough analysis of formulas (15) shows that,
similarly to the molecular conductors with degenerate or-
bitals of different parity [30], the second-order multiple root
of P(E ) and CA can be achieved exactly at energy E0 if

θ = arctan[
√

(E0−V1 )(U2−V2 )
(E0−V2 )(U2−V1 ) ]. In the general case of arbitrary

θ , however, CA does not take place exactly at the point in the
energy-parameter space given by the condition Aa,s

212 = As,a
222 =

0, but in some vicinity of it.

In Ref. [74], it was shown that CR can also take place
in the vicinity of two degenerate states of opposite parity.
However, it cannot be explicitly identified as an EP of some
auxiliary Hamiltonian because the latter is not defined within
the CWT formalism. Nevertheless, CR can be recognized
from the direct analysis of Q(E ) given by Eq. (15). One of the
striking features of an operator near an EP is the nonanalytical
behavior of its eigenvalues [45]. In particular, in the case of a
second-order EP, splitting between the eigenvalues is propor-
tional to the square root of perturbation. As we demonstrate
in the example below in the present section, this is exactly the
case for CR and CA phenomena.

As an illustration let us consider the system with U1 = 0,
U2 = 10, V1 = −2, and V2 = 5. Using Eqs. (14) and (15),
one can calculate the energy-resolved transmission spectrum
for different values of the central region length L. Density
plots of the calculated transmission coefficient are shown in
Fig. 3 with different values of θ . For small θ [Fig. 3(a)] the
contribution of the first term in the expression (15) for P(E ) is
dominant, and hence transmission dips follow predominantly
zeros of As,a

222 (i.e., bound states of 2-2-2 type). On the other
hand, if θ is close to π

2 [Fig. 3(b)], then the second term
in the expression for P(E ) is dominant, and antiresonances
follow zeros of As,a

212 (bound states of 2-1-2 type). In the in-
termediate regime [Fig. 3(c)] the behavior of resonances and
antiresonances is rather complicated. As was stated above,
BICs arise in the case of degeneracy between 2-2-2 and 2-1-2
states of the same parity (the intersection of dashed and solid
lines of the same color in Fig. 3), and their position (energy
and corresponding resonator length) does not depend on the
parameter θ .

EPs associated with CA and CR are less strictly defined
but typically take place in the vicinity of the degeneracy point
between intermode states 2-2-2 and 2-1-2 with opposite parity
[the intersection of dashed and solid lines of different color
(blue and red) in Fig. 3]. As we have shown above, one
can observe CA for exactly degenerate states only for some
specific value of θ [as in Fig. 3(d)]. Near any CR and CA,
perfect transmission resonances and zero transmission antires-
onances demonstrate square-root behavior with varying L [see
parabolic approximations, shown by dashed lines in the insets
in Fig. 3(c)]. This is a clear manifestation of an underlying
EP, which was earlier established within the tight-binding
formalism [30,38].

IV. TRANSITION OF BOUND STATES IN THE
CONTINUUM BETWEEN DIFFERENT TWO-MODE

REGIMES

A. Quantum-mechanical waveguides

Typically, the two-mode CWT approximation (10) pro-
vides a quite accurate prediction for BIC energy and formation
conditions [8,15]. As we have shown above, the multimode
consideration suggests that the choice of particular transverse
modes for decomposition is performed in accordance with
the corresponding mode-mixing matrix elements. Thus differ-
ent system parameters can provide different pairs of modes
involved in BIC formation. Consequently, there might be a
transition of a BIC between different pairs of modes, which it
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FIG. 3. Energy-vs-resonator-length diagrams of the transmission coefficient for θ = 0.3 (a), θ = π

2 − 0.3 (b), θ = π

4 (c), and θ =
0.967 562 (d). Parabolic approximations for the positions of transmission resonances or antiresonances near the CR and CA points, respectively,
are depicted by dashed lines in the insets in (c). The case shown in (d) corresponds to the specific choice of θ which leads to the CA
being exactly at the degenerate intermode states of different parity (at approximately LBIC ≈ 1.435 703 and EBIC ≈ 6.725 358). Here, symm.,
symmetric; antisymm., antisymmetric.

can be associated with. Without going beyond the two-mode
approximation [even in its generalized version (12)], BICs in
such a transition might be thought of as accidental.

As a quantum-mechanical model for numerical simula-
tions, we consider a symmetric 2D stubbed WG structure.
Inside the electron WG, we set the potential energy to zero,
and outside it, we set the potential energy to U0 = 1 eV.
We also consider an additional quantum well with potential
Uw and width w inside the stub (see inset in Fig. 4). The
structure is similar to that considered in Ref. [53], where,
however, insight into the multimode BIC formation was not
established. The additional quantum well allows more precise
and effective control of mode-mixing matrix elements μmn as
well as transverse mode thresholds, which also enter into, e.g.,
the condition for BIC formation (11) through quantities Amnm.
Thus one can write the following expression for the potential

energy of the considered 2D system:

U (x, y) =

⎧⎪⎨
⎪⎩

U0, y < 0
Uw, 0 � y < w

0, w � y < H
U0, y � H

(18)

for |x| � L/2 (inside the resonator) and

U (x, y) =
⎧⎨
⎩

U0, y < 0
0, 0 � y < h

U0, y � h
(19)

for |x| > L/2 (outside the resonator). The electron effective
mass is assumed to be 0.0665m0. For numerical simulation of
a continuous spectrum, we again introduce artificial borders
along the x axis at a distance � = 10 nm from the resonator
as discussed in Sec. II.
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|μ31|, |μ41|, |μ22|, and |μ32| vs h for the structure with H = 10 nm,
Uw = −0.1 eV, and w = 4 nm. The inset depicts a scheme of the
considered 2D stubbed WG with an additional quantum well in the
resonator.

Preliminary two-mode consideration [in its generalized
form (12)] requires analysis of mode-mixing matrix elements
μmn. Figure 4 depicts the dependence of matrix elements μ21,
μ31, μ41, μ22, and μ32 on the waveguide width h for the struc-
ture with H = 10 nm, Uw = −0.1 eV, and w = 4 nm. Matrix
elements μ22 and μ21 are the greatest for h � 8 nm, whereas
μ32 and μ31 dominate for h � 5.5 nm (|μ22| > |μ31|, but
states 2-2-2 and 3-2-3 cannot be degenerate and hence cannot
provide a BIC). Thus, within the generalized two-mode point
of view, one expects a BIC due to the interference between
degenerate states 2-1-2 and 2-2-2 for h � 8 nm and between
3-1-3 and 3-2-3 for h � 5.5 nm. That is exactly the case,
as shown in Fig. 5. Indeed, for h � 8.5 nm, the low-energy
BIC (blue line) is well described by two-mode interference
between degenerate 2-2-2(1) and 2-1-2(5) states, and the
high-energy BIC (red line) is well described by two-mode
interference between degenerate 2-2-2(1) and 2-1-2(3) states.
For h � 7 nm, the low-energy BIC corresponds to degenerate
3-2-3(1) and 3-1-3(3) states. The high-energy BIC, in this
case, can take place for arbitrary small resonator length (with
energy tending to the threshold of the second mode in WG)
and, as was shown in Ref. [61], cannot be described within the
two-mode approximation. Intermediate values of h provide a
continuous transition between these limiting cases, where, at
first sight, BICs can be thought of as being accidental.

The first step beyond the two-mode approximation is the
three-mode approximation, which provides Eqs. (11) as con-
ditions for BIC formation. We focus on energies below states
3-3-3 and 2-3-2; so As,a

333 and As,a
232 can be considered as

nonzero energy-independent quantities in the energy range of
interest. The first equation in (11) is approximately satisfied
by As,a

212 ≈ 0 if |μ21| > |μ31|, which is the case for h > 8 nm
(Fig. 4), and by As,a

313 ≈ 0 if |μ21| < |μ31|, which is the case
for h < 7.5 nm (Fig. 4). The second equation in (11) can be
analyzed similarly. For |μ22μ33| > |μ32μ23|, that corresponds
to h > 7 nm; it is satisfied approximately by As,a

222 ≈ 0, and by
As,a

323 ≈ 0 for |μ22μ33| < |μ32μ23| (h < 6.5 nm). Thus limiting
cases are captured well by the three-mode approximation.
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(b)

(a)

FIG. 5. Dependence of the resonator length LBIC (a) and energy
EBIC (b) of exact BICs on the WG width h (blue and red thick solid
lines) and comparison with estimation for two-mode (dashed lines)
and three-mode (dot-dashed lines) approximations. The three-level
effective Hamiltonian model for the low-energy BIC transition is
shown by the thin solid blue lines. Parameters are set to Uw =
−0.1 eV, H = 10 nm, and w = 4 nm. It is not shown in the scale
of (b), but the energy EBIC of the high-energy BIC [red line in (b)]
goes up to the threshold of the second mode in WG γ 1,3

2 ≈ 0.411 eV
as the corresponding resonator length LBIC tends to zero at h ≈
5.76 nm.

Moreover, as one can see from Fig. 5 that the three-mode
approximation also qualitatively reproduces the transition re-
gion. Deviation from the exact values of LBIC and EBIC is
observed in the region around h ∼ 7.5 nm (Fig. 5), where the
matrix element μ41 becomes significant (Fig. 4).

B. Effective Hamiltonian model for transition of a bound state
in the continuum

One can show that the above-discussed transition of a BIC
is an inherent property of a three-level model with the bare
Hamiltonian

Ĥ0 =
⎛
⎝ε1 τ1 0

τ1 ε2 τ3

0 τ3 ε3

⎞
⎠ (20)

coupled to a single continuum with the coupling matrix [75]
�̂ = uu†, where

u = (γ1, γ2, γ3), (21)

which is energy independent within the wide-band limit
(WBL) [76]. Here, we take τ1,3 and γ1,2,3 to be real, and for
definiteness we assume that τ1,3 and γ1,3 are positive. This
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the BIC (labeled with a solid black square) from one avoided crossing region to another is clearly seen. The BIC which is not of interest as it
goes to infinity for γ2 = 0 is labeled with an open square.

three-level system can be thought of as a generalization of
the Pavlov-Verevkin model [77,78], which considers N de-
generate states (the bare Hamiltonian is proportional to the
N × N identity matrix) coupled to K continua, to the case
of nondegenerate states (for N = 3 and K = 1). BIC forma-
tion in 3D acoustic systems with N = 3 degenerate states
coupled to K = 2 continua was also thoroughly studied in
Refs. [79,80].

Suppose that energies ε1 and ε3 are fixed and ε2 is varied.
The considered model is assumed to provide physical insight
into the phenomenon of continuous transition between the two
FW-like BICs described in Sec. IV A. Thus we restrict it to
the case ε1 
= ε3, which gives two avoided crossing regions
(for τ1,3 
= 0) at ε2 ≈ ε1,3 and energy E ≈ ε1,3, respectively,
as Fig. 6(a) illustrates. The limiting case ε1 = ε3 does not
properly fit the purpose of the model, and hence it is out of
our scope.

Following the auxiliary Hamiltonian formalism [38] [the
formalism of P(E ) and Q(E ) functions], one can straight-
forwardly derive the energy and value of ε2 providing the
BIC formation. Surely, the same result can be obtained within
the standard effective Hamiltonian approach [6,81]. However,
for N > 2, simultaneous analysis of two real functions (P
and Q) provides a rather simpler way of getting analytical
conclusions compared with study of the complex eigenvalues
of a non-Hermitian Hamiltonian [69].

Assuming that avoided crossing regions are small com-
pared with the energy split between the first and the third
states (τ1,3 � |ε1 − ε3|), one can get that there are two BICs,
one of which has energy between ε1 and ε3 for γ2 = 0,
while the other goes to infinity for γ2 → 0. The latter is
not of interest as in real systems it would be influenced
by some distant levels and hence cannot be studied within
our three-level model. The energy of the former for γ2 = 0
is

EBIC = ε1η
−1τ3 + ε3ητ1

ητ1 + η−1τ3
, (22)

at

εBIC
2 = EBIC + τ 2

1 − τ 2
3 + τ1τ3(η−2 − η2)

�ε
, (23)

where η = (γ1/γ3)1/2 and �ε = ε1 − ε3. Introduction of γ2 
=
0 shifts the energy of the BIC and corresponding εBIC

2 towards
the avoided crossing region of either the first and the second
states (for γ2 > 0) or the third and the second states (for γ2 <

0). Thus continuous transition of a BIC between two avoided
crossing regions can be realized if one tunes γ2 in a way that
it changes its sign. Figure 6 illustrates this behavior.

The presented three-level model can be applied directly
to the WG system considered in the previous section if one
takes, e.g., eigenstates (nx, ny) of the isolated resonator region
as initial levels and their couplings to the first propagating
mode in WGs as γi. In accordance with Refs. [10,52], these
couplings are naturally related to the mode-mixing matrix
elements μ1ny . For instance, the BIC transition shown by the
blue line in Fig. 5 can be qualitatively described by the model
given in (20) and (21) if one relates energies of the eigen-
states (5,1) and (3,1) to ε1 and ε3, respectively; the energy
of the (1,2) state to ε2; and matrix elements μ11 and μ12 to
couplings γ1 = γ3 and γ2, respectively. Parameter τ1 or τ3

can be extracted as a half of the minimal energy split within
the avoided crossing region between states (5,1) and (1,2) or
(3,1) and (1,2), correspondingly. While varying h from h = 5
nm to h = H = 10 nm, matrix element μ11 demonstrates a
weak dependence on h, remaining μ11 ≈ 0.95. On the other
hand, μ12 depends almost linearly on h and changes its sign at
h ≈ 7.81 nm. Thus one expects that the model given in (20)
and (21) will describe the BIC transition for the considered
WG system, which, indeed, takes place, and the result is
illustrated in Fig. 5 by the thin solid blue lines.

The fact that the exact BIC beyond the transition region
follows the degeneracy of intermode states [3-1-3(3) and
3-2-3(1) or 2-1-2(5) and 2-2-2(1)] instead of isolated res-
onator cavity eigenstates (nx, ny) arises due to the influence
of evanescent modes in WGs. Within the effective Hamilto-
nian formalism, consideration of evanescent modes requires a
dramatic complication of the analysis [7]. On the other hand,
introduction of intermode states provides a natural way of
taking evanescent modes into account, which is a key advan-
tage for description of WG systems with strongly hybridized
eigenstates of the resonator cavity.
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C. Optical waveguides

A natural correspondence exists between quantum me-
chanics and optics [82]. Therefore one may expect a similar
multimode mechanism of BIC formation to take place in op-
tical WGs. The Helmholtz equation for the transverse electric
(TE) wave in a 2D system can be written in the form (1) but
for electric field distribution E (x, y) instead of wave func-
tion �(x, y) and with refractive index [2πλ−1n(x, y)]2 instead
of potential energy [E − U (x, y)]. However, in optics, there
is a fundamental complication of the BIC-finding procedure
compared with quantum mechanics due to the form of the
Helmholtz equation, which provides the dependence of mode-
mixing matrix elements μmn on the wavelength. Nevertheless,
as we show below, the transition of a BIC between different
pairs of intermode states due to multimode interference can
also be observed in optical WGs. Moreover, the formation of a
BIC in a subwavelength resonator does take place in an optical
WG, similar to the quantum-mechanical case [61].

We consider the same 2D geometry of the stubbed optical
WG as in the quantum-mechanical case (inset in Fig. 4). We
set the refractive index to n = 1.5 inside the WG and n0 = 1
outside it. Instead of a quantum well of depth |Uw| within
the stub we take an impurity with refractive index nw > n.
It should be noted that since there are no true bound states
in 2D purely dielectric WGs [82–84], we need to confine the
electromagnetic field by ideally conducting plates, located at
some distance � from the cavity (as shown in the inset in
Fig. 1 for the quantum-mechanical system). The result of nu-
merical calculations depends strongly on �, but the qualitative
illustration of multimode BIC formation can be performed for
any value of �, and hence we focus on the simplest situation
with � = 0.

Analysis of mode-mixing matrix elements (for the first sev-
eral transverse modes) shows that diagonal matrix elements
μ22 and μ33 dominate over nondiagonal ones: |μ22|, |μ33| �
|μmn| with m 
= n due to the relatively small contrast of the
refractive index. However, in the energy range of interest,
corresponding states 2-2-2 and 3-3-3 cannot be degenerate
as 3-3-3 states have sufficiently shorter wavelength. Thus
the two-mode approximation suggests that BICs within the
considered range of parameters can be described by degener-
acy of the 2-2-2 state with intermode states m-1-m (m > 1).
Figure 7 shows the dependencies of the matrix element ab-
solute values |μ21|, |μ31|, and |μ41| on the wavelength λ for
different values of the impurity refractive index nw. As in
quantum-mechanical WG, |μ21| typically exceeds |μ31| and
|μ41|. However, for nw ≈ 1.85, there is a range of wavelength
around λ/h ∼ 4 where μ21 turns to zero and μ31 is predomi-
nant. Therefore one may expect a BIC transition and also the
possibility for BIC formation for an arbitrary small resonator
length as was shown previously for quantum mechanics [61].

By varying the dielectric constant of the impurity nw, one
can see (Fig. 8) the transition of BICs between different pairs
of intermode states they can be associated with within the
two-mode approximation. Regardless of the fact that μ31 is
slightly greater than μ21 in the considered wavelength range
for nw ∼ 1.8 [see Fig. 7(b)], BIC follows the degeneracy of
2-1-2 and 2-2-2 states for these parameters as well as for
nw ∼ 1.85 (Fig. 8). This can be easily understood from the
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FIG. 7. (a)–(d) Dependence of the absolute value of matrix ele-
ments |μ21|, |μ31|, and |μ41| on the wavelength λ for impurity with
w = 1.2h width and different refractive indices. The stub width is set
to H = 3h.

three-mode approximation (11), which works for this example
even better than in the quantum-mechanical case. Indeed, μ31

enters the first equation in the system (11) multiplied by μ23,
whereas μ21 is multiplied by μ33 � μ23. Thus the first term
prevails over the second one, and this equation is fulfilled
approximately for As,a

212 ≈ 0.
Similarly to the quantum-mechanical case, the short-

wavelength (high energy) BIC can be observed for LBIC →
0. The two-mode approximation cannot capture this phe-
nomenon, whereas the three-mode model works pretty well
and provides not only qualitative but also fine quantitative
agreement with the exact result (Fig. 8). The electric field
distribution of the BIC coincides with any given accuracy
with the distribution calculated in the scattering problem, if
one sets parameters close enough to the BIC. Figure 9 de-
picts the electric field energy distribution corresponding to the
scattering problem in the structure with H = 3h, w = 1.2h,
nw = 1.84, and LBIC = 0.3h. The incident electric field is
normalized to provide unity maximum electric field energy
along the structure. In the considered example, the wavelength
of BIC, λBIC ≈ 3.707h, is an order of magnitude greater than
the corresponding length of the resonator LBIC.

In practice, due to imperfections of the system, material
loss, and some other external perturbations, BICs are revealed
as quasi-BICs with high but limited Q factor [5]. It should
be noted that the qualitative physical picture of multimode
interference providing BIC formation is universal and, in par-
ticular, can be applied to the description of quasi-BICs as
well. However, the particular definition of interfering modes
and intermode states has to be chosen appropriately, which
deserves a separate study in each case.
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FIG. 8. Dependence of the resonator length LBIC (a) and wave-
length λBIC (b) of exact BICs on the dielectric constant of the
impurity nw (blue and red thick solid lines) and comparison with
estimation for two-mode (dashed lines) and three-mode (dot-dashed
lines) approximations. Parameters are set to H = 3h and w = 1.2h.
It is not shown in the scale of (b), but the wavelength λBIC of the
short-wavelength (high energy) BIC [red line in (b)] goes down to
the threshold of the second mode in WG, which is approximately
3.588h, as the corresponding resonator length LBIC tends to zero at
nw ≈ 1.845.
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V. CONCLUSION

In this paper, we took a step beyond the model proposed
by Friedrich and Wintgen (the FW model), which is widely
used to describe bound states in the continuum (BICs) in a va-
riety of systems demonstrating wave interference phenomena.
The original FW model describes BIC formation due to the
interference of waves scattered by two localized bound states
that can be, e.g., eigenmodes of the quantum-mechanical or
electromagnetic cavity. However, many BICs which are found
by numerical multimode simulations do not fit the FW model
description and can be considered as accidental. Here, we
showed that at least some such BICs can be consistently
described as a result of three-mode interference. We presented
a general N-mode theory of BIC formation (N = 2 corre-
sponds to the FW model) in symmetric waveguide systems.
We showed that for N > 2 the analytic form of the BIC forma-
tion condition significantly differs from that in the FW model
and explicitly depends on the mode-mixing matrix elements,
whose values determine how many and what particular modes
should be taken into account. Finding the very location of
a BIC in the parameter space of a system is a cumbersome
multiparametric problem depending not only on mode-mixing
matrix elements but also on mode thresholds.

The essential feature of our treatment is that we consider
cavities with their localized modes being strongly hybridized
by the propagating states in attached waveguides. Transport
properties in the case of weak hybridization are generally
formulated in terms of bound states (eigenfrequencies) of a
closed resonator and coupling parameters (as in the standard
FW model), which jointly determine system resonances. In
the case of strong hybridization, as we discuss, the situation
is more complicated, but it can be described in terms of some
composite bound states also. Such composite bound states are
formed by the potentials that are assembled from parts (differ-
ent mode thresholds) of both the resonator and the waveguides
(intermode bound states). The derived three-mode approxi-
mation coincides with the previously known two-mode model
when parameters are suitable for the corresponding two-mode
approximation. On the other hand, it provides a BIC descrip-
tion beyond two modes where a good agreement with an exact
solution takes place, as we have shown by numerical simula-
tions of both quantum-mechanical and optical examples. In
particular, in this paper, we demonstrated that the three-mode
model correctly describes the continuous transition in the
parameter space between two FW-like BICs.

Our analytical multimode model of BIC formation is de-
veloped for quantum-mechanical WGs. However, because it
is based on general properties of wave interference, its pre-
dictions are quite universal. As we show, one can expect that
they will be valid also for electromagnetic waveguides, which
possess a significant difference from quantum-mechanical
waveguides due to the absence of true bound states in
2D systems. Our numerical simulations of electromagnetic
waveguides confirm this expectation. We verify the exis-
tence therein of the aforementioned BIC transition as well
as recently proposed (in quantum-mechanical WGs) subwave-
length BICs due to multimode (i.e., three-mode) interference
[61].
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APPENDIX: BOUND STATE IN THE CONTINUUM IN THE
FOUR-MODE APPROXIMATION

For N = 4, BIC conditions (9) take the form [one among
N (N − 1)/2 = 6 equivalent variants]

�s,a
1,1 = μ44As,a

444

(
μ22μ33As,a

222As,a
333 − μ23μ32As,a

232As,a
323

)
+ μ24As,a

242

(
μ32μ43As,a

323As,a
434 − μ42μ33As,a

333As,a
424

) + μ34As,a
343

(
μ42μ23As,a

232As,a
424 − μ22μ43As,a

222As,a
434

) = 0,

�s,a
2,1 = μ44As,a

444

(
μ21μ33As,a

212As,a
333 − μ31μ23As,a

232As,a
313

)
+ μ24As,a

242

(
μ31μ43As,a

313As,a
434 − μ41μ33As,a

333As,a
414

) + μ34As,a
343

(
μ41μ23As,a

232As,a
414 − μ21μ43As,a

212As,a
434

) = 0. (A1)

From these conditions, one may expect the simplest BIC
to take place if As,a

242 = As,a
343 = As,a

444 = 0, which again is not
possible. A straightforward, theoretically possible BIC re-
quires the degeneracy of four intermode states (e.g., 2-1-2,
2-2-2, 2-3-2, and 2-4-2) and thus can hardly be achieved
in any particular system. The first terms in Eqs. (A1) are
exactly the same as the conditions for BIC formation in the
three-mode case (11). Therefore it is expected that a specific
BIC defined by conditions (11) with all nonzero As,a

mnm will
survive and be just shifted a little in the energy-parameter
space with the fourth modes being taken into account if the
second and third terms in Eqs. (A1) are small enough to be
treated as a perturbation. Unfortunately, additional terms in
Eqs. (A1) are not necessarily small and in typical systems

can be of the same order as the first terms. Thus the behavior
of such a BIC (and even its presence or absence) becomes
very complicated with more modes taken into account, and it
depends strongly on the particular parameters of the system
considered.

The key conclusion that we make from conditions (A1)
or their equivalent variants is the following. The two-mode
approximation (10) can be generalized and require degeneracy
of any intermode bound states m-n-m and p-q-p instead of
2-1-2 and 2-2-2. Indeed, suppose that μmn and μpq dominate
over all the other mode-mixing matrix elements. Then, con-
ditions (A1) can be fulfilled as soon as Eq. (12) holds true.
The same result can be obtained if one considers in the same
manner any finite-mode approximation (with N > 4).
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