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Antiferromagnetic helix as an efficient spin polarizer: Interplay between electric field
and higher-order hopping
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We report a spin filtration operation considering an antiferromagnetic helix system, possessing zero net
magnetization. Common wisdom suggests that for such a system, a spin-polarized current is no longer available
from a beam of unpolarized electrons. But once we apply an electric field perpendicular to the helix axis,
a large separation between up- and down-spin energy channels takes place, which yields a high degree of
spin polarization. Employing a tight-binding framework to illustrate the antiferromagnetic helix, we compute
spin filtration efficiency by determining spin-selective currents using Landauer-Büttiker formalism. Geometrical
conformation plays an important role in spin-channel separation, and here we critically investigate the effects of
short-range and long-range hoppings of electrons in the presence of the electric field. We find that the filtration
performance gets improved with increasing the range of hopping of electrons. Moreover, the phase of spin
polarization can be altered selectively by changing the strength and direction of the electric field, and also by
regulating the physical parameters that describe the antiferromagnetic helix. Finally, we explore the specific role
of dephasing to make the system more realistic and to make the present communication a self-contained one.
Our analysis may provide a route of getting conformation-dependent spin polarization possessing longer range
hopping of electrons, and can be generalized further to different kinds of other fascinating antiferromagnetic
systems.
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I. INTRODUCTION

After the discovery of the giant magnetoresistance (GMR)
effect [1–3], spintronics became a field of research in the
discipline of condensed matter physics where the spin de-
gree of freedom of an electron is explored along with its
charge [4–7]. In conventional electronic devices, Joule heating
is an inevitable effect due to the flow of electrons, which
causes a sufficient power loss. But if we utilize electron spin
instead of the charge, then power will be consumed and at
the same time the operation will be much faster [5,6]. Two
pivotal features for the consideration of spin-based electronic
devices rather than conventional charged-based ones are (i)
saving more power, and information can be transferred at a
much faster rate, which undoubtedly reduces cost price by a
significant amount, and (ii) the size of the devices becomes
too small, so a large number of functional elements can be
integrated into a small dimension [4,5]. For instance, the hard
disk drive made in 1957 was able to store data only up to 3.75
megabytes, and it occupied a volume of 68 cubic feet, whereas
a recent hard disk drive possessing a volume of the order of
2.1 cubic inches can even store data up to several terabytes [8].
Using the GMR phenomenon, significant development has
been made not only in storing devices but in other different
technologies involving electron spin [5–7].

One of the most fundamental issues in spintronics is to
find an efficient route for the separation of two spins or,
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more precisely, we can say the generation of polarized spin
current from a completely unpolarized electron beam. Several
propositions have already been made along this line [9–11].
The most common practice is to use ferromagnetic mate-
rials, though there are several unavoidable limitations [12].
For instance, a large resistivity mismatch occurs across a
junction formed by ferromagnetic and nonmagnetic materi-
als, which hinders the proper injection of electrons into the
system [12,13]. The other crucial limitation arises when we
think about tuning spin selective junction currents. Usually,
this is done by means of an external magnetic field, but for
a quantum regime it is very hard to confine a strong mag-
netic field, and the problem still persists even today. Over the
last few years, the use of ferromagnetic materials got signifi-
cantly suppressed when spin orbit (SO) coupled systems came
into the picture. Two different kinds of SO interactions are
taken into account in solid-state materials: one is known as
Rashba [14] and the other one is referred to as a Dresselhaus
SO interaction [15,16]. The latter type appears due to the
breaking of bulk inversion symmetry of a system, whereas
the previous one arises due to the breaking of the symme-
try in the confining potential. Among these two, the Rashba
strength can be tuned externally by suitable setups [17,18]
and, therefore, the Rashba SO coupled systems draw signif-
icantly more attention than the Dresselhaus ones in the field
of spintronics. Different kinds of systems starting from tailor-
made geometries, organic, and inorganic molecules have
been considered as functional elements in two-terminal as
well as multiterminal setups, and many interesting features
have been explored [19–21]. But, in most of these cases,
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especially in molecular systems, the major concern is that the
SO coupling strength is too weak compared to the electronic
hopping strength, almost an order of magnitude smaller [22].
Moreover, the variation of the SO coupling strength is also
quite limited by external means. Because of these facts, a high
degree of spin polarization and its possible tuning in a wide
range are quite difficult to achieve in SO-coupled systems,
though there are of course many other advantages that make
these systems promising functional elements in spintronics.

To avoid all these issues, modern machinery has concen-
trated on antiferromagnetic (AFM) materials that possess an
alternate type of magnetic ordering and have zero net mag-
netization [23–25]. Several key prospects of using an AFM
system as a spin-polarized functional element are there. For
instance, these materials are insensitive to external magnetic
fields, they are much faster, and can be operated up to a
high-frequency range (∼THz) than traditional ferromagnetic
systems [26]. Moreover, due to the absence of any stray
fields, a large number of closely packed functional elements
can be accommodated in a small region, which leads to sev-
eral important advantages in designing efficient electronic
devices based on spin-based transport phenomena. Nowadays,
AFM spintronics has evolved as a cutting-edge research field,
and may lead to unique prospects in the magnetic commu-
nity [27–30].

In the present paper, we propose a prescription for efficient
spin filtration considering an AFM system, which we refer to
as an antiferromagnetic helix (AFH). The role of chirality on
spin filtration first came into realization based on the experi-
mental work of Göhler et al. [31] where they have shown that
almost 60% spin polarization can be achieved through self-
assembled monolayers of double-stranded DNA molecules
deposited on a gold substrate. They described this effect as
chiral induced spin selectivity (CISS). After this realization,
several experimental and theoretical research groups paid sig-
nificant attention to this CISS effect, considering different
kinds of molecular as well as artificially designed systems,
possessing helical geometry [32–40]. The fundamental moti-
vation behind the present paper is to address the phenomenon
of spin filtration considering a magnetic helix structure with
vanishing net magnetization. For our AFH, simulated by a
tight-binding (TB) framework, magnetic moments in alternate
lattice sites are arranged in opposite directions, resulting in
a zero net magnetization. In such a system, common wis-
dom suggests that spin filtration is no longer possible. But,
interestingly, we find that once we apply an electric field
perpendicular to the helix axis, a large separation between
two spin channels takes place, which results in a high degree
of spin polarization. The central mechanism relies on the
helicity and the applied electric field. In the absence of any
of these two, helicity and electric field, no such phenomenon
is observed.

Determining spin-dependent transmission probabilities us-
ing the well-known Green’s function formalism [41–43], we
compute spin selective currents through the AFH following
the Landauer-Büttiker prescription [44,45]. From the currents,
we evaluate the spin-polarization coefficient. The geometrical
conformation plays a significant role in spin filtration, and
we investigate it by considering both short- and long-range
hopping (LRH) cases. From our analysis, we find that the spin

FIG. 1. (a) A right-handed antiferromagnetic helix is clamped
between two one-dimensional nonmagnetic electrodes, namely,
source and drain. R is the radius of the helix and �φ and �h
correspond to the twisting angle and stacking distance between the
magnetic sites (colored balls), respectively. Successive magnetic mo-
ments, shown by the blue arrows, associated with the magnetic sites
are arranged along +Z and −Z directions, resulting in a vanishing
net magnetization. An electric field of strength Eg is applied perpen-
dicular to the helix axis, which plays a pivotal role in spin filtration.
(b) Orientation of the net spin 〈�Sn〉 in spherical polar coordinate
system. (c) Projection of the right-handed helix on the X -Y plane.

filtration efficiency gets enhanced with increasing electron
hopping among more lattice sites. The specific roles of all
other physical quantities are thoroughly discussed, which lead
to several interesting features. Finally, to make the quantum
system more realistic and for the sake of completeness of our
study, we include the effects of electron dephasing [46–50]
on spin polarization. Our analysis may provide some key
inputs toward designing efficient spintronic devices consider-
ing different kinds of AFH systems, possessing longer range
hopping of electrons.

The remainder of the paper is arranged as follows. Sec-
tion II includes the spin-polarized setup, TB Hamiltonian of
the junction, and the required theoretical prescriptions for
the calculations. All the results are presented and thoroughly
discussed in Sec. III. Finally, the essential findings are sum-
marized in Sec. IV.

II. QUANTUM SYSTEM, TB HAMILTONIAN
AND THEORETICAL FORMULATION

A. Junction setup and the TB Hamiltonian

Let us begin with the spin-polarized setup shown in
Fig. 1(a), where an AFM system is coupled to the source and
drain electrodes. The magnetic sites (filled colored balls) in
the AFM system are arranged in a helical pattern. Each of
these sites contains a finite magnetic moment, denoted by the
blue arrow, associated with a net spin 〈 �Sn〉. The successive
magnetic moments are aligned in opposite directions (±Z),
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and therefore the net magnetization of the helix becomes
zero. We refer to this system as an AFH, and here in our
paper, we will show how such an AFH acts for spin filtration.
The general orientation of any local spin 〈 �Sn〉, and hence the
magnetic moment, can be illustrated by the usual coordinate
system as presented in Fig. 1(b), where θn and ϕn are the polar
and azimuthal angles, respectively.

Two essential physical parameters characterize the helical
geometry [32,33]—those are �φ and �h (see Fig. 1), where
the first one represents the twisting angle and the other param-
eter denotes the stacking distance. Depending on �h, we can
have a helical system where lower or higher-order hopping
of electrons becomes significant. When �h is very small,
i.e., atoms in the helix are densely packed, electrons can hop
at multiple sites, which is referred to as LRH AFH. On the
other hand, when the atoms are less densely packed, viz., �h
is quite large, electrons can hop between a few neighboring
magnetic sites. Such a system is called a short-range hopping
(SRH) AFH. In the present paper, we consider these two
different kinds of AFM helices and investigate the results.

The AFH is subjected to an electric field, having strength
Eg, perpendicular to the helix axis. It plays a central role in
spin filtration and can be understood from our forthcoming
discussion. With a suitable setup, one can tune the strength of
this field as well as its direction.

To investigate spin-dependent transport phenomena and
to exhibit the spin filtration operation, the helical system is
clamped between source and drain electrodes. We describe
this nanojunction using the TB framework [51–54]. The TB
Hamiltonian of the full system is written as a sum

H = HAFH + HS + HD + H tun, (1)

where different sub-Hamiltonians in the right side of Eq. (1)
are associated with different parts of the nanojunction and
they are described as follows.

The term HAFH corresponds to the Hamiltonian of the
AFH. For an AFH, be it a short-range or long-range one, the
TB Hamiltonian is expressed as

HAFH =
∑

n

c†
n(εn −�hn ·�σ )cn +

N−1∑
n=1

N−n∑
m=1

(c†
ntmcn+m + H.c.),

(2)

where c†
n = (c†

n↑ c†
n↓). c†

nσ (cnσ ) is the creation (annihilation)

operator of an electron at site n with spin σ (=↑,↓). εn − �hn ·
�σ is the effective site energy matrix, which looks like

εn − �hn · �σ =
(

εn − h cos θn −h sin θne−iϕn

−h sin θneiϕn εn + h cos θn

)
, (3)

where εn is the on-site energy in the absence of any kind of
magnetic scattering.�hn = J〈�Sn〉, called the spin-flip scattering
parameter, where J is the coupling strength [22] between
the coupling of an itinerant electron with a local magnetic
moment associated with the average spin 〈�Sn〉. �σ is the Pauli
spin vector. Here we assume that σz is diagonal. The term
�hn · �σ represents the spin-dependent scattering and is widely
used in literature [51–54]. The key point is that the strength
J is reasonably larger than other spin-dependent scattering

parameters, viz., SO coupling, Zeeman splitting in the pres-
ence of magnetic field, etc. [22]. Thus, there is a possibility
of getting a high degree of spin filtration under suitable in-
put condition(s) in the presence of a spin-moment scattering
mechanism.

The second term of Eq. (2), involving tm, is quite tricky,
not like the usual nearest-neighbor hopping case, and the
summations over n and m need to be taken carefully. tm is
a (2 × 2) hopping matrix and it becomes

tm =
(

tm 0
0 tm

)
, (4)

where tm represents the hopping between the sites n and (n +
m). The hopping strength tm is written as [32,33]

tm = t1e−(lm−l1 )/lc , (5)

where t1 is the nearest-neighbor hopping integral, lm is the
distance of separation between the sites n and (n + m), l1
is the distance among the nearest-neighbor sites, and lc is
the decay constant. In terms of the radius R [see Fig. 1(c)
where the projection of the helix in the X -Y plane is shown],
twisting angle �φ and the stacking distance �h, lm gets the
form [32,33,38]

lm =
√

[2R sin(m�φ/2)]2 + (m�h)2. (6)

When the AFH is subjected to a transverse electric field,
its site energies get modified. The effective site energy for any
site n becomes [37,38]

εeff
n = εn + eVg cos(n�φ − β ), (7)

where e is the electronic charge and Vg (= 2EgR) is the gate
voltage responsible for the generation of the electric field. β

represents the angle between the incident electric field and the
positive X axis [32,33].

The TB Hamiltonians of the side-attached source (S) and
drain (D) electrodes, HS and HD, and their coupling with the
AFH (H tun) look quite simple than what is described above
for the AFH. The electrodes are assumed to be perfect, one-
dimensional, and nonmagnetic in nature. They are expressed
as

HS = HD =
∑

n

a†
nε0an +

∑
n

(a†
n+1t0an + H.c.), (8)

where ε0 = diag(ε0, ε0) and t0 = diag(t0, t0). ε0 and t0 are
the on-site energy and nearest-neighbor hopping integral, re-
spectively. a†

n = (a†
n↑ a†

n↓), anσ ’s are the usual fermionic
operators in the electrodes.

Finally, the tunneling Hamiltonian is expressed as

H tun = tS
(
c†

1a−1 + H.c.
) + tD(c†

N aN+1 + H.c.), (9)

where tS and tD are the coupling strengths of the AFH with S
and D, respectively. We refer to the lattice site of the source
which is coupled to the helix as −1 and the site of the drain
which is attached to the helix as N + 1. The sites 1, 2 . . . N
(N being the total number of magnetic sites) are used for the
AFH.
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B. Theoretical formulation

To inspect spin-dependent transport phenomena and the
spin-polarization coefficient, the first and foremost thing we
need to calculate is the two-terminal transmission proba-
bility. We compute it using the well-known nonequilibrium
Green’s function formalism [41–45]. In terms of retarded
and advanced Green’s functions, Gr and Ga, the spin-
dependent transmission coefficient is obtained from the
expression [41,42,45]

Tσσ ′ = Tr[�SGr�DGa], (10)

where

Gr = (Ga)† = [E − HAFH − �S − �D]−1. (11)

�S and �D are the self-energy matrices [41–43] which cap-
ture all the essential information of the electrodes and their
coupling with the helix. �S and �D are the coupling matrices.

For an incoming electron with spin ↑, two things may
occur. We can have a finite possibility of getting the up-spin
electron as an up spin or it can be flipped. Similar options
are also available for an injected down-spin electron. Thus,
considering pure (Tσσ ) and spin-flip (Tσσ ′ ) transmissions, we
can write the net up- and down-spin transmission probabilities
(T↑ and T↓) as

T↑ = T↑,↑ + T↓,↑, (12a)

T↓ = T↓,↓ + T↑,↓. (12b)

From the transmission coefficients T↑ and T↓, we evaluate up-
and down-spin junction currents using the Landauer Büttiker
prescription [41–45]. The spin-dependent current, when a fi-
nite bias V is applied across the AFH, is expressed as

Iσ = e

h

∫
Tσ ( fS − fD)dE , (13)

where, fS and fD are the Fermi functions, associated with S
and D, respectively, and they are

fS(D) = 1

1 + e(E−μS(D) )/kBT
. (14)

Here μS and μD are the electrochemical potentials of S and D,
respectively, and kBT is the thermal energy.

Determining I↑ and I↓, we evaluate spin filtration efficiency
following the relation [48]

P = I↑ − I↓
I↑ + I↓

× 100%. (15)

When only up-spin electrons propagate, we get P = 100%,
while for the situation where only down-spin electrons get
transferred through the AFH, we get P = −100%. For the
situation where both up- and down-spin electrons propagate
equally, no spin filtration occurs. We want to reach the limiting
value where P = 100% or −100%, which is usually very hard
to achieve.

Inclusion of dephasing

Dephasing is an important factor and, in many cases, it
cannot be avoided—especially when we think about the ex-
perimental realization of a theoretical proposal. There are
different possible routes through which a system is disturbed

by dephasing, and it is thus required to incorporate its effect
in our analysis. Several methodologies [46–50] are available
for the inclusion of dephasing and most of them are very
complex. Büttiker, on the other hand, predicted phenomeno-
logically a very simple but elegant way to incorporate the
dephasing effect into the system [46,47], and here we use the
same procedure. In this prescription, it is assumed that each
lattice site of the AFH is attached to a dephasing electrode,
commonly referred to as Büttiker probe. The key concept
is that the dephasing electrodes will not drag or inject any
finite number of electrons into the system, i.e., the net current
passing through such electrodes becomes exactly zero [46,47].
Electrons from the AFH enter into the dephasing electrodes,
and after losing their phase memories, they eventually come
back to the parent system.

To achieve the zero current condition in different de-
phasing electrodes, we need to choose the voltages Vn (Vn

being the voltage at nth dephasing electrode) in the appro-
priate way [37,42]. The Vn’s are determined following the
Landauer-Büttiker current expression [41,42] associated with
each dephasing electrode and evaluating the bias drop at dif-
ferent lattice sites of the helix. It is crucial to point out that
the evaluation of this bias drop is quite complicated as it is
a nonlinear problem. The prescription can be simplified to
some extent by considering a linear profile along the helix,
which is most commonly used in literature, and here in our
present paper we also follow it. Suppose a finite voltage V0 is
applied between the real electrodes S and D, and (say) VS = V0

and VD = 0, without loss of any generality. Then, the voltages
Vn at different lattice sites can be calculated without much
difficulty, as we assume the linear drop, and adjusting these
voltages across the dephasing electrodes, the zero-current
condition is established (a more detailed discussion about it
is available in Refs. [37,42]).

In the presence of the Bütiker probes, the transmission
probability of getting electrons at the drain electrode (D) is
modified [37,50] and it becomes

T eff
σσ ′ (V ) =

∑
α=S,n

T αD
σσ ′ (V )

Vα

V0
. (16)

The transmission probabilities are now voltage dependent
and, thus, special care has to be taken to calculate these
quantities [55,56]. Here T SD

σσ ′ (V ) and T nD
σσ ′ (V ) denote the trans-

mission probabilities from the source electrode (S) and from
the nth dephasing electrode to the drain end, respectively. The
dephasing electrodes are connected at all lattice sites of the
AFH, apart from sites 1 and N , where the real electrodes
(S, D) are attached. In our formulation, the coupling strength
between the AFH and the dephasing electrode is mentioned
by the parameter η, and it describes the dephasing strength.

To compute T eff
σσ ′ (V ), an important step must be performed

which is as follows. For a biased system, since the scattering
states become the eigenstates of the biased Hamiltonian, the
site energy ε0 needs to be shifted by V0 in the source electrode,
and by Vn in the nth Büttiker probe [55,56]. Using Eq. (16), we
get the effective up- and down-spin transmission probabilities,
at different voltages, from the relations

T eff
↑ (V ) = T eff

↑,↑(V ) + T eff
↓,↑(V ), (17a)

T eff
↓ (V ) = T eff

↓,↓(V ) + T eff
↑,↓(V ). (17b)
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TABLE I. Geometrical parameters describing the SRH and LRH
AFHs.

System R (nm) �h (nm) �φ (rad) lc (nm)

SRH AFH 0.7 0.34 π/5 0.09
LRH AFH 0.25 0.10 5π/9 0.09

The effective spin-dependent current in the presence of de-
phasing can thus be obtained through the expression

Iσ (V ) = e

h

∫
T eff

σ (V )( fS − fD)dE . (18)

With the effective spin-dependent currents, the same def-
inition is followed as mentioned in Eq. (15) to compute
spin-polarization coefficient P in the presence of dephasing.

In the extreme low biased condition, the above current
equation [Eq. (18)] for any qth electrode, be it real or virtual,
boils down to [37]

Iq
σ (V ) = e2

h

∑
α

T αq
σ (Vα − Vq), (19)

where the voltages Vα and Vq can be derived from the pre-
scription given above. In this limiting condition, the current
is linearly proportional to the voltage. On the other hand,
in the limit of high bias, Eq. (18) cannot be simplified in
the linear form like what is given in Eq. (19), and we get
the nonlinear behavior. For the sake of completeness of our
analysis, we discuss the accuracy of the above prescription in
the appropriate subsection.

III. NUMERICAL RESULTS AND DISCUSSION

Now we present our results and investigate the specific role
of the external electric field on spin filtration under different
input conditions. Both short-range and long-range AFHs are
taken into account. For these two types of AFHs, we choose
the geometrical parameters R, �h, and �φ as given in Ta-
ble I. These parameter values are analogous to the real helical
systems like single-stranded DNA and protein molecules, and
they are the most suitable examples where, respectively, the
SRH and LRH models are taken into account [32,33]. A large
amount of investigation has already been done in the literature
considering this particular set of parameter values in different
contemporary works and, accordingly, here we also select
these typical values. Other sets of parameter values represent-
ing the SRH and LRH of electrons can also be considered, and
all the physical pictures studied here will remain unaltered.

The other physical parameters common throughout the
analysis are as follows. In the absence of electric field, the
on-site energies (εn) in the AFH are set to zero, and we fix
the NNH strength t1 = 1 eV. The spin-dependent scattering
parameter h is set at 1 eV. As already mentioned, the suc-
cessive magnetic moments in the helix system are aligned in
opposite directions (±Z) [see the schematic diagram given in
Fig. 1(a)]. We set θn = 0 for all odd n sites and θn = π for
all the even n sites. The azimuthal angle ϕn is fixed to zero
for all n. In the side-attached electrodes, we choose ε0 = 0,
t0 = 2 eV. The coupling parameters tS and tD are set at 1 eV.

FIG. 2. Zero field case: Spin-dependent transmission probabili-
ties as a function of energy for (a) SRH and (c) LRH AFHs, where
the black and cyan colors are associated with the up- and down-
spin electrons, respectively. The up- and down-spin transmission
spectra get exactly overlapped with each other for each AFH. The
corresponding spin-polarization coefficients with bias voltage are
shown in (b) and (d), respectively. Spin polarization drops to zero
for the entire voltage window. Here we choose EF = −0.9 eV and
set N = 30. The dephasing strength η = 0.

All other energies are also measured in units of electron volt
(eV). Unless specified, the results are worked out considering
a right-handed AFH with β = 0 and in the absence of dephas-
ing. We set the system temperature at 100 K throughout the
discussion.

A. Spin-dependent transmission probabilities
and spin-polarization coefficient

Let us begin with spin-dependent transmission probabil-
ities, shown in the first column of Fig. 2, where Figs. 2(a)
and 2(c) are associated with the SRH and LRH AFHs, respec-
tively. The corresponding spin-polarization coefficients are
presented in the right column. All these results are evaluated
for the electric field-free condition, i.e., when Vg = 0. For both
helix systems, we find that up- and down-spin transmission
probabilities, shown by the black and cyan colors, respec-
tively, exactly overlap with each other, resulting in a vanishing
spin polarization. This is expected, as for such helices the
symmetry between the up- and down-spin sub-Hamiltonians
(H↑ and H↓) is preserved. Accordingly, we get an identical set
of energy eigenvalues for the two different spin electrons, and
thus the transmission probabilities, as the transmission peaks
are directly related to the energy eigenvalues of the bridging
system. The appearance of identical energy eigenvalues can
easily be checked by writing the Hamiltonian of the AFH
(HAFH) as a sum of the two sub-Hamiltonians (viz., HAFH =
H↑ + H↓), one is associated with up-spin electrons and the
other is involved with the down-spin ones. In the absence
of electric field, these two sub-Hamiltonians are effectively
identical to each other and, hence, the same set of energy
channels is obtained. For a particular AFH, the sharpness of
different transmission peaks depends on the coupling (tS and
tD) of the helix to the side-attached electrodes. With increasing
the coupling, the transmission peaks get more broadened, and
the broadening due to this coupling is always higher than that
caused by the thermal effect. In our numerical calculation,
since tS and tD are comparable to t1 (strong coupling limit),
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FIG. 3. Results in the presence of electric field with Vg = 0.6 V.
In (a) and (c), spin selective transmission probabilities as a function
of energy are shown for (a) SRH and (c) LRH AFHs, where the black
and cyan colors are associated with up- and down-spin electrons,
respectively. The corresponding P-V curves are shown in (b) and (d),
respectively. All the other physical parameters are the same as taken
in Fig. 2.

any significant change with increasing temperature is not ex-
pected and therefore we restrict our calculation at a moderate
temperature.

Depending on the specific range of electron hopping, we
get a contrasting nature in the transmission peaks and their
arrangements over the energy window. For the chosen set
of parameter values, electrons can hop in a few neighboring
lattice sites in the SRH system and, for this case, the trans-
mission peaks are quite uniformly spaced and peaked as well.
More regular behavior is obtained as we move toward the
NNH model. A finite and large gap is obtained across E = 0,
following the energy gap in the SRH system. This is quite
analogous to the binary alloy system where alternate sites pos-
sess two different energies and repeat it throughout the system
due to the AFM ordering. But once the higher-order hopping
of electrons is taken into account, like what is considered for
the LRH system, the sharp gap around E = 0 disappears. At
the same time, the uniformity is lost significantly. Along one
edge of the energy window, the transmission peaks are closely
packed, whereas large gaps between the peaks are obtained
along the other edge of the window [33]. All these characteris-
tics are the generic features of a LRH system. This asymmetric
distribution, on the other hand, plays an important role to
achieve a favorable response in spin polarization, which can
be visualized in the forthcoming discussion.

The situation drastically changes once we apply an elec-
tric field. In Fig. 3, we show the results for the same set
of systems as taken in Fig. 2, considering the gate voltage
Vg = 0.6 V. Several notable features are obtained—those are
illustrated one by one as follows. At first glance, we find that
up- and down-spin transmission probabilities get separated
both for SRH and LRH helices, as clearly reflected from
the spectra given in Figs. 3(a) and 3(c), where two different
colors are associated with two different spin electrons. In
the presence of electric field, site energies get modified in
a cosine form, following Eq. (7), which makes the system
a disordered (correlated) one [57–59]. Due to this disorder,
the symmetry between up- and down-spin sub-Hamiltonians
gets broken, which provides different sets of spin-specific
energy channels. Under this situation, a mismatch occurs

FIG. 4. Simultaneous variations of P with bias voltage V and
gate voltage Vg for a 50-site LRH AFH when EF is fixed at 1 eV.
The dephasing parameter η = 0.

between the spin-dependent transmission spectra. Apparently,
it seems that the separation between the up- and down-spin
transmission peaks is not that much larger, what we generally
expect from ferromagnetic systems, but selectively placing
the Fermi energy, we can have the possibility of getting a
reasonably high degree of spin filtration. This is precisely
shown in Figs. 3(b) and 3(d). Both for SRH and LRH AFHs,
large spin polarization is obtained over a particular voltage
range but the response becomes more favorable for the case of
LRH AFH. This is entirely due to the nonuniform distribution
of the transmission peaks around the center of the spectrum.
So, naturally, starting from an NNH AFH, we can expect a
better response whenever we include an additional hopping of
electrons, and we confirm it through our detailed numerical
calculations. Moreover, it is pertinent to note that the cosine
modulation in site energies due to the electric field makes the
system a nontrivial one, as it generates a fragmented energy
spectrum (which is the generic feature of the well-known
Aubry-André-Harper (AAH) model [57–59]). This behavior
helps us to find a high degree of spin polarization, even at
multiple Fermi energies.

The key conclusion that is drawn from the above analysis is
that the breaking of the symmetry between up- and down-spin
sub-Hamiltonians in the AFH entirely depends on the external
electric field which makes the system a disordered (corre-
lated) one. In the absence of helicity, the site energies become
uniform. Under this situation, the symmetry between the sub-
Hamiltonians associated with up- and down-spin electrons
gets preserved and, hence, no such spin filtration phenomenon
is obtained.

B. Possible tuning of spin polarization

This subsection deals with the possible tuning of spin
filtration efficiency by adjusting different parameter values
associated with the junction setup. From the above analysis,
since it is already established that LRH AFH is superior to the
SRH AFH, in the rest of our discussion we concentrate only
on the LRH AFH systems unless stated otherwise.

Figure 4 shows simultaneous variations of spin-polariza-
tion coefficient P with bias voltage V and gate voltage Vg.
Both these factors play a significant role in spin filtration
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FIG. 5. Dependence of P with EF and Vg when the bias voltage
is fixed at 0.2 V. The other parameters are N = 50 and η = 0.

efficiency. When Vg is absolutely zero (i.e., in the absence of
electric field) there is no spin polarization as up- and down-
spin sub-Hamiltonians are symmetric. With increasing Vg, we
are expecting a favorable spin polarization, but attention has
to be given to the localizing behavior of energy eigenstates.
The inclusion of an electric field transforms the AFH from
a completely perfect to a correlated disordered system and,
thus, for large Vg the eigenstates will be almost localized. In
that limit, we cannot get spin filtration operation. Hence, we
need to restrict Vg in such a way that the energy channels are
conducting in behavior (see Ref. [39] for a comprehensive
analysis of electronic localization in SRH and LRH helices
in presence of transverse electric field). For a fixed Vg, when
a finite voltage drop is introduced across the junction, we
get a nonzero spin polarization, depending on the dominating
energy channels among up- and down-spin electrons. With the
increase of the bias window, more and more numbers of both
up- and down-spin channels are available that contribute to
the current and, hence, the possibility of mutual cancellations
becomes higher, which can reduce the degree of spin polariza-
tion. Thus, both Vg and the bias voltage need to be considered
selectively to have a favorable response.

Like bias voltage V , the choice of EF is also very crucial.
Our aim is to find a suitable EF where any of the two spin
channels dominates over the other, as maximum as possible.
This, on the other hand, is directly linked with the gate voltage
Vg as it influences the site energies of the AFH. To have an idea
about the selection of Vg and EF , in Fig. 5 we show the de-
pendence of P on these quantities. The results are computed,
setting the voltage drop V = 0.2 V. This typical bias voltage
is considered due to the fact that here we can get a favorable
response as reflected from Fig. 4. We vary EF almost over
the entire allowed energy window, and it is seen that for a
wide range of EF (∼ − 2 � EF �∼ 2), a reasonably large P is
obtained. Thus, fine tuning of EF is no longer required, which
is of course quite important in the context of experimental
realization of our proposed setup.

In the same footing, it is indeed required to check the
filtration efficiency when we simultaneously vary EF and the
bias voltage V , keeping the gate voltage constant. The results
are shown in Fig. 6, where we fix Vg = 0.8 V. This typical
value of Vg is chosen observing the favorable response from
Figs. 4 and 5. Here also we find that a high degree of spin

FIG. 6. Dependence of P with EF and V when the gate voltage is
fixed at 0.8 V. The other parameters are N = 50 and η = 0.

polarization is achieved at different bias drops across the junc-
tion for several distinct choices of Fermi energy EF . All these
favorable responses are associated with the modifications of
the up- and down-spin energy channels.

Along with the favorable spin polarization, a complete
phase reversal (change of signs) of P is also obtained from
all these figures (Figs. 4–6), which is due to the swapping
of dominating spin channels with the change of the physical
parameters.

Now we concentrate on the effect of field direction, which
is changed by the parameter β. The dependence of spin polar-
ization with β is presented in Fig. 7 by varying β from 0 to 2π .
Almost a regular oscillation is shown providing high peaks
(P ∼ 100%) and dips (P ∼ −100%). The magnitude and sign
reversal of P are due to the modifications of spin-specific
energy channels of the helix with β as it is directly related to
the site energy [see Eq. (7)]. It suggests that the spin filtration
efficiency can be monitored selectively by changing the field
direction, keeping all other factors unchanged.

Following the above analysis, it is found that the helicity
and electric field are strongly correlated with each other, and
in the absence of any of these two, spin filtration is no longer
possible. At this stage, it is indeed required to check the
effect of helicity on a deeper level. In Fig. 8, we show the

FIG. 7. Variation of spin polarization (P) with the field direction
(β). The other physical parameters are EF = 0.5 eV, V = 0.2 V,
Vg = 0.8 V, N = 50 and η = 0.
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FIG. 8. . Simultaneous variations of P with �φ and �h. Here
we choose EF = 0.5 eV, V = 0.2 V, Vg = 0.8 V, N = 50, β = 0, and
η = 0.

conformational effect of the helical geometry on spin polar-
ization. We vary �h and �φ in a reasonable range around
the chosen values of these parameters for the LRH AFH, as
mentioned in Table I. The radius R is kept constant, which
is 0.25 nm. The twisting angle �φ has an important role as
it modulates the site energy as well as the hopping integrals.
But the more pronounced effect is observed by changing the
stacking distance �h. With the enhancement of

�h, for a fixed �φ, the hopping of electrons in larger
sites gradually decreases, and the system approaches the NNH
model, providing reduced spin polarization. In the limiting
region when electrons can hop only between the nearest-
neighbor sites, the spin polarization becomes vanishingly
small. Carefully inspecting the density plot given in Fig. 8,
it is inferred that the best performance is obtained for low �h
when the twisting angle is confined within the range ∼π/2 �
φ � ∼2π/3. Thus, the helicity and higher-order hopping of
electrons are the key aspects to having a high degree of spin
filtration.

C. Effect of dephasing

To have a more realistic situation, especially consider-
ing the experimental facts, in this subsection we explore the
specific role of dephasing [46–50] that may enter into the
system in many ways on spin polarization. Different kinds of
interactions of the physical system with external factors can
phenomenologically be incorporated through the dephasing
effect.

Accuracy checking of theoretical prescription
in presence of dephasing

Before presenting the results in the presence of dephasing,
it is indeed required to check the accuracy of the theoretical
formulation illustrated above in Sec. II. To do that, we con-
sider a spin-less LRH helix with 15 lattice sites, as a typical
example, and compute the currents in all the Büttiker probes
(such probes are connected in all the sites of the helix from the
site number 2 to 14), along with the drain current (red curve).
The results are shown in Fig. 9 for the two distinct dephasing

FIG. 9. Current in the drain electrode (red curve) along with the
currents in all the Büttiker probes (other colored curves, not clearly
seen as they almost overlap to each other) as a function of bias
voltage for a spinless LRH helix, where (a) η = 0.25 and (b) η = 0.5.
The other physical parameters are N = 15, EF = 0.3 eV and Vg = 0.

strengths that are presented in (a) and (b), setting the Fermi
energy EF = 0.3 eV. It is clearly seen that the drain current is
reasonably large than the currents in all the Büttiker probes,
and most interestingly we find that the currents in the Büttiker
probes are almost zero, even for too high voltages. This
is exactly what we are expecting, i.e., the vanishing current
condition in each dephasing electrode. Thus, we can argue
that the theoretical prescription given here can safely be used
to study the effect of dephasing.

Now we come to the results of AFH in the presence of
dephasing. Like Fig. 6, in Fig. 10 we show the simultane-
ous variations of P on the bias voltage V and the Fermi
energy EF , fixing the dephasing strength η = 0.1. All other
physical parameters are kept unchanged, as taken in Fig. 6.
The effect of dephasing is quite appreciable. What we see
is that the Fermi energy and the bias windows for which a
high degree of spin polarization is available in the absence of
dephasing (see Fig. 6) get reduced when the dephasing effect
is taken into account. The reduction of spin polarization in
the presence of η can be explained as follows. In the Büttiker
probe prescription, the effect of dephasing is incorporated by
connecting each and every lattice site of the AFH with virtual
electrodes. Due to the coupling of the AFH to these virtual
electrodes, transmission peaks get broadened, and thus more
overlap takes place between the up and down spin channels.
Therefore, these two spin-dependent channels contribute to
the current and, hence, the spin polarization decreases. A
similar kind of dephasing effect (viz., reduction of P with η) is
also obtained when we observe simultaneous variations of P
with Vg and V keeping EF constant, and Vg and EF considering
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FIG. 10. A similar kind of density plot, as given in Fig. 6, in the
presence of dephasing, with the dephasing strength η = 0.1.

a fixed bias voltage. Accordingly, here we do not present the
density plots of P, as shown in Figs. 4 and 5, in the presence
of η as the role η can be guessed in these cases.

Here it is relevant to check the dependence of spin current
(IS = I↑ − I↓) and spin polarization for other values of the de-
phasing strength η as well. The results are given in Figs. 11(a)
and 11(b), respectively, by varying η in a reasonable range.
Three different Fermi energies are taken into account, those
are represented by three different colored curves. It is clearly
observed that the spin current decreases with increasing η, fol-
lowing the above argument of the broadening of both up- and
down-spin transmission peaks and their overlap [Fig. 11(a)].
This reduction of spin current can also be implemented by

FIG. 11. (a) Spin current and (b) spin-polarization coefficient as
a function of dephasing strength η at three typical Fermi energies.
Here we set N = 50, V = 0.2 V, and Vg = 0.8 V.

means of phase randomization of the electrons in the virtual
electrodes, as originally put forward by Büttiker [46,47,50].
Electrons enter into these electrodes and they come back to
the helix system after randomizing their phases, and thus more
mixing of the two opposite spin electrons occurs, resulting
in a reduced spin current. In the same analogy, the degree of
spin polarization gets decreased with increasing the dephasing
strength [Fig. 11(b)]. From P-η characteristics, it is found that
though the spin filtration efficiency gets reduced with η, still
a sufficiently large value of P is obtained even when η is
reasonably large. Thus, we can safely claim that our proposed
quantum system can be utilized as an efficient functional ele-
ment for spin filtration operation under strong environmental
interactions as well as the limit of high temperatures.

D. Possible experimental routes of designing AFH

Finally, we refer to some experimental works where differ-
ent kinds of AFM systems have been used, aiming to establish
confidence that our proposed magnetic helix system can also
be realized experimentally. In the presence of an external
magnetic field, Johnston has reported [60] magnetic properties
and other related phenomena considering an AFH system.
There have been several experimental works performed by
Sangeetha and coworkers, where they found helical antifer-
romagnet in different compounds. For instance, in Ref. [61],
Sangeetha et al. established a transition from an AFM to para-
magnetic phase using the compound EuCo2−yAs2 with spin
S = 7/2, which possesses a helical shape [61]. In that work,
they measured different physical quantities like magnetic
susceptibility, heat capacities, etc. A high nuclear magnetore-
sistance was also found in that sample [62]. In another work,
Sangeetha et al. established helical AFM ordering, consider-
ing EuNi1.95As2 single crystal [63]. Goetsch et al. reported
the same in polycrystalline sample Lu1−xScxMnSi at higher
Neél temperature [64]. The AFH pattern has also been noticed
in an organic molecule. Lin et al. reported the canted AFM
behavior in [M(mtpo)2(H2O)n], M = Co2+ or Ni+ with a he-
lical topology [65]. Pylypovskyi et al. suggested an idea about
the tailoring of the geometry of curvilinear antiferromagnet
[66]. This prescription allows substantiating a chiral heli-
magnet in the presence of Dzyloshinskii-Moriya interaction.
Considering the helical antiferromagnet sample SrFeO3−δ ,
Zhao et al. discussed a metal-insulator transition [67]. There
exist several other AFHs as well.

Considering all such examples of AFH systems, we believe
that our proposed spin-polarized AFH system can be designed
with modern technology and with a suitable laboratory setup.

Here it is relevant to note that all the above-mentioned ex-
perimental references contain heavy magnetic elements, and
thus one may think whether the TB Hamiltonian mentioned in
Eq. (2) can be used to describe our helix systems or not. But
the theoretical work studied by Takahashi and Igarashi [68]
gives us confidence that Eq. (2) can safely be considered,
as in that work they have also taken a similar kind of TB
Hamiltonian to describe La2CuO4 and Sr2CuO2Cl2. There
exist several other references as well [69,70] where TB Hamil-
tonians have been taken into account for such types of heavy
magnetic elements.
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IV. SUMMARY AND OUTLOOK

We report spin filtration operation considering an AFH
system in presence of an external electric field. Both the
short-range and LRH cases are taken into account, asso-
ciated with the geometrical conformation. Simulating the
spin-polarized nanojunction (source-AFH drain) within a
TB framework, we compute spin-dependent transmission
probabilities following the well-known Green’s function for-
malism and the spin-dependent junction currents through
the Landauer-Büttiker prescription. From the currents, we
evaluate the spin-polarization coefficient. To make the pro-
posed quantum system more realistic, we also include the
effects of dephasing, and to get confidence, the accuracy
of the theoretical prescription in presence of dephasing is
critically checked. Finally, we discuss the possible routes
of realizing such an AFH geometry in a laboratory. Differ-
ent aspects of spin-dependent transmission probabilities and
spin-polarization coefficients under different input conditions
are critically investigated. The essential findings are listed as
follows.

(1) In the absence of the external electric field, up- and
down-spin sub-Hamiltonians become symmetric and thus no
spin polarization is obtained. Once the symmetry is bro-
ken by applying the electric field, finite spin polarization is
found.

(2) Comparing the results between the SRH and LRH
AFHs, it is noticed that LRH AFH is much superior to the
other. This is essentially due to the irregular distribution of
the resonant peaks in the transmission-energy spectrum. The
irregularity gradually decreases with lowering the electron
hopping among the lattice sites.

(3) The degree of spin polarization and its phase can be
tuned selectively by means of the input parameters, and the
notable thing is that a high degree of spin polarization persists
over a reasonable range of physical parameters. It clearly
suggests that fine-tuning of the parameter values is no longer
required, and hence we hope that the studied results can be
examined in a laboratory.

(4) The geometrical conformation plays an important role.
For the situation when �φ becomes zero, i.e., in the absence
of twisting, spin filtration is no longer available.

(5) Though the degree of spin filtration efficiency gets
reduced with increasing the dephasing strength η, still, rea-
sonably large spin polarization is available, even for moderate
η. It suggests that the proposed functional element can safely
be used for spin polarization under strong environmental in-
teractions as well as in the limit of high temperatures.

Our present proposition may help to design efficient spin-
tronic devices using AFHs with longer-range hopping of
electrons, and can be generalized to other correlated AFM
systems as well.
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