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The concept of bound states in the continuum (BICs) in a simple cavity attracts much interest in recent works
in wave physics. The BICs are perfectly confined modes with an infinite lifetime that reside inside the continuous
spectrum of radiative modes, but they remain totally decoupled from it. There exist several types of BICs based
on their physical origin: one of the most interesting types is Friedrich-Wintgen (FW) BICs which result from the
destructive interference of two resonant modes belonging to the same cavity. Here, we investigate theoretically
and experimentally the existence of FW BICs in a side-coupled loop. The cavity is made of a loop of length
2d = d2 + d3 connected to a stub of length d4. The whole cavity is attached vertically to two semi-infinite
waveguides by a wire of length d1. We demonstrate that the BICs can be induced either by the loop-stub system
or by the two arms of lengths d2 and d3 of the loop for specific geometrical parameters. When a perturbation in the
system produces a deviation from the BIC condition, the latter transforms to either electromagnetically induced
transparency (EIT) or reflection (EIR) or Autler-Townes splitting (ATS) resonances. Both EIT and ATS exhibit
similar features in the transmission spectrum, namely, a transparency window; however, they have different
physical origins. Therefore, EIT and ATS resonances are fitted with corresponding analytical model expressions,
revealing good agreements. The Akaike’s information criterion is then used to quantitatively discern EIT from
ATS and the transition from ATS to EIT is also carried out. Our theoretical results are obtained by means of
the Green’s function method which enables us to obtain the transmission and reflection coefficients, dispersion
relations, as well as density of states and scattering matrix. An experimental validation of all these results is
performed in the radio-frequency domain using coaxial cables.
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I. INTRODUCTION

Various physical mechanisms of wave trapping and con-
finement are exploited to improve the performance of physical
devices, which can be achieved by using high-quality (Q)
factor responses. A more attractive way to trap waves is
to use destructive interference in different kinds of physi-
cal systems [1]. This mechanism refers to the physics of
bound states in the continuum (BICs) [2]. BICs are pecu-
liar modes perfectly localized with no radiation yet lying
inside the continuous spectrum of unbounded modes. Ac-
cording to the theory, these modes can be regarded as
resonances with an infinite radiative Q factor (i.e., zero
width). The first proposal of BICs was due to Von Neu-
mann and Wigner in 1929 for quantum systems [2]. To date,
BICs represent an ubiquitous phenomenon applying to all
domains of wave physics, such as acoustics [3–10], meso-
scopics [11,12], photonics [13–15], and plasmonics [16–18].
There are numerous realizations of BICs in classical sys-
tems, leading to a wide variety of different applications such
as lasers [19], filters [20,21], demultiplexers [22], and sen-
sors [23,24]. In accordance with the classification presented in
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review [25], BICs can be categorized into several types based
on their physical origin. Among them, one can cite symmetry-
protected (SP) BICs [26–28], Fabry-Perot (FP) BICs [29], and
Friedrich-Wintgen (FW) BICs [30] which have been actively
investigated recently [10,29,31–40]. SP BICs occur when a
system presents modes with symmetry incompatibility, then
it is possible to find a bound state of one symmetry class
which falls in the continuous spectrum of another symme-
try class without any coupling between them [26–28]. FP
BICs arise when the resonance frequencies or the spacing
between two resonant structures are tuned to make the round-
trip phase shift add up to an integer multiple of 2π . This
structure is equivalent to a FP cavity created between two
resonant reflectors [10,29,31–34]. FW BICs are formed when
two resonances, belonging to the same cavity, fall near to
each other as a function of a continuous parameter, then
interference induces an avoided crossing of the resonances
and at one specific set of the parameters, one resonance
entirely vanishes and therefore becomes a FW BIC. The
other resonance becomes more lossy due to the constructive
interference [33–40]. Due to the properties of these BICs,
their realization remains elusive in one-dimensional photonic
systems [41].

In practice, the BIC does not interact with the surrounding
media, therefore, in order to be identified, it is necessary
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to make some physical modifications for different devices
supporting the BIC. For instance, by introducing specific ex-
ternal or geometrical and material perturbations, a BIC can be
coupled with unbounded modes and becomes a leaky mode.
Therefore, a small detuning from the BIC condition leads
to the transformation of a BIC to either a Fano resonance
in the vicinity of an antiresonance (transmission zero), or
an electromagnetically induced transparency (EIT) resonance
when it falls between two transmission zeros, or an electro-
magnetically induced reflection (EIR) when it falls between
two reflection zeros [11,25]. Conversely, Fano, EIT, and EIR
resonances collapse at particular frequencies and geometrical
parameters of the system giving rise to BICs; at the frequency
of the BIC, the transmission can take a zero or a nonzero value
depending on the specific problem. Let us briefly recall here
the concepts of Fano, EIT, and EIR resonances. Fano reso-
nance is characterized by an asymmetric line profile resulting
from the interaction between two different resonances of dif-
ferent quality factors or the destructive interference between a
discrete state and a continuum background [42,43]. Whereas,
EIT is originating from an interference phenomenon where a
narrow transparency window is created by eliminating a res-
onant absorption [44]. Similarly, EIR refers to the formation
of a reflection window inside a transparency band of a system.
Also, another physical phenomenon, known as Autler-Townes
splitting (ATS), can exhibit similar features as EIT in the
transmission spectrum [45]. Instead of being due to the
destructive quantum interference effect, it is caused by strong-
field-driven interactions leading to the splitting of energy
levels [46]. In essence, both EIT and ATS generate a trans-
parency window but the mechanisms behind them are entirely
different, one being a quantum destructive interference and the
other a linear alternating current (AC) Stark effect [46]. The
similarity between their spectral feature attracts much confu-
sion and discussion on the distinction between EIT and ATS,
thus, it is becoming an active topic of research in classical
systems [47–50]. Since Anisimov et al. [51] first proposed
an objective method based on Akaike’s information criterion
(AIC) to distinguish the regime where EIT or ATS dominates
in experimental data, this method has been successfully ap-
plied for discerning both mechanisms in various systems such
as cold cesium atom [52], hot molecules [53], whispering-
gallery-mode microresonators [46], plasmonic waveguides
and coupled resonators [54–56], and acoustic and photonic
systems [57–59].

Generally, FW BICs have been intensively studied both
theoretically and experimentally in regular photonic crystals
without [38,60,61] and with [41] an anisotropic defect layer,
metasurfaces [37,62–64], and grating systems [40,65,66]. In
addition to SP BICs observed at � point in the Brillouin zone,
FW BICs are observed at off-� points in regions of the band
dispersion with an accidental symmetry. These regions are
attributed to the coupling strength of two radiative modes that
interfere destructively and result in extremely high-Q factors
around the FW BIC, called supercavity resonances [1,63,64]
or near-BIC [40]. Some attempts have been performed to show
the possibility to realize FW BICs in a single supercavity.
Bogdanov et al. [35] have studied strong coupling between
modes of a single-subwavelength high-index dielectric res-
onator to enhance the high-Q factor of the cavity by use of

avoided crossing of resonances but without reaching a true
BIC as the width of the supercavity mode cannot turn to zero.
Similar results are found by Solodovchenko et al. [36] a in
finite cylindrical dielectric resonator by the anticrossing of
the two resonant modes TE1,1,0 and TM1,1,1. These simple
structures can present an advantage in comparison with pe-
riodic structures as they require just one cavity instead of
periodic cavities. In this work, we propose a simple cavity
[Fig. 1(a)] that displays FW-type BICs that transform into
either EIT, EIR, or ATS resonances when the system deviates
from the BICs conditions under a small structural perturba-
tion. The proposed system can be transposed to plasmonic
devices based on metal-insulator-metal (MIM waveguides),
which are suitable for designing efficient refractive sensor at
the nanoscale [22]. The cavity is composed of a loop of length
2d = d2 + d3 connected to a wire of length d1 and a stub of
length d4,; the whole cavity is attached vertically to a waveg-
uide at the bottom side of the wire of length d1 [Fig. 1(a)].
The boundary condition at the end of the stub is H = 0 (i.e.,
vanishing magnetic field). We demonstrate that these BICs
are common eigenmodes of both closed cavities in Figs. 1(b)
and 1(c) with Dirichlet and Neumann boundary conditions
at the bottom side of the wire, respectively (hereafter called
DBCS and NBCS, respectively). We derive closed-form ex-
pressions for the geometrical parameters which enables to
predict analytically and graphically the locations of these
BICs. Indeed, we demonstrate that the BICs are independent
of the wire d1 and additionally originate from (i) the loop-stub
system independently of the subdivision of 2d into d2 and
d3, (ii) the modes of the loop if d2 and d3 are commensurate
with each other, independently of the stub d4. EIT and ATS
phenomena are first fitted, respectively, with the correspond-
ing analytical expressions provided in Refs. [46,52,67] where
the difference between both phenomena is highlighted. Also,
we display an Akaike’s information criterion (AIC) to discern
EIT or EIR from ATS resonances. Our study is developed
through an analysis of the transmission and reflection coeffi-
cients, dispersion relations, and density of states (DOS) using
the Green’s function method [68]. A comparison between
DOS and the derivative of the argument of the determinant of
the scattering matrix (the so-called Friedel phase [69]) is also
provided. An experimental validation of all these results is
performed in the radio-frequency domain using coaxial cables
[Fig. 1(d)].

The rest of the paper is organized as follows: In Sec. II, we
give a brief review of the method of calculation based on the
Green’s function approach. We provide the analytical expres-
sions of the dispersion relation of FW BICs, the transmission
and reflection coefficients, as well as the DOS and scattering
matrix. Also, we give the FW formalism and its application
to our system. In Secs. III and IV, we give an analytical and
experimental evidence about the existence of FW BICs and
their transformation to EIT, EIR, and ATS resonances. The
conclusions are presented in Sec. V.

II. THEORETICAL MODEL AND ANALYTICAL RESULTS

The photonic structure presented in Fig. 1(a) is composed
by a loop made of two wires of lengths d2 and d3 and a stub of
length d4 grafted along the loop of length 2d = d2 + d3. This
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FIG. 1. (a) Schematic representation of the studied system composed of a loop of length 2d = d2 + d3 and a stub of length d4 coupled to
the horizontal waveguide by a wire of length d1. The whole system is inserted between two semi-infinite waveguides. (b), (c) Loop of length
2d = d2 + d3 and a stub of length d4 attached to a wire of length d1 with Dirichlet (E = 0) (b) and Neumann (H = 0) (c) boundary conditions
at the bottom side of the system. (d) Experimental measurement of the transmission and reflection using standard coaxial cables and a vector
network analyzer.

loop-stub structure is attached by a wire of length d1 to two
semi-infinite waveguides. The boundary condition at the end
of the stub of length d4 is H = 0 (i.e., vanishing magnetic
field). All wires and waveguides are characterized by the
same impedance Z and dielectric constant ε but with different
lengths. The method of calculation used in this study is based
on the Green’s function approach [68], called interface re-
sponse theory of continuous media, used to solve the problem
of the propagation of electromagnetic waves in a structure
with different connection points [Fig. 1(a)]. This method en-
ables us to obtain different physical properties of the studied
system such as the transmission and reflection coefficients,
dispersion relations, and DOS. Among these properties, one
can also cite the eigenmodes of the closed cavities in Figs. 1(b)
and 1(c) called as DBCS and NBCS, respectively.

A. Transmission and reflection coefficients and eigenmodes of
DBCS and NBCS

The transmission and reflection coefficients for the struc-
ture depicted in Fig. 1(a) can be written, respectively, as
follows (see the details of the calculation in the Supplemental
Material SM1 [70]):

t = τ

τ + jρ
(1)

and

r = − jρ

τ + jρ
, (2)

where

τ = 2S1S[2SC4 + S4C] + C1[S2S3S4 − 2C4SC] (3)

and

ρ = −2C1S[2SC4 + S4C] + S1[S2S3S4 − 2C4SC], (4)

and Ci = cos(kdi ), Si = sin(kdi ) (i = 1, 2, 3, 4), C =
cos(kd ), S = sin(kd ), k = ω

c

√
ε with d = d2+d3

2 . ω is the
angular frequency, ε is the permittivity of the waveguides, Z
is the characteristic impedance, and c is the speed of light in
vacuum.

From the expression of t [Eq. (1)] and r [Eq. (2)], one can
obtain the transmission and reflection rates, respectively, as

T = τ 2

τ 2 + ρ2
(5)

and

R = ρ2

τ 2 + ρ2
. (6)

In the absence of dissipation, the conservation energy law T +
R = 1 can be obtained straightforwardly.

In a previous work [71], we have shown that the eigen-
modes of an isolated system with either vanishing electric
field (E = 0) called Dirichlet boundary condition structure
(DBCS) [Fig. 1(b)] or vanishing magnetic field (H = 0) called
Neumann boundary condition structure (NBCS) [Fig. 1(c)]
can be obtained, respectively, from the transmission and re-
flection zeros when this system is coupled to a waveguide
as in Fig. 1(a) (see the Supplemental Material SM1 [70]).
Therefore, from the expressions of t and r [Eqs. (1) and (2)],
one can deduce the eigenmodes of the DBCS and NBCS,
respectively, as

τ = 0 (7)

and

ρ = 0. (8)

Equations (7) and (8) show that the eignemodes of the
DBCS and NBCS depend on the lengths d1, d2, d3, and d4 of
the four wires constituting the wire-loop-stub system. In what
follows, we will discuss different cases showing BICs accord-
ing to the choice of the geometrical parameters constituting
the whole cavity connected to the semi-infinite waveguides.

B. Conditions for BIC states

In addition to the eigenmodes of the isolated cavities in
Figs. 1(b) and 1(c) [Eqs. (7) and (8)], the eigenmodes of the
whole structure depicted in Fig. 1(a) are given by the poles
of the Green’s function or equivalently by the denominator of
the transmission and reflection [Eqs. (1) and (2)] coefficients,
namely,

τ + jρ = 0. (9)
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The latter equation is a complex quantity. Its real part gives
the position of the resonances in the transmission spectra
and the DOS, whereas its imaginary part is related to the
width of the resonance. However, if the real (i.e., τ ) and
imaginary (i.e., ρ) parts vanish at the same frequency, this
will correspond to a bound state falling in a continuum of
states. These results clearly show that the BICs [Eq. (9)] are
common modes of DBCS [Eq. (7)] and NBCS [Eq. (8)]. From
an analysis of Eqs. (3) and (4), one can deduce two types of
solutions that are both independent of d1, namely, the BICs
induced by the loop-stub structure and the BICs induced by
the two arms of the loop. The latter are also independent of d4.
By adding and subtracting Eqs. (3) and (4) after multiplying
them, respectively, by S1 and C1, one can easily obtain a first
solution of these equations as

S[2SC4 + S4C] = 0 (10)

and

S2S3S4 − 2C4SC = 0. (11)

One can note that the BIC conditions, namely, simultane-
ous vanishing of Eqs. (3) and (4), are independent of length
d1. However, we shall see later the essential role of d1 for
the behavior of the transmission and reflection spectra around
the FW BIC. It is worth noting that Eqs. (10) and (11) cor-
respond, respectively, to the eigenmodes of the loop of length
d2 + d3 in contact with the stub of length d4 with Dirichlet and
Neumann boundary conditions at the bottom side of the loop
where d2 and d3 are attached. After straightforward algebraic
calculations, one can get four types of solutions from Eqs. (10)
and (11) where the first three solutions depend on d4 whereas
the fourth one is independent of d4:

(a1)

S = 0 and S4 = 0, (12)

i.e., kd = mπ and kd4 = m4π , where m and m4 are integers
with m �= 0. This implies that d4 and d = d2+d3

2 are commen-
surate (i.e., d4

d = m4
m ) whatever the values of d1, d2, and d3.

(a2)

C = 0, C4 = 0, and S2 = 0 (or S3 = 0), (13)

i.e., kd = (2m+1)π
2 and kd4 = (2m4+1)π

2 , kd2 = m2π , kd3 =
m3π , and m2, m3 are nonzero integers with m2 + m3 = 2m +
1 or equivalently d2 and d3 are commensurate such that d2

d3
=

m2
m3

where m2 and m3 are of different parities. Also, d4 and d

are commensurate such that d4
d = 2m4+1

2m+1 .
(a3)

k(d2 − d3) = (2n + 1)π and tan(kd4) = −2 tan(kd ), (14)

where n is an integer.
(b) In addition to the solutions induced by the loop stub,

there is another solution induced by the two arms of lengths
d2 and d3 of the loop, namely,

S = 0 and S2 = 0 (or S3 = 0), (15)

i.e., kd = mπ , kd2 = m2π , kd3 = m3π , and m2, m3 are
nonzero integers with m2 + m3 = 2m or equivalently d2 and
d3 are commensurate such that d2

d3
= m2

m3
where m2 and m3 are

both odd or both even. In this case, Eqs. (3) and (4) vanish

simultaneously giving rise to BIC whatever the values of d1

and d4.

C. Density of states and Friedel phase

Another important quantity that enables to deduce the dis-
tribution and the weight of the different states in the system is
the DOS. The Green’s function approach allows us to deter-
mine the variation of the DOS [�n(ω)] of the present system
and the original uncoupled systems such as [68]

�n(ω) = 1

π

d

dω

[
arctan

(
τ

ρ

)]
. (16)

The details of the calculation are given in the Supplemental
Material SM1 [70].

In addition to the study of the transmission and reflec-
tion coefficients, an interesting complementary quantity that
enables to determine other information on the scattering pa-
rameters such as the Friedel phase [69] is the scattering matrix
S, namely,

S =
(

r t
t r

)
, (17)

where t and r are the transmission and reflection coefficients
given by Eqs. (1) and (2), respectively.

Indeed, we first provide an exact analytical comparison
between the DOS and the Friedel phase defined as [69]
θ f = Arg[det(S)] for a lossless system. Then, we shall see
numerically and experimentally the effect of the loss on such
relationship. The determinant of the scattering matrix S for the
cavity is given by

det(S) = r2 − t2 = τ 2 + ρ2

(ρ − jτ )2
. (18)

Therefore, for the lossless system, the scattering Friedel phase
can be written as

θ f = Arg[det(S)] = 2 arctan

(
τ

ρ

)
. (19)

Hence, on can deduce from Eqs. (16) and (19) that the DOS is
related to the Friedel phase [69] as

dθ f

dω
= 2π�n(ω). (20)

Equation (20) shows that the DOS can be measured in-
directly from the measurement of the phase of det(S). One
can notice that for the lossless system, we can easily check
the well-known relation |det(S)| = 1. Also, for a lossy sys-
tem, the analytical equation (20) is no longer valid when
det(S) tends to zero, and therefore dθ f

dω
exhibits a different

behavior in comparison with the DOS. It is worth noting
that Eq. (20) has been obtained in mesoscopic systems in
absence of loss [72,73], however, there are few works on such
relationship in the presence of loss [62,74–79]. In addition,
most of the theoretical demonstrations assume that the sys-
tems are lossless [62,76,77] which hide interesting additional
information when det(S) is close to zero. Recently, we have
given a detailed comparative study of the DOS and scattering
parameters for lossless and lossy photonic systems [79].
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D. Friedrich-Wintgen BIC formalism

In the next section, we will show that FW BICs occur at the
crossing or anticrossing frequencies of two interacting modes
associated to either DBCS or NBCS. Therefore, it is neces-
sary to recall the formalism of FW BICs, which is a special
BIC obtained through geometrical and/or material parameters
tuning. Unlike the Fabry-Pérot BICs where the resonances
are induced by two cavities located at two distant positions
along the propagation direction, the resonances leading to
FW BICs are located in the same cavity and are coupled
to the same radiation channel as it is the case here [25].
In general, the spectral location of the FW BIC occurs near
the frequency crossings of the uncoupled resonances. In the
two-band model, the Hamiltonian giving the eigenmodes can
be written as a generalized eigenvalue problem [25,34]

H =
(


1 κ

κ 
2

)
− i

(
γ1

√
γ1γ2√

γ1γ2 γ2

)
, (21)

where 
1,2 and γ1,2 are the resonance frequencies and ra-
diation rates of the uncoupled resonances, respectively. κ is
the near-field coupling between the two resonances (or Rabi
splitting) and

√
γ1γ2 is the via-the-continuum coupling term

since the two resonances interfere and radiate into the same
channel. The necessary condition to get one real eigenvalue
(
−) of Eq. (21) (i.e., a BIC) and the other eigenvalue called
(
+) lossy, can be expressed as [30]

√
γ1γ2(
1 − 
2) = κ (γ1 − γ2). (22)

When Eq. (22) is satisfied, the two eigenfrequencies, solu-
tions of Eq. (21), can be written as follows [38]:


− = 
1 + 
2

2
− κ (γ1 + γ2)

2
√

γ1γ2
, (23a)


+ = 
1 + 
2

2
+ κ (γ1 + γ2)

2
√

γ1γ2
− i(γ1 + γ2). (23b)

Equations (23a) and (23b) show that at the BIC position,
the imaginary part of the complex solution is maximal (i.e.,
γ+ = γ1 + γ2), while the one of the real solution vanishes
(i.e., γ− = 0). Also, from Eqs. (23a) and (23b), one can get
the particular case where the near-field coupling κ = 0, while
the radiation rates γ1 and γ2 are different from zero. In this
case, Eq. (22) gives 
1 = 
2 = 
0 and therefore Eqs. (23a)
and (23b) become


− = 
0, (24a)


+ = 
0 − i(γ1 + γ2). (24b)

Let us mention that in our structure, the position of the
modes (
− and 
+) as well as their linewidths (γ− and γ+)
are obtained from the resonances and antiresonances in the
transmission spectra when the cavity is inserted between two
semi-infinite waveguides [Fig. 1(a)].

E. FW BIC mechanism in the loop laterally coupled to the
waveguide

We have shown that the FW BICs in the loop-stub struc-
ture occur at the intersection points between τ = 0 (DBCS)
and ρ = 0 (NBCS). We give in the Supplemental Material

SM2 [70] different cases showing the solutions of τ = 0
(DBCS) and ρ = 0 (NBCS) (i.e., BICs) according to the
choice of the geometrical parameters constituting the whole
cavity. In the vicinity of BICs, it appears either a second mode
of DBCS or second mode of NBCS. The interaction between
two DBCS modes or NBCS modes (i.e., two modes belonging
to the same cavity) is at the origin of the BICs of FW type.
Indeed, for the final system where the cavity is attached to the
semi-infinite waveguides [Fig. 1(a)], the width of one mode
vanishes when approaching the BIC while the other mode
becomes broader and more lossy in analogy with Eqs. (23)
and (24) of the FW model. Now, we focus on the FW BICs
resulting from the interaction between two modes of DBCS.
The solutions of DBCS are given by τ = 0 [Eq. (3)] which
after some manipulation can be written in a more appropriate
way in relation with the discussions below:

τ = C1
{(

4S2
1C + S2S3

)
S4 + 2S

(
4S2

1 − C
)
C4

}

+ 4S1(2C4S + S4C)cos

[
k

(
d

2
+ d1

)]
sin

[
k

(
d

2
− d1

)]
.

(25)

The frequencies of the two dips and their widths allow
us to obtain different parameters of FW model such as the
coupling strength (or Rabi splitting) κ and the linewidths of
the resonances. In analogy with the FW model, the second
term on the right-hand side of Eq. (25) plays the role of the
coupling strength κ between the two DBCS modes. Indeed,
one can distinguish two cases, namely, the case where d1 = d

2
gives rise to the two decoupled modes (with κ = 0)

C1 = 0 (26)

and (
4S2

1C + S2S3
)
S4 + 2S

(
4S2

1 − C
)
C4 = 0 (27)

and the case d1 �= d
2 with κ �= 0 (coupled modes).

In what follows, we will give some numerical illustrations
with experimental verifications of the BICs induced by (i) the
loop-stub structure with coupling (κ �= 0) and no-coupling
(κ = 0) regimes (Sec. III) and (ii) the two arms of lengths
d2 and d3 of the loop (Sec. IV). These two types of BICs
can result from the interaction of two modes of DBCS and
one NBCS or two modes of NBCS and one DBCS. When
we deviate slightly from BICs, we obtain EIT, EIR, and ATS
resonances. These two latter cases will be the subject of the
two forthcoming sections.

III. BICS AND RESONANCES INDUCED BY THE
LOOP-STUB STRUCTURE

As mentioned in Sec. II B, the whole cavity exhibits BICs
induced by the loop-stub structure which are independent of
d1. These BICs depend on d4, d = d2+d3

2 , and d2 (or d3). In
what follows, we fix the whole length of the loop (or its
half, i.e., d) and investigate the effect of d2 and d4 on the
BICs as well as their transformation into EIT, EIR, and ATS
resonances for given values of d1. In this section, we shall
give the details of a theoretical and experimental evidence of
BICs for two given values of d1 (d1 = 0.5d and 0.3d) while
choosing d2 = 0.2d and d3 = 1.8d . We start by treating the

125414-5



MADIHA AMRANI et al. PHYSICAL REVIEW B 106, 125414 (2022)

FIG. 2. (a) Dispersion curves of the system depicted in (b) with DBCS (τ = 0, cyan lines) and (c) with NBCS (ρ = 0, pink lines) as a
function of the length d4 for d1 = 0.3. The lengths of the arms of the loop are taken such that d2 = 0.2 and d3 = 1.8. Open circles represent the
minima of the transmission and reflection spectra obtained by the experimental data. (b) Theoretical variation of the transmission magnitude
and (c) DOS in arbitrary units versus 
 and the length of the stub d4. (d) Rabi splitting κ between the two branches in (a) as a function of
d1. The inset gives a comparison between the exact (solid line) and approximate (open circles) results of κ around d1 = 0.5. The approximate
results will be discussed later together with Eq. (28).

BICs given by Eq. (12), namely, when d4 and d are taken
commensurate (i.e., d4

d = m4
m ). These BICs are given by kd =

mπ . We shall focus on the BICs falling around kd = π (i.e.,
m = 1) and d4 = d (i.e., m4 = 1). The lengths of the arms
of the loop (d2 = 0.2d and d3 = 1.8d) do not introduce any
additional BICs around kd = π as the corresponding BICs
fall at kd = 5π (see Sec. II B). For the sake of simplicity,
all lengths will be given in units of d = 1 m (half of the
length of the loop) and we use the dimensionless frequency

 = kd

π
= ωd

√
ε

πc . The experiment is performed using a vector
analyzer and standard coaxial cables [Fig. 1(d)]. The details of
the experimental procedure are given in Ref. [68]. In the cal-
culation, the loss is introduced by adding a complex dielectric
constant (ε = ε′ + jε′′) to match the experimental data. The
attenuation coefficient α′′ can be expressed as α′′ = ε′′ω

c
√

ε′ .

A. Coupling regime

As mentioned above [Eq. (25)], in order to get a coupling
between the two crossing branches of DBCS, we should take
d1 different from d1 = 0.5. Figure 2(a) shows the dispersion

curves versus d4 of the DBCS (cyan lines) and NBCS (pink
lines) for d1 = 0.3. One can see an avoided crossing behavior
around 
 = 1 with a Rabi splitting κ = 0.072 at d4 = 1 of the
two DBCS branches. As predicted, a BIC appears at 
 = 1
when d4 = 1 as the intersection of one DBCS (τ = 0) and one
NBCS (ρ = 0) branch. In the vicinity of the BIC, one can ob-
serve the coupling between two DBCS branches, as required
for the FW BIC type. The cyan and pink open circles indicate
the experimental data related to the minima and maxima of
the transmission coefficient, respectively. The variation of the
transmission magnitude (in color scale) versus d4 is given
in Fig. 2(b), demonstrating the noticeable appearance of the
anticrossing point around 
 = 1 and d4 = 1. One can observe
that the width of lower dip narrows to zero (γ− = 0) at d4 = 1,
resulting in FW BIC owing to the destructive interference
between the two DBCS modes of the cavity. Whereas, the up-
per dip becomes more lossy (γ+ = γ1 + γ2 = 0.12) as shown
by the blue color at the anticrossing point [Fig. 2(b)]. This
satisfies the FW criterion in Eq. (22). The avoided crossing
is due to the strong coupling between the two modes of the
cavity. We also notice that the width of the upper mode is
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considerably affected by the length d4, while the width of the
lower mode is less affected. However, when we shift from the
FW BIC position, one can obtain either EIT or ATS depending
on the length d4 as will be discussed below in Sec. III B. These
results are also confirmed in the DOS reported in Fig. 2(c).
One can see the shrinking of the lower resonance width lead-
ing to a delta peak at the FW BIC position, while the width of
the upper mode remains almost constant and is less affected by
the length d4. Let us mention that the Rabi splitting depends
significantly on d1. Hence, we give in Fig. 2(d) the Rabi split-
ting κ (solid line) versus d1 around d1 = 0.3. It can be seen
that κ changes sign when d1 goes through 0.5. In other words,
when d1 is below 0.5 and κ is positive, it is the lower DBCS
branch that crosses the NBCS branch and they give rise to the
FW BIC as shown in Fig. 2(a). On the contrary, for d1 above
0.5, κ becomes negative and it is the higher DBCS branch
that crosses the NBCS branch, while the lower DBCS branch
detached from the NBCS branch. At d1 = 0.5, κ is zero and
the two DBCS and the one NBCS branches cross each other
at the frequency of the BIC. These behaviors are discussed
in the Supplemental Material SM2 [70]. In Sec. III B, we
will discuss the approximate results displayed in the inset
of Fig. 2(d) (open circles) around d1 = 0.5 in the case of
no-coupling regime (i.e., κ = 0) together with an approximate
expression [Eq. (28)].

To gain a deeper insight about the behavior of FW BIC,
we present in Fig. 3 the transmission magnitude (left panel)
and DOS (right panel) versus 
 for different values of d4.
The predicted position of the FW BIC is indicated by the
vertical dashed lines in Figs. 3(d) and 3(k). Let us start with
the case d4 = 0.5 [Fig. 3(a)]: one can see a broad transparency
window squeezed between two dips (indicated by solid and
dashed vertical arrows) giving rise to the ATS resonance.
Now, when d4 increases from 0.5 to 0.9 [Figs. 3(b) and 3(c)],
the width of the fixed dip (indicated by the solid arrow) around

 = 1 decreases and the second dip (indicated by the dashed
vertical arrow) gets close to the first mode around 
 = 1.
Thus, the width of the transparency window decreases giving
rise to an asymmetric EIT resonance. For d4 = 1 [Fig. 3(d)],
the Friedrich-Wintgen condition is met at 
 = 1, resulting
in the collapse of the first dip in the shape of the FW BIC
with zero radiation loss (γ− = 0). Whereas, the second dip
becomes more radiative, its radiation loss becomes the sum of
two initial modes γ+ = γ1 + γ2 = 0.13. For d4 > 1, the dip
around 
 = 1 reappears again at 
 < 1 when d4 increases
as it is shown by the solid arrow in Figs. 3(e)–3(g), while
the other mode indicated by the dashed arrow remains almost
constant around 
 = 1.04. Similarly to Figs. 3(a) and 3(c),
one can obtain EIT or ATS according to the value of d4 > 1
[Figs. 3(e) and 3(g)]. The theoretical (red curves) and exper-
imental (green curves) results are in good agreement. The
DOS in Figs. 3(h)–3(n) (right panel) further reveals that the
width of the peak at 
 � 1 (indicated by the solid arrow)
decreases as far as d4 tends to 1. For d4 = 1 [Fig. 3(k)], the
width of the peak reduces to zero, leading to the formation of
a delta peak (FW BIC). Whereas, the second peak (indicated
by the dashed arrow) remains broad and its position gets closer
to 
 = 1 for d4 � 1. For d4 > 1 [Figs. 3(l)–3(n)], the first
peak falls below 
 = 1 when d4 increases, whereas the upper
mode (dashed arrow) remains almost constant at 
 = 1.04.

As mentioned above, the relation between the DOS [Eq. (16)]
and the derivative of the Friedel phase [Eq. (19)] is exact for
a lossless system [Eq. (20)]. However, the presence of loss
affects considerably the above relation. From Figs. 3(h)–3(n),
one can see that the DOS is almost similar to dθ f

dω
except at

d4 = 0.9 and 1.1 where the derivative of the Friedel phase ex-
hibits a negative delta peak at the quasi-BIC position. Indeed,
this can be explained by the fact that det(S) almost vanishes
(i.e., t � ±r) at this position and changes sign, resulting in an
abrupt phase change of π in the phase of det(S) and then a
negative delta peak in the derivative of the Friedel phase of θ f

as illustrated in Figs. 3(j) and 3(l). The experimental results of
the derivative of the Friedel phase (green open circles) are in
good agreement with the theoretical ones in presence of loss
(blue dashed lines).

To give an overview of the FWHM of the two dips in
Figs. 3(a)–3(g), we display in Fig. 4(a) the linewidth of the
lower γ− (blue line) and upper γ+ (red line) dips versus d4.
These data are extracted from the resonance peaks in the
transmission spectra of the theoretical results in presence of
loss. The linewidth of the lower dip decreases as far as d4

tends to 1 and becomes zero at d4 = 1 resulting in the for-
mation of FW BIC. Whereas, the upper dip increases with
d4 and goes through a maximum (γ+ � 0.13) at d4 = 1 and
then decreases for d4 > 1. Consequently, the BIC in the lower
branch at d4 = 1 coincides with the maximum of the radiative
loss in the upper branch. This is in accordance with the loss-
exchange mechanism at the FW BIC given in Eq. (22). This
is a characteristic of FW BIC, namely, when one of the modes
becomes lossless γ− = 0, the other mode takes the all losses
(γ+ is maximal). The experimental results (open circles) are
well reproduced by the theoretical ones (continuous curves).
Figure 4(b) represents the Q factors of the lower (blue lines)
and upper (red lines) dips. One can note that the Q factor
presents different behaviors for both dips. It depends consid-
erably on the values of d4. At the BIC position, the Q factor
of the lower dip (Q−) reaches a high value, whereas the Q
factor (Q+) of the upper dip remains fixed around Q+ = 10.
It is worth noting that even in presence of loss, the Q factor
increases and it goes to infinity when d4 tends to d4 = 1 as γ−
tends to zero.

In the previous results, we have discussed the modes given
analytically by Eq. (12). In this section, we do not discuss
further the solutions of Eq. (13) because the physical inter-
pretations are similar to those found with Eq. (12) (see the
Supplemental Material SM2 [70]). Now, we focus on the addi-
tional BICs obtained graphically by Eq. (14). These modes are
independent of the wire of length d1. Therefore, the length d1

is fixed to 0.3 and we shall discuss the results around 
 = 2.
The dispersion curves of both systems DBCS (cyan lines)
and NBCS (pink lines) are illustrated in Fig. 5(a), showing
multiple avoided crossings as well as multiple FW BICs at
different values of d4. The coordinates of these anticrossing
points fall around (d4 = 0.55 and 
 = 1.96) and (d4 = 1.06
and 
 = 1.96). In the vicinity of these anticrossing points,
one can see the intersection of the DBCS and NBCS curves,
resulting in the formation of FW BICs. The first BICs labeled
I, III, and V are given by Eq. (12) (i.e., 
 = 2 and d4 = m4

2
where m4 = 1, 2, 3). The BICs marked II and IV (cyan dia-
mond) are obtained graphically from Eq. (14) (i.e., n = 2).
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FIG. 3. (a)–(g) (Left panel) Transmission coefficient versus 
 for different values of d4 around d4 = 1 for d1 = 0.3. The lengths of the
arms of the loop are taken such that d2 = 0.2 and d3 = 1.8. Blue and red curves correspond to theoretical results without and with loss,
respectively, whereas green curves correspond to experimental results. (h)–(n) (Right panel) Variation of the DOS (red lines) and the derivative
of the Friedel phase

dθ f

dω
(blue dashed curves) for different values of d4. The position of FW BIC is indicated by the dashed lines in (d) and

(k). The theoretical results of
dθ f

dω
(blue dashed lines) are validated by the experimental data (green open circles). The solid and dashed arrows

indicate the positions of the transmission dips.

These modes fall, respectively, around d4 = 0.65 and 1.18 at

 = 1.87. Interestingly, it can be clearly observed that the FW
BICs are located in this case in the vicinity of the avoided
crossing branches and not at the crossing position itself as in

Fig. 2. The open circles represent the maxima and minima of
the transmission coefficient obtained from the experimental
data. These results are also confirmed in the variation of
the transmission magnitude as shown in Fig. 5(b). To reveal
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FIG. 4. (a) The radiative linewidth and (b) the quality factor of the lower (blue lines) and upper (red lines) dips indicated by the arrows in
Figs. 3(a)–3(g) as a function of the length d4. Open circles correspond to the experimental data. The black arrows indicate the positions of FW
BIC.

more neatly the behavior of these BICs, we focus on the first
avoided crossing as given in the inset of Fig. 5(a). In this
context, we give in Figs. 5(c)–5(f) the transmission spectra
versus 
 for different values of d4 near d4 = 0.5. One can
notice the existence of FW BIC marked I around 
 = 2 indi-
cated by the dashed vertical line in Fig. 5(c) where the width
of the first dip vanishes and the transmission rate takes the
value T = 0.3. For d4 = 0.55 [Fig. 5(d)], the BIC transforms
to a quasi-BIC in the lossless transmission spectrum (blue
curve). For d4 = 0.6 [Fig. 5(e)] the quasi-BIC still persists
and remains robust due to its proximity with the second FW
BIC marked II at d4 = 0.65 as shown in Fig. 5(f). Let us note
that the BICs I and II are independent of d1 and between
these two BICs, we obtain always quasi-BICs by adjusting
the parameter d4. However, the loss affects considerably these
quasi-BICs, which render difficult their detection in the exper-
imental transmission spectra [Figs. 5(d) and 5(e)].

B. No-coupling regime

As can be seen from Eq. (25) for d1 = 0.5, there is a
crossing between two branches of DBCS [Eqs. (26) and (27)]
at 
 = 1. Figure 6(a) shows the variation of the eigenmodes
of the DBCS (cyan lines) and NBCS (pink lines) versus the
length d4 of the stub. The blue horizontal curve at 
 = 1
corresponds to the modes given by C1 = 0 [Eq. (26)], whereas
the other cyan branches are given by Eq. (27) of the DBCS.
Two branches cross each other at 
 = 1 and d4 = 1 (i.e.,
S = 0 and S4 = 0) since Eq. (27) can easily be factorized
by C1, giving rise to a two-times degenerate mode of DBCS
with no coupling κ = 0 [see Fig. 2(d)]. Also, the condition
S = S4 = 0 (Sec. II B) makes the branch associated to NBCS
(pink lines) pass also through this frequency 
 = 1, giving
rise to a FW BIC [Fig. 6(a)]. When we shift from the crossing
point, FW BIC transforms to either EIT or ATS resonances,
i.e., a resonance (ρ = 0) squeezed between two transmission
zeros (τ = 0) (see below). The cyan and pink open circles
represent, respectively, the minima of the transmission and
reflection coefficients obtained from the experimental spectra
(see below). There is a good agreement between the experi-
mental and analytical results.

In order to give a better insight about the behavior of FW
BIC, we plot in Figs. 6(b) and 6(d), respectively, the theoreti-
cal and experimental variations of the transmission magnitude
(in color scale) versus 
 and d4. One can observe a crossing
between the mode of the loop alone [Eq. (26)] at 
 = 1 and
the other mode of the cavity [Eq. (27)] with κ = 0 at 
 = 1
where the FW BIC occurs. More notably, the BIC occurs
when one of the two modes is lossless γ− = 0, while the
other mode is highly lossy with γ+ = γ1 + γ2 = 2γ1 = 0.1
[Eq. (24)] and 
1 = 
2 = 
0 = 1 as shown in Figs. 6(b)
and 6(d). In the vicinity of the crossing point at 
 = 1, the
separation between the two modes increases when d4 devi-
ates from d4 = 1 leading to a narrow transparency window
between them as shown in Figs. 6(b) and 6(d). This phe-
nomenon, originating from a destructive interference between
the incident wave and the scattered wave by the finite struc-
ture, represents what is called EIT resonance. As mentioned
previously, this kind of resonance is a consequence of the
coupling between the FW BIC induced by the loop and the
other modes obtained by loop-wire-stub system. When we
shift significantly from d4 = 1, the two modes become very
separated from each other around the crossing point (d4 = 1,

 = 1). Therefore, the transmission dip splits into two dips
with a broad transparency window in the middle referred to as
the electromagnetic analog of ATS when d4 is far from d4 = 1.
The experimental results [Fig. 6(d)] are in good agreement
with the theoretical ones [Fig. 6(b)] in presence of loss. In
addition, EIT and ATS as well as BICs can be characterized
also by the DOS where these modes appear as resonances with
either finite or zero width. Figure 6(c) shows the DOS (with
color scale) versus 
 and d4. One can observe a shrinking of
the resonances at the crossing point around 
 = 1 and d4 = 1
giving rise to a delta peak at the BIC (see below). When
we shift from the BIC condition, we obtain classical Breigt-
Wigner resonances in the DOS (see below). These results are
in accordance with those found in the transmission magnitude
[Figs. 6(b) and 6(d)].

As mentioned previously [Eq. (25)], the FW BIC did not
depend on the length of the wire d1, however, the coupling
strength κ (or Rabi splitting) between the two branches of
DBCS [Eq. (25)] depends strongly on d1 around d1 = 1

2 .
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FIG. 5. (a) Dispersion curves of DBCS (cyan lines) and NBCS (pink lines) as a function of d4 for d1 = 0.3. The black (cyan) diamond
indicates the positions of FW BICs marked I, III (II, IV, V). The lengths of the arms of the loop are taken such that d2 = 0.2 and d3 = 1.8.
The cyan and pink open circles represent the experimental results obtained from the minima and maxima of the transmission coefficient.
(b) Theoretical variation of the transmission magnitude versus 
 and the length of the stub d4. (c)–(f) Transmission spectra for different
values of d4. Blue and red curves correspond to theoretical results without and with loss, respectively, whereas green circles correspond to the
experimental results. The dashed lines in (b) and (e) indicate the positions of FW BICs. The inset in (a) shows a magnification around the first
anticrossing at d4 = 0.55.

Therefore, in order to give a quantitative study of this coupling
effect close to d1 = 1

2 (i.e., d1 = 1
2 + δ), we have performed

an approximate analytical expression for the Rabi splitting κ .
A tedious calculation based on a Taylor expansion of Eq. (25)
at d4 = 1 around 
 = 1 (i.e., 
 = 1 + πε with πε � 1) en-
ables us to get

κ = 2π [(π�2) − 2]

χ1 − χ2 + χ3
δ, (28)

where χ1 = 14 − 3(2πδ)2 − (2π�)2, χ2 = 2π [6δ(1 +
2δ) − 2�(1 − 2�)], χ3 = 9(2πδ)2[2δ + 1] − 24δ, and
� = d2−d3

2 .
Equation (28) clearly shows that when δ = 0 (i.e., d1 = 1

2 )
the Rabi splitting κ vanishes, thus, there is no coupling be-
tween the two modes of the cavity. Whereas, when δ shifts
slightly from 0, κ becomes negative or positive depending on
whether d1 > 1

2 (i.e., δ > 0) or d1 < 1
2 (i.e., δ < 0), respec-
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FIG. 6. (a) Dispersion curves of the systems depicted, respectively, in Fig. 1(b) with DBCS (τ = 0, cyan lines) and Fig. 1(c) with NBCS
(ρ = 0, pink lines) as a function of the length d4. The lengths of the arms of the loop are taken such that d2 = 0.2 and d3 = 1.8. Cyan and pink
open circles represent, respectively, the minima of the transmission and reflection spectra obtained from the experimental data. (b) Theoretical
and (d) experimental variation of the transmission magnitude versus 
 and d4. (c) DOS (in color scale) in arbitrary units versus 
 and d4.

tively. These results are confirmed in the inset of Fig. 2(d)
where we have plotted the exact (red line) and approximate
(open circles) results of κ versus d1 around d1 = 1

2 . It can be
observed that close to d1 = 1

2 , the exact and the approximate
results present a good agreement.

To further visualize the behavior of FW BIC, we plot in
Fig. 7 the transmission (left panel) and DOS (right panel)
versus 
 for different values of d4 around d4 = 1. The blue
and red curves correspond to the theoretical transmission re-
sults without and with loss, respectively, whereas the green
circles represent the experimental data. The experimental re-
sults show good agreement with the calculated ones. The filled
circle on the abscissa of Fig. 7(d) and the dashed line in
Fig. 7(k) indicate the position of FW BIC in the transmission
and DOS spectra, respectively. This mode is invisible in the
transmission spectra as well as in the DOS as the width of
the resonance tends to zero. In addition to our analytical

prediction of the BIC position at 
 = 1, different phenom-
ena appear when we gradually shift the stub of length d4

from d4 = 1. Indeed, if we shift strongly d4 from d4 = 1
(for example, d4 = 0.5), one can see [Fig. 7(a)] the existence
of a broad transparency window squeezed between two dips
indicated by solid and dashed vertical arrows. In this case,
this phenomenon can be qualified as ATS effect. ATS is a
transparency window squeezed between two dips, which is
similar to the EIT profile in the transmission spectra but
with different intrinsic mechanisms. The first dip indicated
by the solid arrow remains almost fixed at 
 = 1 whatever
the value of d4, while the second dip indicated by the dashed
arrow depends considerably on d4. For d4 = 0.7 [Fig. 7(b)],
the width of the transparency window between the two dips
decreases, therefore, a transition between ATS and EIT occurs
where the two phenomena coexist. Remarkably, near the BIC
point [Fig. 7(c)], the second dip get even closer to the fixed
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FIG. 7. (a)–(g) (Left panel) Transmission coefficient versus 
 for different values of d4 around d4 = 1. The lengths of the arms of the loop
are taken such that d2 = 0.2 and d3 = 1.8. Blue and red curves correspond to theoretical results without and with loss, respectively, whereas
green curves correspond to experimental results. (h)–(n) (Right panel) Variation of the DOS �n(ω) (red lines) and the derivative of the Friedel
phase

dθ f

dω
(blue dashed curves) for different values of d4. The theoretical results of

dθ f

dω
(blue dashed lines) are validated by the experimental

data (green open circles). The position of FW BIC is indicated by the filled circle in (d) and by dashed line in (k). The solid and dashed arrows
indicate the positions of transmission dips associated to the two interacting modes of the DBCS.

dip at 
 = 1 leading to the narrowing of the width of the
transparency window between them. This is a characteristic
of the EIT resonance. For d4 = 1, the two dips cross each
other at 
 = 1 and the width of the resonances collapses to

a hidden resonance or BIC with an infinite lifetime as shown
in Fig. 7(d). The same behavior occurs for d4 > 1 where the
second dip reappears again but at the left-hand side of the
fixed dip (i.e., 
 < 1) as shown in Figs. 7(e)–7(g).
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These behaviors are confirmed also in the DOS (red lines)
and the derivative of the Friedel phase dθ f

dω
(dashed blue lines)

in Figs. 7(h)–7(n) (left panel) which provides a deeper un-
derstanding of the FW BIC. The BIC appears as a delta peak
in the DOS [Fig. 7(k)] with an infinite lifetime, whereas, by
detuning from the BIC condition, the dips appear as classical
Breight-Wigner resonances characterized by a given width
related to their lifetime. From the DOS spectra, one can see
that the first resonance which corresponds to the first dip in
the transmission spectra remains almost fixed around 
 = 1,
while the second resonance is strongly affected by d4. The
position and width of the peak decrease [Fig. 7(i)] and merge
with the first resonance for d4 = 0.9 [Fig. 7(j)]. For d4 = 1
[Fig. 7(k)], the width of one of the two resonances vanishes
giving rise to a delta peak at 
 = 1 which corresponds to
FW BIC, whereas the second resonance becomes broader and
more lossy. For d4 > 1 [Figs. 7(l)–7(n)], the same behavior
appears where the second resonance reappears this time below
the first one at 
 < 1. A comparative study of DOS (red lines)
and dθ f

dω
(blue dashed lines) is illustrated in Figs. 7(h)–7(n).

One can notice that around the BIC position, the DOS and dθ f

dω

exhibit different behavior around 
 = 1 for d4 = 1.1 where
dθ f

dω
presents negative delta peak at the quasi-BICs. Whereas,

when we shift far from d4 = 1, the DOS becomes almost
similar to dθ f

dω
.

C. Discerning EIT from ATS

It is well known that there is a common feature between
EIT and ATS. Both phenomena involve the transmission zeros
which are induced by the coupling field. When the coupling
field is strong so that the two transmission zeros are well sep-
arated, then ATS is obtained. Whereas, in the case of a weak
coupling field, the two transmission zeros get close to each
other, and EIT appears due to the interference between the
incident wave and scattered wave. The formation of the trans-
parency window exists because of the superposition of two
Lorentzian profiles representing the two transmission zeros
(two dips). However, in order to quantitatively discriminate
EIT from ATS, an AIC test is used to fit our theoretical data
and to choose the best explanation for the induced trans-
parency window in each coupling regime. Aside from the
different mechanisms associated to ATS and EIT, analytical
fitting methods [46,52,67] have been proposed to distinguish
between EIT and ATS. The fitting formula for ATS can be
written as [52]

TATS = 1 − C1(�1/2)2

(
 − 
1)2 + (�1/2)2
− C2(�2/2)2

(
 − 
2)2 + (�2/2)2
,

(29)
where 
1 and 
2 are the dimensionless frequencies corre-
sponding to the two dips, and C1, C2, �1, and �2 are free
parameters to fit with the theoretical data. The signs of the
second and the third terms are both negative. Similarly, the
fitting formula of EIT is given by[52]

TEIT = 1 − C+(�+/2)2

(
 − 
c − ε)2 + (�+/2)2

+ C−(�−/2)2

(
 − δc)2 + (�−/2)2
, (30)

where 
c is the dimensionless frequency corresponding to the
peak, and C+, C−, �+, �−, and ε are free parameters to fit
with the theoretical data. Obviously, the opposite signs of the
second and third terms cause destructive interference, giving
rise to a transparency window in the shape of EIT resonance.
By using the least-squares method to fit the transmission co-
efficients in Eqs. (29) and (30) with the theoretical data, it is
recommended to consider the physical meaning of the free
parameters to set reasonable initial values, where C1, C2, C+,
and C− are the amplitudes of the Lorentzian profiles, �1, �2,
�+, and �− are their full width at half-maximum (FWHM),
and ε is the shift from 
c with a small value.

In Fig. 8, we have compared directly our theoretical trans-
mission spectra (black lines) with the fit functions ATS (blue
curves) and EIT (red curves) for three values of d4 as il-
lustrated in Figs. 8(a)–8(c). In the case d4 = 0.5 [Fig. 8(a)],
where the ATS effect is predominant, the fitting curves using
ATS formula [Eq. (29)] match very well with the theoretical
data where the peaks and dips are well reproduced. In con-
trast, as expected, the fitting curves obtained with the EIT
formula [Eq. (30)] fail to match the theoretical results (red
curves). The good agreement for the ATS model supports
the proposed physical mechanism that the ATS effect origi-
nates from the strong splitting between the two modes of the
structure. For d4 = 0.7 [Fig. 8(b)], the transmission spectrum
deviates appreciably from both EIT and ATS models which
can be explained by the transition region from EIT to ATS.
Furthermore, in the case d4 = 0.9 [Fig. 8(c)], the theoretical
data fit very well with EIT model and deviate drastically from
the ATS model. Note that when fitting the ATS model, the
transparency window disappears, which means that the ATS
model cannot ever be applied (blue curves).

By varying the stub of length d4, the transition from ATS
to EIT can be quantitatively studied by evaluating the quality
of the fit models. The AIC is used to discern EIT from ATS,
which provides a method to select the best model from a set
of models quantifying the amount of information loss, i.e.,
the degree of unfitness, and is given as I j = 2k′ − 2ln(Lj ),
where k′ is the number of unknown parameters used in the
fitting [46] and Lj is the maximum likelihood function for the
candidate model Aj , i.e., j = ATS or EIT. Since we already
found the best-fit models of EIT and ATS, it is sufficient
to calculate the relative likelihood of these two models. The
relative likelihood of model Aj out of two models is measured
by the relative weight as [46]

wATS = e−IATS/2

e−IATS/2 + e−IEIT/2
, (31)

with wATS + wEIT = 1.
Figures 8(d) and 8(e) show the AIC mean weight for ATS

(blue curves) and EIT (red curves) models for three values
of d4. Figures 8(d) and 8(e) represent the AIC obtained by
fitting the theoretical data without and with loss, respectively,
whereas, Fig. 4(f) corresponds to the AIC obtained by fitting
the experimental data. An analysis of Figs. 8(d) and 8(e) re-
veals, as expected, that the AIC mean weight of ATS model is
dominant for 0.5 � d4 � 0.65, which means that the two dips
are sufficiently separated and so the transmission spectrum
behaves like two individual dips with a strong splitting effect.
Whereas, when d4 is around d4 = 1 (0.8 � d4 � 0.98 and
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FIG. 8. Comparison of the fitting curves obtained with the ATS model (blue curves) and with the EIT model (red curves) with the theoretical
results (black lines) for d4 = 0.5 (a), 0.7 (b), and 0.9 (c). AIC per-point weight of the EIT and ATS models as a function of d4 obtained by
fitting the theoretical data without (d) and with (e) loss, and the experimental data (f).

1.02 � d4 � 1.2), the separation becomes weak and the two
dips get closer, then the EIT effect occurs, as shown by the
increase in wEIT. However, when d4 increases further, the AIC
mean weight of ATS becomes dominant again for 1.4 � d4 �
1.5. We also notice that the system transits from EIT to ATS
regime when d4 is around 0.75 and 1.3. Note that the EIT and
ATS coexist at these two crossing points. As mentioned above,
for d4 = 1, the two dips fall at the same value (
 = 1), then
the width of the resonance vanishes giving rise to a FW BIC. A
good agreement is obtained between the theoretical [Fig. 8(e)]
and experimental [Fig. 8(f)] AIC weights.

Let us mention that the previous results can also be ob-
tained with the coupling of two modes of NBCS and one mode
of DBCS. In this case, we shall set the length of the wire d1

to d1 = 1. The details of these calculations and some illus-
trations of dispersion relations are given in the Supplemental
Material SM2 [70]. Also, a detailed study about the effect
of the wire of length d1 on EIT and EIR resonances is also
provided in the Supplemental Material SM3 [70].

IV. BICS AND RESONANCES INDUCED BY THE TWO
ARMS OF THE LOOP

In Sec. II B [Eq. (15)], we have shown the existence of
BICs when d2 and d3 are taken commensurate (i.e., d2

d3
= m2

m3
where m2 and m3 have the same parity). These BICs are
independent of d1 and d4. In what follows, we shall focus on
the BICs around d2 = d3 (i.e., m2 = m3 = 1) and introduce
the detuning � = d2−d3

2 . Similarly to Eq. (25), Eqs. (3) and (4)
can be written more appropriately for the discussions below as
follows:

τ = S{2C4(2S1S− C1C)+ S4(2CS1+ C1S)}− C1S4 sin2(k�)
(32)

and

ρ = S{2C4(2C1S+ S1C)+ S4(2CC1− S1S)}+ S1S4 sin2(k�).
(33)

In particular, if � = 0 (i.e., d2 = d3), we obtain a de-
coupling between the modes of DBCS given by Eq. (34),
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namely,

S = 0 (34)

or

2C4(2S1S − C1C) + S4(2CS1 + C1S) = 0. (35)

Similarly, the modes of NBCS which are given by Eq. (33)
divided into two totally decoupled sets given by

S = 0 (36)

or

2C4(2C1S + S1C) + S4(2CC1 − S1S) = 0. (37)

The above analysis shows that the modes given by S = 0 (i.e.,
kd = mπ , m is a nonzero integer) are common modes of τ =
0 [Eq. (32)] and ρ = 0 [Eq. (33)], respectively, and therefore
present BICs whatever the values of d1 and d4.

The crossing between the modes given by Eqs. (34)
and (35) of the DBCS occurs for d1 = m1 (m1 is an inte-
ger). Similarly, the crossing of the modes given by Eqs. (36)
and (37) of the NBCS occurs for d1 = m′

1 + 1
2 (m′

1 is an
integer). An example of the crossing of the two decoupled
branches of the DBCS around d1 = 1 (m1 = 0) and 
 = 1
(i.e., m = 1) for � = 0 is given in Fig. 9(a) (green curves)
for d4 = 0.5. The horizontal branch at 
 = 1 corresponds to
the BIC induced by the loop [Eq. (34)], the other branch is
given by Eq. (35). For � �= 0, the term on the right-hand
side of Eq. (32) plays the role of the coupling parameter
which enables a lifting of the degeneracy of the two crossing
branches obtained for � = 0. An example is given in Fig. 9(a)
for � = 0.1 (dark red curves) with κ = 0.12. κ increases
almost linearly as a function of � as it is shown in Fig. 9(b).
Figures 9(c) and (d) show the dispersion curves of both DBCS
(cyan curves) and NBCS (pink curves) for � = 0 and 0.1,
respectively. As predicted from Eqs. (34) and (36), both types
of modes in Fig. 9(c) exhibit a common horizontal branch at

 = 1 giving rise to a robust BIC whatever the value of d1. For
� = 0.1 [Fig. 9(d)], an avoided crossing between the modes
appears around d1 = 1 for DBCS and around d1 = 0.5, 1.5 for
NBCS. At the lifting of the degeneracy of the DBCS modes at
d1 = 1 and 
 = 1 (cyan curves), there exists an NBCS mode
between them (pink curve). This is a characteristic of the EIT
resonance as shown in Figs. 9(e) and 9(f) where we plotted the
transmission spectra versus 
 for � = 0 and 0.1, respectively.
For � = 0 [Fig. 9(e)], one can observe the existence of FW
BIC at 
 = 1. When � deviates from � = 0 [Fig. 9(f)], the
FW BIC transforms to EIT resonance. Similarly, at the lifting
of the degeneracy of the NBCS modes at d1 = 0.5 and 1.5
around 
 = 1 (pink curves), there exists a DBCS mode (cyan
curve). This is a characteristic of the EIR resonance as shown
in Figs. 9(g) and 9(h).

The variation of the transmission magnitude spectra in
presence of loss is reported in Figs. 10(a) and 10(b) (in color
scale) for � = 0 and 0.1, respectively. We have indicated by
horizontal line the position of the BIC in Fig. 10(a) for � = 0.
These modes are not visible in the transmission spectra and
remain robust whatever the value of d1 (indicated by the large
circles). By slightly detuning � from 0 [Fig. 10(b)], a thin
transparency window appears between the two transmission

zeros around d1 = 1 giving rise to EIT resonance. These re-
sults are confirmed experimentally in Figs. 10(c) and 10(d) for
� = 0 and 0.1, respectively. Additionally, the phenomenon
is inverted around d1 = 0.5 and 1.5 (i.e., m′

1 = 0, 1) where a
transmission zero is squeezed between two transmission max-
ima; this is a characteristic of the EIR resonance as illustrated
in Figs. 10(e)–10(h).

Now, we fix the values of d1 and d4 to 1 and 0.5, respec-
tively, and we discuss the effect of the detuning � = d2−d3

2
between the two arms of lengths d2 and d3 of the loop. In
this case, two types of BICs can be found as a function of
�. Figure 11(a) shows the dispersion curves versus � for
the DBCS (cyan curves) and NBCS (pink curves). The open
circles represent the minima and maxima of the transmission
coefficient extracted from the experimental data. The black
diamonds indicate the position of the FW BICs marked I, II,
III, and IV. Let us consider separately two regions: region
of no coupling (κ = 0) and region of coupling (κ �= 0). The
former occurs at 
 = 1 where the dispersion curves cross
each other, resulting in the formation of FW BIC marked I
and II. The corresponding coordinates are (�I = 0, 
I = 1)
and (�II = 1, 
II = 1). These modes are obtained analyti-
cally from Eq. (15) (i.e., 
 = m2+m3

2 and � = m2−m3
m2+m3

with
m2 = m3 = 1 and m2 = 2, m3 = 0 respectively). When we
move away from the crossing points, we assist to a separation
between the two modes of the DBCS. Now, around �III =
0.4 and �IV = 0.68, the modes undergo a strong coupling
accompanied by a typical anticrossings with Rabi splitting
κ = 0.085 and 0.075, respectively. Therefore, the FW BICs
marked III appear on the upper branch around 
III = 1.3 and
marked on the lower branch IV around 
IV = 0.73 where
the modes of DBCS and NBCS intersect. These latter BICs
are obtained graphically from Eq. (14). However, a separation
between the two modes (DBCS and NBCS) occurs outside the
anticrossing regions.

The variation of the transmission magnitude (in color
scale) versus 
 and � is given in Fig. 11(b), demonstrating
the crossing points with κ = 0 at 
 = 1, �I = 0, and �II = 1.
Also, one can see the regions of the coupling where the
anticrossings are observed with κ = 0.085 and 0.075 around
�III = 0.4 and �IV = 0.68, respectively. Furthermore, there
are two remarkable common features of the two regimes in
Fig. 11(b). First, it can be clearly noticed that one mode takes
all losses (i.e., γ+ = γ1 + γ2) while the other mode becomes
a BIC (i.e., γ− = 0). Second, when we shift from these spe-
cific points, one can obtain a transparency window squeezed
between two transmission zeros giving rise to EIT resonances.
The theoretical results [Fig. 11(b)] are in good agreement with
the experimental results [Fig. 11(c)]. In Figs. 11(d)–11(f),
we plotted the calculated and measured transmission spec-
tra around the anticrossing point at (�III = 0.4, 
III = 1.3).
Figure 11(e) shows the position of the FW BIC marked III
for 
III = 1.3 and �III = 0.4. Around �III = 0.4, the FW
BIC transforms to EIT resonance as shown in Figs. 11(d)
and 11(f) for � = 0.3 and 0.5, respectively. One can also
observe that the width of the transparency window increases
when � shifts away from the anticrossing point. The behavior
of the transmission spectra around the BICs marked I and II
has been already discussed in Fig. 9(e). It is worth noting that
the coupling between the modes of the cavity around 
 = 1
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FIG. 9. (a) Dispersion curves of DBCS versus the length d1 for � = 0 (green curves) and � = 0.1 (dark red curves). (b) Rabi splitting
κ between the two modes in (a) as a function of �. Dispersion curves of both DBCS (cyan curves) and NBCS (pink curves) as a function
of d1 for (c) � = 0 and (d) � = 0.1. Variation of the transmission magnitude versus 
 and d1 for (e) � = 0 and (f) � = 0.1 in the case d1.
Variation of the reflection magnitude versus 
 for (g) � = 0 and (h) � = 0.1 in the case d1 = 0.5. The horizontal dashed line in (e) indicates
the position of the robust BIC. The large circles indicate the positions of crossing and anticrossing points.
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FIG. 10. Variation of the transmission magnitude versus 
 and d1 for (a) � = 0 and (b) � = 0.1. The horizontal dashed line in (a) indicates
the position of the robust BIC. (c), (d) Experimental validation of the results in (a) and (b), respectively. Variation of the reflection magnitude
versus 
 and d1 for (e) � = 0 and (f) � = 0.1. (g), (h) Experimental validation of the results in (e) and (f), respectively. The large cyan and
red circles indicate the positions of EIT and EIR resonances, respectively.

depends significantly on d4. Indeed, when d4 �= 0.5, we assist
to a lifting of degeneracy at the crossing points giving rise to
anticrossing points (not shown here).

All the analytical results presented in Sec. II B about the
BIC analysis remain valid when the boundary condition at the
end of the stub of length d4 is E = 0 (i.e., vanishing electric
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FIG. 11. Dispersion curves of DBCS (cyan curves) and NBCS (pink curves) as a function of � for d1 = 1 and d4 = 0.5. (b), (c) Variation
of the theoretical and experimental transmission magnitude versus 
 and �, respectively. The black diamonds show the positions of FW BICs.
(d)–(f) Transmission spectra for three values of � around � = 0.4 and 
 = 1.3. Blue and red curves correspond to the theoretical results
without and with loss, respectively, whereas green circles correspond to experimental data.

field) instead of H = 0. Just we need to permute C4 by −S4

and S4 by −C4 in all equations.

V. CONCLUSION

In summary, we have given an analytical and experimental
evidence about the existence of FW BICs in a simple cavity
made of a loop of length 2d = d2 + d3 connected to a stub
of length d4. The whole cavity is attached vertically to two
semi-infinite waveguides by a wire of length d1. The behavior
of FW BICs is analyzed as a function of several geometrical
parameters constituting the cavity. Indeed, we have shown
the existence of FW BICs induced by (i) the loop and the
stub, in particular when d4 and d are taken appropriately
commensurate at certain frequencies whatever the value of d1,
d2, and d3. By slightly deviating d4 from the corresponding
conditions, one can obtain either EIT or ATS depending on
the values of d4. Due to the similarity of the transparency
window in the transmission spectra, ATS and EIT phenomena
are first fitted with the corresponding analytical expressions,
where the difference between both phenomena is highlighted.
The fit parameters are demonstrated as function of the length
of the stub d4. Based on the AIC criterion, we have clearly

identified the EIT and ATS regimes as well as the transition
from ATS regime to EIT regime. In addition, there exist other
types of FW BIC which are associated to the loop-stub system
whatever the value of d1. The geometrical parameters and the
corresponding frequencies are obtained graphically. (ii) When
d2 and d3 are taken commensurate, one can obtain a FW BIC
whatever the values of d1 and d4 and which transforms into
EIT, EIR, or ATS resonances when we shift slightly from the
BIC condition. Also, we have given an experimental deter-
mination of the DOS through an analysis of the argument of
the determinant of the scattering matrix. This study has been
performed by means of the Green’s function method which
enables us to determine analytically the transmission and re-
flection coefficients as well as the dispersion relations and
DOS. The analytical results are confirmed by the experimental
measurements using the coaxial cables in the radio-frequency
regime. The results presented in this work can be transposed
straightforwardly to mesoscopic systems [11,12,80] as well
as plasmonic MIM waveguides operating in the infrared do-
main by taking properly the geometrical parameters at the
nanoscale [22,81]. The structure can be proposed to real-
ize an efficient refractive index sensor. This last work is in
progress.
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