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Generalized multifractality in the spin quantum Hall symmetry class with interaction
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Scaling of various local observables with a system size at Anderson transition criticality is characterized by
a generalized multifractality. We study the generalized multifractality in the spin quantum Hall symmetry class
(class C) in the presence of interaction. We employ the Finkel’stein nonlinear sigma model and construct the pure
scaling derivativeless operators for class C in the presence of interaction. Within the two-loop renormalization
group analysis we compute the anomalous dimensions of the pure scaling operators and demonstrate that they
are affected by the interaction. We find that the interaction breaks exact symmetry relations between generalized
multifractal exponents known for a noninteracting problem.
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I. INTRODUCTION

Anderson transition is a fascinating example of a disorder-
driven quantum phase transition separating metallic and
insulating phases. A nontrivial topology, e.g., as in the in-
teger quantum Hall effect, makes Anderson transition to
occur between distinct topological phases. Although more
than 60 years after the seminal paper by Anderson [1],
localization-delocalization transitions in disordered media are
still a subject of intense research. A striking feature of An-
derson transition is strong mesoscopic fluctuations of electron
wave functions or, equivalently, the local density of states
(LDOS) [2–4]. At criticality the disorder-averaged moments
of LDOS demonstrate pure power-law scaling with the system
size 〈ρq〉 ∼ L−x(q) , with the multifractal exponents x(q) whose
values depend on a symmetry class (see Refs. [5,6] for a
review).

In fact, there are much more observables than just the
moments of LDOS that demonstrate pure scaling with L at
critically [7]. Some time ago, the corresponding observables
were constructed in terms of specific correlations of wave
functions for the case of unitary Wigner-Dyson class (class A)
[8]. Moreover, it was proven that the corresponding multifrac-
tal exponents xλ are not unrelated but satisfy a set of symmetry
relations specific for each symmetry class [8–10]. Therefore,
the set of multifractal exponents xλ, termed as generalized
multifractality, is a unique fingerprint of a certain Anderson
transition.

Although a nonlinear sigma model (NLσM) description
for each of 10 Altland-Zirnbauer symmetry classes is known
(see Ref. [6] for a review), ultimate theories for Anderson
transition criticality are still to be found. A well-known exam-
ple of long-time search for such critical theory is the integer
quantum Hall plateau transition. In Refs. [11–16] the Wess-
Zumino-Novikov-Witten models were conjectured as theories
for quantum Hall criticality. These theories predict multifrac-
tal exponents x(q) to be quadratic functions of q. In fact, the
parabolic multifractal spectrum is more general. It can be
obtained under assumptions of the local conformal invariance

and Abelian fusion rules [17]. However, present numerical
computations of multifractal spectrum demonstrate significant
deviations from the exact parabolicity [18,19]. This makes the
theoretical predictions of parabolic multifractal spectrum for
the integer quantum Hall criticality to be questionable.

Recently, validity of the local conformal invariance has
been tested in the superconducting cousin of the integer quan-
tum Hall effect, the spin quantum Hall effect (class C), in
two dimensions [20–22]. It was shown [23] that the assump-
tion of the local conformal invariance at the spin quantum
Hall transition leads to the parabolicity of the generalized
multifractal spectrum xλ. An advantage of the spin quantum
Hall transition in two dimensions, d = 2, is that a subset of
multifractal exponents can be found exactly by mapping to the
percolation problem [24–29]. These exact analytical values of
exponents serve as a benchmark against numerical compu-
tations. Although the numerical simulations reproduce exact
analytical results, they demonstrate clear evidence for a vio-
lation of parabolicity of the generalized multifractal spectrum
[23,26,30]. These results signal a lack of the local conformal
invariance at the spin quantum Hall transition in d = 2.

Multifractality is not only an interesting playground for
theoretical and numerical analysis. A signature of multifractal
behavior has been found experimentally in light waves spread-
ing in an array of dielectric nanoneedles [31] as well as in
ultrasound waves propagating through a system of randomly
packed Al beads [32]. Also, the multifractality of an electron
LDOS has been reported in diluted magnetic semiconductor
Ga1−xMnxAs [33].

Multifractal correlations of wave functions result in a vari-
ety of interesting physical effects. In particular, they lead to
strong enhancement of superconducting transition tempera-
ture and the superconducting gap at zero temperature [34–39],
induce log-normal distribution for the superconducting or-
der parameter [35,40,41] and local density of states [39,42]
in dirty superconductors, are responsible for instabilities of
surface states in topological superconductors [43,44], result
in strong mesoscopic fluctuations of the Kondo temperature
[45–47], enhance depairing effect of magnetic impurities on

2469-9950/2022/106(12)/125424(19) 125424-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3177-2698
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.125424&domain=pdf&date_stamp=2022-09-27
https://doi.org/10.1103/PhysRevB.106.125424


S. S. BABKIN AND I. S. BURMISTROV PHYSICAL REVIEW B 106, 125424 (2022)

superconducting state in dirty films [48], make cooling of
electrons due to electron-phonon coupling more efficient [49],
and affect the Anderson orthogonality catastrophe [50].

The scaling properties at Anderson transition criticality can
be modified by electron-electron interaction if it is a rele-
vant perturbation. In this case the so-called Mott-Anderson
transition emerges being controlled by both disorder and inter-
action strengths (see Refs. [51,52] for a review). Surprisingly,
as it has been shown recently, not only the multifractality
[53,54] but also the generalized multifractality [55] exists at
Mott-Anderson criticality in standard Wigner-Dyson symme-
try classes. In this case the pure scaling operators correspond
to proper correlations of single-particle Green’s functions.
An important example is the moments of the LDOS that
in the presence of interaction remain pure scaling operators
[53,54]. Interaction drives a disordered electron system into a
new interacting fixed point corresponding to a metal-insulator
transition and, consequently, affects the generalized multifrac-
tal exponents. Interestingly, the symmetry relations between
the multifractal exponents in standard Wigner-Dyson sym-
metry classes survive in the presence of interaction, at least
within the second-order expansion in ε = d − 2. Unfortu-
nately, present numerical computing power is not enough to
access generalized multifractal exponents and to check sym-
metry relations in the presence of interaction [56–59].

In this paper we develop the theory of the generalized mul-
tifractality for the spin quantum Hall symmetry class in the
presence of electron-electron interaction. Using Finkel’stein
NLσM for class C, we demonstrate that the pure scaling
derivativeless operators can be constructed by straightforward
generalization of the pure scaling operators without deriva-
tives known in the absence of interaction. Within the two-loop
approximation we compute how the anomalous dimensions of
the pure scaling derivativeless operators are affected by the
presence of interaction. Applying our results to the transition
in d = 2 + ε dimensions, we illustrate breakdown of the exact
symmetry relations between generalized multifractal expo-
nents for class C in the presence of interaction [cf. Eq. (152)].
Also, for a reader’s convenience, within the Finkel’stein
NLσM we rederive the results known in the literature for the
one-loop renormalization of the spin conductance, dimension-
less interaction, the Finkel’stein frequency renormalization
parameter, and the averaged LDOS.

The outline of the paper is as follows. In Sec. II we intro-
duce the formalism of Finkel’stein NLσM for class C. The
details for background field renormalization of the action are
presented in Sec. III. The linear response is studied in Sec. IV.
In Sec. V local derivativeless operators are constructed and
their anomalous dimensions are computed within the two-
loop approximation. We end the paper with discussions and
conclusions in Sec. VI.

II. FORMALISM OF FINKEL’STEIN NLσM

A. NLσM action

We start with the description of the formalism of the
Finkel’stein NLσM applied to class C. We follow the ap-
proach of Refs. [60,61]. As usual, the NLσM action is given
as a sum of the noninteracting part S0 and the term Sint,

describing interaction:

Z =
∫

D[Q] exp S, S = S0 + Sint, (1)

where

S0 = − g

16

∫
x

Tr(∇Q)2 + Zω

∫
x

Trε̂Q, (2a)

Sint = −πT 	t

4

∑
α,n

∫
x

Tr
(
Iα
n sQ

)
Tr
(
Iα
−nsQ

)
. (2b)

Here and in what follows, we use the shorthand notation∫
x ≡ ∫ dd x. The field Q is Hermitian matrix, Q† = Q, which

satisfies a standard nonlinear local constraint

Q2(x) = 1. (3)

The matrix field Q acts in the Nr × Nr replica space, in the 2 ×
2 spin space, and in the 2Nm × 2Nm space of the Matsubara
fermionic energies εn = πT (2n + 1). The action (1) involves
the following matrices:(

Iγ

k

)αβ

nm = δn−m,kδ
αβδαγ s0, ε̂αβ

nm = εn δnmδαβs0. (4)

Here s0 denotes the 2 × 2 identity matrix in the spin space.
We note that greek indices represent replica space whereas
latin indices correspond to Matsubara energies. The vector
s = {s1, s2, s3} is the vector of three nontrivial Pauli matrices

s1 =
(

0 1
1 0

)
, s2 =

(
0 −i
i 0

)
, s3 =

(
1 0
0 −1

)
. (5)

Since spin quantum Hall symmetry class (class C) belongs
to the Bogoliubov–de Gennes symmetry classes there is an
additional symmetry that relates positive and negative Mat-
subara energies:

Q = −Q̄, Q̄ = s2L0QTL0s2,

(L0)αβ
nm = δεn,−εmδαβs0.

(6)

Here superscript T denotes the matrix transposition operation.
Nonlinear constraint (3) can be resolved by representing

the matrix Q as rotation around the fixed matrix �:

Q = T−1�T, �αβ
nm = sgnεn δnmδαβs0. (7)

Here the rotation T is a unitary matrix satisfying

T−1 = T†, (T−1)TL0s2 = s2L0T. (8)

The NLσM action (1) involves three parameters. Bare di-
mensionless spin conductance is denoted as g. Bare strength
of exchange interaction (interaction in the triplet particle-hole
channel) is 	t . The parameter Zω describes the renormaliza-
tion of the frequency term. Generically, g, 	t , and Zω are
subjected to renormalization. Finally, temperature is denoted
by T .

The constraint (6) and the parametrization (7) determine
the target space of the NLσM as Q ∈ G/K = Sp(2N )/U(N )
where N = 2NrNm. Indeed, the Hermitian matrix satisfying
constraint (6) can be parametrized by 2N2 + N real variables.
This corresponds to G = Sp(2N ). The nonlinear constraint (3)
or, equivalently, the parametrization (7) with a unitary matrix
T ∈ U(N ) [since it obeys the relation (8)], reduces the number
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of real variables down to N2 + N . The latter corresponds to
the symmetric space G/K = Sp(2N )/U(N ).

We note that the symmetry (6) forbids the interaction in
singlet particle-hole channel since TrIα

n s0Q ≡ 0. The Cooper
channel interaction is suppressed by the absence of time-
reversal symmetry.

The action (1) of the Finkel’stein NLσM for the class C is
similar to the one for a standard Wigner-Dyson class A in the
presence of spin-rotation symmetry (see Refs. [51,52,62] for
review). We emphasize two distinctions. At first, there is no
interaction in the singlet particle-hole channel. Second, there
is the additional symmetry relation (6). These two features
make class C in the presence of interaction to be different from
interacting class A.

Similarly to the class A, the action (1) can be supplemented
by the Pruisken’s theta term. Being topological, this term
does not affect perturbative analysis presented in this paper;
however, it is responsible for the existence of the spin quantum
Hall transition in d = 2 dimensions.

B. Perturbation theory

In order to construct perturbation theory, we prefer to use
the square-root parametrization of the Q matrix:

Q = W + �
√

1 − W 2, W =
(

0 w

w† 0

)
. (9)

Here the block structure of matrix W is with respect to positive
and negative Matsubara frequencies. In particular, we adopt
the following notations: Wn1n2 = wn1n2 and Wn2n1 = w†

n2n1
with

εn1 > 0 and εn2 < 0. It is convenient to use the following
expansion w =∑3

j=0 wjsj. As a consequence of the constraint
(6), the elements of wj satisfy the symmetry relations

(wj)
αβ
n1n2

= vj(wj)
βα
−n2,−n1

,

vj = −tr
(
sjs2sT

j s2
)
/2 = {−1, 1, 1, 1}. (10)

In particular, Eq. (10) implies (w0)αα
n1,−n1

≡ 0.
Expanding the action (1) to the second order in W , we find

the propagators of Gaussian theory:〈
(wj)

αβ
n1n2

(q)(w†
j )μν

n4n3
(−q)

〉
= 2

g

[
δανδβμδn1n3δn2n4 + vjδ

αμδβνδn1,−n4δn2,−n3 − 4πT γ

D

× (1−δj0)δανδβμδαβδn12,n34Dt
q(iωn12 )

]
Dq(iωn12 ). (11)

Here we use the following shorthand notations n12 = n1 − n2

and ωn12 = εn1 − εn2 . Also, we introduced the bare diffu-
sion coefficient D = g/(4Zω ) and dimensionless interaction
strength γ = 	t/Zω. Next,

Dq(iωn) = [q2 + ωn/D]−1, (12a)

Dt
q(iωn) = [q2 + (1 + γ )ωn/D]−1 (12b)

stand for diffuson and diffuson dressed by interaction via lad-
der resummation, respectively. We mention that the product
γD−1

q (iωn)Dt
q(iωn) gives the dynamically screened exchange

interaction in the random phase approximation.

As we shall see below, in the process of renormalization
of the NLσM action it is convenient not to keep track on
Matsubara frequencies of slow fields in the propagators. Then,
in order to regularize the infrared, it is convenient to add the
following regulator into the action (1):

Sh = gh2

8

∫
x

Tr�Q. (13)

On the level of the Gaussian theory Sh results in the change
q2 → q2 + h2 in the diffusive propagators (12a) and (12b).

III. BACKGROUND FIELD RENORMALIZATION
OF THE ACTION

In this section we present details of the one-loop renor-
malization of the NLσM action within the background field
method. Although one-loop results for parameters g, Zω, and
γ have been reported before in Refs. [61,63–65], this sec-
tion serves place to set notations.

Let us split the matrix field: Q → T−1QT where Q now
plays the role of “fast” mode and Q = T−1�T is a “slow”
field. We assume that the matrix field T deviates from the unit
matrix only at small frequencies such that Tαβ

nm = δnmδαβs0 for
max{|εn|, |εm|} � �. Here � plays the role of the ultraviolet
cutoff for “slow” modes. Next we write

S[T−1QT] = S[Q] + S[Q] + δS0 + δSint, (14)

where

δS0 = δS(1)
0 + δS(2),1

0 + δS(2),2
0 + δS(ε)

0 + δS(h)
0 , (15a)

δSint = δS(1),1
int + δS(1),2

int + δS(2),1
int + δS(2),2

int . (15b)

Here following Ref. [66], we introduce the following nota-
tions:

δS(1)
0 = −g

4

∫
x

TrAδQ∇δQ, (16a)

δS(2),1
0 = −g

4

∫
x

TrAδQA�, (16b)

δS(2),2
0 = −g

4

∫
x

TrAδQAδQ, (16c)

δS(ε)
0 = Zω

∫
x

Tr[Tε̂, T−1]δQ, (16d)

δS(h)
0 = gh2

8

∫
x

Tr[T�, T−1]δQ, (16e)

δS(1),1
int = −1

2
πT 	t

∑
α,n

∫
x

trIα
n sQtrIα

−nsδQ, (16f)

δS(2),1
int = −1

2
πT 	t

∑
α,n

∫
x

trIα
n sQtrAα

−nδQ, (16g)

δS(1),2
int = −1

2
πT 	t

∑
α,n

∫
x

trIα
n sδQtrAα

−nδQ, (16h)

δS(2),2
int = −1

4
πT 	t

∑
α,n

∫
x

trAα
n δQtrAα

−nδQ, (16i)

where δQ = Q − �, A = T∇T−1, and Aα
n = [TIα

n s, T−1].
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Within the one-loop approximation, the effective action for
the “slow” field Q can be obtained as

Seff [Q] = ln
∫

D[Q]eS[T−1QT] 	 S[Q] + 〈δS0 + δSint〉

+ 1

2
〈〈(δS0 + δSint )

2〉〉. (17)

Here 〈〈A2〉〉 denotes the irreducible average. We note that it is
enough to expand δQ to the second order in W for computa-
tion of the averages in the above expressions.

A. Background field renormalization of �t

We start computation from renormalization of the ex-
change interaction 	t . There are several contributions. At first,
we find 〈

δS(2),1
int

〉 	 1

4
πT 	t

∑
α,n

∫
x

trIα
n sQ trAα

−n�〈W 2〉

→ δ(2),1	t

	t
Sint[Q], (18)

where

δ(2),1	t

	t
= −2v

g

∫
p
Dp(0) + 24πT γ

gD

∑
m>0

∫
p
DDt

p(iωm).

(19)

Here, in order to keep track for anomalous contribution related
with the additional symmetry (6), we introduce the parameter
v =∑3

j=0 vj = 2. Also, we introduce the shorthand notations
which will be intensively used below:

∫
p ≡ ∫ dd p/(2π )d and

DDt
p(iωm) ≡ Dp(iωm)Dt

p(iωm).
The next contribution to 	t comes from

1

2

〈〈(
δS(1),1

int

)2〉〉 	 1

2

〈〈(
πT 	t

4

∑
α;n

∫
x

trIα
n sQ trIα

−ns�W 2

)2〉〉

→ δ(1),1;(1),1	t

	t
Sint[Q], (20)

where

δ(1),1;(1),1	t

	t
= − 8πT γ

gD

∑
n>0

∫
p
D2

p(2iεn)

+ 16πT γ

gD

∑
m>0

∫
p

[
D2

p(iωm) − Dt2
p (iωm)

]
.

(21)

One more contribution is as follows:

〈〈
δS(1),1

int δS(1),2
int

〉〉 = − (πT 	t )2

8

〈〈∑
α,n

∫
x

trIα
n sQ trIα

−ns�W 2

×
∑
β,m

∫
x′

trIβ
msW trAβ

−mW

〉〉

→ δ(1),1;(1),2	t

	t
Sint[Q], (22)

where

δ(1),1;(1),2	t

	t
= −24πT γ

gD

∑
m>0

∫
p
DDt

p(iωm)

+ 32πT γ

gD

∑
m>0

∫
p
Dt2

p (iωm). (23)

The last contribution to 	t is provided by the following com-
bination:〈〈

δS(2),2
int + 1

2

(
δS(1),2

int

)2〉〉

= −πT 	t

4

∑
α,β;nm

3∑
j,k=1

∫
x,x′

〈〈(
δnmδαβδjkδ(x − x′)

− 2πT 	t trI
α
n sjW trIβ

−mskW
)
trAα

−n,jW trAβ

m,kW
〉〉

→ δ(2),2	t

	t
Sint[Q], (24)

where

δ(2),2	t

	t
= 2

g

∫
p
Dp(0) − 16πT γ

gD

∑
m>0

∫
p
Dt2

p (iωm). (25)

Combining all the above contributions [cf. Eqs. (19), (21),
(23), and (25)] together, we find

δ	t

	t
= − 2(v − 1)

g

∫
p
Dp(0) − 8πT γ

gD

∑
n>0

∫
p
D2

p(2iεn)

+ 16πT γ

gD

∑
m>0

∫
p
D2

p(iωm) → (1 − 3γ )
thε

ε
. (26)

Here the final expression of the last line is obtained by setting
T = 0 and using h as an infrared regulator together with di-
mensional regularization in d = 2 + ε dimensions. Parameter
t controlling disorder is defined as

t = 22−d	(2 − d/2)

gπd/2

d=2−→ t = 1

πg
. (27)

B. Background field renormalization of Zω

Now we compute the one-loop renormalization of Zω. We
start from the contribution〈

δS(ε)
0

〉 = −Zω

2

∫
x

Tr[Tε̂, T−1]�〈W 2〉 → δεZωTrε̂Q, (28)

where [cf. Eq. (19)]

δεZω

Zω

= −v
g

∫
p
Dp(0) + 12πT γ

gD

∑
n>0

∫
p
DDt

p(iωn). (29)

The second contribution comes from

1

2

〈〈(
δS(1);2

int

)2〉〉 = (πT 	t )2

8

〈〈(∑
α,n

∫
x

trIα
n sW trAα

−nW

)2〉〉

→ 2πT 	2
t

g

∫
xx′

∑
α,ωn>�

ωnDt
x−x′ (iωn)

× 〈trAα
n (x)W (x)trAα

−n(x′)W (x′)
〉
. (30)
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Here we singled out the contribution from large values of n.
The part with ωn < � does not contribute to the renormaliza-
tion of Zω. We note that due “largeness” of ωn, either T or T−1

in the expression for Aα
n is the identity matrix. Then we find

1

2

〈〈(
δS(1);2

int

)2〉〉→ 12πT γ	t

gD

∫
xx′

∑
ωn>0

ωnDt
x−x′ (iωn)

×
∑

α,β;k,m

Dx−x′ (iωn+|m| − iωksgnωm)

× trTβα

mk (x)[T−1(x′)]αβ

km. (31)

Expanding the propagator to the first power in “small” fre-
quencies ωk and ωm, we obtain

1

2

〈〈(
δS(1);2

int

)2〉〉→ δ(1);2;(1);2)ZωTrε̂Q, (32)

where

δ(1);2;(1);2)Zω

Zω

= 12πT γ

gD

∑
n>0

∫
p

[
D2

p(iωn) − DDt
p(iωn)

]
.

(33)

Combining together both contributions [cf. Eqs. (29) and
(33)], we find

δZω

Zω

= −v
g

∫
p
Dp(0) + 12πT γ

gD

∑
n>0

∫
p
D2

p(iωn)

→ (1 − 3γ )
thε

ε
. (34)

We note that inspection of Eqs. (26) and (34) demonstrates
that δZω/Zω ≡ δ	t/	t within the one-loop approximation (the
lowest order in t). It implies that the dimensionless interaction
parameter is not renormalized,

δγ ≡ 0. (35)

C. Background field renormalization of g

We start from the following comment. The matrix vector
field A is related with the matrix Q as Tr[A,�]2 = Tr(∇Q)2.
Therefore, components of A anticommuting with � can only
contribute to renormalized effective action. Thus, for sake of
simplicity we can assume that A� = −�A.

There are two contributions to renormalization of g. At
first, we have

〈
δS(2),1

0

〉 = g

8

∫
x

TrA�A�〈W 2〉 → −δ(2),1g

16

∫
x

Tr(∇Q)2,

(36)

where [cf. Eq. (19)]

δ(2),1g

g
= −v

g

∫
p
Dp(0) + 12πT γ

gD

∑
n>0

∫
p
DDt

p(iωn). (37)

The other contribution comes from 1
2 〈〈(δS(1);2

int )
2〉〉. Using

Eq. (31), we write

1

2

〈〈(
δS(1);2

int

)2〉〉→ 12πT γ	t

gD

∫
xx′

∑
ωn>0

ωnDDt
x−x′ (iωn)

× trT(x)T−1(x′). (38)

Here we neglect “small” frequencies in comparison with
“large” frequency ωn. Next expanding T(x) and T−1(x′) near
the point (x + x′)/2 to the second order x − x′ and using the
identity∫

x
x2DDt

x(iωn) = 4
∫

p
Dt

p(iωn)D2
p(iωn)

[
1 − 4p2

d
Dp(iωn)

]
,

(39)

we find

1

2

〈〈(
δS(1);2

int

)2〉〉→ −δ(1),2;(1),2g

16

∫
x

Tr(∇Q)2, (40)

where

δ(1),2;(1),2g

g
= 12πT γ

gD

∫
p

∑
n>0

[
D2

p(iωn) − DDt
p(iωn)

]

×
[

1 − 4p2

d
Dp(iωn)

]
. (41)

We note that the above contribution contains the full derivative∫
p
D2

p(iωn)

[
1 − 4p2

d
Dp(iωn)

]
= − 1

4d

∫
p
∂pμ

∂pμ
D2

p(iωn).

(42)

This term being the full derivative does not contribute to
renormalization and can be safely neglected.

Combing both contributions to g [cf. Eqs. (37) and (41)]
together, we obtain

δg

g
= −v

g

∫
p
Dp(0) + 48πT γ

dgD

∑
m>0

∫
p

p2D2
p(iωm)Dt

p(iωm)

→ [1 + 6 f (γ )]
thε

ε
,

f (γ ) = 1 − 1 + γ

γ
ln(1 + γ ). (43)

D. Background field renormalization of h2

Finally, we discuss the background field renormalization
of the Sh regulator. This is intimately related with the renor-
malization of the Q matrix itself, so-called Z factor. As we
shall discuss below, the latter is also related with the renor-
malization of the LDOS. There is a single contribution to
renormalization of h2:

〈
δS(h)

0

〉 = −gh2

16

∫
x

Tr[T�, T−1]�〈W 2〉 → gh2δZ

8

∫
x

Tr�Q,

(44)
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where [cf. Eq. (19)]

δZ = −v
g

∫
p
Dp(0) + 12πT γ

gD

∑
n>0

∫
p
DDt

p(iωn)

→ [1 − 3 ln(1 + γ )]
thε

ε
. (45)

Introducing the renormalization of h2 according to δ(gh2) =
gh2δZ we find

δh2

h2
= δZ − δg

g
= −3[ln(1 + γ ) + 2 f (γ )]

thε

ε
. (46)

We note that there is no renormalization of h2 in the absence
of interaction, γ = 0.

E. One-loop renormalization

We introduce the renormalized infrared scale h′ and renor-
malized conductance g′ as

h′2 = gh2Z

g′ = h2

[
1 − bthε

ε

]
, g′ = g

[
1 + a1thε

ε

]
,

a1 = 1 + 6 f (γ ), b = 3 ln(1 + γ ) + 6 f (γ ). (47)

Also, we introduce renormalized Zω and 	t :

Z ′
ω

Zω

= 	′
t

	t
= 1 + (1 − 3γ )

thε

ε
. (48)

Then applying the minimal subtraction scheme (see, e.g., [67]
for details), we can formulate the one-loop renormalization
group equations as

dt

d�
= −εt + [v/2 + 6 f (γ )]t2 + O(t3), (49a)

dγ

d�
= 0 + O(t2), (49b)

d ln Zω

d�
= −(v/2 − 3γ )t + O(t2), (49c)

d ln Z

d�
= −[v/2 − 3 ln(1 + γ )]t + O(t2), (49d)

where � = ln 1/h′ plays the role of the logarithm of the in-
frared length scale. At T = 0 the latter is just a system size. At
finite temperature the infrared scale is set by the temperature
length ∼√

D/T . We remind that v = 2.
We mention that Eqs. (49) coincide with renormalization

group equations obtained in Refs. [61,63–65].

IV. LINEAR RESPONSE

The background field method allowed us to derive renor-
malization of the NLσM action in the one-loop approximation
(lowest order in disorder). However, this method is not con-
venient for calculation of the renormalization beyond the
one-loop approximation. Such calculation is of particular im-
portance since the dimensionless interaction strength γ is not
renormalized within the lowest order in t (see discussion in

Sec. VI). Therefore, in this section we present an alterna-
tive approach to obtain renormalization of parameters of the
NLσM action.

A. Dynamical spin susceptibility

The Finkel’stein NLσM (1) possesses spin-rotational sym-
metry. Therefore, it is natural to characterize the linear
response in class C by the dynamical spin susceptibility. Let
us define it as follows (ωn > 0):

χjk(q, iωn) = Zsδjk − π

2
T Z2

s

〈
TrIα

n sjQqTrIα
−nskQ−q

〉
. (50)

Here Qq denotes the Fourier transform of Q(r) in the momen-
tum space. We note that α is a fixed replica index. The first
term on the right-hand side of Eq. (50) describes the static part
whereas the correlation function takes into account dynamic
part. On a tree level we can substitute W for Q in Eq. (50).
Then we find

χjk = χsδjk, χs(q, iωn) = Zs − Z2
s ωn/(Zω )

Dq2 + ωn(1 + γ )
. (51)

The spin-rotational symmetry (the conservation of the spin)
results in the well-known Ward identity χs(q = 0, iωn →
0) = 0. The latter is consistent with Eq. (51) provided

Zs = Zω + 	t = Zω(1 + γ ). (52)

Then we obtain1

χs(q, iωn) = Zs
Dq2

Dq2 + ωn(1 + γ )
. (53)

We note that we omit the regulator term in the NLσM action
(h = 0) in order to have a standard diffusive pole. The diffu-
sive form of the dynamical spin susceptibility allows one to
extract renormalization of the combination Zω + 	t and the
spin conductance

Z ′
ω + 	′

t = Z ′
s = lim

q→0
lim

ωn/q2→0
χs(q, iωn), (54a)

g′ = lim
ωn→0

lim
q2/ωn→0

16ωn

q2
χs(q, iωn). (54b)

We note that the “prime” sign indicates that these quantities
are obtained after calculation of quantum corrections.

The one-loop correction to the dynamical spin susceptibil-
ity is given as

δχs = − 1

2
πT Z2

s

{
1

4

〈
trIα

n s3�W 2
q trIα

−ns3�W 2
−q

〉

+
〈〈

trIα
n s3WqtrIα

−ns3W−q

[
S(4)

0 + S(4)
int

+ 1
2

(
S(3)

int

)2
]〉〉}

. (55)

Here we introduce the following non-Gaussian terms stem-
ming from the expansion of the Q matrix in powers of W of

1We note the factor 2/π difference in definition of the dynamical
spin susceptibility with Ref. [65].
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the NLσM action:

S(4)
0 = g

64

4∏
i=1

∫
qi

∑
αi,ni

δ

(∑
i

qi

)

×
(

q12q34 + q14q23 − 2h2 − ωn12+n34

D

)
× tr
[
(wq1

)α1α2
n1n2

(w†
q2

)α2α3
n2n3

(wq3
)α3α4
n3n4

(w†
q4

)α4α1
n4n1

]
(56)

(here we use a shorthand notation q12 ≡ q1 + q2) and

S(3)
int = πT 	t

4

∑
α,n

∫
x

TrIα
n sW TrIα

−ns�W 2, (57a)

S(4)
int = −πT 	t

16

∑
α,n

∫
x

TrIα
n s�W 2TrIα

−ns�W 2. (57b)

We note that the first line in Eq. (55) contributes to the
renormalization of the static part, i.e., the quantity Zs, whereas

the second line contains information on renormalization of the
spin conductance.

Evaluating the average in the first line of Eq. (55) (we can
set n and q to zero from the very beginning), we find

δZs = 32πT Z2
s

g2

∫
p

∑
m>0

[
D2

p(i2εm) + 2Dt2
p (iωm) − 2D2

p(iωm)
]

→ Zs(1 − 3γ )
thε

ε
. (58)

We note that the result (58) is fully consistent with Eq. (48).
Therefore, the renormalization by means of the background
field method and via linear response do match each other as
expected.

The computation of the correction to the spin conductance
is a bit more involved. We start from the term with S(4)

0 in the
second line of Eq. (55). At first making the partial averaging,
we obtain

S(4)
0 →

∫
pq

∑
α3α4;n3n4

{
− v

16

[(
D−1

p

(
i2εn3

)+ D−1
q

(
iωn34

))
Dp
(
i2εn3

)+ (D−1
p

(
i2
∣∣εn4

∣∣)+ D−1
q

(
iωn34

))
Dp
(
i2
∣∣εn4

∣∣)]

+ 3πT 	t

g

[ ∑
ωn>εn3

+
∑

ωn>|εn4 |

][
D−1

p (iωn) + D−1
q

(
iωn34

)]
DDt

p(iωn)

}
tr
[
wα3α4

n3n4
(q)w†α4α3

n4n3
(−q)

]
. (59)

Then we find (in the limit q2/ωn → 0)

1

2
πT Z2

s

〈〈
trIα

n s3WqtrIα
−ns3W−qS(4)

0

〉〉→ vq2

16ωn

∫
p
Dp(0) − q2

16ωn

12πT γ

D

∑
m>0

∫
p
DDt

p(iωm). (60)

Next, we consider the terms in Eq. (55) due to Sint. After tedious but straightforward calculation we obtain

1

2
πT Z2

s

〈〈
trIα

n s3WqtrIα
−ns3W−q

[
S(4)

int + 1

2

(
S(3)

int

)2]〉〉→ q2

16ωn

12πT γ

D

∫
p

∑
m>0

DDt
p(iωm)

[
1 − 4p2

d
Dp(iωm)

]
. (61)

Combining both contributions. (60) and (61), we reproduce the result (43).

B. Spin conductance

Although, as we demonstrated above, dynamical spin susceptibility at finite momentum can be used to extract renormalization
of the spin conductance, taking the double limit [cf. Eq. (54b)] is not convenient. In standard symmetry classes one can directly
express conductance in terms of correlation functions of the Q field. Such Kubo formula involves the matrix current Q∇Q. In
the present case the most general form of the current can be written as TrIα

n sjQ∇Q. Applying the symmetry (6), we find

TrIα
n sjQ∇Q = vjTrIα

n sjQ∇Q. (62)

Thus, the current operator corresponding to the charge current vanishes identically, TrIα
n Q∇Q ≡ 0. However, the spin current

TrIα
n sjQ∇Q is nontrivial. Using SU(2) spin symmetry we write the Kubo formula for the spin conductivity as (similar expression

has been proposed in Ref. [38])

σs(iωn) = − g

8n

〈
Tr
[
Iα
n s3, Q

][
Iα
−ns3, Q

]〉+ g2

16dn

∫
x′

〈〈
TrIα

n s3Q(x)∇Q(x)TrIα
−ns3Q(x′)∇Q(x′)

〉〉
. (63)

Here the first term in the right-hand side of Eq. (63) describes the so-called diamagnetic contribution whereas the second
corresponds to the current-current correlation. Using the relation Tr[Iα

n ,�][Iα
−n,�] = −8n, we find the bare value of the spin

conductivity as σs(iωn) = g. Therefore, we expect that σs(iωn) in the static limit ωn → 0 gives the renormalized conductance.
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We start from diamagneticlike contribution. To the lowest nontrivial order in W it reads as
g

8n

〈
Tr
[
Iα
n s3, Q

][
Iα
−ns3, Q

]〉 	 g

8n

〈
Tr
[
2Iα

n s3W Iα
−ns3W − (Iα

n �Iα
−n + Iα

−n�Iα
n

)
�W 2

]〉
= v

n

∫
q

∑
ωn>εm>0

Dq(2iεm) − 1

n

∫
q

∑
εm>0

[vDq(2iεm)+4Dq(2iεm+iωn)+vDq(2iεm+n)]

+ γ

nD

∫
q

∑
�m>0

[
10�mDDt

q(i�m+n) + 6�m−nDDt
q(i�m)

]
. (64)

We note that the interaction part of the propagator contributes to the diamagnetic-type term contrary to the conductance in the
standard Wigner-Dyson classes. The other contribution becomes

g2

16dn

∫
x′

〈〈
trIα

n W (x)∇W (x)trIα
−nW (x′)∇W (x′)

〉〉 = − 8

nd

∫
q

q2
∑
εm>0

[Dq(2iεm)+Dq(2iεm+n)]Dq(2iεm+iωn)

+ 8γ

ndD

∫
q

∑
�m>0

�m
[
DDt

q(i�m+n)Dq(i�m+2n)

+ 3DDt
q(i�m)Dq(i�m+n) + 4Dt

q(i�m)DDt
q(i�m+n)

]
. (65)

We note that each of the contributions (64) and (65) diverges in the limit ωn → 0 but their sum is finite. Expanding in ωn, we
find the static spin conductivity

σ ′
s = g + 8

nd

∫
q
∂qμ

{
qμ

[∑
ε>0

Dq(2iε) − 2γ

D

∑
�>0

�DDt
q(i�)

]}

+ 32πT γ

dD

∫
q

∑
�>0

∂qμ

[
qμDDt

q(i�)
]− v

g

∫
q
Dq(0) + 48πT γ

dD

∫
q

q2
∑
�>0

D2
q (i�)Dt

q(i�). (66)

Neglecting the terms which are full derivatives in the first
and second lines, we obtain σ ′

s = g + δg where δg is given
by Eq. (43). We note that Kubo formula (63) can be more
convenient than dynamical spin susceptibility in order to study
the renormalization of the spin conductance beyond one-loop
approximation.

V. LOCAL DERIVATIVELESS OPERATORS

A. General construction

In this section we construct the local pure scaling operators
without spatial derivatives. These operators are eigenoperators
with respect to the renormalization group, i.e., the renormal-
ization group flow preserves their form. We shall follow the
approach of Ref. [55].

The simplest local derivativeless operator is related with
the LDOS. It can be written as

K1(E ) = 1

4

∑
p=±

Pα;p
1 (E ). (67)

Here the retarded and advanced correlation function Pα;±
1 (E )

is defined from its Matsubara counterpart

Pα
1 (iεn) = tr

〈
Qαα

nn

〉
(68)

as a result of a standard analytic continuation iεn → E +
ip0+. We emphasize that a replica index α and Matsubara
energy index n are fixed. Since the operator K1(E ) corre-
sponds to the disorder-average LDOS, it stays invariant under

the action of the renormalization group. We shall demonstrate
this statement explicitly below.

Next we turn to the local operators without derivatives with
two Q matrices. Let us introduce

K2(E1, E2) = 1

16

∑
p1,p2=±

p1 p2Pα1α2;p1 p2
2 (E1, E2), (69)

where the correlation function Pα1α2;p1 p2
2 (E1, E2) is related

with its Matsubara counterpart

Pα1α2
2 (iεn, iεm) = 〈trQα1α1

nn (r)trQα2α2
mm (r)

〉
+ μ2

〈
tr
[
Qα1α2

nm (r)Qα2α1
mn (r)

]〉
(70)

by standard analytic continuation to the real frequencies:
εn → E1 + ip10+ and εm → E2 + ip20+. We note that no
summation over α1, α2, n, and m is assumed and α1 �= α2.
The latter inequality reflects the fact that we are interested
in mesoscopic fluctuations in the presence of interaction. We
mention that if one is interested in the renormalization of
operator (69) alone, then one can use the following simplified
definition:

K2 = 1

16
lim

εn,εm→0

∑
p1,p2=±

p1 p2Pα1α2
2 (ip1|εn|, ip2|εm|). (71)

The operator K2(E1, E2) depends on a parameter μ2. There
are particular (integer) values of μ2 for which K2(E1, E2) be-
comes the eigenoperator under the action of renormalization
group.
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An operator which involves the number q of matrix fields
Q can be constructed in a similar way as above. We introduce

Kq(E1, . . . , Eq ) = 1

4q

∑
p1,...,pq=±

(
q∏

j=1

p j

)

× Pα1,...,αq;p1,...,pq
q (E1, . . . , Eq ), (72)

where Pα1,...,αq;p1,...,pq
q (E1, . . . , Eq ) is related with the Matsub-

ara correlation function P
α1,...,αq
q (iεn1 , . . . , iεnq ) by the analytic

continuation to the real frequencies: εn j → Ej + ip j0+. The
latter is given as

P
α1,...,αq
q (iεn1 , . . . , iεnq ) =

∑
{k1,...,kq}

μk1,...,ks〈Rk1,...,ks〉,

Rk1,...,ks =
ks∏

r=k1

trQ
α j1 α j2
n j1 n j2

Q
α j2 α j3
n j2 n j3

. . . Q
α jr α j1
n jr n j1

.

(73)

The summation in the right-hand side of Eq. (73) is performed
over all partitions of the integer number q, i.e., over all sets
of positive integer numbers {k1, . . . , ks} which satisfy the fol-
lowing conditions: k1 + k2 + · · · ks = q and k1 � k2 � · · · �
ks > 0. As above all replica indices are different: α j �= αk

if j �= k for j, k = 1, . . . , q. One coefficient among the set
{μk1,...,ks} can be chosen arbitrary. We stick to the normaliza-
tion:

μ1,1,...,1 = 1. (74)

As we shall see below, for a given q the number of eigen-
operators coincide with the number of partitions (k1, . . . , ks).
Therefore, it will be convenient to denote the eigenoperators
by the partitions (k1, . . . , ks) of the integer number q (see
details in Ref. [23]).

In the absence of interaction, 	t = 0, the NLσM action
reduces to Eq. (2b). Since the Matsubara indices of the Q
matrix are not mixed without interaction (the energy of diffu-
sive modes conserves), one can project Q matrix to the 2 × 2
subspace of a given positive and a given negative Matsubara
frequency. Then the group G reduces to G̃ = Sp(4Nr ) and
the effective action becomes K invariant, i.e., invariant under
rotations Q → T−1QT with T ∈ K̃ = U(2Nr ). Then operators
Kq can be averaged over K rotations and resulting K-invariant
operators can be classified with respect to the irreducible
representations of G̃. Each irreducible representation contains
single K-invariant pure scaling operator [7,8,23]. We note that
in the noninteracting case one can use also the highest weight
vectors approach or the Iwasawa decomposition in order to
construct eigenoperators with respect to the renormalization
group transformation [8,23].

The presence of interaction in the NLσM action intro-
duces several complications for the approach of construction
of pure scaling operators developed in Refs. [8,23]. At first,
we have to deal with fermionic representation of the NLσM.
We note that works [8,23] deal with bosonic realization of the
NLσM. As discussed in Refs. [8,23], to extend their analysis
to fermionic NLσM is far from being obvious. Second, it is
not clear how to extend the classification of Kq operators with
respect to the irreducible representations of the group G. For

a given Nm this group is finite but we need to take the limit
Nm → ∞. Third, the NLσM action is no longer K invariant,
that is why we have to work with non-K-invariant operators.
Because of these circumstances we employ two comple-
mentary approaches. In order to determine the pure scaling
operators (to fix the set of the coefficients {μk1,...,ks}), we
shall employ the background field renormalization. In order to
check that the structure of the eigenoperators is not affected by
the interaction, we shall perform the two-loop renormalization
procedure. The latter allows us to see the effect of interaction
on anomalous dimensions of pure scaling operators.

B. Operator with single-Q matrix

We start analysis from the operator with single-Q matrix.
At first, we shall perform the background field renormaliza-
tion of this operator in order to demonstrate that it is the
eigenoperator indeed. As we shall see, the presence of inter-
action affects the renormalization of this operator already at
the one-loop approximation.

Employing the background field method, we find

Pα
1 (iεn) → tr

〈
[T−1QT]αα

nn

〉 = TrTPα
nT

−1〈Q〉
= Z (iεn)trQαα

nn
, (75)

where we introduced the projection operator to the fix replica
and Matsubara energy,(

Pα
n

)βγ

mk
= δαβδαγ δnkδnms0 (76)

and [cf. Eq. (45)]

Z (iεn) =1− v
g

∫
p
Dp(2i|εn|) + 12πT γ

gD

∫
p

∑
ωm>|εn|

DDt
p(iωm).

(77)

As we see from Eq. (75), the operator K1 is the eigenoperator
under the action of the renormalization group. Using Eqs. (75)
and (77), we obtain

K1 = ZK1[�],

Z = 1 +
(

v
2

− 3 ln(1 + γ )

)
thε

ε

= 1 +
(

v
2

− 3 ln(1 + γ )

)
th′ε

ε
. (78)

Applying the minimal subtraction scheme, we deduce the
anomalous dimension of the operator K1:

η(1) = −d ln Z

d�
= [1 − 3 ln(1 + γ )]t + O(t2). (79)

The interaction affects the anomalous dimension of Z in the
one-loop approximation. Therefore, we shall not compute its
two-loop contribution here. As we shall see below, in order
to perform two-loop renormalization of operators involving
q � 2 Q matrices, one-loop result (79) is enough.

C. Operators with two Q matrices

Now we move on to the eigenoperators with two Q ma-
trices. At first, in order to find them, we shall perform the
background field renormalization. However, as we shall see,
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the background field renormalization is insensitive to the
electron-electron interaction. Therefore, we shall also employ
two-loop renormalization of the corresponding eigenopera-
tors.

1. Background field renormalization

We start from the operator with two traces in Eq. (70):

trQαα
nn trQββ

mm

→ 〈
tr
[
T−1QTPα

n

]
tr
[
T−1QTPβ

m

]〉
→ trQαα

nn
trQββ

mm
− 1

2 trQαα

nn
tr
[
T−1�〈W 2〉TPβ

m

]
+ 〈tr[WTPα

nT
−1
]
tr
[
WTPβ

mT
−1
]〉

− 1
2 tr
[
T−1�〈W 2〉TPα

n

]
trQββ

mm

	 Z2trQαα

nn
trQββ

mm
+ 〈tr[WTPα

nT
−1]tr[WTPβ

mT
−1]〉. (80)

Important property of the average over W in the above equa-
tion is that both Matsubara indices of matrix TPβ

mT
−1 should

be small since the rotation T represents slow mode. Therefore,
the interaction part of the propagator (11) can be omitted
since it does not lead to infrared divergent terms. Then it
is straightforward to derive the following identity (for slow
matrices A and B):

〈trAw trBw†〉 	 2Y tr[�−A�+(B−B̄)], Y = − thε

ε
, (81)

where �± = (1 ± �)/2 are projectors onto the subspace of
positive and negative Matsubara energies. Using Eq. (81), we
obtain 〈

trQαα
nn trQββ

mm

〉→ Z2trQαα

nn
trQββ

mm
− Y trQαβ

nm
Qβα

mn

+ Y trQαβ

n,−m
Qβα

−mn
. (82)

The background field renormalization of the operator with
single trace reads as

trQαβ
nmQβα

mn → 〈
trQTPα

nT
−1QTPβ

mT
−1
〉

→ trQαβ

n,m
Qβα

mn
− 1

2 trT−1�〈W 2〉T
× [Pα

nT
−1�TPβ

m + Pβ
mT

−1�TPα
n

]
+ 〈trWTPα

nT
−1WTPβ

mT
−1
〉

	 Z2trQαβ

n,m
Qβα

mn
+ 〈trWTPα

nT
−1WTPβ

mT
−1
〉
. (83)

Now we shall use the following identity (we assume A and B
being slow matrices as above):

〈trAwBw†〉 	 2Y [tr�+A tr�−B + tr�+A�+B̄]. (84)

We note that in derivation of Eq. (84) the following relations
were used:∑

j

trsksjsksj = 8δk0,
∑

j

vjtrsksjsksj = −4vk. (85)

Using Eq. (84), we obtain

trQαβ
nmQβα

mn → Z2trQαβ

n,m
Qβα

mn
− Y trQαα

nn
trQββ

mm

+ Y trQαβ

n,−m
Qβα

−mn
. (86)

We emphasize that as follows from Eqs. (82) and (86), the
background field renormalization mixes not only operators
with one and two traces, but also the ones with positive and
negative Matsubara frequencies. The latter is the consequence
of the additional symmetry (6). Finally, using Eqs. (82) and
(86), we find

K2[Q] → Z2K2[Q] − μ2Y O1,1[Q] − (2 + μ2)Y O2[Q]

	 Z2(1 − μ2Y )
[
O1,1 + [μ2 + (μ2

2 − μ2 − 2)Y
]
O2
]
.

(87)

Here we introduce generalization of the operator Rk1,...,kq in

a way similar to transformation from Pαβ

2 (iεn, iεm) to K2 [cf.
Eq. (71)]:

Ok1,...,kq = 1

4q

q∏
j=1

⎛
⎝ lim

εn j →0

∑
p j=sgnεn j

p j

⎞
⎠Rk1,...,kq . (88)

As follows from Eq. (87), in order combination O1,1 + μ2O2

serves as the eigenoperator under renormalization group trans-
formation, μ2 should solve the equation

μ2
2 − μ2 = 2 �⇒ μ2 = 2,−1. (89)

Therefore, we find two eigenoperators corresponding to μ2 =
2 and μ2 = −1. As it follows from Eq. (87), the renormaliza-
tion of these eigenoperators is immune to interaction within
the one-loop approximation.

We note that the eigenoperators constructed in Ref. [23]
differ from those in this work by the sign of μ2. This dif-
ference in sign is explained by usage of bosonic replica in
Ref. [23] whereas we are employing fermionic replica. Trans-
lation from one approach to the other can be done by the sign
change of all trace (“tr”) operations.

2. One-loop renormalization

After construction of the eigenoperators with two Q ma-
trices with the help of the background field renormalization
method, we study how the interaction affects their anomalous
dimensions. It will be convenient to consider the irreducible
part of the correlation function (70):

Pαβ;(irr)
2 (iεn, iεm) = 〈〈trQαα

nn trQββ
mm

〉〉+ μ2
〈
trQαβ

nmQβα
mn

〉
. (90)

With the help of the irreducible part the full correlation func-
tion can be restored as

Pαβ

2 (iεn, iεm) = 4Z2sgnεnsgnεm + Pαβ;(irr)
2 (iεn, iεm). (91)

Expanding Q to the first order in W , we obtain the one-loop
contribution

Pαβ;(irr)
2,1 (iεn, iεm) = μ2

〈
trW αβ

nm W βα
mn

〉
= 16μ2

g

1 − sgnεnsgnεm

2

×
∫

q
Dq(i|εn| + i|εm|). (92)

Neglecting the energy dependence in the diffusive propaga-
tor [for the reasons explained above Eq. (71)], we find the
following one-loop result for the irreducible part of the
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operator K2:

K (irr)
2,1 = μ2thε

ε
. (93)

3. Two-loop renormalization

Expanding Q to the second order in W , we obtain the two-
loop contribution as

Pαβ;(irr)
2,2 = 1

4
sgnεnsgnεm

〈〈
tr(W 2)αα

nn tr(W 2)ββ
mm

〉〉
+μ2

1 + sgnεnsgnεm

8

〈
tr(W 2)αβ

nm(W 2)βα
mn

〉

+μ2
1 − sgnεnsgnεm

2

〈〈
trW αβ

nm W βα
mn

[
S(4)

0 + S(4)
int

+ 1
2

(
S(3)

int

)2
]〉〉

.

(94)

Then, using Eq. (11), we obtain

〈〈
tr(W 2)αα

nn tr(W 2)ββ
mm

〉〉 = 64

g2

(∫
q
Dq(i|εn| + i|εm|)

)2

→ 16
t2h2ε

ε2
. (95)

In the last line we neglect the energy dependence in the prop-
agators. We emphasize that this contribution is immune to the

interaction. Next, we find〈
tr(W 2)αβ

nm(W 2)βα
mn

〉
= 32v

g2

∫
qp
Dq(2i|εn|)Dp(i|εn| + i|εm|)

− 3
128πT γ

g2D

∑
εk>0

∫
qp
Dp(i|εm| + iεk )DDt

q(i|εn| + iεk )

+ (n ↔ m) → 16v
t2h2ε

ε2
− 3

128γ

g2
J0

101(1 + γ )

	 16v
t2h2ε

ε2
− 48

t2h2ε

ε2

[
ln(1 + γ ) − ε

4
ln2(1 + γ )

]
.

(96)

Here we introduce the following notation for integral over
momenta and frequency:

Jδ
νμη(a) =

∫
qp

∫ ∞

0
ds sδ 1

(p2 + h2 + s)ν
1

p2 + h2 + as

× 1

(q2 + h2)μ
1

(p + q)2 + h2 + s)η
. (97)

The integrals Jδ
νμη were computed in Ref. [54].

Using the result (59), we obtain

〈〈
tr
[
W αβ

nm W βα
mn

]
S(4)

0

〉〉 = −8v
g2

∫
qp
Dq(i|ωnm|)[2Dq(i|ωnm|) + Dp(i2|εn|) + Dp(i2|εm|)] + 3

32πT γ

g2D

∫
qp

[ ∑
ωk>|εn|

+
∑

ωk>|εm|

]

× [Dq(i|ωnm|) + Dp(iωk )]Dt
p(iωk )Dq(i|ωnm|)

→ −4v
t2h2ε

ε2
+ 3

32γ

g2

[
J0

020(1 + γ ) + J0
110(1 + γ )

]
	 −4v

t2h2ε

ε2
+ 24

t2h2ε

ε2

[
ln(1 + γ ) + εγ

2(1 + γ )

]
. (98)

In order to compute the last contribution in Eq. (94), we use the following simplification (we note that it is possible due to
different replica indices, α �= β):

S(4)
int + 1

2

(
S(3)

int

)2 → −
∑
αn

∫
x,x′

[
1 − γ |ωn|

D
Dt

x−x′ (i|ωn|)
]
πT 	t

4

3∑
j=1

TrIα
n sj�W 2(x)TrIα

−nsj�W 2(x′). (99)

After tedious but straightforward calculations, we find〈〈
trW αβ

nm W βα
mn

[
S(4)

int + 1

2

(
S(3)

int

)2]〉〉 = − 3
32πT γ

g2D

∫
pq

( ∑
|εn|>ωk

+
∑

|εm|>ωk

)[
1 − γ |ωk|

D
Dt

p+q(i|ωk|)
]

× D2
p(i|εn| + i|εm|)Dq(i|εn| + i|εm| − iωk )

→ −96γ

g2

[
J0

020(1) − γ J1
021(1 + γ )

]

	 −12γ
t2h2ε

ε2

[
2γ − (2 + γ ) ln(1 + γ )

γ 2
+ ε

(2 + γ ) ln(1 + γ )

γ 2

+ ε

1 + γ
+ ε

2 + γ

γ 2

(
li2(−γ ) + 1

4
ln2(1 + γ )

)]
. (100)

125424-11



S. S. BABKIN AND I. S. BURMISTROV PHYSICAL REVIEW B 106, 125424 (2022)

Here li2(z) =∑∞
k=1 zk/k2 denotes the polylogarithm. We note

that the factor 32 in the first line of the above equation appears
as the result of the following identity for j = 1, 2, 3:

3∑
j1,2=0

tr(sjsj1sj2 )[tr(sjsj2 sj1 ) − vj1vj2 tr(sjsj1sj2 )] = 32. (101)

Combining the above results (95)–(98) and (100), we find

K (irr)
2,2 = [μ2[v − 6 ln(1 + γ )] + (b(2)

2 + εμ2b3
)] t2h2ε

ε2
,

(102)
where

b(2)
2 = 1 − 3μ2 f (γ ),

b3 = 3

2

{
1 + γ

2γ
ln2(1 + γ )

+ 2 + γ

γ
[li2(−γ ) + ln(1 + γ )]

}
. (103)

4. Anomalous dimension

Employing the one-loop [see Eq. (93)] and two-loop [see
Eq. (102)] results, we write the operator K2 in the form

K2 = Z2M2K2[�]. (104)

Here K2[�] = 1 is the classical value of K2 and

M2 = 1 + Z−2(K (irr)
2,1 + K (irr)

2,2

)
= 1 + μ2

thε

ε
+ (b(2)

2 + εμ2b3
) t2h2ε

ε2

= 1 + μ2
th′ε

ε
+ (b(2)

2 + εμ2b̃3
) t2h′2ε

ε2
, (105)

where b̃3 = b3 + b/2 with b given by Eq. (47). We note that
in order to determine M2 within the two-loop approximation it
is enough to know the factor Z in the one-loop approximation
only. That is why we considered the irreducible part of K2.

Applying the minimal subtraction scheme to Eq. (105), we
obtain the anomalous dimension of M2 up to the second order
in t :

η(μ2 ) = −d ln M2

d�
= μ2[t + 3c(γ )t2] + O(t3). (106)

Here we introduce the function (cf. Refs. [53–55])

c(γ ) = 2 + 1 + γ

2γ
ln2(1 + γ ) + 2 + γ

γ
li2(−γ ). (107)

The finiteness of η(μ2 ) in the limit ε → 0 is guaranteed if the
following condition holds:

μ2(μ2 − a1) = 2b(2)
2 ⇔ μ2(μ2 − 1) = 2. (108)

We emphasize that the self-consistent condition (108) is (i)
nonlinear in μ2 and (ii) independent of the interaction strength
γ . The former implies that it cannot be satisfied by a linear
combination of two or more eigenoperators. The latter guar-
antees that the eigenoperators in the absence of interaction
remain eigenoperators in the presence of interaction (see more
detailed discussion in Sec. VI below).

Solving Eq. (108) we find two solutions, μ2 = 2,−1,
in full agreement with the background field renormaliza-
tion scheme above. We emphasize that Eq. (108) uniquely
determines the value of μ2. Denoting the corresponding
eigenoperator as in the noninteracting case, we find

μ2 = −1, η(2) = −t[1 + 3c(γ )t] + O(t3),

μ2 = 2, η(1,1) = 2t[1 + 3c(γ )t] + O(t3). (109)

D. Operators with three Q matrices

Now we switch to the eigenoperators with three Q matri-
ces. As above, in order to determine these eigenoperators, we
start from the background field renormalization.

1. Background field renormalization

The operators with three Q matrices are constructed with
the help of the following Matsubara operator:

Pαβμ

3 (iεk, iεn, iεm) = trQαα
kk trQββ

nn trQμμ
mm + μ2,1trQαα

kk

× trQβμ
nm Qμβ

mn + μ3trQαβ

kn Qβμ
nm Qμα

mk .

(110)

We start renormalization from the operator with three traces
(since the methodology is similar to renormalization of oper-
ators with two Q matrices, we present the final results only):

R1,1,1[Q] → Z3R1,1,1[Q] − 3Y R2,1[Q] + 3Y R2̄,1[Q]. (111)

Here the “overbar” sign on the index denotes the sign change
of one Matsubara frequency, e.g.,

R2̄,1[Q] = trQαβ

k,−nQβα

−n,k trQμμ
mm. (112)

Next, the operator with two traces renormalizes as

R2,1[Q] → Z3R2,1[Q] − Y R2,1[Q] + Y R2̄,1[Q]

− 2Y R3[Q] + 2Y R3̄[Q]. (113)

Finally, the operator with single trace transforms in the fol-
lowing way:

R3[Q] → Z3R3[Q] − 3Y R2,1[Q] + 3Y R3̄[Q]. (114)

Using the above results (111)–(114), we write

K3[Q] → Z3K3[Q] − μ2,1Y O1,1,1[Q] − (4μ2,1 + 3μ3)Y O3[Q]

− [μ2,1 + 3(2 + μ3)]Y O2,1[Q]

	 Z3(1 − μ2,1Y )
[
O1,1,1 + [μ2,1

+ (μ2
2,1 − μ2,1 − 6 − 3μ3

)
Y
]
O2,1

+ [μ3 + (μ3μ2,1 − 4μ2,1 − 3μ3)Y ]O3
]
. (115)

As one can see from the above expression, in order for K3 to
be the eigenoperator under the renormalization group trans-
formation, the coefficients μ2,1 and μ3 have to satisfy the
following system of equations:

μ2
2,1 − μ2,1 = 6 + 3μ3, μ3(μ2,1 − 3) = 4μ2,1. (116)

This system of equations reduces to the cubic equation for
μ2,1. There are three pairs of solutions of Eqs. (116),

μ2,1 = −3, 1, 6,

μ3 = 2, −2, 8, (117)
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corresponding to three eigenoperators. Again we note that
interaction does not affect one-loop renormalization of the
operators without derivatives.

We note in passing that Eqs. (116) can be cast in the form
of the eigenvalue problem:

MT
3

⎛
⎝ 1

μ2,1

μ3

⎞
⎠ = μ2,1

⎛
⎝ 1

μ2,1

μ3

⎞
⎠, M3 =

⎛
⎝0 6 0

1 1 4
0 3 3

⎞
⎠.

(118)

The matrix M3 is nothing but the matrix describing the
mixing of operators O1,1,1, O2,1, and O3 under the action of
the renormalization group. We emphasize that the values of
μ2,1 in Eq. (117) coincide with the eigenvalues of the mixing
matrix M3.

2. Two-loop renormalization

As for the operators with two Q matrices it is convenient
to single out the irreducible part from K3 by subtracting 〈Q〉
from Q. Using explicit knowledge of eigenoperators with two
Q matrices, we find

K3 = K (irr)
3 − 2Z3 + Z3(2M(2) + M(1,1))

+ μ2,1

3
Z3(M(1,1) − M(2)). (119)

There is no one-loop contribution to K (irr)
3 . At the two-loop

approximation we find the following expression for the irre-
ducible part of the corresponding operator Pαβγ

3 (iεk, iεn, iεm):

Pαβγ ;(irr)
3 (iεk, iεn, iεm)

	 −3

2
μ3sgnεk

1 + sgnεksgnεn

2

× 1 − sgnεksgnεm

2

〈
tr(W 2)αβ

kn W βγ
nm W γα

mk

〉
= −3

2
μ3sgnεk

1 + sgnεksgnεn

2

1 − sgnεksgnεm

2

× 128

g2

∫
qp
Dq(i|εn| + i|εm|)Dp(i|εk| + i|εm|). (120)

Hence, we obtain the following two-loop result for the irre-
ducible part of K3:

K (irr)
3 = 3μ3

2

t2h2ε

ε2
. (121)

We emphasize that it is independent of the interaction.

3. Anomalous dimension

Using the results (119) and (121), we derive the expression

K3 = Z3M3K3[�], (122)

where

M3 = 1 + μ2,1th′ε

ε
+ (b(3)

2 + εμ2,1b̃3
) t2h′2ε

ε2
,

b(3)
2 = 3 + 3μ3

2
+ (1 − a1)μ2,1

2
. (123)

The anomalous dimension of M3 is given (in the limit ε → 0)
as

η(μ2,1 ) = −d ln M3

d�
= μ2,1t[1 + 3c(γ )t] + O(t3), (124)

provided the following relation holds:

(μ2,1 − a1)μ2,1 = 2b(3)
2 ⇒ μ2

2,1 − μ2,1 = 3μ3 + 6. (125)

As in the case of operators with two Q matrices, the consis-
tency condition is independent of the interaction parameter γ .
However, it does not determine the eigenoperators uniquely.
Since Eq. (125) is nothing but the first equation in the system
of equations (116), three sets of values of μ2,1 and μ3 found
within background field renormalization [cf. Eq. (117)] do
satisfy Eq. (125). If we want to find the values of μ2,1 and μ3

from the direct computation of the averages of the operators,
we would need to go to the three-loop order.

All in all, we find the following anomalous dimensions of
three eigenoperators with three Q matrices:

μ2,1 = −3, μ3 = 2, η(3) = −3t[1 + 3c(γ )t],

μ2,1 = 1, μ3 = −2, η(2,1) = t[1 + 3c(γ )t],

μ2,1 = 6, μ3 = 8, η(1,1,1) = 6t[1 + 3c(γ )t].
(126)

E. Operators with four Q matrices

1. Background field renormalization

The operators with four Q matrices are constructed with
the help of the following Matsubara operator:

Pαβμν

4 (iεk, iεn, iεm, iεl ) = trQαα
kk trQββ

nn trQμμ
mmtrQνν

ll

+μ2,1,1trQαβ

kn Qβα

nk trQμμ
mmtrQνν

ll

+ μ3,1trQαβ

kn Qβμ
nm Qμα

mk trQνν
ll

+μ2,2trQαβ

kn Qβα

nk trQμν

ml Qνμ

lm

+μ4trQαβ

kn Qβμ
nm Qμν

ml Qνα
lk . (127)

Performing background field renormalization in the same way
as above, we find the following results:

R1,1,1,1[Q] → Z4R1,1,1,1[Q] − 6Y R2,1,1[Q] + 6Y R2̄,1,1[Q], (128a)

R2,1,1[Q] → Z4R2,1,1[Q] − Y R1,1,1,1[Q] + Y R2̄,1,1[Q] − Y R2,2[Q] + Y R2̄,2[Q] − 4Y R3,1[Q] + 4Y R3̄,1[Q], (128b)

R3,1[Q] → Z4R3,1[Q] − 3Y R2,1,1[Q] + 3Y R3̄,1[Q] − 3Y R4[Q] + 3Y R4̄[Q], (128c)

R2,2[Q] → Z4R2,2[Q] − 2Y R2,1,1[Q] + 2Y R2̄,2Q] − 4Y R4[Q] + 4Y R4̄[Q], (128d)

R4[Q] → Z4R4[Q] − 4Y R3,1[Q] − 2Y R2,2[Q] + 6Y R4̄[Q]. (128e)
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Using the above expressions, we obtain

K4[Q] → Z4K4[Q] − μ2,1,1Y O1,1,1,1 − (12 + μ2,1,1 + 3μ3,1 + 2μ2,2)Y O2,1,1 − (8μ2,1,1 + 3μ3,1 + 4μ4)Y O3,1

− (2μ2,1,1 + 2μ2,2 + 2μ4)Y O2,2 − (6μ3,1 + 8μ2,2 + 6μ4)Y O4

	 Z4(1 − μ2,1,1Y )[O1,1,1,1 + [μ2,1,1 + (μ2
2,1,1 − 12 − μ2,1,1 − 3μ3,1 − 2μ2,2)Y ]O2,1,1

+ [μ3,1 + (μ3,1μ2,1,1 − 8μ2,1,1 − 3μ3,1 − 4μ4)Y ]O3,1 + {μ2,2 + [μ2,2(μ2,1,1 − 2) − 2μ2,1,1 − 2μ4]Y } O2,2

+ [μ4 + (μ4μ2,1,1 − 6μ3,1 − 8μ2,2 − 6μ4)Y ]O4]. (129)

In order for K3 to be the eigenoperator under the renormaliza-
tion group transformation, the coefficients μ2,1,1, μ3,1, μ2,2,
and μ4 have to satisfy the following system of equations:

μ2
2,1,1 = 12 + μ2,1,1 + 3μ3,1 + 2μ2,2, (130a)

μ3,1μ2,1,1 = 8μ2,1,1 + 3μ3,1 + 4μ4, (130b)

μ2,2μ2,1,1 = 2μ2,1,1 + 2μ2,2 + 2μ4, (130c)

μ4μ2,1,1 = 6μ3,1 + 8μ2,2 + 6μ4. (130d)

This system of equations reduces to the fifth-degree alge-
braic equation for μ2,1,1. There are five sets of solutions of
Eqs. (130a)–(130d),

μ2,1,1 = 12, −6, 5, 2, −1,

μ3,1 = 32, 8, 4, −8, −2,

μ2,2 = 12, 3, −2, 7, −2,

μ4 = 48, −6, −8, −2, 4, (131)

corresponding to five eigenoperators. Since interaction does
not affect one-loop renormalization of the operators without
derivatives, these operators are exactly the same as in the
absence of interaction.

As in the case of q = 3 operators, Eqs. (130a)–(130d) can
be cast in the form of the eigenvalue problem:

MT
4

⎛
⎜⎜⎜⎝

1
μ2,1,1

μ3,1

μ2,2

μ4

⎞
⎟⎟⎟⎠ = μ2,1,1

⎛
⎜⎜⎜⎝

1
μ2,1,1

μ3,1

μ2,2

μ4

⎞
⎟⎟⎟⎠,

M4 =

⎛
⎜⎜⎜⎝

0 12 0 0 0
1 1 8 2 0
0 3 3 0 6
0 2 0 2 8
0 0 4 2 6

⎞
⎟⎟⎟⎠. (132)

The matrix M4 describes the mixing of operators O1,1,1,1,
O2,1,1, O3,1, O2,2, and O4 under the action of the renormaliza-
tion group. We note that the magnitudes of μ2,1,1 in Eq. (131)
coincide with the eigenvalues of the mixing matrix M4.

2. Two-loop renormalization

With the help of explicit knowledge of eigenoperators with
two and three Q matrices, we express K4 as a linear combina-
tion of reducible and irreducible parts,

K4 = Z4

(
3 − 2[2M(2)+M(1,1)] + μ2,1,1

3
[M(2)−M(1,1)]

+ 4

15
[M(1,1,1)+9M(2,1)+5M(3)]

+ μ2,1,1

15
[2M(1,1,1)+3M(2,1) − 5M(3)]

+ μ3,1

60
[4M(1,1,1)−9M(2,1)+5M(3)]

)
+K (irr)

4 . (133)

There is no one-loop contribution to K (irr)
4 . In the next order

we obtain the following expression for the irreducible part of
the corresponding Matsubara operator:

Pαβμν;(irr)
4 (iεk, iεn, iεm, iεl )

	 μ2,2
〈
trW αβ

kn W βα

nk trW μν

ml W νμ

lm

〉
= 256μ2,2

g2

1−sgnεksgnεn

2

1−sgnεmsgnεl

2

×
∫

pq
Dp(i|εk| + i|εn|)Dq(i|εm| + i|εl |). (134)

Hence, we derive the following two-loop result:

K (irr)
4 = μ2,2

t2h2ε

ε2
. (135)

We emphasize its independence of the interaction.

3. Anomalous dimension

With the help of the results (133) and (135), we derive the
following expression for the renormalized operator K4:

K4 = Z4M4K4[�], (136)

where

M4 = 1 + μ2,1,1th′ε

ε
+ (b(4)

2 + εμ2,1,1b̃3
) t2h′2ε

ε2
,

b(4)
2 = 6 + 3μ3,1

2
+ μ2,2 + (1 − a1)μ2,1,1

2
. (137)

The anomalous dimension of M4 is given as

η(μ2,1,1 ) = −d ln M4

d�
= μ2,1,1t[1 + 3c(γ )t] + O(t3), (138)

provided the following relation holds:

(μ2,1,1 − a1)μ2,1,1 = 2b(4)
2 . (139)

As one can check, a1 in this equation drops from both sides
and the equation becomes

μ2
2,1,1 − μ2,1,1 = 12 + 3μ3,1 + 2μ2,2. (140)

As in the case of operators with two and three Q matrices,
the consistency condition is independent of the interaction
parameter γ . However, it does not determine the eigenop-
erators uniquely. Equation (140) coincides with Eq. (130a).
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Therefore, all five sets of parameters {μ2,1,1, μ3,1, μ2,2, μ4}
[cf. Eq. (131)] do satisfy Eq. (140). In order to find the their
values from computation of quantum corrections, one has to
consider to higher orders in the loop expansion.

Now we list the following anomalous dimensions of five
eigenoperators with four Q matrices:

{−6, 8, 3,−6}, η(4) = −6t[1 + 3c(γ )t],

{−1,−2,−2, 4}, η(3,1) = −t[1 + 3c(γ )t],

{2,−8, 7,−2}, η(2,2) = 2t[1 + 3c(γ )t],

{5, 4,−2,−8}, η(2,1,1) = 5t[1 + 3c(γ )t],

{12, 32, 12, 48}, η(1,1,1,1) = 12t[1 + 3c(γ )t]. (141)

We note that numbers in curly brackets indicate the set
{μ2,1,1, μ3,1, μ2,2, μ4} for a given eigenoperator.

F. Operators with q > 4

Now we consider renormalization of the eigenoperators
with the number of the Q matrices which is larger than four,
q > 4. We shall benefit from restriction to the two-loop ap-
proximation. The crucial simplification is that the irreducible
part of the operator Kq with q > 4 vanishes within the two-
loop approximation. Thus, the average of the operator Kq is
fully determined by the reducible part. As we shall see below,
the latter can be fully expressed as a linear combination of

pure scaling operators with the number of the Q matrices less
than or equal to four.

At first, we employ the following relations which are valid
within the two-loop approximation only:

〈R1, . . . , 1︸ ︷︷ ︸
q

〉 	 R1, . . . , 1︸ ︷︷ ︸
q

[〈Q〉]+q(q−1)

2
R1,…,1︸ ︷︷ ︸

q−2

[〈Q〉]〈R1,1[δQ]〉,

〈R2,1, . . . , 1︸ ︷︷ ︸
q−2

〉 	 R1, . . . , 1︸ ︷︷ ︸
q−2

[〈Q〉]〈R2[Q]〉+(q − 2)R1, . . . , 1︸ ︷︷ ︸
q−3

[〈Q〉]

×〈R2,1[δQ]〉. (142)

Here, for sake of brevity, we introduce the notation δQ = Q −
〈Q〉.2

Next, we use the approximate relations

〈R3,1, . . . , 1︸ ︷︷ ︸
q−3

〉 	 R1, . . . , 1︸ ︷︷ ︸
q−3

[〈Q〉]〈R3[Q]〉,

〈R2,2 1, . . . , 1︸ ︷︷ ︸
q−4

〉 	 R1, . . . , 1︸ ︷︷ ︸
q−4

[〈Q〉]〈R2,2[Q]〉,

〈R4,1, . . . , 1︸ ︷︷ ︸
q−4

〉 	 R1, . . . , 1︸ ︷︷ ︸
q−4

[〈Q〉]〈R4[Q]〉. (143)

For the same reason as the absence of the contribution
to the irreducible part of the operator Kq within the two-
loop approximation, the averages of more involved operators
Rk1,...,ks can be approximated by Rk1,...,ks [〈Q〉]. Next, we ex-
press R1,...,1[〈Q〉] in terms of Z . The averages 〈Rk1,...,ks [Q]〉
with k1 + · · · + ks � 4 can be written in terms of the previ-
ously found eigenoperators. Then, with the help of Eqs. (109),
(126), and (141), we find

Kq 	 Zq

{
1 + q(q − 1)

6
(M(1,1) + 2M(2) − 3) + μ2,1,...,1

3

(
(q − 3)(M(2) − M(1,1)) + (q − 2)

10
(2M(1,1,1) + 3M(2,1) − 5M(3))

)

+ μ3,1,...,1

60
(4M(1,1,1) − 9M(2,1) + 5M(3)) + μ2,2,1,...,1

(
1

105
M(1,1,1,1) − 2

63
M(2,1,1) + 7

90
M(2,2) − 4

45
M(3,1) + 1

30
M(4)

)

+μ4,1,...,1

(
1

105
M(1,1,1,1) − 2

63
M(2,1,1) − 1

180
M(2,2) + 2

45
M(2,1) − 1

60
M(4)

)}
. (144)

This lengthy expression can be written in a standard form

Kq = ZqMqKq[�], (145)

where

Mq = 1 + μ2,1,...,1th′ε

ε
+ (b(q)

2 + εμ2,1,...,1b̃3
) t2h′2ε

ε2
,

b(q)
2 = q(q − 1)+3μ3,1,...,1+(1−a1)μ2,1,...,1

2
+μ2,2,1,...,1. (146)

Thus, the anomalous dimension of Mq is given as

η(μ2,1,...,1 ) = −d ln Mq

d�
= μ2,1,...,1t[1 + 3c(γ )t] + O(t3),

(147)

2It should not be confused with δQ = Q − � introduced
previously.

provided the following relation holds:

(μ2,1,...,1 − a1)μ2,1,...,1 = 2b(q)
2 . (148)

As it was for operators with q � 4, the interaction terms drop
from both sides of Eq. (148) and it reduces to

μ2
2,1,...,1 − μ2,1,...,1 = q(q − 1) + 3μ3,1,...,1 + 2μ2,2,1,...,1.

(149)
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Therefore, although we do not know explicit expressions for
the coefficients μk1,...,ks for q > 4, we can state that the form
of eigenoperators remains the same in spite of the presence of
interaction.

Armed by recent advances in description of the gener-
alized multifractality at the spin quantum Hall transition in
the absence of interaction [23], we find that the anomalous
dimension of the eigenoperator M(k1,...,ks) is determined within
the two-loop approximation by the coefficient

μ2,1,...,1 = 1

2

s∑
j=1

kj(−cj − v − kj), cj = 1 − 4j. (150)

Here we remind v = 2. For example, for the eigen operator
M(3,1) we have μ2,1,1 = [3(1 − 3) + 1(5 − 1)]/2 = −1 in ac-
cordance with Eq. (141).

VI. DISCUSSIONS AND CONCLUSIONS

A. Relations to other symmetry classes

The results reported in this paper demonstrate that for the
symmetry class C in the presence of interaction the eigenop-
erators with respect to the renormalization group flow can be
constructed in the same way as for the noninteracting case.
The interaction affects their anomalous dimensions starting
from the two-loop order in the expansion in series in dimen-
sionless inverse spin conductance t [cf. Eqs. (147) and (150)].
At the two-loop order the effect of interaction is described by
the universal function c(γ ) [cf. Eq. (107)]. We note that the
very same function appeared in a similar problem for stan-
dard Wigner-Dyson classes [53–55]. It would be interesting
to extend the analysis presented in this work to the other two
superconducting classes, CI and DIII, that allow interaction
within the Finkel’stein NLσM.

In the absence of interaction in the class C, the eigenoper-
ators written in terms of Q matrices are expressed as disorder
averages of the proper combinations of wave functions [23].
In the presence of interaction, one can translate the eigenoper-
ators to the proper combinations of the single-particle Green’s
functions as it was done for class AI in Ref. [55].

B. Role of topology

The nonlinear sigma model for class C allows the pres-
ence of the topological θ term. Although this topological
term does not affect the classification of the eigenoperators,
it contributes to their anomalous dimensions (for bilinear in Q
operators for class A see Ref. [68] for details). Also, the topo-
logical term changes the renormalization group equations for t
and γ (for class A see Ref. [69] for details). Therefore, gener-
ically in the presence of interaction the renormalization for
the class C is described by three-parameter flow in the plane
of t (disorder), γ (interaction), and θ (topological angle). The
effect of the topological term on renormalization group flow
and anomalous dimensions of eigenoperators will be studied
elsewhere.

C. Implications for Weyl symmetry

At a fixed point of the renormalization group flow corre-
sponding to the spin quantum Hall transition, the scaling with

the system size L of an eigenoperator characterized by the
Young tableau λ = (k1, . . . , ks) (with

∑s
j=1 kj = q) is given

as

Kλ ∼ L−xλ , xλ = qx(1) + �λ. (151)

Here the exponent x(1) describes the scaling of the disorder-
averaged LDOS and is equal to the magnitude of η(1) at the
fixed point x(1) = η∗

(1). Similarly, the exponent �λ describes
the scaling of the operator Mλ and coincides with its anoma-
lous dimension at the fixed point �λ = η∗

λ. We note in passing
that Eq. (151) states explicitly that the eigenoperators are just
the pure scaling operators.

In the absence of interaction, the generalized multifrac-
tal dimensions xλ are known to obey symmetry relations as
consequence of Weyl-group invariance [8]. The exponents xλ

are the same for the eigenoperators related by the following
symmetry operations: reflection, kj → −cj − kj, and permu-
tation of some pair, kj/i → ki/j + (ci/j − cj/i)/2. For example,
reflection symmetry implies that x(q) = x(3-q), i.e., in particu-
lar, x(1) = x(2) and x(3) = 0. Of course, the one-loop results for
the anomalous dimensions (in the absence of interaction) are
consistent with the symmetry relations.

We emphasize that the presence of interaction seems to
break the symmetry relations between exponents. It can be
seen already at one-loop order. The interaction affects η(1) but
leaves anomalous exponents for the eigenoperators with q � 2
intact. We consider the transition in d = 2 + ε dimensions.
Then, according to the renormalization group equations (49),
there is a line of fixed points at t∗ = ε/[1 + 6 f (γ )] and ar-
bitrary γ . The generalized multifractal exponents become (to
the order ε)

xλ = ε

2[1 + 6 f (γ )]

s∑
j=1

kj[−cj − 3 ln(1 + γ ) − kj]. (152)

As one can see, the above expression is inconsistent with Weyl
symmetry for γ �= 0. Although we have no access to values of
generalized multifractal dimensions at the spin quantum Hall
transition in d = 2, we do not see why the Weyl symmetry
relations should hold in the presence of interaction. It would
be challenging to compute xλ numerically for γ �= 0.

It is worth mentioning that in standard Wigner-Dyson
classes, interaction remains intact with the Weyl-group sym-
metry relations within the second-order expansion in ε,
provided the relations are formulated for anomalous dimen-
sions �λ rather than exponents xλ. It can be done since x(1) ≡
0 in the absence of interaction for classes A, AI, and AII.
In contrast, our results suggest breakdown of these symmetry
relations in class C by interaction.

In the absence of interaction, some of the generalized mul-
tifractal exponents xλ > 0 at the spin quantum Hall transition
can be computed analytically by exact mapping of corre-
sponding observables to hull operators in classical percolation
[24–28]. Recently, a list of exact analytical results for xλ

has been significantly extended [29]. It would be interesting
to investigate mapping to the percolation in the presence of
interaction.
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D. Renormalization of interaction at the spin
quantum Hall transition

One-loop renormalization group (49) predicts that the in-
teraction γ does not flow with the length scale. We mention
that this fact is intimately related with the existence of Weyl
symmetry in the absence of interaction. For weak interaction
|γ | � 1, one can write the renormalization group equation for
γ at the noninteracting fixed point as [36,43]

dγ

d�
= (x(1) − x(2)

)︸ ︷︷ ︸
=0

γ + vγ 2 + O(γ 3). (153)

Due to Weyl symmetry x(1) = x(2) such that the right-hand side
of Eq. (153) starts from the term of the second order in γ .
However, the coefficient v is zero within the one-loop approx-
imation (lowest order in t). It would be interesting to compute
renormalization of γ to the two-loop order and to find the
coefficient v. Also, one could try to find v via the properties
of pure scaling operators and their product expansions at the
noninteracting spin quantum Hall transition. We leave these
questions to be resolved in future works.

E. Dephasing rate

The computation of the two-loop renormalization of the
operator with two Q matrices contains information on the
dephasing rate. Similar to the case of standard Wigner-Dyson
classes, two-loop results (98) and (100) [for sgn(εnεm) < 0]
can be interpreted as the diffuson self-energy correction to
the one-loop result (92). After the analytic continuation to
the real frequencies the real part of the diffuson self-energy
at coinciding energies and zero momentum is nothing but the
dephasing rate given as (see details in Refs. [54,70])

1

τφ (E )
= 3γ

2D

∫ ∞

−∞
dω

∫
q
(2Bω − Fω−E − Fω+E )

× ReDR
q (ω)Im

[Dt,R
q (ω)

DR
q (ω)

]
. (154)

Here we introduce Bω = 1/Fω = coth(ω/2T ) whereas
DR

q (ω) and Dt,R
q (ω) denote retarded propagators correspond-

ing to Matsubara propagators [cf. Eqs. (12a) and (12b)]. We
note that the expression (154) coincides up to numerical factor
with the contribution to the dephasing rate due to exchange
interaction in the case of class AI. At the Fermi level, E = 0,
Eq. (154) coincides with the expression found in Ref. [60] for
the class C symmetry. We stress that the result (154) is valid in
the regime of weak disorder t � 1 alone. At the spin quantum
Hall transition one expects a power-law dependence of the
dephasing rate on temperature. For weak interaction |γ | � 1,
one should be able to express the dephasing rate exponent in
terms of the generalized multifractal exponents for operators
with two and four Q matrices as it was done in the case of the
integer quantum Hall transition [71].

In the presence of strong spin-orbit coupling the triplet
diffusive modes become massive and the theory (1) reduces
to the NLσM in class D. We emphasize that in this case it
is not possible to construct the Finkel’stein-type interaction
term in NLσM. Consequently, the renormalization group flow
of t remains protected against interaction. Electron-electron

interaction is responsible for the dephasing rate only. It
would be interesting to study the dephasing rate at the ther-
mal quantum Hall effect (class D) using the approach of
Ref. [71].

F. Reduction to class A

If the spin-orbit-induced scattering is of the Ising type, the
triplet diffusive mode with the total spin projection 1 remains
massless. This situation corresponds to the breaking of SU(2)
spin symmetry down to U(1). Then the Q matrix in the spin
acquires the diagonal form

Q =
(

Q↑ 0
0 Q↓

)
, Q↓ = −L0QT

↑L0. (155)

Using the relation between Q↓ and Q↑, we can express the
action (1) in terms of Q↑ solely. Then the action acquires the
form of the Finkel’stein NLσM in (spinless) class A. Now, γ

plays the role of the dimensionless interaction parameter in
the singlet channel. The renormalization group equations for
t , Zω, and Z can be obtained from Eqs. (49) by setting v to
0 and reducing interaction contributions by a factor of 3. The
equation for γ can be derived from the condition that the spin
susceptibility is not renormalized, δZω + δ	t = 0. It leads to
the one-loop equation for the singlet interaction amplitude
known for class A [66]:

dγ

d�
= −γ (1 + γ )t (class A). (156)

The eigenoperators can be also expressed in terms of Q↑
alone. The anomalous dimensions of these eigenoperators are
given by Eq. (147) in which the interaction contribution is
reduced by a factor 3 and μ2,1,...,1 is given by Eq. (150) with
v = 0 and cj = 1 − 2j.

We note that typically exchange interaction γ in normal
two-dimensional systems is positive. However, the attractive
Cooper channel interaction can reverse the sign of the ex-
change interaction [36,37]. Therefore, it is natural to expect
that for the class C the interaction parameter is negative and
lies in the range −1 � γ < 0 [see Eqs. (43) and (45)]. After
reduction to the class A the range −1 < γ < 0 corresponds to
the repulsive short-ranged interaction in the singlet particle-
hole channel whereas γ = −1 holds for the case of Coulomb
interaction.

G. Summary

To summarize, we developed the theory of generalized
multifractality in class C in the presence of interaction. Using
the background field method we constructed the pure scaling
derivativeless operators in the Finkel’stein NLσM in class
C. As in the standard Wigner-Dyson classes these operators
in the interacting theory are a straightforward generaliza-
tion of corresponding operators for the noninteracting case.
Employing second-order perturbation theory in inverse spin
conductance, we computed the anomalous dimensions of the
pure scaling operators. These anomalous dimensions are af-
fected by the interaction. Additionally, we checked that the
constructed operators are indeed eigenoperators with respect
to the renormalization group. Application of our results to the
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transition in d = 2 + ε dimensions demonstrates that interac-
tion breaks the exact symmetry relations between generalized
multifractal exponents xλ known in the absence of interaction.
As a by-product of our analysis, we reproduced the results
known in the literature for the one-loop renormalization of the
spin conductance, the interaction, the Finkel’stein frequency
renormalization parameter, and the disorder-averaged LDOS.
We discussed future developments and applications of our
theory.
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