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We theoretically investigate exciton-polaritons in a two-dimensional (2D) semiconductor heterostructure,
where a static magnetic field is applied perpendicular to the plane. To explore the interplay between the
magnetic field and strong light-matter coupling, we employ a fully microscopic theory that explicitly incorporates
electrons, holes, and photons in a semiconductor microcavity. Furthermore, we exploit a mapping between the
2D harmonic oscillator and the 2D hydrogen atom that allows us to efficiently solve the problem numerically
for the entire Rydberg series as well as for the ground-state exciton. In contrast to previous approaches, we can
readily obtain the real-space exciton wave functions and we show how they shrink in size with the increasing
magnetic field, which mirrors their increasing interaction energy and oscillator strength. We compare our theory
with recent experiments on exciton-polaritons in GaAs heterostructures in an external magnetic field and we
find excellent agreement with the measured polariton energies. Crucially, we are able to capture the observed
light-induced changes to the exciton in the regime of very strong light-matter coupling where a perturbative
coupled oscillator description breaks down. Our work can guide future experimental efforts to engineer and

1,2

control Rydberg excitons and exciton-polaritons in a range of 2D materials.
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I. INTRODUCTION

Excitons are bound electron-hole pairs that can be optically
addressed and manipulated in a direct band-gap semicon-
ductor. While the lowest energy ground-state exciton is the
easiest to access experimentally—it has the largest bind-
ing energy and the strongest coupling to light—the excited
Rydberg excitons have recently been gaining much atten-
tion due to their strong dipole-dipole interactions [1,2]. In
particular, by coupling the Rydberg states to photons in
a microcavity, there is the possibility of creating Rydberg
exciton-polaritons [3-5] with giant optical nonlinearities,
which have potential applications in quantum photonics [6].
However, their reduced oscillator strength makes it challeng-
ing to achieve the strong light-matter coupling regime, which
requires the coherent energy exchange between excitons and
cavity photons to be faster than the rate of dissipation [7].

One route to enhancing the coupling to light is to subject
the excitons to a static magnetic field, since this effectively
creates an additional confinement on the electron-hole wave
function [8]. Experiments on GaAs heterostructures have al-
ready successfully tuned exciton-polaritons with a magnetic
field and observed the emergence of strong coupling for
Rydberg excitons at sufficiently large fields [9-11]. At the
same time, the light-matter interactions themselves can mod-
ify the electron-hole wave function [12], leading to either a
reduction or an enhancement of the exciton size (for lower or
upper polaritons, respectively) [13—15]. Indeed, light-induced
changes to the exciton radius were recently demonstrated in

2469-9950/2022/106(12)/125407(16)

125407-1

multiple GaAs quantum wells embedded into a microcavity
[16]. Here, a magnetic field was used to probe the diamagnetic
shift of polaritons in the very strong coupling regime, where
the ratio between the exciton-photon coupling strength to the
exciton binding energy approaches unity. However, as yet,
there is no theory for the exciton-polariton that can describe
the interplay between a very strong light-matter coupling and
the effect of a magnetic field.

In this paper, we present an exact microscopic calcula-
tion of a two-dimensional (2D) exciton-polariton in a static
perpendicular magnetic field. Our work relies on two key
innovations: a recently developed microscopic model for the
polariton in the absence of a magnetic field, which exactly
incorporates the light-induced modification of the electron-
hole pair in a semiconductor microcavity [15]; and an exact
mapping between the 2D harmonic oscillator and the 2D
hydrogen atom. The latter allows us to solve the problem in
momentum space, thus giving us easy access to the spectrum
of weakly bound Rydberg states as well as the ground-state
exciton. We find excellent agreement between our theory
and the recent experiments on polaritons in a magnetic field
[11,16], thereby illustrating the accuracy and versatility of our
approach. In particular, we provide a direct and quantitative
comparison with experiments in the very strong light-matter
coupling regime [16], where a simple coupled oscillator de-
scription fails. Ultimately, we expect our theory to be able to
guide experiments that seek to control excitons with light and
magnetic fields, for instance, in atomically thin materials such
as transition-metal dichalcogenides (TMDs).

©2022 American Physical Society
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This paper is organized as follows. Our model for an
exciton-polariton in a magnetic field is introduced in Sec. II.
In Sec. III, we first solve the exciton problem in the absence
of light-matter coupling and determine the properties of the
Rydberg series in a magnetic field. Then in Sec. IV, we
include a strong light-matter coupling, properly accounting
for the renormalization of the cavity photon [15]. To illustrate
the power and utility of our approach, we compare our theory
with recent experimental measurements on exciton-polaritons
in magnetic fields [11,16] in Sec. V. Finally, we indicate some
future directions of the research in Sec. VI.

II. MODEL

In this work, we consider a 2D semiconductor embedded
in an optical microcavity and subjected to a static perpendic-
ular magnetic field. The Hamiltonian can be decomposed into
the key elements of this system, corresponding to the matter
excitations of the semiconductor, the light field within the
microcavity, and the light-matter coupling:

H= ['A]mat + ﬁph + ﬁph—mat' (D

When a photon of the microcavity is incident on the
semiconductor with an energy that exceeds the band gap,
a negatively charged electron is excited into the conduction
band, leaving behind a positively charged hole in the valence
band. To describe such an electron-hole pair, we can write the
matter part of the Hamiltonian in first quantization as follows:

Hmat =

Lpo e o0 1?7, L e o 7?
[b.+ SAG] + 5| br — SAG)]
2m, c 2my, c

+ V(IE. — £, @

where, for simplicity, we neglect the spin degrees of free-
dom, and we assume we are close to the band edge where
the conduction and valence bands have parabolic dispersions.
Here, £, and £, (p. and p;,) are the in-plane position (mo-
mentum) operators for an electron and a hole, respectively,
while m, and my, are their effective masses, e is the elementary
charge (i.e., the magnitude of the electron’s charge), and c is
the speed of light. For convenience, we choose to work in
the symmetric gauge such that the vector potential is given
by A(r) = %(B xr) = (—By/2, Bx/2, 0), where B =V x
A(r) = (0, 0, B) corresponds to a magnetic field of strength
B applied perpendicular to the plane. Such a gauge is also
consistent with the Coulomb gauge [V - A(r) = 0] which is
used to describe the coupling to light.

We employ the 2D Coulomb potential to characterize the
electron-hole interactions:

62

VE(r, — 1)) = —

_—, 3)
& |re - I'h|
where ¢ is the static dielectric constant of the semiconduc-
tor. However, as we shall discuss, our approach is valid for
other interaction potentials, including the Rytova—Keldysh
one [17-19] which properly models the dielectric screening in
atomically thin TMDs [20,21]. Notice that we use Gaussian
units (4wey = 1), we measure energies with respect to the
band gap, and we set both % and the system area to unity.

In the single-particle (e.g., electron) problem without a
magnetic field, the momentum operator p, commutes with

the Hamiltonian and acts as the generator of translations.
However, in the presence of a uniform magnetic field B,
while the system remains translationally invariant, the correct
generator of translations becomes the aptly named magnetic
momentum, which in the symmetric gauge is given by K, =
Pe — EA(f‘e) [22]. Similarly, in the electron-hole problem, we
have the total magnetic momentum operator

K =p.— SA@G) +Dr+ Al =P — —Bxt, (4
c c 2c

where P = p, + py is the operator for the center-of-mass mo-
mentum and £ = £, — £, for the relative position. Note that
while the magnetic momentum of an electron-hole pair is
a good quantum number of the matter Hamiltonian (2), the
center-of-mass momentum is generally not.

For the photonic part of the Hamiltonian (1), we use the
second quantized form

Hy, = wé'e, ®)

where the operator &t (&) creates (annihilates) a single cav-
ity photon with bare frequency w. For simplicity, we only
consider photons at normal incidence to the semiconducting
plane, i.e., with zero in-plane momentum. However, even
when the photon in-plane momentum is nonzero, it is still
negligible compared to the typical momenta of the electrons
and holes. Therefore, we can straightforwardly account for a
nonzero photon momentum in a planar cavity via a shift of the
cavity frequency.

We assume that the length scale over which light interacts
with matter is much shorter than the magnetic length or any
other relevant length scale in the system. That is, we assume
that a photon creates an electron and a hole at essentially zero
relative separation. Thus, within the dipole approximation, the
light-matter coupling term can be written as

Hypomar = g8°(B)[ 7 + 2], (6)

where 82(r) is the 2D Dirac delta function and the constant g
describes the strength of the short-range contact interaction.
Since the normally incident photon creates an electron-hole
pair with both zero center-of-mass momentum and zero
electron-hole separation, the magnetic momentum K is also
zero according to Eq. (4). Therefore, because K is a good
quantum number, we can set it to zero throughout the entire
problem.

We now transform the full light-matter coupled system (1)
into the center-of-mass frame of the electron-hole pair:

A =UHU", (7a)
U= exp{—if’ . R} = expi—i[f( + i(B X f')]~ ﬁ}
2c
(7b)

where R = (m.t, + myty)/(m, + my) is the operator for the
pair’s center-of-mass position.! We can immediately see that
the operator (7b) of this unitary transformation commutes

'This transformation to the center-of-mass frame for two bodies
under the influence of a magnetic field was first performed by
Lamb [47] in his dealings with the hydrogen atom, and subsequently
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with both th (5) and th_mat (6), such that they are left
unchanged. The only effect of Eq. (7a) is to recast Hyy (2)
in terms of the positions and momenta of the pair’s center-
of-mass and relative motions—in a way that respects the
translational symmetry of the system in a magnetic field. After
some algebra, we arrive at the transformed matter part of the
Hamiltonian:

2 2
! p en ~ N AN2
=— - —B- Bxt
= 5 T B EX P s BB
FV(RD + (K x B) S ®)
r — X T+ —,
Mc 2M
with
m,m m, —m
p=—" M=metmy, g=2 e ()
m, + my, my + me

and where p = (m,p. — m.py)/(m. + my,) is the operator for
the pair’s relative momentum.?

As mentioned above, the optically generated electron-
hole pair has zero magnetic momentum and therefore the
K-dependent terms can be ignored in Eq. (8). Furthermore,
the second term on the right-hand side can be reexpressed as
We,e — We h

DB ¢ xp) = i., (10)

2uc 2

where w. j = eB/(mjc) [j = e, h] are the cyclotron frequen-
cies of the electron and hole, and L. = Xpy — 9Py is the z
component of the orbital angular momentum operator for their
relative motion. Crucially, the only states of matter that couple
to light in our model (6) are the isotropic s excitons, and L,
is zero for these states. Hence, the “orbital” term (10) above
can also be discarded,’ leaving us with the following effective
matter part of the Hamiltonian:

a2
Y/ P 1 A A
Al = 5 + Heelf + VD, (1n

where we introduce the electron-hole cyclotron frequency
w, = eB/(2uc).* This reduces to the electron cyclotron fre-
quency @, . when the electron and hole masses are equal.

Finally, we can write down the full effective Hamiltonian
for an exciton-polariton in a magnetic field,

Ae/ff = Ar;gf + ﬂph + ﬂph—maty (12)

which is used in the ensuing sections.

III. EXCITON IN A MAGNETIC FIELD

In the current section, we revisit the scenario of a two-
dimensional exciton in a static perpendicular magnetic field,

performed in the context of excitons by Gor’kov and Dzyaloshinskii
[48].

2In this form, one can show that [y, K] = [HA1
(K, P] = 0, while [Apa, P] # 0.

3We mention furthermore that this “orbital” term is very small for
the case of monolayer TMDs where m, =~ m;,.

40Of course, the operator p?/(21) also contains L., but this can only
be separated out by projecting onto the position basis and using polar
coordinates, as we do in the next section (Sec. III).

K] = 0, since

at?

without any light-matter coupling, and we provide a new and
powerful procedure to efficiently solve the problem numer-
ically. Previously, this problem has been addressed using a
variety of theoretical approaches, including the WKB method
[23], variational wave functions [24,25], and a two-point Padé
approximant that interpolates between the perturbative results
in the weak- and strong-field limits [26]. Here, we exploit a
real-space mapping between the hydrogen problem and the
harmonic oscillator, allowing us to convert the Schrodinger
equation into a form that is readily solved by modified quadra-
ture integration methods. This strategy is computationally
cheaper than numerically integrating the Schrodinger equa-
tion [27-30] and yields the fullest solution—numerically
converged energies and wave functions for the ground state
and at least a dozen excited Rydberg states. Our results are
directly relevant to thin quantum-well semiconductors and can
also be extended to apply to current experiments on atomi-
cally thin materials [31,32] with only minor modifications. In
particular, we expect the excited Rydberg states in TMDs to
be well described by an unscreened Coulomb potential, since
dielectric screening only affects the Rytova—Keldysh potential
[17,18] at small electron-hole separation.

Specializing to the optically active s series of excitons, we
begin by writing down the real-space representation of the
Schrodinger equation,

1 [ d? 1d w? e 1
Eso(r)=[— ( + >+—“ crr —

w\ar T rar )t 2 z;}”(’)’

13)

with r = |r| and where we make use of the effective matter
Hamiltonian A/ in Eq. (11). The energy E is measured
relative to the band gap of the semiconductor, and ¢(r) is the
wave function for the relative motion of the electron and hole
(in the rest frame of the magnetic momentum).

Rather than proceeding to solve the above differential
equation in real space, which is the usual approach, we Fourier
transform the system into an integral equation in momentum
space. The only complication arising from such a tactic is
that the magnetic-field term converts to a derivative in the
momentum representation, since it is a function of 2. To
circumvent this issue, we first rescale the real-space variable
as r — p =r?/(8a}) and we introduce the dimensionless
wave function ¢(p) = age(r). The Schrodinger equation (13)
hence becomes

2F d? 1d 457

) w(p) = [ (dp2 + pdp>+ o;

}5(/)).
(14)

1
V203

Here and subsequently, we employ an overbar to denote
quantities that are expressed in terms of 2D Rydberg units,
i.e., those that are rescaled by the exciton binding energy
R =2pe*/e? = 1/(2ua}), where ay = ¢/(2ue?) is the exci-
ton Bohr radius. In other words, @, = w./R and E = E/R.
Note that we have kept the same order of terms here in p space
as before in r space. Most interestingly, this change of variable
takes advantage of a mapping in 2D between the harmonic
oscillator and the hydrogen problem [33], where the parameter
E plays the role of the strength of the Coulomb interaction,
and @2 the role of the energy. The novelty in the present
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transformation is the additional Coulomb potential in Eq. (13)
which transforms into a potential oc 1/0%? in Eq. (14).

Now we Fourier transform the excitonic Schrodinger
equation into the rescaled momentum space by applying the
operator fdzp e~™r{.} to Eq. (14), where k is the conjugate
variable to p. The result is given below, where I'(x) is the Eu-
ler gamma function and the summations are two-dimensional,

Y, = [d/Q2n)%

AP _ oo DU 7

EN 25 25, + 4 - :

DB R TP I ]
(15)

Again, we have kept the same order of terms here as in
Eq. (13).

Equation (15) is a key result of our work, since it permits
an efficient numerical solution of the problem of excitons
in a magnetic field. We can view the above expression as
an eigenvalue-matrix problem, where the transformed wave
function @, is the eigenvector, the squared cyclotron fre-
quency &)3 is the eigenvalue, and the energy E is an input
parameter. These types of problems are readily solved nu-
merically by using, e.g., Gauss—Legendre quadrature methods
[34]. Importantly here, the two nondiagonal terms feature a
pole at k¥ = k’. Rather than fictitiously removing the & = &’
elements from the two matrices, we implement a “subtraction
scheme,” which cancels out the singularities and significantly
speeds up numerical convergence at high momenta. The de-
tails are relegated to Appendix A. This effectively means that
we can calculate an entire spectrum (such as those presented
in this paper), including highly excited Rydberg states, in
less than a minute on a standard laptop. Notice that although
Eq. (15) specifically applies to the case of 2D Coulomb inter-
actions, it can be adapted for other interaction potentials by
modifying (only) the rightmost term—we elaborate on this in
Appendix B.

A. Exciton energy spectrum

The energy spectrum of a 2D exciton in the presence of
a static perpendicular magnetic field—as obtained by solving
Eq. (15)—is displayed in Fig. 1. Our numerically exact results
are compared with the results of nondegenerate stationary-
state perturbation theory valid at either low (a) or high
(b) magnetic fields.® The perturbative expressions were pre-

3 Alternatively, it is also possible to use a similar transformation to
map Eq. (13) onto an anharmonic oscillator [49], after which it can
be solved by an iterative procedure.

SWe can use a nondegenerate theory to calculate the perturbative
corrections to the energies and wave functions at zero separation for
the s excitons. At every order, in the low-field limit, this involves
evaluating the matrix elements of ? in the hydrogen basis, and in
the high-field limit, the matrix elements of 1/r in the harmonic
oscillator basis. Both functions of r are rotationally symmetric. Thus,
if we were to calculate any such matrix element for an s state and
a higher angular momentum state, then we would obtain a radial
integral multiplied by the angular integral fOZ”dG exp(il0), where [
is a nonzero integer—which always gives zero. In other words, these

0.0p——r—F—"—"""7T"""—"T7"—"—
F0.00 (7 : — ]

—0.2F // W )y (a) 1

L Y e 4

L i s 1 i

—0.4 0027 s ] .

e U P ‘ ]
~ [ [ 2 ] ]
K —0.6F-0.04 ] .
r | 3s ] 1

i . P B R - ]

L 0.00 0.01 N

R R B

w./R

FIG. 1. Exciton energy as a function of magnetic field for the
seven lowest energy s states. We focus on the low- and high-field
limits respectively in the upper (a) and lower (b) panels. The solid
blue lines correspond to the numerically exact results of our theory,
Eq. (15), while the dashed red lines are the results of perturbation
theory for weak and strong magnetic fields, Eq. (16) in (a) and
Eq. (17) in (b), respectively.

viously determined analytically in Ref. [26], and we report
them here for completeness.

The upper panel (a) of Fig. 1 illustrates the weak-field
regime where the magnetic field can be treated as a pertur-
bation. The perturbative expansion for the s-exciton energies
in this limit is given by

) _ 2n—1V
E,~ E™ 4 &% x [5n(n — 1) + 3 <—)+0@4,
ns c [ ( ) ] 2\/§ (c)
(16)

where E/¥Y = —1/(2n — 1)? are the zero-field energies and
n=1,2,3,... is the principal (or radial) quantum number
of the excitonic states [26]. We can observe that for more
highly excited states, the perturbative energies are accurate
for an increasingly narrow range of magnetic fields. In other
words, as the field increases, higher excited states approach
the strong-field limit more quickly than less excited states.
The lower panel (b) of Fig. 1 depicts the strong-field regime
where the Coulomb potential can be treated as a perturbation.

terms do not contribute to the perturbative expansions, and we can
consider only the s states which are nondegenerate.
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we/R

FIG. 2. Exciton energies from Fig. 1 measured with respect to
the corresponding Landau energy levels of a free electron-hole pair,
AE,, = E,; — (2n — 1)w,, where we label the states by the principal
quantum number n. This depiction reveals how the excitons become
more tightly bound at higher fields.

The corresponding energy expansion is [26]
1
Ey, ~ 2a)¢|:N + - 3 + a(l)x + oz(z)x + a(3)x + a(4) 4]

+ Oxd), (17)

where x = /7 /(8®.) and the numerical coefficients 0‘1(\/) are
tabulated in a footnote.” The index N = n — 1 now designates
the Landau level, and in Fig. 1 we have N = 0 for the ground
state, N = 1 for the first excited state, and so on. Consistent
with and opposite to panel (a), we can see that the higher the
energy level, the larger the magnetic-field range over which
perturbation theory is accurate in panel (b). Note that since
we are only considering the case of zero orbital angular mo-
mentum, we do not observe any crossings of the energy levels,
unlike in Ref. [26].

High magnetic fields quench the kinetic energy of 2D
electron systems so that the effect of the Coulomb interaction
dominates—see for instance Ref. [35]. To demonstrate this
point, we plot the interaction-induced energy shifts in Fig. 2
by defining the exciton energies relative to the corresponding
Landau energies of a free electron-hole pair. This alternative
representation of the solution to Eq. (15) is more intuitive,
because it shows how the excitons become more strongly
bound as the confinement due to the magnetic field increases.

"The coefficients a(') in the perturbation expansion [Eq. (17)] for
the exciton energies at high magnetic fields are enumerated below:

N i=1 i=2 i=3 i=4

0 -1 —0.44010149  —0.2331170 —0.07267451
1 -3/4 —0.11128950 0.0339248 0.0423287
2 —41/64 —0.052408254  0.0271247 0.0141383
3 —147/256 —0.031171820  0.0192753 0.0061608

These values have been taken from Table II of Ref. [26] and are
accurate to the number of figures listed.

B. Exciton wave function and oscillator strength

In addition to the energies, Eq. (15) allows us to extract
the numerically exact electron-hole wave functions ¢(r) by
finding the eigenfunctions ¢, . The wave functions give access
to the exciton oscillator strengths, which are proportional to
the probabilities of the recombination of an electron and a hole
l¢(r = 0)|?, and which thus determine the intensities of the
exciton absorption peaks. We should be careful to note that
the obtained eigenfunctions need to be normalized according
to the condition,

= f d’r |p(r)* = f d’p

To ensure this is the case, we take

4 PPy
;w(p)ﬁ =87y

<k — |
(18)

@ = Pe/N, (19)

where N2 =87 Y, . %@/l — k'|. In the following, we
implicitly assume that we are always working with the ap-
propriately normalized solutions of Eq. (15).

A key result is hence the magnetic-field dependence of the
electron-hole wave function at zero separation in the original
real space, ¢(r = 0). Since r = 0 implies that p = 0, this
quantity can be simply calculated in k space as shown below:

1 ~
- Z e (20)

For the remainder of this paper, we define all wave functions
to be positive at » = 0.

In Fig. 3, we display the zero-separation electron-hole
wave functions as a function of magnetic field. On the vertical
axis, we define ¢,;(0) = ¢(r = 0) where “ns” is the state label
of the exciton, and we rescale this object by its value at zero
field, which we know analytically from the wave functions of
the 2D hydrogen problem gpm 4(0)—see Eq. (22) below. Akin
to Fig. 1, we compare our exact numerical results for the ns
exciton wave functions to the approximate perturbative results
in the weak- (a) and strong-field (b) limits. In both limits, we
plot the sums of the zeroth- and first-order corrections to the
appropriate unperturbed wave functions at r = 0.

The relevant perturbative expression in the weak-field
regime is given by

1.
p(r=0)=—p(p=0)=
ao

2

1
4 Z Ehyd Ehyd

n£n ons

X [a—lzfdzrr whyd(r)fphyd(r)] w0, @D
0

@ns(0) = OMI(0) + —<

which involves calculating the matrix elements of r in the

2D s-wave hydrogenic basis. Here, E;2" are the 2D hydrogen
energies and

oM () = p( r/ao |:2(V/ao)]
Pns (2n —1)3 m—1 n—1

(22)
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3.0 r——————— , In the upper panel (a) of Fig. 3, we can see that perturbation
L ! ] theory is accurate for a decreasing range of magnetic fields as
= 95 _ _ the principal quantum number 7 increases—the same trend as
_5?/ 0 - 1 observed for the low-field energies in Fig. 1(a). In the lower
=3 r 1 panel (b), for clarity, we only show the perturbative results
9. 2.0F for @, > 1 where they work well for all states considered. For
g r @, < 1, we have found that perturbation theory is accurate
< 15F for an increasing range of magnetic fields as the Landau-level
S‘;; r index N increases—the same trend as seen for the high-field
C == energies in Fig. 1(b). However, the wave functions at moderate
LOF | | | | | ] field strengths, which is often the relevant regime for experi-
0.00 0.01 0.02 0.03 0.04 0.05 ments, cannot be described by perturbative methods up to first

100 I T T T T I T T T T T T T I T T T T Order. . .

r 7 In fact, we can extract the entire relative electron-hole wave
0k (b) i funptions in the ori gi1.1a1 real space by carrying o.ut the reverse
= r 1 series of transformations x — p — r on the eigenfunctions
gg 6oL b @ of Eq. (15). After normalization, we numerically per-
gg r ] form the Fourier transform back into the rescaled real space,
~ 10k . @(p) = [d*/(27)* €** @, which then enables us to obtain
o C i
~ - 1 o(r) =9,/ Sa(%p ). We depict these wave functions ¢(r) for a

§. 20 n=3 ] range of excitonic states and magnetic fields in Fig. 4. Upon

r Zz? ] applying a magnetic field of increasing strength, we observe

) e I R that the oscillations of the wave functions increase in magni-
0.0 2.5 5.0 7.5 10.0 tude and also shift closer to the origin. (Note, the zero-field
lines in each panel possess the same number of oscillations as

We / R the others, but they are much smaller in magnitude and extend

FIG. 3. Exciton wave function at zero separation as a function of
magnetic field and normalized by its zero-field value. For clarity, in
the low-field limit (a) we show the first four lowest energy states, and
in the high-field limit (b) the first ten states. The solid blue lines are
calculated using Eq. (20), while the dashed red lines are given by the
first-order perturbation theory results of Egs. (21) and (23) in (a) and
(b), respectively.

are the corresponding wave functions, where L, (x) represents
the Laguerre polynomial, and n again denotes the principal
quantum number.

The equivalent perturbative expression in the strong-field
regime is

1 C?)c 1 V]GN’
(0~ & [Py N 23
N ap V 2w 2+/2may N;VN_N/

where N is again the Landau level index. We have arrived at
this expression by using the 2D s-wave harmonic oscillator
wave functions [26]; the first term is simply the value of
these wave functions at the origin, while the second term in-
volves calculating the matrix elements of 1/r in the harmonic
oscillator basis [26]:

\ T rd —~N+n)
Vi = 5 sesm) F i

1 1 /

L-N1-N+N

x 3F2[§ 2 /;1}, (24)
I-N,1-N+N

where ,F,[{ai, ..., az};{b1, ..., by}; x] represents the regu-
larized generalized hypergeometric function.

far beyond the range of the plots.) In particular, the large
upshifts of the exciton oscillator strengths ¢,;(0)—which are
also visible in Fig. 3—correspond to stronger light-matter
coupling in the Rydberg polariton systems of Sec. IV. At
higher fields, we furthermore see that the wave functions
decay more rapidly to zero at longer separations; these ex-
ponential suppressions being due to their harmonic oscillator
nature in this limit.

To further quantify how the wave functions of the Rydberg
states shrink with the applied magnetic field, we determine
the average squared electron-hole separation. This expectation
value straightforwardly transforms into k space and can thus
be examined within our approach:

() _ 1 ~

== [ drrlerP =325 (25
ay ay P

The result is presented in Fig. 5, which again shows how the

excited states are strongly modified even at relatively small

ratios of w./R.

IV. EXCITON-POLARITON IN A MAGNETIC FIELD

We now turn to the case of a strong light-matter coupling,
which can be realized by embedding a 2D semiconductor in an
optical microcavity [7]. Cavity photons are localized between
Bragg reflectors, and are cyclically absorbed and emitted by
the excitons in the semiconductor. Once the rate of energy
exchange between photons and excitons exceeds the loss rate,
the system becomes characterized by new eigenmodes, i.e.,
polaritons, which are quantum mechanical superpositions of
light and matter [36—38]. In this section, we thus evoke the full
Hamiltonian (1) of Sec. II and we exactly solve the problem
of a two-dimensional exciton-polariton in a static transverse
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FIG. 4. Real-space wave functions for the s series of Rydberg excitons as a function of electron-hole separation. In each panel, we show
how the same state evolves with increasing external magnetic field: w./R = 0.0 (short-dashed orange), 0.5 (medium-dashed blue), 2.5 (long-
dashed green), and 5.0 (solid red). Note that the zero-field wave functions (in orange) for the ns excitons also possess n — 1 nodes or zero
crossings. However, these mostly occur beyond the range of the plots (at r >> 10ay), and the wave function oscillations are also much smaller

in magnitude, such that they are not visible.

magnetic field. In the literature, a single polariton has only
been (numerically) exactly treated in 2D momentum space
and in the absence of a magnetic field [15]. Below, we show
how to connect that solution with the transformations of the
preceding section. As before, our method directly applies
to thin quantum-well semiconductors, and can be adapted
to describe atomically thin materials by making only minor
adjustments.

We begin by writing down the most general state for a
single exciton-polariton at zero center-of-mass momentum,

ly) = /d2r¢<r>|r> ®10) 4+ ylvac) ® [1).  (26)

This imposes the rotating wave approximation, which is rea-
sonable since the band gap is much larger than the energy
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FIG. 5. Root-mean-square electron-hole separation as a function
of magnetic field for the seven lowest energy s excitons.

scale of the light-matter coupling. Above, the basis ket |r)
corresponds to an electron-hole pair at K =0 and relative
separation r, |vac) denotes the electron-hole vacuum, |0) is
the photon vacuum, and |1) = ¢70). In addition, ¢(r) is the
s-wave real-space wave function for the relative motion of the
electron and hole, while y is the photon amplitude, and we
assume that the polariton state is normalized such that
L= (yly) = /dzr WP+ @D
By projecting the Schrédinger equation onto the subspaces

of Eq. (20), viz.,

(r| ® (0(E — Hjy)ly) =0, (28a)
(vac| ® (1(E — Hlge)l¥) = 0, (28b)

we obtain two coupled eigenvalue equations for the energy £
of the polariton:

E 1 /d> 1d pw? 5, el

[ + a(w + :5) Tt z;}“’)

= gy 8%(r), (292)
(E-w)y = g/ d’r ¢(r)8*(r). (29b)

Similar to the previous section, we measure all energies (in-
cluding the bare photon frequency w) with respect to the
semiconductor band gap.

The presence of the Dirac delta function in Eq. (29a) forces
the electron-hole wave function ¢(r) to diverge logarithmi-
cally at short range. It is convenient to explicitly separate out
the divergent part as follows:

o(r) = B(r) — ngT—“Ko(r/ao), (30)
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where B(r) denotes a regular function and Kgy(r/ag) is the
zeroth-order modified Bessel function of the second kind.
This takes advantage of how Ky is the Green’s function of
free-particle motion in two dimensions. In other words, it
satisfies [E?Syd + Vf/(Zu)]Ko(r/ao) = —m8%(r)/1, and thus
it explicitly cancels the delta function in Eq. (29a). However,
Ko(r/ap) diverges as In(r/ap) at r — 0, which means that
the integral in Eq. (29b) is formally divergent. We require a
renormalization procedure to remove this infinity [39], and
fortunately, such a procedure has already been elucidated for
the case of zero magnetic field in Ref. [15]. Because the diver-
gence here occurs at zero electron-hole separation where the
magnetic field has no effect, we can renormalize our system
of equations in precisely the same manner as was done in that
paper.

Experimentally, the exciton-polariton system is typically
characterized at zero magnetic field by fitting the observed
spectrum to that of a system of coupled oscillators [38].
For the 1s exciton at energy Ersyd and the photon at energy
E r vd s, coupled by the light-matter (Rabi) coupling strength
Q, the expected spectrum is

1
E,=E+ 5 (05 Ve +aer), (1)

Up

where LP and UP correspond to the lower and upper polari-
tons, respectively. Due to the form of the wave function in
Eq. (30), it was explained in Ref. [15] that the exciton-photon
detuning 4 is not simply related to w and E; yd — _R. Instead,
within our theory we obtain a renormahzed detumng between
the 1s exciton and the cavity photon energies [15]:

S=w— gr /d2rK0(r/a0)82(r)+R (32)

Although the integral above is formally divergent, it ex-
actly cancels with the divergence on the right-hand side of
Eq. (29b), when that equation is written in terms of § rather
than w. It is important to emphasize that Eq. (32) corresponds
to the actual physical exciton-photon detuning that one would
observe in experiment. Similarly, in order for Eq. (29) to re-
cover the LP and UP energies of the coupled oscillator model
(31) at zero magnetic field, the LP-UP Rabi coupling can be
defined in terms of the contact coefficient g via

2
Q=g =% /2. (33)
apgV T

The expressions (32) and (33) that relate the experimental
observables § and €2 to the parameters of the model have been
shown to work very well when |§]|, 2 < R [15]. In the fol-
lowing, we use these observables to characterize the polariton
system.

To proceed, we carry out the replacements w — 6 and g —
2, and then we perform the same variable transformation as in
the exciton problem, r — p = r*/(84}). Eventually, we arrive

at the dimensionless coupled equations shown below:
2k & 1d
p  dp?

I .
\/ﬁ}ﬂ(p)

(O
pdp ‘

= \/g Qy 8 (p), (34a)
[ —8——/d Kozf(sz(p)ﬂ]

T = 2~ 2
=\/;Q/dp<p(p)6 (p), (34b)

with € = Q/R and § = §/R.® Notably, this system of equa-
tions is now fully described in terms of the experimentally
measurable parameters of the light-matter coupled system, €2
and 4, at a finite magnetic field with cyclotron frequency w,.
Subsequently, we Fourier transform Eq. (34) into the cor-
responding dimensionless momentum k space, yielding

AT FU/4) —  7he
E 25, - 4a

2 el %Pt T/ 2 Je—w
_ \/%Qy, (35a)

[E - ”fz XK:{% + %[YOG)— Ho<%>]} + 1}/
- FaX7.

where Y((2/k) is the zeroth-order Bessel function of the
second kind and Hy(2/«) is the zeroth-order Struve function.
As with Eq. (15), Eq. (35) represents a key result of this work,
since it allows a numerically exact solution of the single-
polariton problem in a magnetic field.

To solve this set of equations (35) in k space, we rearrange
Eq. (35b) for the photon amplitude y and substitute the result
into Eq. (35a). Then we have a single eigenvalue-matrix equa-
tion where @, is the eigenvector. It is important to note that
all sums on k need to be evaluated on the same quadrature
grid so that the divergences are properly canceled. To plot the
polariton spectrum at fixed light-matter coupling strength
and detuning §, for instance, we can input a range of energies
E, and for each one obtain the (squared) cyclotron frequency
w, as the eigenvalue. Similar to the previous section, here we
have considered the 2D Coulomb interactions characteristic of
GaAs quantum wells. However, the consideration of other in-
teraction potentials is also possible and this would only affect
the rightmost term on the left-hand side of Eq. (35a)—refer to
Appendix B.

As in the exciton problem, we must normalize our solu-
tion. This is now more complicated, since we have both the
electron-hole wave function and the photon amplitude, which
need to be simultaneously normalized according to Eq. (27).
A suitable approach is to first calculate the (unnormalized)

(35b)

8In addition to the change of variable, we rescale Eq. (34a) by
2a0/(Rp).
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FIG. 6. (Top) Polariton energy as a function of magnetic field for the eight lowest energy s states. The Rabi coupling strength at zero field
is /R = 0.20 in all cases (a)—(c), while the exciton-photon detuning at zero field increases from left to right: (a) 6/R =0, (b) §/R =8/9 =
E_;Syd —EM and (c) 6 /R =24/25 = E_;_yd —-E :lsyd. (Bottom) Corresponding photon fractions, where the states have the same respective colors

Is »

as in the upper panels. In (d), note that because the photon is predominantly coupled to the 1s exciton, the photon fractions of the lower (blue)
and upper (green) polaritons sum almost to one, while the photon fractions for the remaining states are essentially zero on this scale.

photon amplitude from our (unnormalized) @, according to
Eq. (35b):

(e )
@) o

Similar to in Sec. III, we then rescale our numerical solution
as follows:

(36)

O = P /N, Yy = Y/IN, (37)

with normalization N? = |y|*+ 87 ), ., @@} /I — K|
[compare with Egs. (18) and (19)]. For the remainder of
this paper, we implicitly assume this normalization for our
solutions.

Results

Figures 6 and 7 display our numerically exact spectra of
exciton-polaritons in the presence of a magnetic field. First,
the upper and lower panels of Fig. 6 show how the ener-
gies and photon fractions of the polariton branches evolve
with the cyclotron frequency, w./R, when the resonant cav-
ity frequency is tuned to the (B = 0) ls, 2s, or 3s exciton
states. The upper panels (a)-(c) can therefore be directly
compared against the corresponding spectrum in the absence
of light-matter coupling, Fig. 1(b), where the resonant cavity
frequency would correspond to a horizontal line since it is
independent of magnetic field. In Fig. 6, we have used a light-
matter coupling strength of /R = 0.2, which is a typical
value in current microcavity heterostructures. The light-matter
coupling leads to a splitting of energies close to the photon en-

ergy. When the detuning is chosen so that the photon energy is
resonant with the 1s state, we see in panel (d) that there is little
coupling to any other excitonic states, i.e., the photon fractions
of the lower (blue) and upper (green) polaritons sum almost to
one, while the photon fractions for the remaining states are es-
sentially zero. However, because the higher Rydberg energies
are more closely spaced, when the photon is resonant with
the 2s and 3s excitons, we see from the corresponding photon
fractions in panels (e) and (f) that we begin to strongly couple
to multiple excitonic states, and that these states can be tuned
in and out of resonance via the magnetic field. Interestingly,
this coupling between excited states leads to a nonmonotonic
behavior of the photon fraction as a function of magnetic field.
Alternatively, we can consider the polariton spectra at fixed
magnetic field as a function of exciton-photon detuning, as
shown in Fig. 7. We can infer the importance of strong light-
matter coupling effects on the ns exciton state by comparing
our exact results to an (n + 1)-level coupled oscillator model
(COM). In the COM, the exciton is assumed to be unperturbed
by the strong coupling to light, and the polariton energies are
obtained by diagonalizing the (n + 1) x (n + 1) matrix

SHEN Qi @ o
Q, Es, 0 - 0
QZ.\' 0 EZs o 0 s (38)
Qns 0 0 Ens

where Q2,; = Q@,5(0)/ (plllzd(O). In Fig. 7, we can observe that
for the moderate magnetic field case in panel (a), a 12-level
coupled oscillator model deviates from the exact results in the
regime of strong coupling between light and matter, with devi-
ations of order ~15% of R for the chosen values of 2 and w,,
particularly evident in the inset. Upon increasing the magnetic
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5/R

FIG. 7. Polariton energies in an external magnetic field as a func-
tion of exciton-photon detuning. We compare our exact numerics,
shown as solid colored lines, against the results of multilevel coupled
oscillator models (38)—shown as dotted black lines for a 2-level
COM, and dashed black lines for a 12-level COM. The magnetic
field strength is w./R = 0.05 in (a) and 0.25 in (b), while the Rabi
coupling strength is /R = 0.60 in both panels.

field from (a) to (b), the system becomes more perturbative
in the light-matter coupling, i.e., better described by a COM.
This can be understood as due to the larger difference between
consecutive exciton energies (Fig. 1), relative to the exciton
coupling strength to light (Fig. 3). In particular, in the regime
of strong magnetic field, Egs. (17) and (23) together imply
that Q,,,/w. ~ &7 /2.

Note that when it comes to examining the polariton dia-
magnetic shifts (i.e., the change in energy as a function of
magnetic field), the deviations of the COM become much
more substantial, leading to even qualitatively incorrect re-
sults at only moderate values of 2/R. We discuss this point
further in Sec. V, where we compare our exact numerics to
recent experimental measurements.

We can quantify changes to the electron-hole (matter) part
of the polariton due to light and to a magnetic field by com-
puting the average squared electron-hole separation. Similar
to Eq. (25) for the exciton, we have

(), / 2 Ple)l 320
L — . (39)
a3 31— yP) Z e

Importantly, to clearly show how the electron-hole wave func-
tion changes, we take the average within the matter-only part
of the polariton wave function (indicated here by the sub-
script @), and the division by the exciton fraction 1 — |y|*> =
f d’r |¢(r)|?> ensures that this matter part is normalized to
unity.

In Fig. 8, we display the variation of the (root-mean-
square) electron-hole separation as a function of detuning,
for several different magnetic fields and light-matter coupling
strengths. We observe clear evidence of avoided cross-
ings, which become more pronounced with increasing 2/R.
The electron-hole separation within the polaritons generi-
cally increases monotonically with §/R. However, while the
electron-hole separation in the LP is always smaller than that
of the 1s exciton and mostly insensitive to the magnetic field,
in the UP it is always larger, interpolating between the 1s- and
2s-exciton radii with increasing detuning. Most interestingly,
we see both light- and magnetic-field-induced differences in
the wave functions, thus highlighting the potential to engineer
the matter excitations by using external fields.

V. COMPARISON TO EXPERIMENT

We now demonstrate that the results of our microscopic
theory compare well with two qualitatively different recent ex-
periments [11,16] which explored the combination of strong
light-matter coupling and strong magnetic fields. In particular,
Ref. [11] showed how the matter component of exciton-
polaritons is modified by a very strong magnetic field. By
contrast, in the experiment of Ref. [16], the use of a strong
magnetic field enabled the observation of a nonperturbative
modification of the exciton in the very strong light-matter cou-
pling regime. Hence, both experiments illustrated the potential
to directly engineer the fundamental matter excitations of a
semiconductor microcavity.

A. Polaritons in a strong magnetic field

In the experiment of Ref. [11], the authors obtained
the photoluminescence spectrum of exciton-polaritons in a
magnetic field using an optical microcavity where the embed-
ded semiconducting active medium was a single 8-nm-thick
Ing 04Gag 9sAs quantum well. The spectrum was fitted to a
model of three coupled oscillators (38), where the 1s- and
2s-exciton and photon energies, and the corresponding Rabi
splittings, were fitting parameters. The extracted energies
of the bare matter excitations Ei; o, and the Rabi splittings
2525 could then be plotted as functions of the magnetic
field. The latter were identified as the minimal splittings be-
tween the polariton spectral lines around the 1s and 2s states
as functions of an additional tuning parameter—such as the
detuning or photon momentum.

In Fig. 9, we compare our results from Secs. III and IV to
this experiment [11], where as inputs to our theory, we employ
the authors’ reported 1s-exciton binding energy R = 7 meV
and reduced mass u = 0.046 m (with mg the free electron
mass) [10]. In particular, panel (a) shows exceptional agree-
ment between the measured energies and the exciton energies
E,; calculated from our Eq. (15) as a function of magnetic
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FIG. 8. Root-mean-square electron-hole separation as a function of exciton-photon detuning for the three lowest energy polariton states.
The magnetic field strength increases from left to right: w./R = 0.00 (a), 0.05 (b), and 0.25 (c). In all panels, the Rabi coupling strengths are
/R = 0.05 (solid red), 0.20 (long-dashed green), and 0.60 (medium-dashed blue), while results for the 1s, 2s, and 3s excitons are shown as

horizontal gray lines.

field B. Note that we have applied a constant energy shift to
the theoretical energies to match the quantum-well band gap.
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FIG. 9. Numerically exact exciton energies (a) and polariton
Rabi splittings (b) for the 1s (blue solid lines) and 2s states (green
solid lines), using the experimental parameters for a single GaAs
quantum well embedded in a microcavity [11]. The red points corre-
spond to the experimental data from Ref. [11].

In Fig. 9(b), we overlay the measurements of the polariton
Rabi splittings 2€2,,; onto our results, using the experimentally
reported zero-field Rabi coupling strength, 2 = 1.75 meV
[10,11]. Numerically, we can obtain the Rabi splittings in two
different ways. The first is by calculating the exciton wave
functions at vanishing separation: €2,; = Q(pm(O)/go?zd (0), as
used in the COM (38) and shown in Fig. 3. The second is
by extracting 2€2,, as the minimal polariton splittings when
the energies of Eq. (35) are plotted at fixed B as functions of
detuning. In this experiment, the Rabi coupling is sufficiently
weak (2/R = 0.25) that the COM with our numerically exact
input parameters {E,;, $2,s} yields nearly exactly the same
theoretical values as our full polariton calculation (35); by
contrast, in Fig. 7, the failure of the COM is due to the
calculation being in the strong light-matter coupling regime
where /R 2 0.50. In panel (b) of Fig. 9, we can see that
the agreement between theory and experiment is very good
for Qi,. However, the experimental value of 2, deviates
from our theory with increasing magnetic field, which is most
likely due to the large uncertainty when fitting the polariton
dispersion at low emission intensity [40].

To further validate our theory, in Fig. 10, we have overlaid
its predictions directly onto the photoluminescence emission
signals measured in this experiment [11]. These experimental
spectra clearly show the anticrossing of the bare cavity photon
mode with the 2s exciton, as a function of the emission angle
(which is proportional to the in-plane polariton momentum),
at several magnetic field strengths. The theoretical polariton
dispersions have been evaluated by diagonalizing a three-level
coupled oscillator model (38) based on the bare photon dis-
persion and our numerically exact 1s and 2s exciton energies
and Rabi splittings (shown in Figs. 1 and 3, respectively).
Here, a change in the polariton’s in-plane momentum sim-
ply corresponds to a change in the exciton-photon detuning,
since the momentum probed is negligible compared with other
relevant scales in the exciton. We see that the calculated po-
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FIG. 10. Angle-resolved photoluminescence spectra of exciton-polaritons in a magnetic field taken from Ref. [11], where our theory has
been overlaid. The white and orange dashed lines, respectively, correspond to the bare photon and 2s-exciton dispersions, which anticross at
high emission angles to form the two measured polariton branches. The red solid lines are given by the eigenvalues of a three-level coupled
oscillator model (38) that is based on our numerically exact values for E;; 5, and €2y, 5, at the selected magnetic field strengths. Full image

credit: Mateusz Krol.

lariton modes fit the photoluminescence data perfectly at all
fields considered, B = 0-2.5 T. Furthermore, this comparison
makes it very clear that our theory consistently yields the cor-
rect minimal (Rabi) splittings between the polariton branches
for the 2s state.

B. Polaritons in the very strong light-matter coupling regime

The regime of very strong light-matter coupling occurs
when the Rabi frequency €2 becomes comparable to the
Is-exciton binding energy R. In this limit, the light-matter
coupling nonperturbatively modifies the electron-hole wave
functions, effectively hybridizing the Rydberg series of exci-
tons [13,14] (also refer to the fully microscopic calculation of
Ref. [15]).

We now compare our theory to an experiment which
demonstrated this effect by applying a magnetic field and
determining the diamagnetic shifts of the upper and lower po-
laritons in a GaAs quantum-well microcavity—see Ref. [16].
Measurements were performed on two different microcavity
samples: one comprising a single quantum well (1 QW), and
another comprising 28 quantum wells (28 QWs) placed in
stacks of four quantum wells in the seven central antinodes
of the cavity light field. All quantum wells were 7-nm-wide
GaAs layers with 4-nm-wide AlAs barriers. Polariton energies
and linewidths were obtained by fitting Lorentzian functions
to the peaks observed in reflectance spectra. Note, the use of
multiple quantum wells embedded into the microcavity allows
one to increase the Rabi splitting roughly by a factor ~+/N,
where N is the quantum-well number.

Figure 11 shows the diamagnetic shifts, AE = E(B) —
E(B = 0), of the lower and upper polaritons at a magnetic
field of B = 5T (w./R =~ 1/2) as a function of the zero-field
detuning, §. The triangular plot markers correspond to the
experimental data taken from Ref. [16], while the solid lines

correspond to our numerically exact theory (35). The input
parameters for the latter were the zero-field 1s-exciton binding
energy (R =13.5meV) and Rabi couplings (2 = 1.9 meV
for 1 QW and Q2 = 8.7 meV for 28 QWs), as reported in
Ref. [16].

For the 28-QW sample, the agreement between theory and
experiment shown in panel (b) is quantitatively very close,
which validates our microscopic calculation. For 1 QW, the
agreement shown in panel (a) is mainly qualitative; how-
ever the experimentalists state that there are considerable
uncertainties in their measurements for this sample [16], pos-
sibly with a misestimate of the 1s-exciton diamagnetic shift,

E;(B) — E14(B = 0). Moreover, the linewidth ~2-5 meV is
(a) 1 QW (b) 28 QWs
2.5 —— ‘ ‘
= a0l AUP | &
= z
= £
55| =
< <

0 [meV]

0 [meV]

FIG. 11. Diamagnetic shifts of the upper and lower polaritons
at B = 5T as a function of zero-field detuning. Results for the 1
quantum-well sample (2/R = 0.14) are shown in panel (a), while
those for the 28 quantum-well sample (2/R ~ 0.64) are shown in
panel (b). The triangular markers correspond to the experimental
data from Ref. [16] and the solid lines correspond to our numerically
exact theory. The dashed lines are the results of a two-level COM
(38) in (a) and a three-level COM in (b), which treat the light-matter
coupling as a perturbation. On the other hand, the dotted lines in both
panels are obtained by treating the magnetic field perturbatively.
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comparable to the Rabi splitting, and hence the 1-QW case is
formally beyond the regime of validity of our strong-coupling
theory.

To provide additional insight into the experimental results
of Fig. 11, we compare them with two qualitatively distinct
approximations: one which treats the coupling to light pertur-
batively, and one which instead assumes the magnetic field
to be weak. In the former case, we calculate the numerically
exact ls-exciton energy (as in Fig. 1) and oscillator strength
(as in Fig. 3) using the methods of Sec. III, and then we obtain
the polariton energies by using the simple coupled oscillator
model in Eq. (38). We see in panel (a) that the results obtained
from a 2-level COM match our exact numerical results very
well for 1 QW, as expected, since in this case 2 < R. On
the other hand, for 28 QWs we see in panel (b) that the per-
turbative results of a three-level COM fail both quantitatively
and qualitatively (in the considered detuning range) due to the
very strong light-matter coupling, as discussed below.

Conversely, we can first obtain the LP and UP energies as
the two lowest energy eigenstates of Eq. (35) with B = 0, and
then add the magnetic field as a perturbation, giving

L L 2y/,2
AE , ~ E,u,a)c<r )LP = E/Lwc(l —ly»(r >¢7LP, (40)
uP uP UP

where (r?), is calculated from the matter-only part of the
polariton state as in Eq. (39). Qualitatively, this approach
captures the behavior of both LP and UP diamagnetic shifts
with detuning in both samples. In particular, for 28 QWs
it works very well for the lower polariton, due to this be-
ing dominated by the coupling to the 1s exciton, which
is only minimally affected by this magnitude of magnetic
field. On the other hand, the very strong light-matter cou-
pling means that the upper polariton has contributions from
multiple Rydberg states as well as the continuum [13-15],
which are strongly affected by the magnetic field, and hence
this approach overestimates the diamagnetic shift. Together,
the results from these two perturbative calculations clearly
demonstrate that the measurements for the 28-QW sample can
only be accurately described by a theory that incorporates both
very strong light-matter coupling and strong magnetic fields.
As evidenced by Eq. (40), the qualitative behavior of our
numerically exact results arises from the interplay between
the exciton fraction (1 — |y|?) and the electron-hole (matter-
only) separation [see Figs. 8(a)-8(b)]. In particular, since
both of these quantities for the lower polariton increase with
increasing detuning, the LP diamagnetic shift always mono-
tonically increases with §/R for any Rabi coupling. However,
this shift becomes suppressed with increasing €2/R due to
the light-induced shrinkage of the exciton. We remark that
an (n + 1)-level COM cannot capture this effect and instead
produces an unphysical negative LP diamagnetic shift—see,
e.g., Fig. 11(b) where AE;p as predicted by the COM is
negative in almost the entire detuning range. In other words, it
is thus essential to include the back-action of light on matter
in order to correctly capture the polariton diamagnetic shift.
By contrast, the 1s-exciton fraction in the upper polariton
decreases with increasing detuning, and thus the diamagnetic
shift in Eq. (40) depends on the competition between this ef-
fect and the expanding size of the exciton. For the sufficiently

(a) 1 QW (b) 28 QWs
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FIG. 12. Exciton fractions of the upper polariton at B =0 as a
function of detuning, and for the same light-matter coupling parame-
ters as in Fig. 11. In each panel, the solid red, orange and purple lines
respectively correspond to the 1s, 2s and 3s—10s excitonic states,
while the dashed gray line represents the total fraction of all the
bound states.

small Rabi coupling in Fig. 11(a), we see that the overall prod-
uct of these two factors decreases, which means that the effect
of the changing exciton fraction is dominant. The result is that
the LP and UP shifts behave symmetrically as a function of
detuning in this limit, coinciding at [E4(B) — E1;(B = 0)]/2
where they both possess the same photon fraction. As the
detuning increases beyond the range shown in panel (a), the
UP becomes essentially indistinguishable from the 2s exciton,
and therefore the 2s-exciton fraction approaches unity, while
AEyp turns upward and approaches Ey(B) — Ex (B = 0). As
/R increases between the values in panels (a) and (b), this
upturn occurs at increasingly smaller values of §/R. At the
strong Rabi coupling considered in Fig. 11(b), a three-level
COM which includes this phenomenology completely fails to
describe the experimental and exact theoretical results, and
including more levels in the COM does not lead to an im-
proved comparison.’ Instead the perturbative COM becomes
an even worse predictor because it cannot account for the
light-induced changes to the matter part of the polariton in
this regime.

The importance of the admixture of exciton Rydberg states
in the UP is illustrated in Fig. 12. Here, we present the exciton
fractions of the upper polariton for the same Rabi coupling
strengths as in panels (a) and (b) of Fig. 11 and for a fixed
detuning range—in the limit of zero magnetic field. This was
done by calculating the overlap of the exciton wave function
with the electron-hole part of the polariton wave function
(both normalized to unity). The colored lines correspond to
the first ten exciton states, and the dashed gray line represents
the sum total of these contributions for all the bound states.
After the ls exciton (in red), the 2s exciton (in orange) has
the next most dominant effect on the behavior of the UP.
However, at large Rabi coupling and large detuning, there is
an additional effect from higher energy excitonic states (3s up
to 10s are shown in purple) and from the continuum (since
the gray line can be less than one). Notice that the larger the
value of , the smaller the value of § at which these states

Note that at finite B fields, the resonant cavity photon energy
within the (n 4 1)-level COM formally diverges in the limit n — oo,
analogous to the divergence in Eq. (32).
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become important. This effectively means that we cannot ex-
plain the very large shift of the UP with a coupled oscillator
model that includes the photon and the 1s, 2s, or even higher
ns excitons. Instead, we need to microscopically consider
all the bound and unbound electron-hole levels in order to
quantitatively capture the very strong light-matter coupling
regime.

VI. CONCLUSIONS AND OUTLOOK

To conclude, we have developed a microscopic theory of
Rydberg exciton-polaritons in the presence of a transverse
magnetic field. Our theory is underpinned by two key innova-
tions: a mapping between the 2D hydrogen problem and the
2D harmonic oscillator that allows a highly efficient numerical
solution of the entire s-exciton Rydberg series in a mag-
netic field; and a recently developed renormalization scheme
that enables the numerically exact description of exciton-
polaritons [15]. As the first such theory, it can be utilized to
determine the effect of tuning both the light-matter coupling
and the magnetic field to arbitrary values, and in particular
to investigate the interplay between very strong light-matter
coupling and strong magnetic fields.

We emphasize that the excellent agreement between our
theory and the two experiments in Refs. [11,16] was achieved
without the need to introduce any fitting parameters. Rather,
all parameters used in our numerically exact modeling
were taken from independent experimental measurements.
Furthermore, we have modeled the experiments as purely
two-dimensional, and our agreement with the experimental
results therefore suggests that the transverse motion in the
quantum wells plays only a minor role. In the future, it would
be interesting to apply the theory to other semiconductors such
as Cu,O [41].

Our results have a wide regime of applicability: to any
electron-hole mass ratio, to any polariton momentum below
the inflection point, and to different semiconductor struc-
tures or materials. In particular, our approach is immediately
extendable to study Rydberg exciton-polaritons in TMD
monolayers, since the excited excitons in these systems are
already well captured by the Coulomb potential considered
in this work (see Appendix B). This direction is especially
promising now that experiments have demonstrated how large
magnetic fields in TMDs can be induced by strain [42,43].

One particularly exciting aspect of Rydberg exciton-
polaritons is their potential as strongly interacting part light,
part matter quasiparticles, with applications to quantum infor-
mation processing [6]. Indeed, enhanced interactions of the
2s Rydberg exciton-polaritons have very recently been re-
ported in an atomically thin semiconductor [4]. Furthermore,
polariton scattering calculations that explicitly included the
electron, hole, and photon degrees of freedom have recently
demonstrated that the interactions in light-matter coupled sys-
tems can be enhanced even above that of the matter-only
excitations [44,45], and it would be interesting to extend
such microscopic approaches to the scattering of Rydberg
exciton-polaritons in magnetic fields. Our work elucidates
how Rydberg excitons can be strongly modified both by light-
matter coupling and via a magnetic field, thus highlighting

the prospect of precisely engineering Rydberg states with
enhanced light-matter coupling and strong nonlinearities.
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APPENDIX A: SUBTRACTION SCHEME

Here, we briefly illustrate the idea behind the subtraction
scheme employed to deal with the pole at ¥ = «’ in the two
off-diagonal terms of Eqs. (15) and (35), and to speed up the
numerical convergence. Let us consider the simple Coulomb
potential as an example; the same procedure can be readily
generalized to any potential V,_,, = |k — &'|* with a pole at
k = k' for —1 < @ < 0. The Coulomb eigenvalue problem is

) di’c’ _
K- — 7VK,K’¢K/ = E(pm

where we have integrated over the angle,

(AD)

Tde 1 2 1 4k’
VI( K = b = - K (AZ)
’ o 2mlk—Kk| mwr+k | (k+«)?
and where K(x) denotes the complete elliptic integral of the
first kind. Problematically, the potential V. , diverges at k =
k’. We therefore consider the following equivalent eigenvalue
problem:

) dK/K/( ) di'’
KS — V. 0. — ’ — ’
o VKK P — i, Pic ) 8.k’ Pic

2k? v
K24 (2

Above, we have added and subtracted the potential g, in the
diagonal term of the original eigenvalue problem (A1). The
prefactor 2«2 /[k? + (k’)?] has been chosen so that it equals
1 when « — «’/, and it increases the convergence rate when
k" — 00 [46]. The singularity of the original potential is thus
removed in the new eigenvalue problem (A3), while the last
term on the left-hand side is convergent. For the bare Coulomb
potential, this term can be evaluated analytically, giving:

/'d/(//c’ K I2(1/4)
2 S T LA TA)2)

=FEg,, with Sk = (A3)

(A4)
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APPENDIX B: TRANSFORMATIONS FOR A GENERIC
ELECTRON-HOLE POTENTIAL

Our approach can be generalized to different electron-hole
interaction potentials, and we illustrate this below on the so-
lution for the exciton, which is contained within the solution
for the polariton. In particular, we confirm that this generaliza-
tion works for the Rytova—Keldysh potential [17-19], which
properly captures the dielectric screening in monolayer TMDs
[20,21].

In momentum space, this potential has the following form:

1
k k 1+ V()k

27 €2
ek

is the 2D Coulomb potential [i.e., the Fourier transform of
Eq. (3)], and k is the magnitude of the relative momentum
of the electron and hole. The “screening length” ry provides
a correction to the Coulomb potential which is clearly only
important at large momenta, or short distances. As a conse-
quence, the Rytova—Keldysh potential only strongly affects
the tightest bound excitons in TMD monolayers, while the
excited states in the Rydberg series remain well described
by VE. In position space, the Fourier transform of VXK
is given by

), where V& = — (B1)

2
= PR
2¢ery ro 70
where the functions Hy and Y, have been defined below
Eq. (35).
We write the real-space Schrodinger equation for the exci-

ton (13), from the main text, in terms of a generic rotationally
symmetric potential, V(r) = V (r):

! d2+1d +Mw§2+V() (r)

—_—| ==+ - |+ =~ r 7).

2u\dr? = rdr 2 ¢
(B3)

(B2)

Eo(r) = [

Continuing, we rescale the real-space variable as r — p =
r?/(8a}), and we also multiply the entire expression by

2ap/(Rp) to yield
2F d? 1 d
So= it i
where ¢(p) = ape(r). Notice that we have absorbed the mul-
tiplicative factor 2/(Rp) into the generic potential,

o 2v(fsadp)

Vip) = Rp

Next, we define a rescaled conjugate variable «, and we
Fourier transform the equation into momentum space by
acting on both sides with the operator [d?pe **{-}. In
particular, the potential term transforms as follows:

/ dp e PV (0)3(p)

—iK- iK' -px7 iK' -0~
— /d2p€ ucp§ :euc pVK” e p(pK,

P «
= ~
= E V\K—K’I(pk’a
o

where we have used the Dirac delta function 82(k' + K" —
k)= [d*pe =P and where 3, = [ d*/(27)*. The
final result in the rescaled momentum space is thus

= A o 2~ =2~ % ~
FY e~ 0546~ e

)+ 4] + V(p)] P(p), (B4

(B5)

(B6)

B7)
K K’

Importantly, we can carry out the Fourier transform from p
to k space as long as the original real-space potential does not
diverge too strongly at short range and decays at long range.
To be precise, at small p we require that V(p) ~ p® where
o > —2, which means in turn that we need to have V (r) ~ rP
at small r, with 8 = 2a + 2 > —2. This condition is satisfied
by the Rytova—Keldysh potential VR¥(r), since that potential
goes as In(r) for r — 0, which is a weaker divergence than
r~2. In the opposite limit we simply require that V (r) — 0 for
r — 00, and this is also satisfied by VRK (1), which reduces to
the Coulomb potential VE(r) oc r~! at large r.
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